research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new form of NaMnAsO4

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria, and bIUT Bordeaux 1, 15 Rue Naudet, 33175 Gradignan, France
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by A. Van der Lee, Université de Montpellier II, France (Received 28 May 2019; accepted 5 June 2019; online 7 June 2019)

A new form of NaMnAsO4, sodium manganese(II) orthoarsenate, has been obtained under hydro­thermal conditions, and is referred to as the β-polymorph. In contrast to the previously reported ortho­rhom­bic α-polymorph that crystallizes in the olivine-type of structure and has one manganese(II) cation in a distorted octa­hedral coordination, the current β-polymorph contains two manganese(II) cations in [5]-coordination, inter­mediate between a square-pyramid and a trigonal bipyramid. In the crystal structure of β-NaMnAsO4, four [MnO5] polyhedra are linked through vertex- and edge-sharing into finite {Mn4O16} units strung into rows parallel to [100]. These units are linked through two distinct orthoarsenate groups into a framework structure with channels propagating parallel to the manganese oxide rows. Both unique sodium cations are situated inside the channels and exhibit coordination numbers of six and seven. β-NaMnAsO4 is isotypic with one form of NaCoPO4 and with NaCuAsO4.

1. Chemical context

Magnussonite is a rare manganese(II) arsenite mineral and has been described with an ideal formula of MnII10AsIII6O18(OH,Cl)2 (Moore & Araki, 1979[Moore, P. B. & Araki, T. (1979). Am. Mineral. 64, 390-401.]). In a recent project on hydro­thermal crystal growth of phases in the system MnII/AsIII/O (Priestner et al., 2018a[Priestner, M., Singer, G., Weil, M., Kremer, R. & Libowitzky, E. (2018a). J. Solid State Chem. https://doi.org/10.1016/j.jssc.2019.06.005]) and a precise structure refinement of magnussonite, it could be shown that the obtained synthetic material has a composition of MnII3AsIII2O6·1/3H2O whereas naturally occurring material (type locality Långban, Sweden) is better described as MnII3AsIII2O6(CuII(OH,Cl)2)x (Priestner et al., 2018b[Priestner, M., Weil, M., Kremer, R., Libowitzky, E. & Hålenius, U. (2018b). In preparation.]). Building on that knowledge, a subsequent project was started to incorporate divalent transition-metal cations under hydro­thermal conditions into synthetic magnussonite for obtaining similar compositions to those in the natural material. In one of the batches, containing manganese(II) acetate, sodium hydroxide, nickel chloride and arsenic(III) oxide as the arsenic source, we observed a partial oxidation of arsenic to yield monoclinic NaMnAsO4 as a by-product with arsenic in an oxidation state of +V. NaMnAsO4 was reported previously, as obtained from a high-temperature synthesis in a molten salt medium (Ulutagay-Kartin et al., 2002[Ulutagay-Kartin, M., Etheredge, K. M. S., Schimek, G. L. & Hwu, S.-J. (2002). J. Alloys Compd. 338, 80-86.]). This form crystallizes in the ortho­rhom­bic system with space-group type Pnma and adopts an olivine-type of structure.

In the following, we refer to the previously reported ortho­rhom­bic polymorph (Ulutagay-Kartin et al., 2002[Ulutagay-Kartin, M., Etheredge, K. M. S., Schimek, G. L. & Hwu, S.-J. (2002). J. Alloys Compd. 338, 80-86.]) as the α-form, and the new monoclinic polymorph as the β-form of NaMnAsO4.

2. Structural commentary

β-NaMnAsO4 crystallizes isotypically with one of the three modifications of the phosphate NaCoPO4 (Feng et al., 1997[Feng, P., Bu, X. & Stucky, G. D. (1997). J. Solid State Chem. 129, 328-333.]) and with the copper analogue NaCuAsO4 (Ulutagay-Kartin et al., 2003[Ulutagay-Kartin, M., Hwu, S.-J. & Clayhold, J. A. (2003). Inorg. Chem. 42, 2405-2409.]). The asymmetric unit of β-NaMnAsO4 comprises of two formula units, and the principal building units are two manganese(II) cations in [5]-coordination, two orthoarsenate anions AsO43–, and two sodium cations in a six- and sevenfold coordination by oxygen (Fig. 1[link]).

[Figure 1]
Figure 1
The crystal structure of β-NaMnAsO4 in a projection along [[\overline{1}]00]. [MnO5] polyhedra are shown in blue, [AsO4] tetra­hedra in red, NaI cations in green and O atoms in shaded grey. Displacement ellipsoids are drawn at the 90% probability level.

The τ5 descriptor (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) was calculated as 0.59 for the polyhedron around Mn1 and 0.54 for that around Mn2, meaning that the shapes of the polyhedra are inter­mediate between a square pyramid (τ5 = 0) and a trigonal bipyramid (τ5 = 1). The Mn—O bond lengths range from 2.061 (3)–2.205 (3) Å whereby those involving Mn1 scatter in a greater range than those involving Mn2 (Table 1[link]). Two [Mn2O5] polyhedra are fused into a centrosymmetric dimer by sharing an edge. To each side of the dimer two [Mn1O5] polyhedra are attached by sharing a common vertex, thus establishing a finite {Mn4O16} unit. In the crystal structure of the α-polymorph (Ulutagay-Kartin et al., 2002[Ulutagay-Kartin, M., Etheredge, K. M. S., Schimek, G. L. & Hwu, S.-J. (2002). J. Alloys Compd. 338, 80-86.]), the unique MnII site has a distorted octa­hedral environment with bond lengths ranging from 2.121 (2)–2.339 (2) Å. Here the [MnO6] units are connected through sharing four of their vertices into perovskite-type sheets. The isolated {Mn4O16} units in the β-polymorph are strung into rows parallel to [100] and are connected into a three-dimensional framework structure by AsO43– tetra­hedra sharing common vertices. The As—O bond lengths (Table 1[link]) are characteristic for isolated orthoarsenate groups, and their mean values of 1.692 Å (As1) and 1.676 Å (As2) conform with literature data (1.687 Å; Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63-78.]). This framework delimits channels parallel to [100] in which the two sodium cations are situated. They are surrounded by six (Na1) and seven (Na2) oxygen atoms, each displaying a distorted coordination polyhedron. Relevant Na—O distances are collated in Table 1[link]. The results of bond-valence-sum calculations (Brown, 2002[Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) are consistent with the expected oxidation states of +I for Na, +II for Mn, +V for As, and −II for O (values in valence units): Na1 = 1.03, Na2 = 0.95, Mn1 = 1.94, Mn2 = 1.98, As1 = 4.90, As2 = 5.12, O atoms = 1.83–2.16.

Table 1
Selected bond lengths (Å)

Na1—O6i 2.368 (3) Mn1—O7 2.162 (3)
Na1—O1ii 2.407 (3) Mn1—O3 2.205 (3)
Na1—O2iii 2.411 (3) Mn2—O2v 2.095 (3)
Na1—O5ii 2.496 (3) Mn2—O4vii 2.124 (3)
Na1—O3i 2.526 (4) Mn2—O1 2.139 (3)
Na1—O7iv 2.547 (3) Mn2—O8v 2.150 (3)
Na2—O3 2.376 (3) Mn2—O4v 2.155 (3)
Na2—O2v 2.409 (4) As1—O2 1.683 (3)
Na2—O7i 2.539 (3) As1—O5vii 1.689 (3)
Na2—O5 2.540 (3) As1—O1 1.694 (3)
Na2—O1 2.580 (4) As1—O7 1.703 (3)
Na2—O6 2.712 (4) As2—O6 1.647 (3)
Na2—O8 2.829 (4) As2—O3viii 1.676 (3)
Mn1—O6 2.061 (3) As2—O4ix 1.684 (3)
Mn1—O5vi 2.144 (3) As2—O8 1.696 (3)
Mn1—O8vi 2.144 (3)    
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) x, y+1, z; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ix) -x+1, -y+1, -z+1.

The previously reported α-form of NaMnAsO4 has a calculated X-ray density Dx = 4.03 g cm−3 and thus is denser than the current β-form (3.95 g cm−3). Based on the rule of thumb that the denser polymorph is (in the majority of cases) the stable form, these values point to α-NaMnAsO4 as the thermodynamically stable polymorph. This assumption is supported by the preparation conditions of the different polymorphs. The α-polymorph was obtained under high-temperature conditions (Ulutagay-Kartin et al., 2002[Ulutagay-Kartin, M., Etheredge, K. M. S., Schimek, G. L. & Hwu, S.-J. (2002). J. Alloys Compd. 338, 80-86.]) whereas the β-polymorph crystallized under much milder temperature conditions. As a result of the scarcity of β-NaMnAsO4 material, a detailed investigation of the thermal behaviour was not conducted. However, a possible βα phase transition would be of the reconstructive type because the building units in the two structures exhibit a completely different arrangement.

For a qu­anti­tative structural comparison of β-NaMnAsO4 with the isotypic sodium copper(II) arsenate analogue, NaCuAsO4 (Ulutagay-Kartin et al., 2003[Ulutagay-Kartin, M., Hwu, S.-J. & Clayhold, J. A. (2003). Inorg. Chem. 42, 2405-2409.]), the program compstru (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]) available at the Bilbao Crystallographic Server (Aroyo et al., 2006[Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15-27.]) was used. The comparison revealed a degree of lattice distortion of 0.0170, the maximum distance between the atomic positions of paired atoms of 0.1834 Å for pair Na1, the arithmetic mean of all distances of 0.1150 Å, and the measure of similarity of 0.050. All these values show a high similarity between the two crystal structures. This is supported by the similar τ5 values of 0.57 and 0.47 for the two copper(II) cations in NaCuAsO4.

3. Synthesis and crystallization

A stoichiometric mixture of Mn(CH3COO)2·4H2O, NaOH, As2O3 and NiCl2 in the ratio 1:6:1:1/6 was loaded in a Teflon container that was filled with 3 ml of water to two-thirds of its volume. Then the container was sealed with a Teflon lid and placed in a steel autoclave that was heated at 483 K for five days. After cooling to room temperature, the solid material was filtered off, washed with mother liquor, water and ethanol and air-dried. The main phase identified by single crystal and powder X-ray diffraction was synthetic magnussonite, Mn3As2O6·1/3H2O (Priestner et al., 2018b[Priestner, M., Weil, M., Kremer, R., Libowitzky, E. & Hålenius, U. (2018b). In preparation.]). Synthetic sarkinite, a basic manganese(II) arsenate(V) with formula Mn2AsO4(OH) (Stock et al., 2002[Stock, N., Stucky, G. D. & Cheetham, A. K. (2002). Z. Anorg. Allg. Chem. 628, 357-362.]), and the title compound were also present as minor by-products, with β-NaMnAsO4 typically appearing in the form of needles.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Coordinates of isotypic NaCuAsO4 (Ulutagay-Kartin et al., 2003[Ulutagay-Kartin, M., Hwu, S.-J. & Clayhold, J. A. (2003). Inorg. Chem. 42, 2405-2409.]) were standardized using the program STRUCTURE-TIDY (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]) and then used as starting parameters for refinement. Free refinement of the site occupation factors for the two Mn sites resulted in a value of 1.000 (3) in each case, thus revealing no incorporation of Ni at these sites.

Table 2
Experimental details

Crystal data
Chemical formula NaMnAsO4
Mr 216.85
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.0917 (6), 11.4072 (10), 10.5008 (9)
β (°) 91.517 (3)
V3) 729.44 (11)
Z 8
Radiation type Mo Kα
μ (mm−1) 12.60
Crystal size (mm) 0.12 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.476, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10811, 2336, 1682
Rint 0.075
(sin θ/λ)max−1) 0.726
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.059, 1.00
No. of reflections 2336
No. of parameters 128
Δρmax, Δρmin (e Å−3) 0.93, −0.94
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: coordinates taken from isotypic compound; program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Sodium manganese(II) orthoarsenate top
Crystal data top
NaMnAsO4F(000) = 808
Mr = 216.85Dx = 3.949 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.0917 (6) ÅCell parameters from 1472 reflections
b = 11.4072 (10) Åθ = 2.6–29.1°
c = 10.5008 (9) ŵ = 12.60 mm1
β = 91.517 (3)°T = 296 K
V = 729.44 (11) Å3Needle, colourless
Z = 80.12 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
1682 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.075
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 31.1°, θmin = 3.4°
Tmin = 0.476, Tmax = 0.746h = 88
10811 measured reflectionsk = 1616
2336 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0138P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max < 0.001
wR(F2) = 0.059Δρmax = 0.93 e Å3
S = 1.00Δρmin = 0.94 e Å3
2336 reflectionsExtinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
128 parametersExtinction coefficient: 0.00083 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.12080 (7)0.11305 (3)0.33114 (4)0.00717 (10)
As20.62792 (7)0.35882 (3)0.41290 (4)0.00749 (10)
Mn10.61290 (11)0.09632 (5)0.23084 (6)0.00943 (14)
Mn20.14942 (11)0.12113 (5)0.00555 (6)0.00920 (14)
Na10.1190 (3)0.84466 (15)0.36519 (18)0.0193 (4)
Na20.3740 (3)0.36374 (17)0.1217 (2)0.0294 (5)
O10.1342 (5)0.1909 (2)0.1942 (3)0.0135 (7)
O20.1143 (5)0.2010 (2)0.4596 (3)0.0117 (6)
O30.5901 (5)0.2026 (3)0.0556 (3)0.0148 (7)
O40.1471 (5)0.5556 (2)0.5782 (3)0.0111 (6)
O50.1034 (5)0.5259 (2)0.1712 (3)0.0123 (6)
O60.6572 (5)0.2657 (2)0.2946 (3)0.0145 (7)
O70.3513 (5)0.0291 (2)0.3453 (3)0.0117 (6)
O80.3980 (5)0.4378 (2)0.3788 (3)0.0117 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.0078 (2)0.0068 (2)0.0069 (2)0.00017 (16)0.00021 (16)0.00042 (16)
As20.0079 (2)0.0072 (2)0.0073 (2)0.00031 (16)0.00027 (16)0.00011 (16)
Mn10.0117 (3)0.0073 (3)0.0093 (3)0.0010 (2)0.0009 (2)0.0003 (2)
Mn20.0104 (3)0.0079 (3)0.0094 (3)0.0007 (2)0.0008 (2)0.0000 (2)
Na10.0179 (10)0.0133 (9)0.0271 (11)0.0000 (8)0.0083 (8)0.0007 (8)
Na20.0195 (10)0.0250 (11)0.0432 (13)0.0032 (8)0.0086 (9)0.0179 (9)
O10.0214 (17)0.0099 (14)0.0094 (17)0.0012 (13)0.0032 (13)0.0014 (11)
O20.0176 (17)0.0121 (14)0.0055 (15)0.0001 (13)0.0038 (12)0.0022 (11)
O30.0245 (18)0.0115 (15)0.0082 (16)0.0030 (13)0.0001 (13)0.0001 (12)
O40.0068 (15)0.0102 (14)0.0161 (17)0.0040 (12)0.0019 (12)0.0019 (12)
O50.0088 (16)0.0123 (15)0.0157 (17)0.0025 (12)0.0002 (12)0.0013 (12)
O60.0217 (18)0.0104 (15)0.0115 (17)0.0022 (12)0.0028 (13)0.0064 (12)
O70.0083 (15)0.0127 (15)0.0141 (16)0.0028 (12)0.0005 (12)0.0015 (12)
O80.0075 (15)0.0114 (15)0.0161 (17)0.0024 (12)0.0005 (12)0.0039 (12)
Geometric parameters (Å, º) top
Na1—O6i2.368 (3)Mn1—O72.162 (3)
Na1—O1ii2.407 (3)Mn1—O32.205 (3)
Na1—O2iii2.411 (3)Mn2—O2v2.095 (3)
Na1—O5ii2.496 (3)Mn2—O4vii2.124 (3)
Na1—O3i2.526 (4)Mn2—O12.139 (3)
Na1—O7iv2.547 (3)Mn2—O8v2.150 (3)
Na2—O32.376 (3)Mn2—O4v2.155 (3)
Na2—O2v2.409 (4)As1—O21.683 (3)
Na2—O7i2.539 (3)As1—O5vii1.689 (3)
Na2—O52.540 (3)As1—O11.694 (3)
Na2—O12.580 (4)As1—O71.703 (3)
Na2—O62.712 (4)As2—O61.647 (3)
Na2—O82.829 (4)As2—O3viii1.676 (3)
Mn1—O62.061 (3)As2—O4ix1.684 (3)
Mn1—O5vi2.144 (3)As2—O81.696 (3)
Mn1—O8vi2.144 (3)
O2—As1—O5vii109.07 (14)O3—Na2—O661.90 (10)
O2—As1—O1111.74 (14)O2v—Na2—O6137.80 (12)
O5vii—As1—O1110.68 (15)O7i—Na2—O679.02 (11)
O2—As1—O7107.60 (15)O5—Na2—O6124.60 (12)
O5vii—As1—O7109.56 (14)O1—Na2—O680.96 (11)
O1—As1—O7108.11 (14)O3—Na2—O8119.67 (12)
O6—As2—O3viii115.17 (14)O2v—Na2—O8141.48 (13)
O6—As2—O4ix108.13 (15)O7i—Na2—O868.33 (10)
O3viii—As2—O4ix108.90 (15)O5—Na2—O866.72 (10)
O6—As2—O8106.78 (15)O1—Na2—O887.83 (11)
O3viii—As2—O8106.17 (15)O6—Na2—O857.89 (9)
O4ix—As2—O8111.73 (14)As1—O1—Mn2126.51 (15)
O6—Mn1—O5vi95.67 (12)As1—O1—Na1vii123.87 (15)
O6—Mn1—O8vi165.34 (12)Mn2—O1—Na1vii94.27 (12)
O5vi—Mn1—O8vi87.40 (11)As1—O1—Na2133.73 (16)
O6—Mn1—O7104.14 (12)Mn2—O1—Na288.43 (11)
O5vi—Mn1—O7101.37 (11)Na1vii—O1—Na274.38 (10)
O8vi—Mn1—O789.23 (11)As1—O2—Mn2viii139.26 (16)
O6—Mn1—O376.13 (11)As1—O2—Na2viii110.78 (15)
O5vi—Mn1—O3129.69 (11)Mn2viii—O2—Na2viii94.20 (12)
O8vi—Mn1—O390.86 (11)As1—O2—Na1iii120.64 (15)
O7—Mn1—O3128.90 (12)Mn2viii—O2—Na1iii95.30 (11)
O2v—Mn2—O4vii99.50 (12)Na2viii—O2—Na1iii77.51 (11)
O2v—Mn2—O181.14 (11)As2v—O3—Mn1120.63 (15)
O4vii—Mn2—O1117.21 (12)As2v—O3—Na2132.47 (17)
O2v—Mn2—O8v103.27 (11)Mn1—O3—Na2101.81 (12)
O4vii—Mn2—O8v103.81 (11)As2v—O3—Na1vi116.79 (15)
O1—Mn2—O8v137.57 (12)Mn1—O3—Na1vi92.86 (12)
O2v—Mn2—O4v170.23 (11)Na2—O3—Na1vi78.27 (11)
O4vii—Mn2—O4v78.69 (12)As2ix—O4—Mn2ii120.06 (15)
O1—Mn2—O4v91.11 (11)As2ix—O4—Mn2viii123.30 (15)
O8v—Mn2—O4v86.45 (11)Mn2ii—O4—Mn2viii101.31 (12)
O6i—Na1—O1ii85.20 (12)As1ii—O5—Mn1i115.32 (14)
O6i—Na1—O2iii145.14 (12)As1ii—O5—Na1vii92.86 (13)
O1ii—Na1—O2iii69.73 (11)Mn1i—O5—Na1vii144.25 (14)
O6i—Na1—O5ii121.79 (12)As1ii—O5—Na2162.63 (17)
O1ii—Na1—O5ii102.84 (12)Mn1i—O5—Na281.48 (10)
O2iii—Na1—O5ii88.13 (11)Na1vii—O5—Na273.62 (10)
O6i—Na1—O3i64.99 (11)As2—O6—Mn1146.46 (18)
O1ii—Na1—O3i93.26 (11)As2—O6—Na1vi111.42 (15)
O2iii—Na1—O3i91.88 (11)Mn1—O6—Na1vi101.49 (12)
O5ii—Na1—O3i162.80 (13)As2—O6—Na299.17 (13)
O6i—Na1—O7iv85.65 (11)Mn1—O6—Na295.37 (12)
O1ii—Na1—O7iv159.09 (13)Na1vi—O6—Na274.75 (11)
O2iii—Na1—O7iv125.53 (12)As1—O7—Mn1111.73 (14)
O5ii—Na1—O7iv66.66 (10)As1—O7—Na2vi165.60 (16)
O3i—Na1—O7iv99.82 (11)Mn1—O7—Na2vi81.17 (10)
O3—Na2—O2v85.11 (12)As1—O7—Na1x90.74 (12)
O3—Na2—O7i104.26 (12)Mn1—O7—Na1x139.29 (14)
O2v—Na2—O7i137.92 (14)Na2vi—O7—Na1x74.98 (10)
O3—Na2—O5172.25 (14)As2—O8—Mn1i125.11 (15)
O2v—Na2—O587.16 (12)As2—O8—Mn2viii107.14 (14)
O7i—Na2—O581.95 (11)Mn1i—O8—Mn2viii125.73 (13)
O3—Na2—O179.48 (11)As2—O8—Na293.68 (12)
O2v—Na2—O166.91 (11)Mn1i—O8—Na274.88 (10)
O7i—Na2—O1154.63 (13)Mn2viii—O8—Na2118.54 (13)
O5—Na2—O196.92 (11)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x, y+1/2, z1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y1/2, z+1/2; (viii) x, y+1/2, z+1/2; (ix) x+1, y+1, z+1; (x) x, y1, z.
 

Acknowledgements

The X-ray centre of the TU Wien is acknowledged for financial support and for providing access to the single-crystal and powder X-ray diffractometers. TV acknowledges the Erasmus + program for a grant during a student exchange programme.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27.  Web of Science CrossRef CAS Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.  Google Scholar
First citationFeng, P., Bu, X. & Stucky, G. D. (1997). J. Solid State Chem. 129, 328–333.  CrossRef ICSD CAS Web of Science Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMoore, P. B. & Araki, T. (1979). Am. Mineral. 64, 390–401.  CAS Google Scholar
First citationPriestner, M., Singer, G., Weil, M., Kremer, R. & Libowitzky, E. (2018a). J. Solid State Chem. https://doi.org/10.1016/j.jssc.2019.06.005  Google Scholar
First citationPriestner, M., Weil, M., Kremer, R., Libowitzky, E. & Hålenius, U. (2018b). In preparation.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStock, N., Stucky, G. D. & Cheetham, A. K. (2002). Z. Anorg. Allg. Chem. 628, 357–362.  Web of Science CrossRef ICSD CAS Google Scholar
First citationUlutagay-Kartin, M., Etheredge, K. M. S., Schimek, G. L. & Hwu, S.-J. (2002). J. Alloys Compd. 338, 80–86.  CAS Google Scholar
First citationUlutagay-Kartin, M., Hwu, S.-J. & Clayhold, J. A. (2003). Inorg. Chem. 42, 2405–2409.  Web of Science PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds