research communications
and DFT study of benzyl 1-benzyl-2-oxo-1,2-dihydroquinoline-4-carboxylate
aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bDepartment of Chemistry, Langat Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar-842001, India, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and eLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: younos.bouzian19@gmail.com, faizichemiitg@gmail.com
In the title quinoline derivative, C24H19NO3, the two benzyl rings are inclined to the quinoline ring mean plane by 74.09 (8) and 89.43 (7)°, and to each other by 63.97 (10)°. The carboxylate group is twisted from the quinoline ring mean plane by 32.2 (2)°. There is a short intramolecular C—H⋯O contact forming an S(6) ring motif. In the crystal, molecules are linked by bifurcated C—H,H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked by C—H⋯π interactions, forming a supramolecular three-dimensional structure.
Keywords: crystal structure; 2-oxo-1,2-dihydroquinoline; C—H⋯O hydrogen bonding; C—H⋯π interactions; supramolecular three-dimensional structure; DFT.
CCDC reference: 1920509
1. Chemical context
et al., 2010). It is therefore no surprise that the development of new methodologies to synthesize biologically active persists as a very important goal in organic chemistry (Jones et al., 2011). Quinolones and their derivatives have contributed substantially to the evolution of antimicrobial agents. The development of antibiotic quinolone began in 1962 with the discovery of nalidixic acid, which was used to treat urinary tract infections (Lesher et al., 1962). Quinolone derivatives are a classical division of organic chemistry; many of these molecules have shown remarkable biological properties, including exceptional antibacterial activity (Beena & Rawat, 2013; Chai et al., 2011; Hoshino et al., 2008) and are used as anti-fungal (Musiol et al., 2010), anti-tumoral (Bergh et al., 1997) and anti-cancer drugs (Elderfield & LeVon, 1960). Recently, complexes based on quinoline-4-carboxylic acid have been reported (Bu et al., 2005; Xiong et al., 2000). The present study is a continuation of the synthesis of heterocyclic derivatives performed by our team (Chkirate et al., 2019a,b). It is part of an ongoing structural study of and their utilization as molecular (Faizi et al., 2016) and fluorescence sensors (Mukherjee et al., 2018); Kumar et al., 2017, 2018). We report herein the synthesis and the molecular and crystal structures of the title compound, benzyl 1-benzyl-2-oxo-1,2-dihydroquinoline-4-carboxylate, along with the density functional theory (DFT) calculations.
have paved the way for exceptional achievements in the fight against many life-threatening diseases (Alcaide2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. It is composed of two substituted aromatic rings attached to a planar quinolone ring (N1/C9–C17; r.m.s. deviation = 0.017 Å). The attached benzyl rings (C2–C7 and C19–C24) are inclined to the quinolone ring system by 74.09 (8) and 89.43 (7)°, respectively, and to each other by 63.97 (10)°. The carboxylate group is twisted from the quinoline ring system by 32.2 (2)°. The carboxylate group is involved in a short intramolecular C—H⋯O contact forming an S(6) ring motif (Fig. 1 and Table 1).
3. Supramolecular features
In the crystal, molecules are linked by bifurcated C—H,H⋯O hydrogen bonds, forming layers lying parallel to the ac plane (Table 1 and Fig. 2). The layers are linked by C—H···π interactions, so forming a supramolecular three-dimensional structure (Table 1 and Fig. 3).
4. Frontier molecular orbital analysis
The highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) are named as frontier molecular orbitals (FMOs). The FMOs play an important role in the optical and electric properties, as well as in quantum chemistry and UV–Vis spectra. The frontier orbital gap helps characterize the chemical reactivity and the kinetic stability of the molecule. A molecule with a small frontier orbital gap is generally associated with a high chemical reactivity, low kinetic stability and is also termed a soft molecule. DFT quantum-chemical calculations for the title compound were performed at the B3LYP/6–311 G(d,p) level (Becke, 1993) as implemented in GAUSSIAN09 (Frisch et al., 2009). DFT structure optimization was performed starting from the X-ray geometry and the values compared with experimental values of bond lengths and bond angles matching with theoretical values. The basis set 6-311G(d,p) is well suited in its approach to the experimental data. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the whole tetra-substituted benzene ring. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 4. The HOMO molecular orbital exhibits both σ and π character, whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of π-density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap is found to be 0.15223 a.u. and the frontier molecular orbital energies, EHOMO and ELUMO are −0.22932 and −0.07709 a.u., respectively.
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update May 2019; Groom et al., 2016) for the 1-benzylquinolin-2(1H)-one skeleton gave ten hits. The dihedral angle between the benzyl and quinoline rings varies from ca 71.0 to 89.6°, compared to 89.43 (7)° in the title compound. Only two of these compounds have a carboxylate group in position 4 on the quinoline ring, viz. ethyl 1-benzyl-3-hydroxy-2-oxo-1,2-dihydroquinoline-4-carboxylate (CSD refcode ZINHEL; Paterna et al., 2013) and benzyl 1-benzyl-2-oxo-3-vinyl-1,2-dihydroquinoline-4-carboxylate (FAVZEK; Malini et al., 2017). The latter compound most closely resembles the title compound, with a vinyl substituent in position 3 of the quinoline ring. A view of the structural overlap of FAVZEK and the title compound is given in Fig. 5. The conformation of the two compounds differs essentially in the orientation of the carboxylate group with respect to the quinoline ring: 85.6 (3)° in FAVZEK compared to 32.2 (2)° in the title compound. This is the result of resulting from the presence of the vinyl substituent in position 3 on the quinoline ring in FAVZEK. In the title compound, the benzyl rings (C19–C24 and C2–C7) are inclined to the quinoline ring by 89.43 (7) and 74.09 (8)°, respectively, while in FAVZEK the corresponding dihedral angles are 88.55 (11) and 76.44 (13)°. The two benzyl rings are inclined to each other by 63.97 (10)° in the title compound compared to 73.38 (16)° in FAVZEK.
6. Synthesis and crystallization
A mixture of 2-oxo-1,2-dihydroquinoline-4-carboxylic acid (1 g, 5.29 mmol), K2CO3 (1.46 g, 10.58 mmol), benzyl chloride (1.21 ml, 10.58 mmol) and tetra n-butylammonium bromide as catalyst in DMF (50 ml) was stirred at room temperature for 48 h. The solution was filtered by suction and the solvent was removed under reduced pressure. The residue was chromatographed on a silica-gel column using hexane and ethyl acetate (v/v, 95/5) as eluents to afford the title compound. Colourless prismatic crystals of the title compound were obtained by slow evaporation of a solution in ethanol (yield 53%).
7. Refinement
Crystal data, data collection and structure . The C-bound H atoms were placed in calculated positions and included in the in the riding-model approximation: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1920509
https://doi.org/10.1107/S2056989019007989/su5500sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019007989/su5500Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007989/su5500Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C24H19NO3 | F(000) = 776 |
Mr = 369.40 | Dx = 1.304 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6101 (4) Å | Cell parameters from 14721 reflections |
b = 19.5523 (11) Å | θ = 2.1–30.9° |
c = 17.2761 (11) Å | µ = 0.09 mm−1 |
β = 96.969 (5)° | T = 296 K |
V = 1881.0 (2) Å3 | Prism, colourless |
Z = 4 | 0.71 × 0.52 × 0.25 mm |
STOE IPDS 2 diffractometer | 3686 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2270 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.046 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 2.1° |
rotation method scans | h = −6→6 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −24→24 |
Tmin = 0.949, Tmax = 0.979 | l = −21→21 |
15909 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.115 | w = 1/[σ2(Fo2) + (0.0653P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max < 0.001 |
3686 reflections | Δρmax = 0.29 e Å−3 |
254 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Extinction correction: (SHELXL2018/3; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0160 (19) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6381 (2) | 0.38420 (8) | 0.44614 (6) | 0.0805 (4) | |
O2 | 0.2849 (3) | 0.41941 (9) | 0.38836 (8) | 0.0926 (5) | |
O3 | 1.0727 (3) | 0.30369 (9) | 0.23941 (8) | 0.0974 (5) | |
N1 | 0.8617 (2) | 0.39351 (7) | 0.18321 (7) | 0.0571 (4) | |
C1 | 0.5448 (4) | 0.38554 (13) | 0.52105 (10) | 0.0808 (6) | |
H1A | 0.423278 | 0.350492 | 0.522931 | 0.097* | |
H1B | 0.473201 | 0.429694 | 0.529330 | 0.097* | |
C2 | 0.7519 (3) | 0.37265 (9) | 0.58196 (9) | 0.0603 (4) | |
C3 | 0.9437 (4) | 0.41769 (11) | 0.59339 (12) | 0.0802 (6) | |
H3 | 0.945035 | 0.456570 | 0.562433 | 0.096* | |
C4 | 1.1323 (4) | 0.40511 (13) | 0.65041 (13) | 0.0906 (7) | |
H4 | 1.260989 | 0.435378 | 0.657408 | 0.109* | |
C5 | 1.1318 (4) | 0.34884 (15) | 0.69647 (12) | 0.0909 (7) | |
H5 | 1.260436 | 0.340420 | 0.734504 | 0.109* | |
C6 | 0.9439 (4) | 0.30506 (12) | 0.68696 (12) | 0.0835 (6) | |
H6 | 0.942364 | 0.266986 | 0.719161 | 0.100* | |
C7 | 0.7553 (3) | 0.31656 (10) | 0.63000 (10) | 0.0693 (5) | |
H7 | 0.627693 | 0.285877 | 0.623838 | 0.083* | |
C8 | 0.4909 (3) | 0.40350 (9) | 0.38491 (10) | 0.0627 (5) | |
C9 | 0.6101 (3) | 0.40005 (8) | 0.31252 (9) | 0.0542 (4) | |
C10 | 0.5488 (3) | 0.44685 (8) | 0.24814 (9) | 0.0512 (4) | |
C11 | 0.3727 (3) | 0.49795 (9) | 0.24800 (10) | 0.0608 (4) | |
H11 | 0.284034 | 0.501326 | 0.289959 | 0.073* | |
C12 | 0.3296 (3) | 0.54270 (9) | 0.18732 (11) | 0.0704 (5) | |
H12 | 0.214571 | 0.576813 | 0.188525 | 0.085* | |
C13 | 0.4568 (4) | 0.53723 (10) | 0.12432 (11) | 0.0729 (5) | |
H13 | 0.426062 | 0.567624 | 0.082904 | 0.088* | |
C14 | 0.6281 (3) | 0.48765 (9) | 0.12175 (10) | 0.0652 (5) | |
H14 | 0.710104 | 0.484076 | 0.078274 | 0.078* | |
C15 | 0.6801 (3) | 0.44252 (8) | 0.18394 (9) | 0.0526 (4) | |
C16 | 0.9158 (3) | 0.34674 (10) | 0.24281 (10) | 0.0669 (5) | |
C17 | 0.7823 (3) | 0.35337 (10) | 0.30827 (9) | 0.0660 (5) | |
H17 | 0.817545 | 0.323540 | 0.350029 | 0.079* | |
C18 | 1.0159 (3) | 0.39223 (10) | 0.12080 (9) | 0.0632 (5) | |
H18A | 1.169995 | 0.372994 | 0.141437 | 0.076* | |
H18B | 1.043763 | 0.438967 | 0.105353 | 0.076* | |
C19 | 0.9192 (3) | 0.35221 (8) | 0.04907 (9) | 0.0516 (4) | |
C20 | 1.0478 (3) | 0.35411 (10) | −0.01382 (10) | 0.0647 (5) | |
H20 | 1.185150 | 0.381033 | −0.011516 | 0.078* | |
C21 | 0.9761 (4) | 0.31666 (11) | −0.08022 (10) | 0.0767 (6) | |
H21 | 1.066000 | 0.318117 | −0.122010 | 0.092* | |
C22 | 0.7736 (4) | 0.27749 (11) | −0.08482 (11) | 0.0791 (6) | |
H22 | 0.724133 | 0.252641 | −0.129819 | 0.095* | |
C23 | 0.6436 (4) | 0.27501 (10) | −0.02272 (12) | 0.0784 (6) | |
H23 | 0.505989 | 0.248180 | −0.025486 | 0.094* | |
C24 | 0.7161 (3) | 0.31221 (10) | 0.04413 (10) | 0.0644 (5) | |
H24 | 0.626799 | 0.310163 | 0.086046 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0716 (8) | 0.1257 (12) | 0.0459 (6) | 0.0180 (8) | 0.0138 (6) | 0.0066 (7) |
O2 | 0.0757 (9) | 0.1299 (13) | 0.0751 (9) | 0.0236 (9) | 0.0211 (7) | 0.0157 (9) |
O3 | 0.1090 (11) | 0.1200 (12) | 0.0646 (8) | 0.0597 (10) | 0.0158 (7) | 0.0014 (8) |
N1 | 0.0554 (8) | 0.0715 (9) | 0.0438 (7) | 0.0039 (7) | 0.0038 (6) | −0.0072 (6) |
C1 | 0.0775 (12) | 0.1182 (17) | 0.0503 (10) | 0.0091 (12) | 0.0225 (9) | 0.0059 (11) |
C2 | 0.0656 (10) | 0.0720 (11) | 0.0462 (8) | −0.0049 (9) | 0.0191 (8) | −0.0062 (8) |
C3 | 0.0999 (15) | 0.0716 (12) | 0.0756 (13) | −0.0163 (11) | 0.0368 (12) | −0.0042 (10) |
C4 | 0.0796 (13) | 0.1186 (19) | 0.0761 (14) | −0.0394 (13) | 0.0196 (12) | −0.0306 (14) |
C5 | 0.0716 (12) | 0.147 (2) | 0.0550 (11) | −0.0068 (14) | 0.0100 (10) | −0.0096 (13) |
C6 | 0.0852 (14) | 0.1003 (16) | 0.0652 (12) | −0.0016 (12) | 0.0099 (10) | 0.0125 (11) |
C7 | 0.0771 (12) | 0.0755 (12) | 0.0564 (10) | −0.0184 (10) | 0.0129 (9) | −0.0005 (9) |
C8 | 0.0591 (10) | 0.0727 (12) | 0.0572 (10) | 0.0062 (9) | 0.0102 (8) | −0.0003 (8) |
C9 | 0.0546 (9) | 0.0624 (10) | 0.0448 (8) | 0.0017 (8) | 0.0031 (7) | −0.0039 (7) |
C10 | 0.0505 (8) | 0.0558 (9) | 0.0460 (8) | −0.0026 (7) | 0.0005 (7) | −0.0083 (7) |
C11 | 0.0606 (10) | 0.0634 (10) | 0.0574 (9) | 0.0047 (8) | 0.0031 (8) | −0.0092 (8) |
C12 | 0.0773 (12) | 0.0599 (11) | 0.0718 (12) | 0.0133 (9) | −0.0002 (10) | −0.0007 (9) |
C13 | 0.0873 (13) | 0.0644 (12) | 0.0652 (11) | 0.0039 (10) | 0.0016 (10) | 0.0111 (9) |
C14 | 0.0729 (11) | 0.0687 (11) | 0.0545 (9) | −0.0053 (9) | 0.0099 (8) | 0.0024 (8) |
C15 | 0.0518 (8) | 0.0562 (10) | 0.0485 (9) | −0.0034 (7) | 0.0008 (7) | −0.0062 (7) |
C16 | 0.0697 (11) | 0.0811 (12) | 0.0483 (9) | 0.0213 (10) | 0.0014 (8) | −0.0065 (9) |
C17 | 0.0751 (11) | 0.0771 (12) | 0.0448 (9) | 0.0178 (10) | 0.0039 (8) | 0.0025 (8) |
C18 | 0.0529 (9) | 0.0834 (13) | 0.0539 (9) | −0.0039 (8) | 0.0092 (8) | −0.0107 (9) |
C19 | 0.0493 (8) | 0.0602 (10) | 0.0450 (8) | 0.0077 (7) | 0.0049 (7) | 0.0009 (7) |
C20 | 0.0618 (10) | 0.0778 (12) | 0.0558 (10) | 0.0031 (9) | 0.0125 (8) | 0.0002 (9) |
C21 | 0.0878 (13) | 0.0937 (15) | 0.0506 (10) | 0.0169 (12) | 0.0167 (9) | −0.0051 (10) |
C22 | 0.0912 (14) | 0.0853 (14) | 0.0585 (11) | 0.0099 (12) | −0.0011 (11) | −0.0193 (10) |
C23 | 0.0741 (12) | 0.0816 (14) | 0.0764 (13) | −0.0097 (10) | −0.0036 (11) | −0.0154 (11) |
C24 | 0.0603 (10) | 0.0794 (12) | 0.0543 (9) | −0.0037 (9) | 0.0101 (8) | −0.0041 (9) |
O1—C8 | 1.316 (2) | C10—C15 | 1.406 (2) |
O1—C1 | 1.454 (2) | C11—C12 | 1.364 (2) |
O2—C8 | 1.205 (2) | C11—H11 | 0.9300 |
O3—C16 | 1.225 (2) | C12—C13 | 1.376 (3) |
N1—C16 | 1.383 (2) | C12—H12 | 0.9300 |
N1—C15 | 1.400 (2) | C13—C14 | 1.369 (3) |
N1—C18 | 1.462 (2) | C13—H13 | 0.9300 |
C1—C2 | 1.491 (3) | C14—C15 | 1.394 (2) |
C1—H1A | 0.9700 | C14—H14 | 0.9300 |
C1—H1B | 0.9700 | C16—C17 | 1.436 (3) |
C2—C7 | 1.374 (2) | C17—H17 | 0.9300 |
C2—C3 | 1.386 (3) | C18—C19 | 1.510 (2) |
C3—C4 | 1.378 (3) | C18—H18A | 0.9700 |
C3—H3 | 0.9300 | C18—H18B | 0.9700 |
C4—C5 | 1.358 (3) | C19—C24 | 1.376 (2) |
C4—H4 | 0.9300 | C19—C20 | 1.376 (2) |
C5—C6 | 1.352 (3) | C20—C21 | 1.379 (3) |
C5—H5 | 0.9300 | C20—H20 | 0.9300 |
C6—C7 | 1.373 (3) | C21—C22 | 1.364 (3) |
C6—H6 | 0.9300 | C21—H21 | 0.9300 |
C7—H7 | 0.9300 | C22—C23 | 1.369 (3) |
C8—C9 | 1.490 (2) | C22—H22 | 0.9300 |
C9—C17 | 1.338 (2) | C23—C24 | 1.383 (2) |
C9—C10 | 1.449 (2) | C23—H23 | 0.9300 |
C10—C11 | 1.405 (2) | C24—H24 | 0.9300 |
C8—O1—C1 | 116.85 (14) | C11—C12—H12 | 120.1 |
C16—N1—C15 | 122.69 (14) | C13—C12—H12 | 120.1 |
C16—N1—C18 | 116.21 (14) | C14—C13—C12 | 120.92 (17) |
C15—N1—C18 | 120.98 (14) | C14—C13—H13 | 119.5 |
O1—C1—C2 | 106.92 (15) | C12—C13—H13 | 119.5 |
O1—C1—H1A | 110.3 | C13—C14—C15 | 120.37 (17) |
C2—C1—H1A | 110.3 | C13—C14—H14 | 119.8 |
O1—C1—H1B | 110.3 | C15—C14—H14 | 119.8 |
C2—C1—H1B | 110.3 | C14—C15—N1 | 120.74 (16) |
H1A—C1—H1B | 108.6 | C14—C15—C10 | 119.28 (15) |
C7—C2—C3 | 117.88 (17) | N1—C15—C10 | 119.98 (14) |
C7—C2—C1 | 120.90 (17) | O3—C16—N1 | 120.85 (17) |
C3—C2—C1 | 121.20 (18) | O3—C16—C17 | 123.13 (17) |
C4—C3—C2 | 120.3 (2) | N1—C16—C17 | 116.00 (15) |
C4—C3—H3 | 119.9 | C9—C17—C16 | 123.63 (16) |
C2—C3—H3 | 119.9 | C9—C17—H17 | 118.2 |
C5—C4—C3 | 120.5 (2) | C16—C17—H17 | 118.2 |
C5—C4—H4 | 119.8 | N1—C18—C19 | 115.36 (13) |
C3—C4—H4 | 119.8 | N1—C18—H18A | 108.4 |
C6—C5—C4 | 119.9 (2) | C19—C18—H18A | 108.4 |
C6—C5—H5 | 120.0 | N1—C18—H18B | 108.4 |
C4—C5—H5 | 120.0 | C19—C18—H18B | 108.4 |
C5—C6—C7 | 120.3 (2) | H18A—C18—H18B | 107.5 |
C5—C6—H6 | 119.8 | C24—C19—C20 | 118.42 (16) |
C7—C6—H6 | 119.8 | C24—C19—C18 | 123.92 (15) |
C6—C7—C2 | 121.09 (18) | C20—C19—C18 | 117.62 (15) |
C6—C7—H7 | 119.5 | C19—C20—C21 | 120.96 (18) |
C2—C7—H7 | 119.5 | C19—C20—H20 | 119.5 |
O2—C8—O1 | 123.11 (17) | C21—C20—H20 | 119.5 |
O2—C8—C9 | 125.75 (16) | C22—C21—C20 | 120.22 (19) |
O1—C8—C9 | 111.09 (14) | C22—C21—H21 | 119.9 |
C17—C9—C10 | 119.64 (15) | C20—C21—H21 | 119.9 |
C17—C9—C8 | 118.55 (15) | C21—C22—C23 | 119.53 (18) |
C10—C9—C8 | 121.79 (14) | C21—C22—H22 | 120.2 |
C11—C10—C15 | 118.48 (15) | C23—C22—H22 | 120.2 |
C11—C10—C9 | 123.49 (15) | C22—C23—C24 | 120.35 (19) |
C15—C10—C9 | 117.97 (14) | C22—C23—H23 | 119.8 |
C12—C11—C10 | 121.10 (17) | C24—C23—H23 | 119.8 |
C12—C11—H11 | 119.5 | C19—C24—C23 | 120.51 (18) |
C10—C11—H11 | 119.5 | C19—C24—H24 | 119.7 |
C11—C12—C13 | 119.81 (17) | C23—C24—H24 | 119.7 |
C8—O1—C1—C2 | −171.20 (17) | C16—N1—C15—C14 | −178.53 (15) |
O1—C1—C2—C7 | −118.66 (19) | C18—N1—C15—C14 | 5.5 (2) |
O1—C1—C2—C3 | 63.1 (2) | C16—N1—C15—C10 | 1.9 (2) |
C7—C2—C3—C4 | 1.2 (3) | C18—N1—C15—C10 | −174.07 (14) |
C1—C2—C3—C4 | 179.46 (18) | C11—C10—C15—C14 | −1.5 (2) |
C2—C3—C4—C5 | −0.6 (3) | C9—C10—C15—C14 | −178.87 (14) |
C3—C4—C5—C6 | −0.6 (3) | C11—C10—C15—N1 | 178.12 (13) |
C4—C5—C6—C7 | 1.2 (3) | C9—C10—C15—N1 | 0.7 (2) |
C5—C6—C7—C2 | −0.5 (3) | C15—N1—C16—O3 | 178.49 (17) |
C3—C2—C7—C6 | −0.7 (3) | C18—N1—C16—O3 | −5.4 (2) |
C1—C2—C7—C6 | −178.97 (19) | C15—N1—C16—C17 | −3.1 (2) |
C1—O1—C8—O2 | −2.7 (3) | C18—N1—C16—C17 | 173.04 (15) |
C1—O1—C8—C9 | 179.62 (17) | C10—C9—C17—C16 | 0.7 (3) |
O2—C8—C9—C17 | −147.7 (2) | C8—C9—C17—C16 | −177.71 (16) |
O1—C8—C9—C17 | 29.9 (2) | O3—C16—C17—C9 | −179.80 (19) |
O2—C8—C9—C10 | 33.9 (3) | N1—C16—C17—C9 | 1.8 (3) |
O1—C8—C9—C10 | −148.47 (15) | C16—N1—C18—C19 | 97.36 (17) |
C17—C9—C10—C11 | −179.20 (16) | C15—N1—C18—C19 | −86.45 (19) |
C8—C9—C10—C11 | −0.9 (2) | N1—C18—C19—C24 | −7.8 (2) |
C17—C9—C10—C15 | −2.0 (2) | N1—C18—C19—C20 | 174.72 (15) |
C8—C9—C10—C15 | 176.37 (14) | C24—C19—C20—C21 | −0.3 (3) |
C15—C10—C11—C12 | −0.2 (2) | C18—C19—C20—C21 | 177.36 (16) |
C9—C10—C11—C12 | 176.97 (15) | C19—C20—C21—C22 | 0.7 (3) |
C10—C11—C12—C13 | 1.2 (3) | C20—C21—C22—C23 | −0.7 (3) |
C11—C12—C13—C14 | −0.5 (3) | C21—C22—C23—C24 | 0.3 (3) |
C12—C13—C14—C15 | −1.3 (3) | C20—C19—C24—C23 | −0.1 (3) |
C13—C14—C15—N1 | −177.34 (16) | C18—C19—C24—C23 | −177.59 (17) |
C13—C14—C15—C10 | 2.3 (2) | C22—C23—C24—C19 | 0.1 (3) |
Cg1 is the centroid of the C19–C24 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···O2 | 0.93 | 2.34 | 2.962 (2) | 124 |
C6—H6···O3i | 0.93 | 2.55 | 3.184 (3) | 126 |
C22—H22···O3ii | 0.93 | 2.56 | 3.490 (2) | 174 |
C13—H13···Cg1iii | 0.93 | 2.91 | 3.727 (2) | 147 |
Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z. |
Acknowledgements
This study was supported by Hassan II University, Casablanca, Morocco, Mohammed V University, Rabat, Morocco, and Langat Singh College, BRABU, Muzaffarpur, India.
References
Alcaide, B., Almendros, P. & Aragoncillo, C. (2010). Curr. Opin. Drug Discov. Dev. 13, 685–597. CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Beena & Rawat, D. S. (2013). Med. Res. Rev. 33, 693–764. Google Scholar
Bergh, J. C. S., Tötterman, T. H., Termander, B. C., Strandgarden, K. A. P., Gunnarsson, P. O. G. & Nilsson, B. I. (1997). Cancer Invest. 15, 204–211. CrossRef CAS PubMed Web of Science Google Scholar
Bu, X. H., Tong, M. L., Xie, Y. B., Li, J. R., Chang, H. C., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837–9846. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chai, Y., Liu, M.-L., Lv, K., Feng, L.-S., Li, S.-J., Sun, L.-Y., Wang, S. & Guo, H.-Y. (2011). Eur. J. Med. Chem. 46, 4267–4273. Web of Science CrossRef CAS PubMed Google Scholar
Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019a). Acta Cryst. E75, 154–158. Web of Science CSD CrossRef IUCr Journals Google Scholar
Chkirate, K., Kansiz, S., Karrouchi, K., Mague, J. T., Dege, N. & Essassi, E. M. (2019b). Acta Cryst. E75, 33–37. Web of Science CSD CrossRef IUCr Journals Google Scholar
Elderfield, R. C. & LeVob, E. F. (1960). J. Org. Chem. 25, 1576–1583. CrossRef CAS Web of Science Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hoshino, K., Inoue, K., Murakami, Y., Kurosaka, Y., Namba, K., Kashimoto, Y., Uoyama, S., Okumura, R., Higuchi, S. & Otani, T. (2008). Antimicrob. Agents Chemother. 52, 65–76. Web of Science CrossRef PubMed CAS Google Scholar
Jones, S. B., Simmons, B., Mastracchio, A. & MacMillan, D. W. C. (2011). Nature, 475, 183–188. Web of Science CrossRef CAS PubMed Google Scholar
Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899. Web of Science CrossRef CAS Google Scholar
Kumar, S., Hansda, A., Chandra, A., Kumar, A., Kumar, M., Sithambaresan, M., Faizi, M. S. H., Kumar, V. & John, R. P. (2017). Polyhedron, 134, 11–21. Web of Science CSD CrossRef CAS Google Scholar
Lesher, G. Y., Froelich, E. J., Gruett, M. D., Bailey, J. H. & Brundage, R. P. (1962). J. Med. Chem. 5, 1063–1065. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Malini, K., Periyaraja, S. & Shanmugam, P. (2017). Eur. J. Org. Chem. pp. 3774–3786. Web of Science CSD CrossRef Google Scholar
Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796. CAS Google Scholar
Musiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960–1973. Web of Science CrossRef CAS PubMed Google Scholar
Paterna, R., André, V., Duarte, M. T., Veiros, L. F., Candeias, N. R. & Gois, P. M. P. (2013). Eur. J. Org. Chem. pp. 6280–6290. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Xiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj, S. S. S. (2000). Organometallics, 19, 4183–4186. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.