research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mol­ecular and crystal structure of 5,9-di­methyl-5H-pyrano[3,2-c:5,6-c′]bis­­[2,1-benzo­thia­zin]-7(9H)-one 6,6,8,8-tetroxide di­methyl­formamide monosolvate

CROSSMARK_Color_square_no_text.svg

aV. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61077, Ukraine, bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60, Nauky Ave., Kharkiv 61001, Ukraine, cNational University of Pharmacy, 4 Valentynivska St., Kharkiv 61168, Ukraine, and dFar Eastern State Medical University, 35 Murav'eva-Amurskogo St., Khabarovsk, 680000, Russian Federation
*Correspondence e-mail: rybalka19969@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 May 2019; accepted 20 June 2019; online 28 June 2019)

The title mol­ecule crystallizes as a di­methyl­formamide monosolvate, C19H14N2O6S2·C3H7NO. The mol­ecule was expected to adopt mirror symmetry but slightly different conformational characteristics of the condensed benzo­thia­zine ring lead to point group symmetry 1. In the crystal, mol­ecules form two types of stacking dimers with distances of 3.464 (2) Å and 3.528 (2) Å between π-systems. As a result, columns extending parallel to [100] are formed, which are connected to inter­mediate di­methyl­formamide solvent mol­ecules by C—H⋯O inter­actions.

1. Chemical context

Alkyl 1-R-4-hy­droxy-2-oxo-1,2-di­hydro­quinoline-3-carboxyl­ates are highly reactive compounds (Ukrainets et al., 2007[Ukrainets, I. V., Sidorenko, L. V., Svechnikova, E. N. & Shishkin, O. V. (2007). Chem. Heterocycl. Compd, 43, 1275-1279.]). They easily form the corresponding amides with primary and many secondary alkyl, aryl or hetaryl­amines and can be converted to 5,9-di-R-6,7,8-trioxodi­quinolino [3,4-b; 3′,4′-e]-4H-pyrans in high yields through thermolysis (Ukrainets et al., 2000[Ukrainets, I. V., Taran, E. A., Shishkin, O. V., Gorokhova, O. V., Taran, S. G., Jaradat, N. A. & Turov, A. V. (2000). Chem. Heterocycl. Compd. 36, 443-448.]). The acyl­ating ability is distinctly reduced in alkyl 1-R-4-hy­droxy-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carboxyl­ates (Ukrainets et al., 2014[Ukrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Sim, G. (2014). Chem. Heterocycl. Compd, 50, 103-110.]). However, a similar heterocycle, 5,9-dimethyl-5H-pyrano [3,2-c:5,6-c′]bis­[2,1]benzo­thia­zin-7(9H)-one 6,6,8,8-tetroxide (I)[link] was synthesized based on methyl 4-hy­droxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carb­oxyl­ate (Ukrainets et al., 2013[Ukrainets, I. V., Petrushova, L. A. & Dzyubenko, S. P. (2013). Chem. Heterocycl. Compd, 49, 1378-1383.]). The mol­ecular and crystal structures of its di­methyl­formamide solvate are reported in the present communication.

[Scheme 1]

2. Structural commentary

Both thia­zine rings adopt a twist-boat conformation (Fig. 1[link]) with slightly different characteristics despite the formally mirror-symmetric mol­ecular structure of (I)[link] in the gas phase. The puckering parameters (Zefirov et al., 1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.]) are: S = 0.51, θ = 44.8°, Ψ = 28.9° for the C1–C2–C3–C4–N1–S1 ring (1) and S = 0.48, θ = 50.0°, Ψ = 22.8° for the C5–C6–C7–C8–N2–S2 ring (2). The S1 and C1 atoms deviate by 0.669 (2) and 0.207 (2) Å, respectively, from the mean-square plane of the remaining atoms in ring (1). The corresponding deviations in ring (2) are 0.668 (2) and 0.270 (2) Å, respectively.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in solvated (I)[link]. Displacement ellipsoids are drawn at the 50% probability level.

The 4H-pyran-4-one ring (3) adopts a sofa conformation with puckering parameters S = 0.14, θ = 24.7°, Ψ = 22.6°. The deviation of C19 from the plane of the remaining atoms of (3) is 0.087 (2) Å. The C1=C2 and C5=C6 bonds [1.3571 (17) Å and 1.3529 (17) Å] are slightly elongated as compared to the mean value of 1.329 Å for a Csp2=Csp2 bond (Bürgi & Dunitz, 1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, 767-784. Weinheim: VCH.]).

The mol­ecule also contains shortened contacts (the H⋯O van der Waals radii sum is 2.46 Å; Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]), which can be considered as attractive intra­molecular inter­actions. However, the values of the corresponding C—H⋯O angles for the pairs C17⋯O3, C18⋯O5, C3A⋯O1A, C12⋯O1, C16⋯O1 (Table 1[link]) are too small to allow them to be characterized as intra­molecular hydrogen bonds.

Table 1
Hydrogen-bond geometry and short contacts (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O3 0.96 2.40 2.885 (2) 111
C18—H18A⋯O5 0.96 2.41 2.895 (2) 111
C3A—H3AA⋯O1A 0.96 2.41 2.784 (3) 103
C12—H12⋯O1 0.93 2.39 2.7106 (17) 100
C16—H16⋯O1 0.93 2.39 2.7109 (17) 100
C9—H9⋯O1Ai 0.93 2.41 3.324 (2) 169
C18—H18B⋯O1Aii 0.96 2.46 3.376 (3) 159
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

A further analysis of the mol­ecular structure revealed the presence of other shortened intra­molecular contacts: H9⋯H17C = 2.21 Å (expected 2.34 Å), H13⋯H18B = 2.28 Å (expected 2.34 Å), H13⋯H18C = 2.31 Å (expected 2.34 Å). These shortened contacts affect the very small pyramidalization of the nitro­gen atoms; the sums of the bond angles centered at the N1 and N2 atoms are 354 and 356°, respectively.

3. Supra­molecular features

In the crystal, mol­ecules of (I)[link] form columns extending parallel to [100] whereby centrosymmetric pairs of mol­ecules within a column inter­act by ππ stacking inter­actions (Fig. 2[link]). The plane-to-plane distances between the π-systems in the centrosymmetric dimers are 3.464 (2) and 3.528 (2) Å. The mean-square plane was calculated for O1 and all carbon atoms (with the exception of C19) of the polycyclic entity.

[Figure 2]
Figure 2
Two types of stacking dimers in the crystal structure of (I)[link].

The di­methyl­formamide solvent mol­ecules are situated between the columns (Fig. 3[link]) and are bound by weak inter­molecular hydrogen bonds including C9—H9⋯O1Ai and C18—H18B⋯O1Aii (Table 2[link]).

Table 2
Experimental details

Crystal data
Chemical formula C19H14N2O6S2·C3H7NO
Mr 503.54
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.2678 (2), 26.5667 (7), 11.3590 (3)
β (°) 90.498 (3)
V3) 2193.13 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.20 × 0.20 × 0.18
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.840, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21958, 6370, 5409
Rint 0.022
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.06
No. of reflections 6370
No. of parameters 311
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.35
Computer programs: CrysAlis CCD and CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 3]
Figure 3
The packing of the mol­ecular entities in the crystal structure of (I)[link] in a view along [100].

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the benzo­thia­zine skeleton revealed 34 hits. In all structures, the conformation of the benzo­thia­zine fragment is similar.

The title compound may be considered as a structural analogue of 5,9-diethyl-6,7,8-trioxodi­quinolino­[3,4-b;3′,4′-e]-4H-pyran (Ukrainets et al., 2000[Ukrainets, I. V., Taran, E. A., Shishkin, O. V., Gorokhova, O. V., Taran, S. G., Jaradat, N. A. & Turov, A. V. (2000). Chem. Heterocycl. Compd. 36, 443-448.]) with the carbonyl groups being replaced by sulfonyl groups.

5. Synthesis and crystallization

A mixture of methyl 4-hy­droxy-1-methyl-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carboxyl­ate (2.69 g, 0.01 mol) and diphenyl oxide (10 ml) was maintained on a metal bath at 493 K for 3 h, then cooled and diluted with ethanol (Fig. 4[link]). The precipitate was filtered off, washed with ethanol, and recrystallized from DMF. 1.86 g (37% yield) of a colourless substance were obtained, including yellowish crystals of the title solvate; m.p. 640–642 K (decomp.).

[Figure 4]
Figure 4
Synthesis scheme for compound (I)[link].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were located from difference-Fourier maps. They were included in calculated positions and treated as riding with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups and with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for all other hydrogen atoms.

Supporting information


Computing details top

Data collection: CrysAlis CCD (Agilent, 2012); cell refinement: CrysAlis RED (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

5,9-Dimethyl-5H-pyrano[3,2-c:5,6-c']bis[2,1-benzothiazin]-7(9H)-one 6,6,8,8-tetroxide dimethylformamide monosolvate top
Crystal data top
C19H14N2O6S2·C3H7NOF(000) = 1048
Mr = 503.54Dx = 1.525 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.2678 (2) ÅCell parameters from 8803 reflections
b = 26.5667 (7) Åθ = 3.3–32.1°
c = 11.3590 (3) ŵ = 0.30 mm1
β = 90.498 (3)°T = 293 K
V = 2193.13 (10) Å3Block, colourless
Z = 40.20 × 0.20 × 0.18 mm
Data collection top
Agilent Xcalibur, Sapphire3
diffractometer
6370 independent reflections
Radiation source: Enhance (Mo) X-ray Source5409 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.022
ω scansθmax = 30.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 910
Tmin = 0.840, Tmax = 1.000k = 3437
21958 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.056P)2 + 0.5564P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6370 reflectionsΔρmax = 0.31 e Å3
311 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27857 (5)0.53088 (2)0.78395 (3)0.03522 (10)
S20.35468 (5)0.68735 (2)0.47772 (3)0.03406 (9)
N10.31960 (18)0.47039 (5)0.76567 (10)0.0355 (3)
N20.40095 (19)0.68763 (4)0.33637 (11)0.0377 (3)
O10.27500 (14)0.54076 (3)0.43723 (8)0.0300 (2)
O20.33446 (19)0.63741 (4)0.71036 (9)0.0475 (3)
O30.4170 (2)0.54940 (5)0.86153 (10)0.0556 (3)
O40.09057 (19)0.53887 (5)0.81476 (11)0.0528 (3)
O50.50923 (18)0.70840 (4)0.53734 (11)0.0511 (3)
O60.18001 (18)0.70953 (5)0.50021 (12)0.0529 (3)
C10.30950 (19)0.55350 (5)0.64196 (11)0.0294 (3)
C20.27719 (17)0.52260 (5)0.54891 (11)0.0274 (2)
C30.23924 (18)0.46944 (5)0.55627 (12)0.0287 (2)
C40.25669 (18)0.44458 (5)0.66557 (12)0.0307 (3)
C50.33905 (18)0.62303 (5)0.50507 (11)0.0288 (2)
C60.30000 (17)0.59081 (5)0.41606 (11)0.0271 (2)
C70.27399 (18)0.60439 (5)0.29458 (11)0.0293 (3)
C80.31990 (19)0.65325 (5)0.25751 (12)0.0330 (3)
C90.2198 (2)0.39295 (5)0.67129 (15)0.0388 (3)
H90.2303270.3759950.7426620.047*
C100.1678 (2)0.36734 (6)0.57123 (16)0.0447 (4)
H100.1447520.3329670.5758480.054*
C110.1491 (2)0.39142 (6)0.46392 (16)0.0445 (4)
H110.1124820.3734200.3975210.053*
C120.1849 (2)0.44209 (5)0.45585 (13)0.0366 (3)
H120.1731750.4583530.3836720.044*
C130.2965 (2)0.66588 (7)0.13887 (14)0.0450 (4)
H130.3276360.6979160.1127180.054*
C140.2274 (2)0.63092 (8)0.06068 (14)0.0489 (4)
H140.2138190.6395670.0182510.059*
C150.1778 (2)0.58326 (7)0.09716 (13)0.0443 (4)
H150.1287490.5603600.0434960.053*
C160.2012 (2)0.56987 (6)0.21301 (12)0.0363 (3)
H160.1686410.5377240.2376460.044*
C170.3401 (2)0.44312 (7)0.87830 (14)0.0449 (4)
H17C0.4181610.4143740.8673490.067*
H17B0.2214310.4321940.9045610.067*
H17A0.3940620.4650530.9362110.067*
C180.4721 (3)0.73589 (7)0.29163 (18)0.0593 (5)
H18C0.3717180.7558810.2622330.089*
H18B0.5573800.7295890.2292760.089*
H18A0.5334970.7536150.3542670.089*
C190.3323 (2)0.60783 (5)0.62857 (11)0.0317 (3)
N1A0.8356 (2)0.81500 (6)0.40202 (13)0.0473 (3)
O1A0.7557 (2)0.81809 (6)0.59460 (13)0.0654 (4)
C1A0.8365 (3)0.79886 (7)0.51263 (17)0.0503 (4)
H1A0.9053070.7701580.5290540.060*
C2A0.9428 (3)0.79092 (10)0.3113 (2)0.0696 (6)
H2AC1.0050000.7621430.3437060.104*
H2AB1.0318600.8142870.2815740.104*
H2AA0.8627510.7803600.2483160.104*
C3A0.7312 (4)0.85925 (9)0.3696 (2)0.0769 (7)
H3AC0.6695910.8535040.2956900.115*
H3AB0.8127760.8874730.3623850.115*
H3AA0.6417250.8661600.4291500.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0477 (2)0.03408 (17)0.02385 (16)0.00072 (14)0.00252 (13)0.00174 (12)
S20.04352 (19)0.02353 (15)0.03518 (18)0.00017 (12)0.00303 (14)0.00355 (12)
N10.0438 (7)0.0324 (6)0.0301 (6)0.0006 (5)0.0039 (5)0.0038 (5)
N20.0502 (7)0.0283 (6)0.0346 (6)0.0031 (5)0.0049 (5)0.0021 (5)
O10.0424 (5)0.0251 (4)0.0226 (4)0.0028 (4)0.0001 (4)0.0031 (3)
O20.0785 (9)0.0336 (5)0.0304 (5)0.0003 (5)0.0047 (5)0.0108 (4)
O30.0812 (9)0.0509 (7)0.0343 (6)0.0151 (6)0.0219 (6)0.0006 (5)
O40.0595 (8)0.0560 (7)0.0431 (6)0.0114 (6)0.0164 (5)0.0001 (5)
O50.0641 (8)0.0393 (6)0.0499 (7)0.0184 (5)0.0046 (6)0.0075 (5)
O60.0597 (8)0.0381 (6)0.0612 (8)0.0165 (5)0.0154 (6)0.0003 (5)
C10.0363 (6)0.0282 (6)0.0237 (6)0.0000 (5)0.0018 (5)0.0020 (5)
C20.0298 (6)0.0271 (6)0.0252 (6)0.0003 (5)0.0001 (4)0.0020 (4)
C30.0291 (6)0.0258 (6)0.0313 (6)0.0002 (4)0.0005 (5)0.0028 (5)
C40.0280 (6)0.0288 (6)0.0352 (7)0.0016 (5)0.0024 (5)0.0003 (5)
C50.0336 (6)0.0251 (5)0.0276 (6)0.0004 (5)0.0001 (5)0.0025 (5)
C60.0296 (6)0.0257 (6)0.0261 (6)0.0006 (4)0.0012 (4)0.0018 (4)
C70.0304 (6)0.0332 (6)0.0244 (6)0.0023 (5)0.0008 (5)0.0015 (5)
C80.0354 (7)0.0326 (6)0.0311 (6)0.0048 (5)0.0017 (5)0.0021 (5)
C90.0379 (7)0.0301 (7)0.0483 (8)0.0004 (5)0.0049 (6)0.0069 (6)
C100.0441 (8)0.0268 (6)0.0634 (10)0.0044 (6)0.0050 (7)0.0016 (7)
C110.0494 (9)0.0331 (7)0.0508 (9)0.0058 (6)0.0023 (7)0.0128 (7)
C120.0425 (8)0.0310 (7)0.0363 (7)0.0025 (6)0.0033 (6)0.0065 (5)
C130.0552 (9)0.0445 (8)0.0352 (8)0.0084 (7)0.0007 (7)0.0103 (6)
C140.0537 (10)0.0648 (11)0.0281 (7)0.0108 (8)0.0033 (6)0.0066 (7)
C150.0423 (8)0.0628 (10)0.0278 (7)0.0007 (7)0.0038 (6)0.0071 (7)
C160.0382 (7)0.0431 (8)0.0277 (6)0.0032 (6)0.0003 (5)0.0058 (6)
C170.0520 (9)0.0474 (9)0.0352 (8)0.0035 (7)0.0022 (7)0.0127 (7)
C180.0867 (14)0.0381 (9)0.0533 (11)0.0154 (9)0.0146 (10)0.0071 (8)
C190.0398 (7)0.0281 (6)0.0273 (6)0.0003 (5)0.0030 (5)0.0042 (5)
N1A0.0451 (7)0.0465 (8)0.0501 (8)0.0034 (6)0.0014 (6)0.0010 (6)
O1A0.0776 (10)0.0597 (8)0.0593 (8)0.0037 (7)0.0145 (7)0.0117 (7)
C1A0.0513 (10)0.0458 (9)0.0539 (10)0.0012 (7)0.0039 (8)0.0010 (8)
C2A0.0693 (13)0.0796 (15)0.0602 (12)0.0119 (11)0.0173 (10)0.0069 (11)
C3A0.0933 (18)0.0628 (13)0.0744 (15)0.0251 (12)0.0108 (13)0.0045 (11)
Geometric parameters (Å, º) top
S1—O31.4197 (12)C10—C111.382 (2)
S1—O41.4292 (14)C10—H100.9300
S1—N11.6479 (13)C11—C121.374 (2)
S1—C11.7375 (13)C11—H110.9300
S2—O51.4212 (12)C12—H120.9300
S2—O61.4247 (12)C13—C141.377 (3)
S2—N21.6433 (13)C13—H130.9300
S2—C51.7405 (13)C14—C151.381 (3)
N1—C41.4012 (18)C14—H140.9300
N1—C171.4767 (18)C15—C161.372 (2)
N2—C81.4052 (18)C15—H150.9300
N2—C181.474 (2)C16—H160.9300
O1—C21.3571 (15)C17—H17C0.9600
O1—C61.3638 (15)C17—H17B0.9600
O2—C191.2168 (16)C17—H17A0.9600
C1—C21.3571 (17)C18—H18C0.9600
C1—C191.4610 (18)C18—H18B0.9600
C2—C31.4415 (17)C18—H18A0.9600
C3—C121.4062 (18)N1A—C1A1.328 (2)
C3—C41.4110 (19)N1A—C3A1.445 (3)
C4—C91.3992 (19)N1A—C2A1.446 (3)
C5—C61.3529 (17)O1A—C1A1.217 (2)
C5—C191.4611 (18)C1A—H1A0.9300
C6—C71.4371 (17)C2A—H2AC0.9600
C7—C161.4039 (19)C2A—H2AB0.9600
C7—C81.4055 (19)C2A—H2AA0.9600
C8—C131.398 (2)C3A—H3AC0.9600
C9—C101.375 (2)C3A—H3AB0.9600
C9—H90.9300C3A—H3AA0.9600
O3—S1—O4118.06 (9)C12—C11—H11120.2
O3—S1—N1106.74 (7)C10—C11—H11120.2
O4—S1—N1110.49 (7)C11—C12—C3120.27 (14)
O3—S1—C1111.08 (7)C11—C12—H12119.9
O4—S1—C1107.92 (7)C3—C12—H12119.9
N1—S1—C1101.26 (6)C14—C13—C8120.03 (16)
O5—S2—O6116.97 (8)C14—C13—H13120.0
O5—S2—N2107.23 (7)C8—C13—H13120.0
O6—S2—N2111.32 (8)C13—C14—C15121.31 (14)
O5—S2—C5110.72 (7)C13—C14—H14119.3
O6—S2—C5108.33 (7)C15—C14—H14119.3
N2—S2—C5101.13 (6)C16—C15—C14119.65 (15)
C4—N1—C17119.52 (12)C16—C15—H15120.2
C4—N1—S1121.43 (9)C14—C15—H15120.2
C17—N1—S1112.73 (10)C15—C16—C7120.43 (15)
C8—N2—C18119.46 (13)C15—C16—H16119.8
C8—N2—S2122.12 (10)C7—C16—H16119.8
C18—N2—S2114.59 (11)N1—C17—H17C109.5
C2—O1—C6120.73 (10)N1—C17—H17B109.5
C2—C1—C19122.37 (12)H17C—C17—H17B109.5
C2—C1—S1119.40 (10)N1—C17—H17A109.5
C19—C1—S1117.00 (9)H17C—C17—H17A109.5
C1—C2—O1120.90 (12)H17B—C17—H17A109.5
C1—C2—C3125.40 (12)N2—C18—H18C109.5
O1—C2—C3113.69 (11)N2—C18—H18B109.5
C12—C3—C4119.62 (12)H18C—C18—H18B109.5
C12—C3—C2120.78 (12)N2—C18—H18A109.5
C4—C3—C2119.60 (12)H18C—C18—H18A109.5
C9—C4—N1120.23 (13)H18B—C18—H18A109.5
C9—C4—C3118.95 (13)O2—C19—C1124.01 (13)
N1—C4—C3120.73 (12)O2—C19—C5123.66 (13)
C6—C5—C19122.28 (12)C1—C19—C5112.20 (11)
C6—C5—S2120.08 (10)C1A—N1A—C3A120.13 (17)
C19—C5—S2116.45 (9)C1A—N1A—C2A122.24 (17)
C5—C6—O1120.83 (11)C3A—N1A—C2A117.58 (18)
C5—C6—C7125.71 (12)O1A—C1A—N1A126.16 (19)
O1—C6—C7113.42 (11)O1A—C1A—H1A116.9
C16—C7—C8119.64 (12)N1A—C1A—H1A116.9
C16—C7—C6121.02 (12)N1A—C2A—H2AC109.5
C8—C7—C6119.33 (12)N1A—C2A—H2AB109.5
C13—C8—N2120.35 (14)H2AC—C2A—H2AB109.5
C13—C8—C7118.91 (13)N1A—C2A—H2AA109.5
N2—C8—C7120.57 (12)H2AC—C2A—H2AA109.5
C10—C9—C4119.88 (15)H2AB—C2A—H2AA109.5
C10—C9—H9120.1N1A—C3A—H3AC109.5
C4—C9—H9120.1N1A—C3A—H3AB109.5
C9—C10—C11121.62 (14)H3AC—C3A—H3AB109.5
C9—C10—H10119.2N1A—C3A—H3AA109.5
C11—C10—H10119.2H3AC—C3A—H3AA109.5
C12—C11—C10119.67 (14)H3AB—C3A—H3AA109.5
O3—S1—N1—C4156.20 (12)C19—C5—C6—O18.4 (2)
O4—S1—N1—C474.25 (13)S2—C5—C6—O1175.54 (9)
C1—S1—N1—C439.91 (13)C19—C5—C6—C7169.19 (13)
O3—S1—N1—C1751.92 (13)S2—C5—C6—C72.0 (2)
O4—S1—N1—C1777.63 (12)C2—O1—C6—C54.20 (19)
C1—S1—N1—C17168.21 (11)C2—O1—C6—C7173.67 (11)
O5—S2—N2—C8154.03 (12)C5—C6—C7—C16168.18 (14)
O6—S2—N2—C876.87 (13)O1—C6—C7—C169.57 (18)
C5—S2—N2—C838.02 (13)C5—C6—C7—C810.9 (2)
O5—S2—N2—C1848.17 (15)O1—C6—C7—C8171.32 (12)
O6—S2—N2—C1880.93 (15)C18—N2—C8—C133.9 (2)
C5—S2—N2—C18164.18 (13)S2—N2—C8—C13152.83 (12)
O3—S1—C1—C2141.18 (12)C18—N2—C8—C7171.24 (15)
O4—S1—C1—C287.94 (13)S2—N2—C8—C732.00 (19)
N1—S1—C1—C228.13 (13)C16—C7—C8—C131.8 (2)
O3—S1—C1—C1951.17 (13)C6—C7—C8—C13179.13 (13)
O4—S1—C1—C1979.71 (12)C16—C7—C8—N2176.99 (13)
N1—S1—C1—C19164.22 (11)C6—C7—C8—N23.9 (2)
C19—C1—C2—O13.8 (2)N1—C4—C9—C10176.42 (14)
S1—C1—C2—O1170.77 (10)C3—C4—C9—C100.1 (2)
C19—C1—C2—C3174.90 (13)C4—C9—C10—C110.6 (2)
S1—C1—C2—C37.95 (19)C9—C10—C11—C120.7 (3)
C6—O1—C2—C11.91 (19)C10—C11—C12—C30.4 (2)
C6—O1—C2—C3176.96 (11)C4—C3—C12—C110.1 (2)
C1—C2—C3—C12171.94 (13)C2—C3—C12—C11179.99 (14)
O1—C2—C3—C126.86 (18)N2—C8—C13—C14176.03 (15)
C1—C2—C3—C48.0 (2)C7—C8—C13—C140.8 (2)
O1—C2—C3—C4173.18 (11)C8—C13—C14—C150.8 (3)
C17—N1—C4—C92.2 (2)C13—C14—C15—C161.4 (3)
S1—N1—C4—C9152.27 (12)C14—C15—C16—C70.4 (2)
C17—N1—C4—C3178.74 (13)C8—C7—C16—C151.2 (2)
S1—N1—C4—C331.23 (18)C6—C7—C16—C15179.73 (14)
C12—C3—C4—C90.2 (2)C2—C1—C19—O2168.80 (15)
C2—C3—C4—C9179.87 (13)S1—C1—C19—O21.6 (2)
C12—C3—C4—N1176.72 (13)C2—C1—C19—C57.13 (19)
C2—C3—C4—N13.32 (19)S1—C1—C19—C5174.38 (10)
O5—S2—C5—C6136.55 (12)C6—C5—C19—O2166.55 (15)
O6—S2—C5—C693.95 (13)S2—C5—C19—O21.0 (2)
N2—S2—C5—C623.15 (13)C6—C5—C19—C19.40 (19)
O5—S2—C5—C1955.58 (13)S2—C5—C19—C1176.98 (10)
O6—S2—C5—C1973.91 (12)C3A—N1A—C1A—O1A0.3 (3)
N2—S2—C5—C19168.99 (11)C2A—N1A—C1A—O1A177.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O30.962.402.885 (2)111
C18—H18A···O50.962.412.895 (2)111
C3A—H3AA···O1A0.962.412.784 (3)103
C12—H12···O10.932.392.7106 (17)100
C16—H16···O10.932.392.7109 (17)100
C9—H9···O1Ai0.932.413.324 (2)169
C18—H18B···O1Aii0.962.463.376 (3)159
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

Any acknowledgements?

References

First citationAgilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, 767–784. Weinheim: VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUkrainets, I. V., Petrushova, L. A. & Dzyubenko, S. P. (2013). Chem. Heterocycl. Compd, 49, 1378–1383.  CrossRef CAS Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Sim, G. (2014). Chem. Heterocycl. Compd, 50, 103–110.  CrossRef CAS Google Scholar
First citationUkrainets, I. V., Sidorenko, L. V., Svechnikova, E. N. & Shishkin, O. V. (2007). Chem. Heterocycl. Compd, 43, 1275–1279.  CrossRef CAS Google Scholar
First citationUkrainets, I. V., Taran, E. A., Shishkin, O. V., Gorokhova, O. V., Taran, S. G., Jaradat, N. A. & Turov, A. V. (2000). Chem. Heterocycl. Compd. 36, 443–448.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds