research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-N-cyclo­hexyl-2-(2-hy­dr­oxy-3-methyl­benzyl­­idene)hydrazine-1-carbo­thio­amide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, and bSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
*Correspondence e-mail: arafath.usm@gmail.com, farook@usm.my

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 June 2019; accepted 22 June 2019; online 28 June 2019)

The asymmetric unit of the title compound, C15H21N3OS, comprises of two crystallographically independent mol­ecules (A and B). Each mol­ecule consists of a cyclo­hexane ring and a 2-hy­droxy-3-methyl­benzyl­idene ring bridged by a hydrazinecarbo­thio­amine unit. Both mol­ecules exhibit an E configuration with respect to the azomethine C=N bond. There is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule forming an S(6) ring motif. The cyclo­hexane ring in each mol­ecule has a chair conformation. The benzene ring is inclined to the mean plane of the cyclo­hexane ring by 47.75 (9)° in mol­ecule A and 66.99 (9)° in mol­ecule B. The mean plane of the cyclo­hexane ring is inclined to the mean plane of the thio­urea moiety [N—C(=S)—N] by 55.69 (9) and 58.50 (8)° in mol­ecules A and B, respectively. In the crystal, the A and B mol­ecules are linked by N—H⋯S hydrogen bonds, forming `dimers'. The A mol­ecules are further linked by a C—H⋯π inter­action, hence linking the AB units to form ribbons propagating along the b-axis direction. The conformation of a number of related cyclo­hexa­nehydrazinecarbo­thio­amides are compared to that of the title compound.

1. Chemical context

Schiff bases are significant agents in both organic and inorganic chemistry, and are widely used in biological applications, particularly for anti­cancer screening (Ziessel, 2001[Ziessel, R. (2001). Coord. Chem. Rev. 216-217, 195-223.]; Salam et al., 2012a[Salam, M., Affan, M., Ahmad, F. B. & Arafath, M. A. (2012a). J. Coord. Chem. 65, 1999-2007.]; Arafath et al., 2017b[Arafath, M. A., Adam, F., Razali, M. R., Hassan, L. E. A., Ahamed, M. B. K. & Majid, A. M. S. (2017b). J. Mol. Struct. 1130, 791-798.]). They have attracted a great deal of attention because of the presence of hard and soft atoms together in one mol­ecule. Thio­semicarbazone Schiff base compounds have soft sulfur and hard nitro­gen as well hard oxygen atoms (Mohamed et al., 2009[Mohamed, G. G., Omar, M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem. 44, 4801-4812.]). These Schiff base compounds are of special inter­est because of their diversity in coordinating to hard and soft metals using the hard and soft coordinating sites such as NSO (Arion et al., 2001[Arion, V., Revenco, M., Gradinaru, J., Simonov, Y., Kravtsov, V., Gerbeleu, N., Saint-Aman, E. & Adams, F. (2001). Rev. Inorg. Chem. 21, 1-42.]; Leovac & Češljević, 2002[Leovac, V. & Češljević, V. (2002). Coordination Chemistry of Isothiosemicarbazide and Its Derivatives. Faculty of Science, University of Novi Sad, Serbia.]; Chandra & Sangeetika, 2004[Chandra, S. & Sangeetika, X. (2004). Spectrochim. Acta A, 60, 147-153.]; Singh et al., 2000[Singh, N. K., Srivastava, A., Sodhi, A. & Ranjan, P. (2000). Transit. Met. Chem. 25, 133-140.]; Gerbeleu et al., 2008[Gerbeleu, N. V., Arion, V. B. & Burgess, J. P. (2008). Template Synthesis of Macrocyclic Compounds. John Wiley & Sons.]; Mohamed et al., 2009[Mohamed, G. G., Omar, M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem. 44, 4801-4812.]). Many Schiff base compounds and their complexes with transition metals have wide biological and pharmaceutical applications (Padhyé & Kauffman, 1985[Padhyé, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127-160.]; Salam et al., 2012b[Salam, M., Affan, M., Ahmad, F. B., Arafath, M. A., Tahir, M. I. M. & Shamsuddin, M. B. (2012b). J. Coord. Chem. 65, 3174-3187.]). Thio­semicarbazones having ONS-coordinating sites are important for coordination chemistry because of their strong bonding ability with transition metals (Rayati et al., 2007[Rayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545-1548.]; Alomar et al., 2009[Alomar, K., Khan, M. A., Allain, M. & Bouet, G. (2009). Polyhedron, 28, 1273-1280.]; Vieites et al., 2009[Vieites, M., Otero, L., Santos, D., Olea-Azar, C., Norambuena, E., Aguirre, G., Cerecetto, H., González, M., Kemmerling, U., Morello, A., Diego Maya, J. & Gambino, D. (2009). J. Inorg. Biochem. 103, 411-418.]; Siddiki et al., 2012[Siddiki, A. N. A., Rahman, M. S., Rahman, M. A., Salam, M. A., Yousuf, M. A., Islam, M. F. & Arafat, M. A. (2012). Bangladesh Pharmaceutical Journal, 15, 83-87.]).

2. Structural commentary

The asymmetric unit of the title compound consists of two crystallographic independent mol­ecules (A and B), as illustrated in Fig. 1[link]. In each mol­ecule a cyclo­hexane ring and a 2-hy­droxy-3-methyl­benzyl­idene ring are inter­connected by a hydrazinecarbo­thio­amine bridge. Both mol­ecules exhibit an E configuration with respect to the azomethine C7=N1 bond, and in each mol­ecule there is an intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif (Table 1[link]and Fig. 1[link]). The best AutoMolFit (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) image of the two mol­ecules, viz. inverted mol­ecule B (red) on mol­ecule A (black), which has an r.m.s. deviation of 0.654 Å, is shown in Fig. 2[link].

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of benzene ring C1A–C6A.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1O1⋯N1A 0.80 (2) 1.98 (2) 2.6844 (19) 146 (2)
O1B—H1O2⋯N1B 0.84 (2) 1.91 (2) 2.664 (2) 148 (2)
N2A—H1N2⋯S1Bi 0.85 (2) 2.60 (2) 3.4414 (16) 170 (2)
N2B—H2N2⋯S1Ai 0.85 (2) 2.53 (2) 3.3568 (15) 164 (2)
C11A—H11BCg1ii 0.99 2.93 3.801 (2) 148
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x, y+1, z.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular O—H⋯N hydrogen bonds (Table 1[link]) are shown as dashed cyan lines.
[Figure 2]
Figure 2
An AutoMolFit figure (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) of inverted mol­ecule B (red) on mol­ecule A (black).

The cyclo­hexane ring (C9–C14) in each mol­ecule has a chair conformation. The mean plane of the four central C atoms (C10/C11/C13/C14) is inclined to the mean plane of the thio­urea moiety [N2—C8(=S1)—N3] by 54.83 (11) and 55.64 (10)° in mol­ecules A and B, respectively, and by 50.33 (10) and 65.30 (10)° to the benzene rings (C1–C6) in mol­ecules A and B, respectively. The benzene ring is inclined to the mean plane of the thio­urea moiety by 10.95 (8)° in mol­ecule A and 9.80 (8)° in mol­ecule B.

The unique mol­ecular conformations of the two mol­ecules can be characterized by five torsion angles, i.e. τ1 (C1—C6—C7—N1), τ2 (C7—N1—N2—C8), τ3 (N1—N2—C8—N3), τ4 (N2—C8—N3—C9) and τ5 (C8—N3—C9—C10), as illustrated in Fig. 3[link]. The torsion angle τ1 between the benzyl­idine ring and the azomethine double bond for both mol­ecules are approximately 0° [3.0 (2)° in mol­ecule A and 1.9 (2)° in mol­ecule B], signifying the coplanarity between benzyl­idine ring and the azomethine double bond (C7=N1). In mol­ecule B, the azomethine double bond is close to planar with the hydrazine moiety [τ2 = 177.23 (14)°], whereas τ2 in mol­ecule A is slightly twisted [τ2 = 171.68 (14)°]. In both mol­ecules, the torsion angle between the hydrazine moiety and the carbo­thio group are also slight twisted with τ3 values in mol­ecules A and B of 7.4 (2) and −10.2 (2)°, respectively. Similarly to τ1, the carbo­thio group is almost coplanar with the thio­amide group for both mol­ecules, as implied by torsion angle τ4 [178.07 (14)° in mol­ecule A and 175.59 (14)° in mol­ecule B], which are approximately 180°. The thio­amide group and the cyclo­hexane ring are almost perpendicular to each other with τ5 torsion angles of 85.3 (2) and −81.6 (2)° in mol­ecules A and B, respectively. This may arise from the steric repulsion between the cyclo­hexane ring and adjacent sulfur atom.

[Figure 3]
Figure 3
General chemical diagram showing torsion angles, τ1, τ2, τ3, τ4 and τ5 in the title compound.

3. Supra­molecular features

In the crystal, the A and B mol­ecules are connected into `dimers' with an R22(8) ring motif, via N2A—H1N2⋯S1Bi and N2B—H2N2⋯S1Ai hydrogen bonds (Fig. 4[link] and Table 1[link]). The A mol­ecules are further linked by a C—H⋯π inter­action, so linking the AB units to form ribbons propagating along the b-axis direction, as illustrated in Fig. 4[link].

[Figure 4]
Figure 4
A partial view, normal to the ac plane, of the crystal packing of the title compound. The N—H⋯S hydrogen bonds are shown as cyan dotted lines, and the C—H⋯ π inter­actions as green dotted lines (see Table 1[link] for details). For clarity, only the hydrogen atoms involved in these inter­actions have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, last update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using (E)-2-benzyl­idene-N-cyclo­hexyl­hydrazine-1-carbo­thio­amide as the reference moiety resulted in nine structures containing a cyclo­hexyl­hydrazinecarbo­thio­amide moiety with different substituents (R). The different substituents (R) together with the torsion angles of the hydrazinecarbo­thio­amide connecting bridge are compiled in Table 2[link] (cf. Fig. 3[link]). In these structures, including the title compound, the hydrazinecarbo­thio­amide connecting bridge is nearly planar as τ2, τ3 and τ4 are in, respectively, anti-periplanar (153.5 to 179.3°), syn-periplanar (0.8 to 14.7°) and anti-periplanar (from 171.8 to 180.0°) conformations. The attached cyclo­hexane ring is always close to perpendicular to the thio­amide group and with a syn/anti-clinal (τ5 = 78.3 to 94.5°) conformation. Furthermore, torsion angle τ1 for most of these structures exists in a syn-periplanar conformation, ranging from 0 to 25.8°, but there is one outlier (mol­ecule B in NALKOD; Basheer et al., 2016b[Basheer, S. M., Willis, A. C., Pace, R. J. & Sreekanth, A. (2016b). Polyhedron, 109, 7-18.]) where torsion angle τ1 is in a syn-clinal (36.2°) conformation. The cyclo­hexyl­hydrazinecarbo­thio­amide moiety of this structure is substituted with an anthracen-9-yl­methyl­ene ring system.

Table 2
Torsion angles τ1, τ2, τ3, τ4 and τ5 (°)

Compound R τ1 τ2 τ3 τ4 τ5
Title compound 2-hy­droxy-3-methyl­benzyl­idene 3.2, 1.9 171.7, 177.2 7.4, 10.2 178.1, 175.6 85.3, 81.6
ABUHEN (Basheer et al., 2017[Basheer, S. M., Willis, A. C. & Sreekanth, A. (2017). J. Lumin. 183, 266-280.]) pyren-1-yl­methyl­ene 10.1 174.9 1.2 180.0 81.6
BEFZIY (Basheer et al., 2016a[Basheer, S. M., Bhuvanesh, N. S. P. & Sreekanth, A. (2016a). J. Fluor. Chem. 191, 129-142.]) 2-hy­droxy-1-naphth­yl)methyl­ene 0.9 179.3 6.8 176.6 83.4
BEVNAR (Koo et al., 1981[Koo, C. H., Kim, C. H. & Park, Y. J. (1981). J. Korean Chem. Soc. 25, 343-350.]) 4-amino­benzyl­idene 14.3 175.0 7.4 178.5 94.5
LAQCIR (Jacob & Kurup, 2012[Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836-o837.]) 5-bromo-2-hy­droxy-3-meth­oxy­benzyl­idene 10.1 176.8 4.1 179.5 86.2
LEPFIW (Seena et al., 2006[Seena, E. B., Bessy Raj, B. N., Prathapachandra Kurup, M. R. & Suresh, E. (2006). J. Chem. Crystallogr. 36, 189-193.]) 1-(2-hy­droxy­phen­yl)ethyl­idene 3.9, 6.6 155.0, 153.5 14.0, 14.7 175.7, 171.8 91.9, 81.6
NALKOD (Basheer et al., 2016b[Basheer, S. M., Willis, A. C., Pace, R. J. & Sreekanth, A. (2016b). Polyhedron, 109, 7-18.]) anthracen-9-yl­methyl­ene 25.8, 36.2 171.6, 178.6 0.8, 1.4 172.9, 176.2 79.0, 79.2
OBOLOJ (Arafath, 2017a[Arafath, M. A., Adam, F. & Razali, M. R. (2017a). IUCrData, 2, x161997.]) 5-chloro-2-hy­droxy­benzyl­idene 4.7 176.0 5.5 176.7 83.7
XOYKAZ (Bhat et al., 2015[Bhat, M. A., Al-Dhfyan, A., Khan, A. A., Al-Harbi, N., Manogaran, P. S., Alanazi, A. M., Fun, H.-K. & Al-Omar, M. A. (2015). Bioorg. Med. Chem. Lett. 25, 83-87.]) 4-eth­oxy­benzyl­idene 0.5 169.3 11.6 176.2 85.8
YUXJOS (Arafath et al., 2018[Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018). Acta Cryst. E74, 1460-1462.]) 3-t-butyl-2-hy­droxy­phen­yl)methyl­idene 11.8 170.1 12.5 176.2 78.3
Note: The title compound and compounds LEPFIW and NALKOD crystallize with two independent mol­ecules in the asymmetric unit.

5. Synthesis and crystallization

The reaction scheme for the synthesis of the title Schiff base compound is given in Fig. 5[link].

[Figure 5]
Figure 5
Reaction scheme for the synthesis of the title compound.

2-Hy­droxy-3-methyl­benzaldehyde (0.68 g, 5.00 mmol) was dissolved in 20 ml of methanol. Glacial acetic acid (0.20 ml) was added and the mixture was refluxed for 30 min. A solution of N-cyclo­hexyl­hydrazine carbo­thio­amide (0.87 g, 5 mmol) in 20 ml methanol was added dropwise with stirring to the aldehyde solution. The resulting colourless solution was refluxed for 4 h with stirring. A colourless precipitate was obtained on evaporation of the solvent. The crude product was washed with n-hexane (5 ml). The recovered product was dissolved in aceto­nitrile and purified by recrystallization. Colourless block-like crystals suitable for X-ray diffraction analysis were obtained on slow evaporation of the aceto­nitrile solvent (m.p. 513–514 K, yield 93%).

Spectroscopic and analytical data: 1H NMR (500 MHz, DMSO-d6, Me4Si ppm): δ 11.27 (s, N—NH), δ 9.51 (s, OH), δ 8.34 (s, HC=N), δ 8.05 (d, J = 8.35 Hz, CS=NH), δ 7.39–6.81 (multiplet, aromatic-H), δ 2.20 (s, Ph—CH3), δ 1.87–1.14 (multiplet, cyclo­hexyl-H) ppm. 13C NMR (DMSO-d6, Me4Si ppm): δ 175.79 (C=S), δ 154.29 (C=N), δ 143.76-119.17 (C-aromatic), δ 15.93 (CH3), δ 52.87–24.90 (C-cyclo­hex­yl) ppm. IR (KBr pellets, cm−1): 3364 (NH), 3148 (OH), 2989(CH3), 2931 and 2854 (CH, cyclo­hex­yl), 1620 (C=N), 1540 (C=C, aromatic), 1268 (C=S), 1218 (CH, bend., aromatic), 1122 (C—O). 1075 (C—N). Elemental analysis calculated for C15H21N3OS (Mr = 291.41 g mol−1); C, 61.77; H, 7.21; N, 14.42%; found: C, 61.81; H, 7.19; N, 14.42%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The O and N-bound H atoms were located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C15H21N3OS
Mr 291.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.7799 (11), 10.9481 (11), 14.1895 (15)
α, β, γ (°) 74.526 (2), 68.246 (1), 80.207 (2)
V3) 1494.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.34 × 0.14 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). Bruker AXS Inc., Madison. Wisconsin, USA.])
Tmin, Tmax 0.873, 0.935
No. of measured, independent and observed [I > 2σ(I)] reflections 50505, 8135, 5805
Rint 0.069
(sin θ/λ)max−1) 0.690
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.119, 1.04
No. of reflections 8135
No. of parameters 387
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). Bruker AXS Inc., Madison. Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

(E)-N-Cyclohexyl-2-(2-hydroxy-3-methylbenzylidene)hydrazine-1-\ carbothioamide top
Crystal data top
C15H21N3OSZ = 4
Mr = 291.41F(000) = 624
Triclinic, P1Dx = 1.295 Mg m3
a = 10.7799 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9481 (11) ÅCell parameters from 6929 reflections
c = 14.1895 (15) Åθ = 2.2–29.3°
α = 74.526 (2)°µ = 0.22 mm1
β = 68.246 (1)°T = 100 K
γ = 80.207 (2)°Block, colourless
V = 1494.2 (3) Å30.34 × 0.14 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
5805 reflections with I > 2σ(I)
φ and ω scansRint = 0.069
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 29.4°, θmin = 1.6°
Tmin = 0.873, Tmax = 0.935h = 1414
50505 measured reflectionsk = 1515
8135 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.3685P]
where P = (Fo2 + 2Fc2)/3
8135 reflections(Δ/σ)max = 0.001
387 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.69733 (4)0.60902 (4)0.10987 (3)0.01869 (11)
O1A0.20574 (12)0.29193 (12)0.27567 (9)0.0204 (3)
H1O10.264 (2)0.340 (2)0.2474 (19)0.047 (7)*
N1A0.44459 (13)0.36989 (12)0.14267 (10)0.0157 (3)
N2A0.54998 (14)0.44583 (13)0.10122 (11)0.0168 (3)
H1N20.617 (2)0.4267 (19)0.0507 (16)0.032 (6)*
N3A0.45512 (13)0.54155 (13)0.23929 (11)0.0180 (3)
H1N30.387 (2)0.5075 (19)0.2500 (16)0.031 (6)*
C1A0.23068 (15)0.20058 (15)0.22090 (12)0.0166 (3)
C2A0.13421 (16)0.11183 (15)0.25585 (13)0.0180 (3)
C3A0.15680 (17)0.01785 (16)0.20070 (13)0.0212 (4)
H3AA0.09250.04270.22310.025*
C4A0.27061 (17)0.00986 (16)0.11389 (14)0.0219 (4)
H4AA0.28400.05570.07790.026*
C5A0.36387 (17)0.09792 (16)0.08048 (13)0.0204 (3)
H5AA0.44120.09330.02060.024*
C6A0.34648 (16)0.19418 (15)0.13340 (12)0.0163 (3)
C7A0.45032 (16)0.28267 (15)0.09523 (13)0.0173 (3)
H7AA0.52430.27590.03370.021*
C8A0.55885 (15)0.52858 (15)0.15423 (12)0.0154 (3)
C9A0.44553 (15)0.62215 (16)0.30920 (12)0.0175 (3)
H9AA0.53680.62260.31190.021*
C10A0.39567 (17)0.75839 (16)0.27188 (14)0.0223 (4)
H10A0.30720.75940.26530.027*
H10B0.45880.79500.20240.027*
C11A0.38338 (17)0.83900 (17)0.34832 (14)0.0249 (4)
H11A0.47340.84480.34950.030*
H11B0.34650.92610.32460.030*
C12A0.29295 (17)0.78223 (19)0.45741 (15)0.0300 (4)
H12A0.29240.83280.50590.036*
H12B0.20020.78640.45800.036*
C13A0.3395 (2)0.64536 (19)0.49414 (14)0.0334 (5)
H13A0.27420.60920.56270.040*
H13B0.42690.64250.50310.040*
C14A0.35411 (18)0.56458 (17)0.41752 (13)0.0253 (4)
H14A0.39140.47770.44150.030*
H14B0.26480.55810.41530.030*
C15A0.01137 (16)0.12174 (18)0.34918 (14)0.0246 (4)
H15A0.04950.05890.35880.037*
H15B0.03370.20730.33870.037*
H15C0.03710.10550.41110.037*
S1B1.20980 (4)0.63000 (4)0.11943 (3)0.01957 (11)
O1B0.72600 (12)0.31105 (11)0.27336 (9)0.0204 (3)
H1O20.790 (2)0.358 (2)0.2455 (18)0.042 (7)*
N1B0.96393 (13)0.38885 (13)0.14385 (10)0.0165 (3)
N2B1.07086 (14)0.46229 (13)0.10739 (11)0.0183 (3)
H2N21.141 (2)0.4453 (19)0.0585 (17)0.035 (6)*
N3B0.95163 (13)0.58802 (14)0.22201 (11)0.0191 (3)
H2N30.8858 (19)0.5517 (18)0.2277 (14)0.023 (5)*
C1B0.74994 (15)0.22243 (15)0.21634 (12)0.0160 (3)
C2B0.64909 (16)0.14034 (16)0.24528 (13)0.0182 (3)
C3B0.67030 (16)0.04933 (16)0.18792 (13)0.0212 (4)
H3BA0.60190.00550.20520.025*
C4B0.78870 (17)0.03605 (16)0.10606 (14)0.0221 (4)
H4BA0.80180.02850.06920.027*
C5B0.88741 (16)0.11750 (16)0.07866 (13)0.0198 (3)
H5BA0.96830.10870.02240.024*
C6B0.87008 (15)0.21254 (15)0.13242 (12)0.0168 (3)
C7B0.97581 (16)0.29730 (15)0.09955 (13)0.0178 (3)
H7BA1.05590.28460.04380.021*
C8B1.06817 (16)0.55741 (15)0.15303 (12)0.0165 (3)
C9B0.93058 (15)0.68143 (15)0.28450 (12)0.0171 (3)
H9BA0.98670.75370.24060.021*
C10B0.97252 (16)0.62377 (16)0.37971 (13)0.0200 (3)
H10C1.06840.59270.35700.024*
H10D0.91970.55040.42300.024*
C11B0.95005 (16)0.72239 (16)0.44436 (13)0.0214 (4)
H11C0.97300.68190.50770.026*
H11D1.01000.79140.40340.026*
C12B0.80487 (16)0.77855 (17)0.47574 (13)0.0219 (4)
H12C0.74600.71180.52480.026*
H12D0.79530.84710.51200.026*
C13B0.76067 (17)0.83197 (17)0.38142 (14)0.0224 (4)
H13C0.81110.90650.33720.027*
H13D0.66420.86100.40510.027*
C14B0.78417 (15)0.73274 (16)0.31723 (13)0.0201 (4)
H14C0.72680.66200.35900.024*
H14D0.75920.77170.25460.024*
C15B0.52399 (16)0.15270 (17)0.33654 (14)0.0237 (4)
H15D0.45690.10110.33830.036*
H15E0.48860.24200.32990.036*
H15F0.54470.12310.40100.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.01576 (19)0.0224 (2)0.0179 (2)0.00439 (16)0.00298 (16)0.00655 (17)
O1A0.0200 (6)0.0223 (7)0.0185 (6)0.0050 (5)0.0019 (5)0.0086 (5)
N1A0.0150 (6)0.0159 (7)0.0166 (7)0.0018 (5)0.0052 (5)0.0041 (5)
N2A0.0155 (6)0.0188 (7)0.0155 (7)0.0032 (5)0.0014 (6)0.0072 (6)
N3A0.0142 (6)0.0223 (8)0.0187 (7)0.0050 (6)0.0020 (6)0.0095 (6)
C1A0.0199 (8)0.0162 (8)0.0153 (8)0.0006 (6)0.0079 (6)0.0036 (6)
C2A0.0177 (7)0.0191 (8)0.0173 (8)0.0022 (6)0.0080 (6)0.0012 (7)
C3A0.0238 (8)0.0177 (9)0.0244 (9)0.0054 (7)0.0118 (7)0.0013 (7)
C4A0.0291 (9)0.0168 (9)0.0238 (9)0.0012 (7)0.0122 (7)0.0070 (7)
C5A0.0238 (8)0.0177 (9)0.0187 (9)0.0002 (7)0.0056 (7)0.0061 (7)
C6A0.0197 (8)0.0146 (8)0.0151 (8)0.0009 (6)0.0074 (6)0.0025 (6)
C7A0.0180 (7)0.0175 (8)0.0146 (8)0.0015 (6)0.0032 (6)0.0043 (6)
C8A0.0158 (7)0.0158 (8)0.0153 (8)0.0003 (6)0.0072 (6)0.0024 (6)
C9A0.0162 (7)0.0223 (9)0.0159 (8)0.0045 (6)0.0036 (6)0.0081 (7)
C10A0.0248 (8)0.0215 (9)0.0225 (9)0.0012 (7)0.0091 (7)0.0072 (7)
C11A0.0223 (8)0.0248 (10)0.0327 (10)0.0003 (7)0.0109 (8)0.0142 (8)
C12A0.0206 (8)0.0435 (12)0.0320 (11)0.0055 (8)0.0022 (8)0.0262 (9)
C13A0.0415 (11)0.0405 (12)0.0187 (10)0.0133 (9)0.0027 (8)0.0120 (8)
C14A0.0295 (9)0.0272 (10)0.0180 (9)0.0086 (8)0.0031 (7)0.0066 (7)
C15A0.0198 (8)0.0282 (10)0.0244 (9)0.0067 (7)0.0040 (7)0.0056 (8)
S1B0.01561 (19)0.0223 (2)0.0206 (2)0.00340 (16)0.00332 (16)0.00756 (17)
O1B0.0204 (6)0.0208 (6)0.0198 (6)0.0032 (5)0.0019 (5)0.0106 (5)
N1B0.0154 (6)0.0169 (7)0.0173 (7)0.0020 (5)0.0052 (5)0.0042 (6)
N2B0.0155 (7)0.0203 (8)0.0177 (7)0.0029 (6)0.0013 (6)0.0074 (6)
N3B0.0148 (6)0.0217 (8)0.0227 (8)0.0024 (6)0.0035 (6)0.0117 (6)
C1B0.0185 (7)0.0145 (8)0.0151 (8)0.0014 (6)0.0067 (6)0.0039 (6)
C2B0.0179 (7)0.0185 (8)0.0176 (8)0.0002 (6)0.0072 (6)0.0022 (7)
C3B0.0217 (8)0.0200 (9)0.0244 (9)0.0034 (7)0.0103 (7)0.0047 (7)
C4B0.0275 (9)0.0198 (9)0.0246 (9)0.0003 (7)0.0117 (7)0.0109 (7)
C5B0.0208 (8)0.0211 (9)0.0176 (8)0.0000 (7)0.0041 (7)0.0095 (7)
C6B0.0179 (7)0.0171 (8)0.0163 (8)0.0011 (6)0.0066 (6)0.0042 (6)
C7B0.0175 (7)0.0186 (8)0.0158 (8)0.0003 (6)0.0042 (6)0.0049 (7)
C8B0.0186 (7)0.0160 (8)0.0142 (8)0.0011 (6)0.0059 (6)0.0021 (6)
C9B0.0178 (7)0.0179 (8)0.0167 (8)0.0032 (6)0.0035 (6)0.0079 (7)
C10B0.0183 (8)0.0215 (9)0.0199 (9)0.0017 (6)0.0066 (7)0.0063 (7)
C11B0.0228 (8)0.0252 (9)0.0188 (9)0.0011 (7)0.0096 (7)0.0063 (7)
C12B0.0225 (8)0.0247 (9)0.0196 (9)0.0005 (7)0.0062 (7)0.0092 (7)
C13B0.0207 (8)0.0245 (9)0.0262 (10)0.0035 (7)0.0107 (7)0.0121 (8)
C14B0.0179 (8)0.0236 (9)0.0218 (9)0.0006 (7)0.0081 (7)0.0087 (7)
C15B0.0199 (8)0.0253 (9)0.0231 (9)0.0036 (7)0.0036 (7)0.0048 (7)
Geometric parameters (Å, º) top
S1A—C8A1.6897 (15)S1B—C8B1.6914 (16)
O1A—C1A1.3583 (19)O1B—C1B1.3569 (19)
O1A—H1O10.80 (2)O1B—H1O20.83 (2)
N1A—C7A1.289 (2)N1B—C7B1.284 (2)
N1A—N2A1.3758 (18)N1B—N2B1.3762 (18)
N2A—C8A1.357 (2)N2B—C8B1.357 (2)
N2A—H1N20.85 (2)N2B—H2N20.85 (2)
N3A—C8A1.328 (2)N3B—C8B1.330 (2)
N3A—C9A1.461 (2)N3B—C9B1.463 (2)
N3A—H1N30.82 (2)N3B—H2N30.840 (19)
C1A—C6A1.404 (2)C1B—C2B1.401 (2)
C1A—C2A1.406 (2)C1B—C6B1.409 (2)
C2A—C3A1.390 (2)C2B—C3B1.387 (2)
C2A—C15A1.499 (2)C2B—C15B1.500 (2)
C3A—C4A1.390 (2)C3B—C4B1.388 (2)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.378 (2)C4B—C5B1.382 (2)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.400 (2)C5B—C6B1.397 (2)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.458 (2)C6B—C7B1.453 (2)
C7A—H7AA0.9500C7B—H7BA0.9500
C9A—C14A1.517 (2)C9B—C14B1.522 (2)
C9A—C10A1.520 (2)C9B—C10B1.526 (2)
C9A—H9AA1.0000C9B—H9BA1.0000
C10A—C11A1.529 (2)C10B—C11B1.530 (2)
C10A—H10A0.9900C10B—H10C0.9900
C10A—H10B0.9900C10B—H10D0.9900
C11A—C12A1.519 (3)C11B—C12B1.526 (2)
C11A—H11A0.9900C11B—H11C0.9900
C11A—H11B0.9900C11B—H11D0.9900
C12A—C13A1.513 (3)C12B—C13B1.523 (2)
C12A—H12A0.9900C12B—H12C0.9900
C12A—H12B0.9900C12B—H12D0.9900
C13A—C14A1.526 (2)C13B—C14B1.529 (2)
C13A—H13A0.9900C13B—H13C0.9900
C13A—H13B0.9900C13B—H13D0.9900
C14A—H14A0.9900C14B—H14C0.9900
C14A—H14B0.9900C14B—H14D0.9900
C15A—H15A0.9800C15B—H15D0.9800
C15A—H15B0.9800C15B—H15E0.9800
C15A—H15C0.9800C15B—H15F0.9800
C1A—O1A—H1O1108.6 (17)C1B—O1B—H1O2107.4 (15)
C7A—N1A—N2A116.82 (13)C7B—N1B—N2B116.97 (14)
C8A—N2A—N1A119.82 (13)C8B—N2B—N1B120.46 (14)
C8A—N2A—H1N2120.7 (13)C8B—N2B—H2N2119.4 (14)
N1A—N2A—H1N2117.8 (14)N1B—N2B—H2N2120.0 (14)
C8A—N3A—C9A125.71 (13)C8B—N3B—C9B124.99 (13)
C8A—N3A—H1N3117.1 (14)C8B—N3B—H2N3116.0 (13)
C9A—N3A—H1N3116.9 (14)C9B—N3B—H2N3118.9 (13)
O1A—C1A—C6A122.24 (14)O1B—C1B—C2B116.63 (14)
O1A—C1A—C2A116.68 (14)O1B—C1B—C6B122.02 (14)
C6A—C1A—C2A121.08 (15)C2B—C1B—C6B121.35 (15)
C3A—C2A—C1A117.85 (15)C3B—C2B—C1B117.95 (15)
C3A—C2A—C15A122.40 (14)C3B—C2B—C15B122.57 (15)
C1A—C2A—C15A119.74 (15)C1B—C2B—C15B119.48 (15)
C4A—C3A—C2A122.00 (15)C2B—C3B—C4B121.87 (15)
C4A—C3A—H3AA119.0C2B—C3B—H3BA119.1
C2A—C3A—H3AA119.0C4B—C3B—H3BA119.1
C5A—C4A—C3A119.37 (16)C5B—C4B—C3B119.48 (15)
C5A—C4A—H4AA120.3C5B—C4B—H4BA120.3
C3A—C4A—H4AA120.3C3B—C4B—H4BA120.3
C4A—C5A—C6A121.01 (16)C4B—C5B—C6B120.98 (16)
C4A—C5A—H5AA119.5C4B—C5B—H5BA119.5
C6A—C5A—H5AA119.5C6B—C5B—H5BA119.5
C5A—C6A—C1A118.68 (14)C5B—C6B—C1B118.35 (14)
C5A—C6A—C7A118.22 (15)C5B—C6B—C7B118.96 (15)
C1A—C6A—C7A123.09 (14)C1B—C6B—C7B122.70 (14)
N1A—C7A—C6A121.83 (15)N1B—C7B—C6B121.80 (15)
N1A—C7A—H7AA119.1N1B—C7B—H7BA119.1
C6A—C7A—H7AA119.1C6B—C7B—H7BA119.1
N3A—C8A—N2A116.73 (14)N3B—C8B—N2B116.78 (14)
N3A—C8A—S1A123.76 (12)N3B—C8B—S1B124.07 (12)
N2A—C8A—S1A119.51 (12)N2B—C8B—S1B119.15 (12)
N3A—C9A—C14A108.61 (13)N3B—C9B—C14B109.69 (12)
N3A—C9A—C10A112.01 (13)N3B—C9B—C10B111.20 (13)
C14A—C9A—C10A111.06 (14)C14B—C9B—C10B110.58 (13)
N3A—C9A—H9AA108.4N3B—C9B—H9BA108.4
C14A—C9A—H9AA108.4C14B—C9B—H9BA108.4
C10A—C9A—H9AA108.4C10B—C9B—H9BA108.4
C9A—C10A—C11A110.55 (14)C9B—C10B—C11B110.68 (13)
C9A—C10A—H10A109.5C9B—C10B—H10C109.5
C11A—C10A—H10A109.5C11B—C10B—H10C109.5
C9A—C10A—H10B109.5C9B—C10B—H10D109.5
C11A—C10A—H10B109.5C11B—C10B—H10D109.5
H10A—C10A—H10B108.1H10C—C10B—H10D108.1
C12A—C11A—C10A111.31 (14)C12B—C11B—C10B111.23 (13)
C12A—C11A—H11A109.4C12B—C11B—H11C109.4
C10A—C11A—H11A109.4C10B—C11B—H11C109.4
C12A—C11A—H11B109.4C12B—C11B—H11D109.4
C10A—C11A—H11B109.4C10B—C11B—H11D109.4
H11A—C11A—H11B108.0H11C—C11B—H11D108.0
C13A—C12A—C11A111.40 (15)C13B—C12B—C11B111.49 (14)
C13A—C12A—H12A109.3C13B—C12B—H12C109.3
C11A—C12A—H12A109.3C11B—C12B—H12C109.3
C13A—C12A—H12B109.3C13B—C12B—H12D109.3
C11A—C12A—H12B109.3C11B—C12B—H12D109.3
H12A—C12A—H12B108.0H12C—C12B—H12D108.0
C12A—C13A—C14A111.91 (16)C12B—C13B—C14B111.59 (14)
C12A—C13A—H13A109.2C12B—C13B—H13C109.3
C14A—C13A—H13A109.2C14B—C13B—H13C109.3
C12A—C13A—H13B109.2C12B—C13B—H13D109.3
C14A—C13A—H13B109.2C14B—C13B—H13D109.3
H13A—C13A—H13B107.9H13C—C13B—H13D108.0
C9A—C14A—C13A111.02 (14)C9B—C14B—C13B110.42 (13)
C9A—C14A—H14A109.4C9B—C14B—H14C109.6
C13A—C14A—H14A109.4C13B—C14B—H14C109.6
C9A—C14A—H14B109.4C9B—C14B—H14D109.6
C13A—C14A—H14B109.4C13B—C14B—H14D109.6
H14A—C14A—H14B108.0H14C—C14B—H14D108.1
C2A—C15A—H15A109.5C2B—C15B—H15D109.5
C2A—C15A—H15B109.5C2B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C2A—C15A—H15C109.5C2B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C7A—N1A—N2A—C8A171.68 (14)C7B—N1B—N2B—C8B177.23 (14)
O1A—C1A—C2A—C3A179.53 (14)O1B—C1B—C2B—C3B179.53 (14)
C6A—C1A—C2A—C3A0.3 (2)C6B—C1B—C2B—C3B0.7 (2)
O1A—C1A—C2A—C15A0.2 (2)O1B—C1B—C2B—C15B1.0 (2)
C6A—C1A—C2A—C15A179.68 (15)C6B—C1B—C2B—C15B178.77 (15)
C1A—C2A—C3A—C4A0.3 (2)C1B—C2B—C3B—C4B1.9 (2)
C15A—C2A—C3A—C4A179.61 (16)C15B—C2B—C3B—C4B177.57 (16)
C2A—C3A—C4A—C5A0.5 (3)C2B—C3B—C4B—C5B1.7 (3)
C3A—C4A—C5A—C6A0.8 (3)C3B—C4B—C5B—C6B0.3 (3)
C4A—C5A—C6A—C1A0.9 (2)C4B—C5B—C6B—C1B0.8 (2)
C4A—C5A—C6A—C7A178.73 (15)C4B—C5B—C6B—C7B178.94 (15)
O1A—C1A—C6A—C5A179.23 (14)O1B—C1B—C6B—C5B179.16 (14)
C2A—C1A—C6A—C5A0.6 (2)C2B—C1B—C6B—C5B0.6 (2)
O1A—C1A—C6A—C7A1.2 (2)O1B—C1B—C6B—C7B1.1 (2)
C2A—C1A—C6A—C7A178.96 (14)C2B—C1B—C6B—C7B179.12 (15)
N2A—N1A—C7A—C6A178.28 (13)N2B—N1B—C7B—C6B179.20 (14)
C5A—C6A—C7A—N1A176.61 (15)C5B—C6B—C7B—N1B177.83 (15)
C1A—C6A—C7A—N1A3.0 (2)C1B—C6B—C7B—N1B1.9 (2)
C9A—N3A—C8A—N2A178.07 (14)C9B—N3B—C8B—N2B175.59 (14)
C9A—N3A—C8A—S1A2.3 (2)C9B—N3B—C8B—S1B4.8 (2)
N1A—N2A—C8A—N3A7.4 (2)N1B—N2B—C8B—N3B10.2 (2)
N1A—N2A—C8A—S1A172.92 (11)N1B—N2B—C8B—S1B170.21 (11)
C8A—N3A—C9A—C14A151.70 (16)C8B—N3B—C9B—C14B155.77 (15)
C8A—N3A—C9A—C10A85.26 (19)C8B—N3B—C9B—C10B81.60 (19)
N3A—C9A—C10A—C11A178.51 (13)N3B—C9B—C10B—C11B179.99 (13)
C14A—C9A—C10A—C11A56.87 (18)C14B—C9B—C10B—C11B57.90 (17)
C9A—C10A—C11A—C12A56.18 (19)C9B—C10B—C11B—C12B55.88 (18)
C10A—C11A—C12A—C13A54.83 (19)C10B—C11B—C12B—C13B54.08 (19)
C11A—C12A—C13A—C14A54.1 (2)C11B—C12B—C13B—C14B54.32 (19)
N3A—C9A—C14A—C13A179.67 (15)N3B—C9B—C14B—C13B179.21 (14)
C10A—C9A—C14A—C13A56.06 (19)C10B—C9B—C14B—C13B57.79 (18)
C12A—C13A—C14A—C9A54.7 (2)C12B—C13B—C14B—C9B56.10 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of benzene ring C1A–C6A.
D—H···AD—HH···AD···AD—H···A
O1A—H1O1···N1A0.80 (2)1.98 (2)2.6844 (19)146 (2)
O1B—H1O2···N1B0.84 (2)1.91 (2)2.664 (2)148 (2)
N2A—H1N2···S1Bi0.85 (2)2.60 (2)3.4414 (16)170 (2)
N2B—H2N2···S1Ai0.85 (2)2.53 (2)3.3568 (15)164 (2)
C11A—H11B···Cg1ii0.992.933.801 (2)148
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z.
Torsion angles τ1, τ2, τ3, τ4 and τ5 (°) top
CompoundRτ1τ2τ3τ4τ5
Title compound2-hydroxy-3-methylbenzylidene3.2, 1.9171.7, 177.27.4, 10.2178.1, 175.685.3, 81.6
ABUHEN (Basheer et al., 2017)pyren-1-ylmethylene10.1174.91.2180.081.6
BEFZIY (Basheer et al., 2016a)2-hydroxy-1-naphthyl)methylene0.9179.36.8176.683.4
BEVNAR (Koo et al., 1981)4-aminobenzylidene14.3175.07.4178.594.5
LAQCIR (Jacob & Kurup, 2012)5-bromo-2-hydroxy-3-methoxybenzylidene10.1176.84.1179.586.2
LEPFIW (Seena et al., 2006)1-(2-hydroxyphenyl)ethylidene3.9, 6.6155.0, 153.514.0, 14.7175.7, 171.891.9, 81.6
NALKOD (Basheer et al., 2016b)anthracen-9-ylmethylene25.8, 36.2171.6, 178.60.8, 1.4172.9, 176.279.0, 79.2
OBOLOJ (Arafath, 2017a)5-chloro-2-hydroxybenzylidene4.7176.05.5176.783.7
XOYKAZ (Bhat et al., 2015)4-ethoxybenzylidene0.5169.311.6176.285.8
YUXJOS (Arafath et al., 2018)3-t-butyl-2-hydroxyphenyl)methylidene11.8170.112.5176.278.3
Note: The title compound and compounds LEPFIW and NALKOD crystallize with two independent molecules in the asymmetric unit.
 

Funding information

This research was supported financially by an RU grant (No. 1001/PKIMIA/811269) from Universiti Sains Malaysia. The authors wish to thank Universiti Sains Malaysia and The World Academy of Science for a USM–TWAS fellowship to MdAA. MdAA also thanks Shahjalal University of Science and Technology for a Promotional Research Grant (ID. PS/2018/1/04, 2018–2019). HCK is grateful to the Malaysian Government for a MyBrain15 scholarship.

References

First citationAlomar, K., Khan, M. A., Allain, M. & Bouet, G. (2009). Polyhedron, 28, 1273–1280.  Web of Science CSD CrossRef CAS Google Scholar
First citationArafath, M. A., Adam, F. & Razali, M. R. (2017a). IUCrData, 2, x161997.  Google Scholar
First citationArafath, M. A., Adam, F., Razali, M. R., Hassan, L. E. A., Ahamed, M. B. K. & Majid, A. M. S. (2017b). J. Mol. Struct. 1130, 791–798.  CrossRef CAS Google Scholar
First citationArafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018). Acta Cryst. E74, 1460–1462.  CrossRef IUCr Journals Google Scholar
First citationArion, V., Revenco, M., Gradinaru, J., Simonov, Y., Kravtsov, V., Gerbeleu, N., Saint-Aman, E. & Adams, F. (2001). Rev. Inorg. Chem. 21, 1–42.  CrossRef CAS Google Scholar
First citationBasheer, S. M., Bhuvanesh, N. S. P. & Sreekanth, A. (2016a). J. Fluor. Chem. 191, 129–142.  CrossRef CAS Google Scholar
First citationBasheer, S. M., Willis, A. C., Pace, R. J. & Sreekanth, A. (2016b). Polyhedron, 109, 7–18.  CrossRef CAS Google Scholar
First citationBasheer, S. M., Willis, A. C. & Sreekanth, A. (2017). J. Lumin. 183, 266–280.  CrossRef CAS Google Scholar
First citationBhat, M. A., Al-Dhfyan, A., Khan, A. A., Al-Harbi, N., Manogaran, P. S., Alanazi, A. M., Fun, H.-K. & Al-Omar, M. A. (2015). Bioorg. Med. Chem. Lett. 25, 83–87.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2012). Bruker AXS Inc., Madison. Wisconsin, USAGoogle Scholar
First citationChandra, S. & Sangeetika, X. (2004). Spectrochim. Acta A, 60, 147–153.  Web of Science CrossRef Google Scholar
First citationGerbeleu, N. V., Arion, V. B. & Burgess, J. P. (2008). Template Synthesis of Macrocyclic Compounds. John Wiley & Sons.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoo, C. H., Kim, C. H. & Park, Y. J. (1981). J. Korean Chem. Soc. 25, 343–350.  CAS Google Scholar
First citationLeovac, V. & Češljević, V. (2002). Coordination Chemistry of Isothiosemicarbazide and Its Derivatives. Faculty of Science, University of Novi Sad, Serbia.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, G. G., Omar, M. & Ibrahim, A. A. (2009). Eur. J. Med. Chem. 44, 4801–4812.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPadhyé, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127–160.  CrossRef CAS Web of Science Google Scholar
First citationRayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545–1548.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalam, M., Affan, M., Ahmad, F. B. & Arafath, M. A. (2012a). J. Coord. Chem. 65, 1999–2007.  CrossRef CAS Google Scholar
First citationSalam, M., Affan, M., Ahmad, F. B., Arafath, M. A., Tahir, M. I. M. & Shamsuddin, M. B. (2012b). J. Coord. Chem. 65, 3174–3187.  CrossRef CAS Google Scholar
First citationSeena, E. B., Bessy Raj, B. N., Prathapachandra Kurup, M. R. & Suresh, E. (2006). J. Chem. Crystallogr. 36, 189–193.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiki, A. N. A., Rahman, M. S., Rahman, M. A., Salam, M. A., Yousuf, M. A., Islam, M. F. & Arafat, M. A. (2012). Bangladesh Pharmaceutical Journal, 15, 83–87.  Google Scholar
First citationSingh, N. K., Srivastava, A., Sodhi, A. & Ranjan, P. (2000). Transit. Met. Chem. 25, 133–140.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVieites, M., Otero, L., Santos, D., Olea-Azar, C., Norambuena, E., Aguirre, G., Cerecetto, H., González, M., Kemmerling, U., Morello, A., Diego Maya, J. & Gambino, D. (2009). J. Inorg. Biochem. 103, 411–418.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZiessel, R. (2001). Coord. Chem. Rev. 216–217, 195–223.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds