research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and electrical resistance property of Rb0.21(H2O)yWS2

CROSSMARK_Color_square_no_text.svg

aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China, and bSchool of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
*Correspondence e-mail: huangfq@mail.sic.ac.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 March 2019; accepted 3 June 2019; online 11 June 2019)

Rb0.21(H2O)yWS2, rubidium hydrate di­thio­tungstate, is a new quasi two-dimensional sulfide. Its crystal structure consists of ordered WS2 layers, separated by disordered Rb+ ions and water mol­ecules. All atomic sites are located on mirror planes. The WS2 layers are composed of edge-sharing [WS6] octa­hedra and extend parallel to (001). The presence of structural water was revealed by thermogravimetry, but the position and exact amount could not be determined in the present study. The temperature dependence of the electrical resistance indicates that Rb0.21(H2O)yWS2 is semiconducting between 80–300 K.

1. Chemical context

Typical two-dimensional structures of MS2 compounds (M = transition metals of group IVB–VIB) facilitate the inter­calation of various atoms, ions or organic mol­ecules (Whittingham et al., 1978[Whittingham, M. S. (1978). Prog. Solid State Chem. 12, 41-99.]). For example, AxMS2 (A = alkali metal; M = Nb, Ta, Ti, V) compounds can be prepared in high-temperature solid-state reactions (800–1000 K). These com­pounds can react with water mol­ecules to form ionic hydrates A+x(H2O)y[MS2]x (Omloo & Jellinek, 1970[Omloo, W. P. & Jellinek, F. (1970). J. Less-Common Met. 20, 121-129.]; Lerf & Schöllhorn, 1977[Lerf, A. & Schöllhorn, R. (1977). Inorg. Chem. 16, 2950-2956.]; Lobert et al., 1992[Lobert, M., Müller-Warmuth, W., Katzke, H. & Schöllhorn, R. (1992). Ber. Bunsenges. Phys. Chem. 96, 1564-1568.]) that exhibit ion-exchange and solvent-exchange capacities. Some of the A+x(H2O)y[MS2]x compounds show unusual superconducting properties (Schöllhorn & Weiss, 1974[Schöllhorn, R. & Weiss, A. (1974). J. Less-Common Met. 36, 229-236.]; Sernetz et al., 1974[Sernetz, F., Lerf, A. & Schöllhorn, R. (1974). Mater. Res. Bull. 9, 1597-1602.]). Recently, by removing alkali ions from inter­calated A+x(H2O)y[MS2]x (A = alkali metal) compounds, several metastable MS2 (M = Mo, W) phases with new crystal structures and novel physical properties were reported (Fang et al., 2018[Fang, Y. Q., Pan, J., He, J. Q., Luo, R. C., Wang, D., Che, X. L., Bu, K. J., Zhao, W., Liu, P., Mu, G., Zhang, H., Lin, T. Q. & Huang, F. Q. (2018). Angew. Chem. Int. Ed. 130, 1246-1249.], 2019[Fang, Y. Q., Hu, X. Z., Zhao, W., Pan, J., Wang, D., Bu, K. J., Mao, Y. L., Chu, S. F., Liu, P., Zhai, T. Y. & Huang, F. Q. (2019). J. Am. Chem. Soc. 141, 790-793.]). In order to identify the formation mechanism of metastable MS2 from A+x(H2O)y[MS2]x, it is necessary to uncover the role of alkali ions inter­calated into the inter­layers of MS2.

In this communication, we report the preparation of Rb0.21(H2O)yWS2, its crystal structure determination by single crystal X-ray diffraction, its thermal behaviour and its electrical resistance property.

2. Structural commentary

Rb0.21(H2O)yWS2 crystallizes in the monoclinic P21/m (No. 11) space group. The structure consists of one independent W site, two independent S sites and two independent Rb sites, all of them located on a mirror plane (Wyckoff position 2e). The crystal structure features ordered WS2 layers separated by disordered Rb+ ions, and of water mol­ecules. The latter could not be localized in the current study, hence y in Rb0.21(H2O)yWS2 remains undetermined (see Experimental, and discussion below). Compared with [WS6]8– trigonal prisms in 2H-WS2 (Schutte et al., 1987[Schutte, W. J., De Boer, J. L. & Jellinek, F. (1987). J. Solid State Chem. 70, 207-209.]), the WS2 layer in Rb0.21(H2O)yWS2 is composed of edge-sharing [WS6]8.21– octa­hedra. The W—S bond lengths range from 2.403 (4) Å to 2.550 (5) Å, and thus the average W—S distance is larger than that in 2H-WS2 [2.405 (5) Å; Schutte et al., 1987[Schutte, W. J., De Boer, J. L. & Jellinek, F. (1987). J. Solid State Chem. 70, 207-209.]]. The WS2 layers extend parallel to (001) (Fig. 1[link]). The shortest W—W bond length of 2.7678 (15) Å is between pairs of W atoms aligned in the [[\overline{1}]10] direction, much shorter than the W⋯W distance of 3.2524 (18) Å along [010]. Similar metal–metal separations also exist in some metastable MS2 phases prepared by de-inter­calating alkali ions from Ax(H2O)yMS2 compounds (Yu et al., 2018[Yu, Y. F., Nam, G. H., He, Q. Y., Wu, X. J., Zhang, K., Yang, Z. Z., Chen, J. Z., Ma, Q. L., Zhao, M. T., Liu, Z. Q., Ran, F. R., Wang, X. Z., Li, H., Huang, X., Li, B., Xiong, Q. H., Zhang, Q., Liu, Z., Gu, L., Du, Y., Huang, W. & Zhang, H. (2018). Nat. Chem. 10, 638-643.]; Shang et al., 2018[Shang, C., Fang, Y. Q., Zhang, Q., Wang, N. Z., Wang, Y. F., Liu, Z., Lei, B., Meng, F. B., Ma, L. K., Wu, T., Wang, Z. F., Zeng, C. G., Huang, F. Q., Sun, Z. & Chen, X. H. (2018). Phys. Rev. B, 98, 184513-184523.]). The Rb+ cations show a one-sided coordination to the S atoms of the adjacent layer. The Rb—S bonds range from 3.47 (7) Å to 3.64 (5) Å, comparable to the Rb—S bonds [3.344 (7)–3.561 (1) Å] in RbCr5S8 (Huster, 1978[Huster, J. (1978). Z. Anorg. Allg. Chem. 447, 89-96.]).

[Figure 1]
Figure 1
Crystal structure of Rb0.21(H2O)yWS2 with displacement ellipsoids drawn at the 30% probability level.

Similar to Kx(H2O)yTaS2 and Kx(H2O)yNbS2 (Graf et al., 1977[Graf, H. A., Lerf, A. & Schöllhorn, R. (1977). J. Less-Common Met. 55, 213-220.]), it was impossible to determine the light O atoms of water mol­ecules in the title compound from X-ray diffraction data at room temperature, as a result of diffuse electron density in the inter­layer space. However, we could localize the positions of disordered Rb+ ions with large displacement parameters. Stacking disorder of the layers is common for layered dichalcogenides, which may contribute to the diffuse electron density. Large displacement parameters of exchangeable cations and water mol­ecules were also reported for Ax(H2O)yTaS2 and Ax(H2O)yNbS2 (A = alkali metal) compounds (Röder et al., 1979[Röder, U., Müller-Warmuth, W. & Schöllhorn, R. (1979). J. Chem. Phys. 70, 2864-2870.]; Wein et al. 1986[Wein, E., Müller-Warmuth, W. & Schoöllhorn, R. (1986). Ber. Bunsenges. Phys. Chem. 90, 158-162.]; Lobert et al., 1992[Lobert, M., Müller-Warmuth, W., Katzke, H. & Schöllhorn, R. (1992). Ber. Bunsenges. Phys. Chem. 96, 1564-1568.]).

3. Electrical resistance property

The electrical resistance of Rb0.21(H2O)yWS2 increases with the decrease of temperature (80–300 K) (Fig. 2[link]), which is characteristic of a semiconductor.

[Figure 2]
Figure 2
Temperature-dependence of the log(Resistance) for Rb0.21(H2O)yWS2.

4. Synthesis and crystallization

A rubidium di­thio­tungstate RbxWS2 was synthesized in a solid-state reaction. The starting Rb2S2 powder was prepared in a reaction of stoichiometric amounts of Rb pieces and S powder in liquid NH3. The obtained Rb2S2 powder, W powder and S powder were mixed in the molar ratio of 1:1:1 in a glove box filled with Ar. The mixture was ground carefully and loaded in a carbon-coated fused-silica tube. The tube was sealed under a 10−4 Torr atmosphere and slowly heated to 1123 K at 5 K min−1. After three days, the furnace was cooled down naturally to room temperature. Subsequent removal of the extra flux by washing with distilled water led to the isolation of crystals of Rb0.21(H2O)yWS2. The morphology and element composition were investigated by using an EDXS-equipped Hitachi S-4800 scanning electronic microscope. In addition, the Rb/W ratio in the Rbx(H2O)yWS2 crystals was determined by ICP-OES. The SEM image and EDX spectrum of Rb0.21(H2O)yWS2 crystals are shown in Fig. 3[link]. The ratio of Rb/W from the EDXS analysis is close to 0.21, which is consistent with the the diffraction data and results from ICP–OES measurements (Table 1[link]). The experimental powder X-ray diffraction (PXRD) pattern matches well with the simulated one (Fig. 4[link]) by using the Rietveld refinement method (Rodríguez-Carvajal, 1993[Rodríguez-Carvajal, J. (1993). Physica B, 192, 55-69.]; Rp = 9.9%, Rwp = 12.6% and χ2 = 1.3). In the TG–DTA analyses (Fig. 5[link]), one obvious endothermic effect and concomitant mass loss were observed at 343 K, which is associated with water evaporation. In order to judge whether water mol­ecules are surface-adsorbed water or structural water, the Rb0.21(H2O)yWS2 crystals were heated up to 373 K for further PXRD measurement. The sample was prepared in an Ar-protected glove box and sealed with vacuum tape. The (002) reflection clearly moved to higher diffraction angles, indicating the shrinkage of the unit cell due to loss of inter­calated water (Fig. 6[link]). However, it was impossible to accurately determine the water content by mass loss alone because of the inter­ference of possible surface-adsorbed water.

Table 1
Results of ICP–OES measurement of Rb0.21(H2O)yWS2

Element Weight (%) atom (%)
W 67.6 36.77
Rb 6.6 7.72
[Figure 3]
Figure 3
SEM image and EDXS spectrum of Rb0.21(H2O)yWS2.
[Figure 4]
Figure 4
Rietveld plot of Rb0.21(H2O)yWS2.
[Figure 5]
Figure 5
TG–DTA analysis of Rb0.21(H2O)yWS2.
[Figure 6]
Figure 6
Power X-ray diffraction pattern of Rb0.21(H2O)yWS2 and Rb0.21WS2.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The localization of ordered W and S sites of the WS2 layers was unproblematic. The highest inter­layer difference electron density peak was then treated as a single but partially occupied Rb site. No evidence of superstructure reflections in reciprocal space was found for the ordering of the Rb site. Then, the W, S sites and the underoccupied Rb site were refined with anisotropic displacement parameters. Because of very large anisotropic displacement parameters (U11 = 0.59 Å2) of the Rb site, splitting of this site was considered, resulting in a residual R1 = 0.051. Modelling the O sites as being part of this disorder, or of remaining electron density peaks in the vicinity of the Rb sites was not successful, and therefore we did not include the apparently disordered water mol­ecules in the final structure model. The remaining maximum and minimum electron densities are located 0.87 and 1.14 Å, respectively, from the W1 site.

Table 2
Experimental details

Crystal data
Chemical formula Rb0.21(H2O)yWS2
Mr 277.23
Crystal system, space group Monoclinic, P21/m
Temperature (K) 298
a, b, c (Å) 5.703 (3), 3.2524 (18), 9.423 (5)
β (°) 99.724 (16)
V3) 172.27 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 39.25
Crystal size (mm) 0.05 × 0.03 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.251, 0.674
No. of measured, independent and observed [I > 2σ(I)] reflections 1167, 352, 327
Rint 0.030
(sin θ/λ)max−1) 0.593
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.124, 1.10
No. of reflections 352
No. of parameters 33
H-atom treatment H-atom parameters not defined
Δρmax, Δρmin (e Å−3) 2.45, −1.66
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

rubidium hydrate dithiotungstate top
Crystal data top
Rb0.21(H2O)yWS2F(000) = 237
Mr = 277.23Dx = 5.345 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 5.703 (3) ÅCell parameters from 68 reflections
b = 3.2524 (18) Åθ = 3.9–23.0°
c = 9.423 (5) ŵ = 39.25 mm1
β = 99.724 (16)°T = 298 K
V = 172.27 (16) Å3Plate, black
Z = 20.05 × 0.03 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
327 reflections with I > 2σ(I)
phi and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 24.9°, θmin = 2.2°
Tmin = 0.251, Tmax = 0.674h = 66
1167 measured reflectionsk = 33
352 independent reflectionsl = 1110
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters not defined
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.1024P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max < 0.001
S = 1.10Δρmax = 2.45 e Å3
352 reflectionsΔρmin = 1.66 e Å3
33 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.19782 (11)0.75001.00615 (8)0.0371 (5)
S20.3744 (9)0.25000.8600 (6)0.0376 (12)
S30.1409 (10)0.25001.1850 (6)0.0401 (12)
Rb40.21 (4)0.25000.534 (6)0.14 (6)0.14 (7)
Rb50.38 (2)0.25000.525 (8)0.17 (2)0.20 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0319 (7)0.0374 (7)0.0423 (7)0.0000.0073 (4)0.000
S20.034 (2)0.038 (3)0.041 (3)0.0000.007 (2)0.000
S30.041 (3)0.039 (3)0.041 (3)0.0000.008 (2)0.000
Rb40.28 (14)0.12 (4)0.04 (2)0.0000.06 (4)0.000
Rb50.18 (6)0.24 (6)0.08 (3)0.0000.01 (3)0.000
Geometric parameters (Å, º) top
W1—S3i2.403 (4)Rb4—Rb50.99 (10)
W1—S32.403 (4)Rb4—Rb4x2.9 (3)
W1—S3ii2.408 (5)Rb4—Rb4xi2.9 (3)
W1—S22.454 (4)Rb4—Rb5xii3.0 (3)
W1—S2i2.454 (4)Rb4—Rb5xiii3.0 (3)
W1—S2iii2.550 (5)Rb4—Rb4i3.252 (2)
W1—W1ii2.7678 (15)Rb4—Rb4v3.2524 (19)
W1—W1iv2.7678 (15)Rb4—Rb5i3.40 (3)
S2—W1v2.454 (4)Rb4—Rb5v3.40 (3)
S2—W1iii2.550 (5)Rb4—S2v3.47 (7)
S2—Rb43.47 (7)Rb4—S3vii3.58 (11)
S2—Rb4i3.47 (7)Rb5—Rb5xii2.23 (19)
S2—Rb5i3.56 (8)Rb5—Rb5xiii2.23 (19)
S2—Rb53.56 (8)Rb5—Rb4xii3.0 (3)
S3—W1v2.403 (4)Rb5—Rb4xiii3.0 (3)
S3—W1ii2.408 (5)Rb5—Rb5i3.2524 (18)
S3—Rb5vi3.53 (6)Rb5—Rb5v3.2524 (18)
S3—Rb4vii3.58 (11)Rb5—Rb4v3.40 (3)
S3—Rb4viii3.63 (4)Rb5—Rb4i3.40 (3)
S3—Rb4ix3.63 (4)Rb5—S3vi3.53 (6)
S3—Rb5viii3.64 (5)Rb5—S2v3.56 (8)
S3—Rb5ix3.64 (5)
S3i—W1—S385.18 (18)Rb5xii—Rb4—Rb5i40 (3)
S3i—W1—S3ii109.76 (14)Rb5xiii—Rb4—Rb5i106 (4)
S3—W1—S3ii109.76 (14)Rb4i—Rb4—Rb5i16.9 (16)
S3i—W1—S2163.5 (2)Rb4v—Rb4—Rb5i163.1 (16)
S3—W1—S293.55 (13)Rb5—Rb4—Rb5v73.1 (16)
S3ii—W1—S286.20 (17)Rb4x—Rb4—Rb5v71 (3)
S3i—W1—S2i93.55 (13)Rb4xi—Rb4—Rb5v140 (7)
S3—W1—S2i163.5 (2)Rb5xii—Rb4—Rb5v106 (4)
S3ii—W1—S2i86.20 (17)Rb5xiii—Rb4—Rb5v40 (3)
S2—W1—S2i82.99 (18)Rb4i—Rb4—Rb5v163.1 (16)
S3i—W1—S2iii83.36 (18)Rb4v—Rb4—Rb5v16.9 (16)
S3—W1—S2iii83.36 (18)Rb5i—Rb4—Rb5v146 (3)
S3ii—W1—S2iii161.7 (2)Rb5—Rb4—S2v87 (10)
S2—W1—S2iii80.13 (16)Rb4x—Rb4—S2v91.3 (12)
S2i—W1—S2iii80.13 (16)Rb4xi—Rb4—S2v124 (4)
S3i—W1—W1ii102.78 (13)Rb5xii—Rb4—S2v108 (5)
S3—W1—W1ii54.97 (13)Rb5xiii—Rb4—S2v79 (2)
S3ii—W1—W1ii54.79 (10)Rb4i—Rb4—S2v118.0 (6)
S2—W1—W1ii89.78 (11)Rb4v—Rb4—S2v62.0 (6)
S2i—W1—W1ii140.78 (13)Rb5i—Rb4—S2v116 (4)
S2iii—W1—W1ii136.53 (8)Rb5v—Rb4—S2v62 (2)
S3i—W1—W1iv54.97 (13)Rb5—Rb4—S287 (10)
S3—W1—W1iv102.78 (13)Rb4x—Rb4—S2124 (4)
S3ii—W1—W1iv54.79 (10)Rb4xi—Rb4—S291.3 (12)
S2—W1—W1iv140.78 (13)Rb5xii—Rb4—S279 (2)
S2i—W1—W1iv89.78 (11)Rb5xiii—Rb4—S2108 (5)
S2iii—W1—W1iv136.53 (8)Rb4i—Rb4—S262.0 (6)
W1ii—W1—W1iv71.96 (5)Rb4v—Rb4—S2118.0 (6)
W1v—S2—W182.99 (18)Rb5i—Rb4—S262 (2)
W1v—S2—W1iii99.87 (16)Rb5v—Rb4—S2116 (4)
W1—S2—W1iii99.87 (16)S2v—Rb4—S256.0 (12)
W1v—S2—Rb496.3 (15)Rb5—Rb4—S3vii138 (10)
W1—S2—Rb4137 (3)Rb4x—Rb4—S3vii68 (4)
W1iii—S2—Rb4122 (3)Rb4xi—Rb4—S3vii68 (4)
W1v—S2—Rb4i137 (3)Rb5xii—Rb4—S3vii133.8 (12)
W1—S2—Rb4i96.3 (15)Rb5xiii—Rb4—S3vii133.8 (12)
W1iii—S2—Rb4i122 (3)Rb4i—Rb4—S3vii90.000 (2)
Rb4—S2—Rb4i56.0 (12)Rb4v—Rb4—S3vii90.000 (1)
W1v—S2—Rb5i150.1 (12)Rb5i—Rb4—S3vii102.5 (13)
W1—S2—Rb5i105.1 (13)Rb5v—Rb4—S3vii102.5 (12)
W1iii—S2—Rb5i106.8 (18)S2v—Rb4—S3vii56.3 (7)
Rb4—S2—Rb5i57.9 (7)S2—Rb4—S3vii56.3 (7)
Rb4i—S2—Rb5i16.1 (18)Rb4—Rb5—Rb5xii132 (4)
W1v—S2—Rb5105.1 (13)Rb4—Rb5—Rb5xiii132 (4)
W1—S2—Rb5150.1 (12)Rb5xii—Rb5—Rb5xiii94 (10)
W1iii—S2—Rb5106.8 (18)Rb4—Rb5—Rb4xii146 (2)
Rb4—S2—Rb516.1 (18)Rb5xii—Rb5—Rb4xii14.3 (18)
Rb4i—S2—Rb557.9 (7)Rb5xiii—Rb5—Rb4xii80 (8)
Rb5i—S2—Rb554.4 (14)Rb4—Rb5—Rb4xiii146 (2)
W1v—S3—W185.18 (18)Rb5xii—Rb5—Rb4xiii80 (8)
W1v—S3—W1ii70.24 (14)Rb5xiii—Rb5—Rb4xiii14.3 (18)
W1—S3—W1ii70.24 (14)Rb4xii—Rb5—Rb4xiii66 (7)
W1v—S3—Rb5vi111.4 (15)Rb4—Rb5—Rb5i90.00 (5)
W1—S3—Rb5vi111.4 (16)Rb5xii—Rb5—Rb5i43 (5)
W1ii—S3—Rb5vi178 (2)Rb5xiii—Rb5—Rb5i137 (5)
W1v—S3—Rb4vii132.7 (12)Rb4xii—Rb5—Rb5i57 (3)
W1—S3—Rb4vii132.7 (11)Rb4xiii—Rb5—Rb5i123 (3)
W1ii—S3—Rb4vii94 (3)Rb4—Rb5—Rb5v90.00 (10)
Rb5vi—S3—Rb4vii83.2 (13)Rb5xii—Rb5—Rb5v137 (5)
W1v—S3—Rb4viii159 (2)Rb5xiii—Rb5—Rb5v43 (5)
W1—S3—Rb4viii109.0 (6)Rb4xii—Rb5—Rb5v123 (3)
W1ii—S3—Rb4viii129 (3)Rb4xiii—Rb5—Rb5v57 (3)
Rb5vi—S3—Rb4viii49 (5)Rb5i—Rb5—Rb5v180.00 (7)
Rb4vii—S3—Rb4viii47 (5)Rb4—Rb5—Rb4v73.1 (17)
W1v—S3—Rb4ix109.0 (6)Rb5xii—Rb5—Rb4v153 (5)
W1—S3—Rb4ix159 (2)Rb5xiii—Rb5—Rb4v60 (6)
W1ii—S3—Rb4ix129 (3)Rb4xii—Rb5—Rb4v140 (3)
Rb5vi—S3—Rb4ix49 (5)Rb4xiii—Rb5—Rb4v74 (4)
Rb4vii—S3—Rb4ix47 (5)Rb5i—Rb5—Rb4v163.1 (16)
Rb4viii—S3—Rb4ix53.3 (7)Rb5v—Rb5—Rb4v16.9 (16)
W1v—S3—Rb5viii147.5 (16)Rb4—Rb5—Rb4i73.1 (16)
W1—S3—Rb5viii103.9 (12)Rb5xii—Rb5—Rb4i60 (6)
W1ii—S3—Rb5viii142.2 (16)Rb5xiii—Rb5—Rb4i153 (5)
Rb5vi—S3—Rb5viii36 (3)Rb4xii—Rb5—Rb4i74 (4)
Rb4vii—S3—Rb5viii61 (4)Rb4xiii—Rb5—Rb4i140 (3)
Rb4viii—S3—Rb5viii15.7 (16)Rb5i—Rb5—Rb4i16.9 (16)
Rb4ix—S3—Rb5viii55.8 (6)Rb5v—Rb5—Rb4i163.1 (16)
W1v—S3—Rb5ix103.9 (12)Rb4v—Rb5—Rb4i146 (3)
W1—S3—Rb5ix147.5 (16)Rb4—Rb5—S3vi125 (9)
W1ii—S3—Rb5ix142.2 (16)Rb5xii—Rb5—S3vi75 (3)
Rb5vi—S3—Rb5ix36 (3)Rb5xiii—Rb5—S3vi75 (3)
Rb4vii—S3—Rb5ix61 (4)Rb4xii—Rb5—S3vi67 (4)
Rb4viii—S3—Rb5ix55.8 (6)Rb4xiii—Rb5—S3vi67 (4)
Rb4ix—S3—Rb5ix15.7 (16)Rb5i—Rb5—S3vi90.000 (5)
Rb5viii—S3—Rb5ix53.0 (8)Rb5v—Rb5—S3vi90.000 (2)
Rb5—Rb4—Rb4x141 (2)Rb4v—Rb5—S3vi100 (3)
Rb5—Rb4—Rb4xi141 (2)Rb4i—Rb5—S3vi100 (3)
Rb4x—Rb4—Rb4xi69 (9)Rb4—Rb5—S2v77 (8)
Rb5—Rb4—Rb5xii34 (2)Rb5xii—Rb5—S2v128 (3)
Rb4x—Rb4—Rb5xii157 (2)Rb5xiii—Rb5—S2v87 (3)
Rb4xi—Rb4—Rb5xii107.5 (14)Rb4xii—Rb5—S2v123 (3)
Rb5—Rb4—Rb5xiii34 (2)Rb4xiii—Rb5—S2v92.3 (10)
Rb4x—Rb4—Rb5xiii107.5 (13)Rb5i—Rb5—S2v117.2 (7)
Rb4xi—Rb4—Rb5xiii157 (2)Rb5v—Rb5—S2v62.8 (7)
Rb5xii—Rb4—Rb5xiii66 (7)Rb4v—Rb5—S2v59.7 (19)
Rb5—Rb4—Rb4i90.00 (5)Rb4i—Rb5—S2v112 (3)
Rb4x—Rb4—Rb4i125 (5)S3vi—Rb5—S2v55.4 (8)
Rb4xi—Rb4—Rb4i55 (5)Rb4—Rb5—S277 (8)
Rb5xii—Rb4—Rb4i57 (3)Rb5xii—Rb5—S287 (3)
Rb5xiii—Rb4—Rb4i123 (3)Rb5xiii—Rb5—S2128 (3)
Rb5—Rb4—Rb4v90.000 (19)Rb4xii—Rb5—S292.3 (10)
Rb4x—Rb4—Rb4v55 (5)Rb4xiii—Rb5—S2123 (3)
Rb4xi—Rb4—Rb4v125 (5)Rb5i—Rb5—S262.8 (7)
Rb5xii—Rb4—Rb4v123 (3)Rb5v—Rb5—S2117.2 (7)
Rb5xiii—Rb4—Rb4v57 (3)Rb4v—Rb5—S2112 (3)
Rb4i—Rb4—Rb4v180.00 (10)Rb4i—Rb5—S259.7 (19)
Rb5—Rb4—Rb5i73.1 (16)S3vi—Rb5—S255.4 (8)
Rb4x—Rb4—Rb5i140 (7)S2v—Rb5—S254.4 (14)
Rb4xi—Rb4—Rb5i71 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+2; (iii) x+1, y+1, z+2; (iv) x, y+2, z+2; (v) x, y1, z; (vi) x+1, y, z+2; (vii) x, y, z+2; (viii) x, y+1, z+1; (ix) x, y, z+1; (x) x, y1, z+1; (xi) x, y, z+1; (xii) x+1, y, z+1; (xiii) x+1, y1, z+1.
Results of ICP–OES measurement of Rb0.21(H2O)yWS2 top
ElementWeight (%)atom (%)
W67.636.77
Rb6.67.72
 

Funding information

This work was supported financially by the National Key Research and Development Program (grant No. 2016YFB0901600), the National Science Foundation of China (grant No. 21871008), the Science and Technology Commission of Shanghai (grant Nos. 16ZR1440500 and 16JC1401700), the Key Research Program of the Chinese Academy of Sciences (grants Nos. QYZDJ-SSW-JSC013 and KGZD-EW-T06) and the CAS Center for Excellence in Superconducting Electronics.

References

First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, Y. Q., Hu, X. Z., Zhao, W., Pan, J., Wang, D., Bu, K. J., Mao, Y. L., Chu, S. F., Liu, P., Zhai, T. Y. & Huang, F. Q. (2019). J. Am. Chem. Soc. 141, 790–793.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFang, Y. Q., Pan, J., He, J. Q., Luo, R. C., Wang, D., Che, X. L., Bu, K. J., Zhao, W., Liu, P., Mu, G., Zhang, H., Lin, T. Q. & Huang, F. Q. (2018). Angew. Chem. Int. Ed. 130, 1246–1249.  CrossRef Google Scholar
First citationGraf, H. A., Lerf, A. & Schöllhorn, R. (1977). J. Less-Common Met. 55, 213–220.  CrossRef ICSD CAS Web of Science Google Scholar
First citationHuster, J. (1978). Z. Anorg. Allg. Chem. 447, 89–96.  CrossRef ICSD CAS Web of Science Google Scholar
First citationLerf, A. & Schöllhorn, R. (1977). Inorg. Chem. 16, 2950–2956.  CrossRef CAS Web of Science Google Scholar
First citationLobert, M., Müller-Warmuth, W., Katzke, H. & Schöllhorn, R. (1992). Ber. Bunsenges. Phys. Chem. 96, 1564–1568.  CrossRef CAS Web of Science Google Scholar
First citationOmloo, W. P. & Jellinek, F. (1970). J. Less-Common Met. 20, 121–129.  CrossRef ICSD CAS Web of Science Google Scholar
First citationRöder, U., Müller–Warmuth, W. & Schöllhorn, R. (1979). J. Chem. Phys. 70, 2864–2870.  Google Scholar
First citationRodríguez-Carvajal, J. (1993). Physica B, 192, 55–69.  CrossRef Web of Science Google Scholar
First citationSchöllhorn, R. & Weiss, A. (1974). J. Less-Common Met. 36, 229–236.  Google Scholar
First citationSchutte, W. J., De Boer, J. L. & Jellinek, F. (1987). J. Solid State Chem. 70, 207–209.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSernetz, F., Lerf, A. & Schöllhorn, R. (1974). Mater. Res. Bull. 9, 1597–1602.  CrossRef CAS Web of Science Google Scholar
First citationShang, C., Fang, Y. Q., Zhang, Q., Wang, N. Z., Wang, Y. F., Liu, Z., Lei, B., Meng, F. B., Ma, L. K., Wu, T., Wang, Z. F., Zeng, C. G., Huang, F. Q., Sun, Z. & Chen, X. H. (2018). Phys. Rev. B, 98, 184513–184523.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWein, E., Müller-Warmuth, W. & Schoöllhorn, R. (1986). Ber. Bunsenges. Phys. Chem. 90, 158–162.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhittingham, M. S. (1978). Prog. Solid State Chem. 12, 41–99.  CrossRef CAS Web of Science Google Scholar
First citationYu, Y. F., Nam, G. H., He, Q. Y., Wu, X. J., Zhang, K., Yang, Z. Z., Chen, J. Z., Ma, Q. L., Zhao, M. T., Liu, Z. Q., Ran, F. R., Wang, X. Z., Li, H., Huang, X., Li, B., Xiong, Q. H., Zhang, Q., Liu, Z., Gu, L., Du, Y., Huang, W. & Zhang, H. (2018). Nat. Chem. 10, 638–643.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds