research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure and Hirshfeld surface analysis of the salt N,N,N-tri­methyl-1-(4-vinyl­phen­yl)methanaminium 4-vinyl­benzene­sulfonate

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by C. Massera, Università di Parma, Italy (Received 7 May 2019; accepted 28 May 2019; online 4 June 2019)

In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium cation and a 4-vinyl­benzene­sulfonate anion, C12H18N+·C8H7O3S. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported.

1. Chemical context

Hydro­gels continue to be the subject of intense study, particularly with regard to biomedical applications and new technologies (Van Vlierberghe et al., 2011[Van Vlierberghe, S., Dubruel, P. & Schacht, E. (2011). Biomacromolecules, 12, 1387-1408.]; Sun et al., 2015[Sun, Z., Lv, F., Cao, L., Liu, L., Zhang, Y. & Lu, Z. (2015). Angew. Chem. Int. Ed. 54, 7944-7948.]; Goswami et al., 2017[Goswami, S. K., McAdam, C. J., Hanton, L. R. & Moratti, S. C. (2017). Macromol. Rapid Commun. 38, 1700103.]; Pushparajan et al., 2018[Pushparajan, C., Goswami, S. K., McAdam, C. J., Hanton, L. R., Dearden, P. K., Moratti, S. C. & Cridge, A. G. (2018). Electrophoresis, 39, 824-832.]). Limiting development has been the poor mechanical strength of conventional hydro­gel formulations. Numerous strategies, singly and in combination, have been utilized in efforts to improve toughness and stretchability, and the results have been extensively reviewed (Naficy et al., 2011[Naficy, S., Brown, H. R., Razal, J. M., Spinks, G. M. & Whitten, P. G. (2011). Aust. J. Chem. 64, 1007-1025.]; Peak et al., 2013[Peak, C. W., Wilker, J. J. & Schmidt, G. (2013). Colloid Polym. Sci. 291, 2031-2047.]; Zhao, 2014[Zhao, X. (2014). Soft Matter, 10, 672-687.]). Our current approach is to build in capacity for self-healing, and exploits polyampholytes (Zurick & Bernards, 2014[Zurick, K. M. & Bernards, M. (2014). J. Appl. Polym. Sci. 131, 40069.]), polymers formed from the covalent cross-linking of mixed cationic and anionic monomers. The title compound is one such set of ion-pair co-monomers, simply prepared from commercially available tri­methyl­ammonium cation and sulfonate anion salts.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title salt, (I)[link], comprises an N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium cation and a 4-vinyl­benzene­sulfonate anion, linked by a C14—H14B⋯O3 hydrogen bond (Table 1[link]) between a methyl group of the tri­methyl­methanaminium unit and a sulfonate oxygen, Fig. 1[link]. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the cation, the C7/C13/N1 and C10/C101/C102 planes of the methanaminium and major vinyl substituents on the benzene ring subtend angles of 86.6 (3) and 10.5 (9)°, respectively, to the ring plane. In contrast, excluding the sulfonate O atoms, the S and ordered vinyl substituents lie close to the benzene ring plane in the anion with an r.m.s. deviation of 0.0753 Å from the S1/C1–C6/C41/C42 plane.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O3 0.98 2.32 3.264 (5) 161
C14—H14A⋯O2i 0.98 2.48 3.346 (5) 147
C15—H15A⋯O1i 0.98 2.63 3.544 (4) 155
C15—H15A⋯O2i 0.98 2.49 3.348 (4) 147
C13—H13B⋯O3ii 0.99 2.56 3.466 (5) 152
C15—H15B⋯O2ii 0.98 2.60 3.477 (4) 149
C16—H16B⋯O1iii 0.98 2.61 3.365 (4) 134
C16—H16C⋯O2i 0.98 2.52 3.370 (5) 146
C41—H41⋯O2iv 0.95 2.58 3.481 (4) 157
C42—H42B⋯O1v 0.95 2.63 3.494 (4) 151
C5—H5⋯Cg1iv 0.95 2.93 3.837 (4) 161
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound showing the atom numbering with ellipsoids drawn at the 50% probability level. The C—H⋯O hydrogen bond linking the two components is drawn as a dotted black line. For clarity, only the major disorder component of the vinyl substituent on the benzene ring of the cation is shown.

3. Supra­molecular features

Packing in this salt is dominated by an extensive number of C—H⋯O hydrogen bonds, Table 1[link]. O2 acts as a trifurcated acceptor forming C14—H14A⋯O2i, C15—H15A⋯O2i and C16—H16C⋯O2i hydrogen bonds [symmetry code: (i) x − 1, y, z]. C14 and C15 are bifurcated donors with the C15—H15A⋯O1i and C15—H15A⋯O2i contacts forming R12(4) ring motifs. C14—H14B⋯O3 contacts link the cation–anion pairs into chains along the a-axis direction, Fig. 2[link]. Cation–anion dimers are generated by C13—H13B⋯O3ii and C15—H15B⋯O2ii contacts with adjacent dimers linked into columns along b by C16—H16B⋯O1iii hydrogen bonds [symmetry codes: (ii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (iii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z]. Additional C14—H14B⋯O3 hydrogen bonds form double columns along b with the vinyl substituents of the proximate cations and anions pointing in opposite directions, Fig. 3[link]. Chains of anions form along a through C41—H41⋯O2iv hydrogen bonds augmented by C5—H5⋯Cg1iv contacts, Fig. 4[link] [symmetry code: (iv) x − [{1\over 2}], [{1\over 2}] − y, −z]. Finally, weak C42—H42B⋯O1v hydrogen bonds link the anions in a head-to-tail fashion into zigzag chains along c, Fig. 5[link] [symmetry code: (v) [{3\over 2}] − x, 1 − y, z − [{1\over 2}]]. This extensive series of contact combines to assemble an extended network structure with the cations and anions stacked along the a-axis direction, Fig. 6[link].

[Figure 2]
Figure 2
Chains of cations and anions of (I)[link] along the a axis. Hydrogen bonds are shown as cyan dotted lines [symmetry code: (i) x − 1, y, z].
[Figure 3]
Figure 3
Double chains of cation–anion dimers along b. Hydrogen bonds are shown as cyan dotted lines [symmetry codes: (ii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (iii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z].
[Figure 4]
Figure 4
Chains of anions along a. Hydrogen bonds and C—H⋯π inter­actions are shown as cyan and green dotted lines, respectively [symmetry code: (iv) x − [{1\over 2}], [{1\over 2}] − y, −z].
[Figure 5]
Figure 5
Zigzag chains of anions along c. Hydrogen bonds are shown as cyan dotted lines [symmetry code: (v) [{3\over 2}] − x, 1 − y, z − [{1\over 2}]].
[Figure 6]
Figure 6
Overall packing for (I)[link] viewed along the a-axis direction.

4. Hirshfeld surface analysis

Further details of the inter­molecular architecture of this salt were obtained using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) with surfaces and two-dimensional fingerprint plots generated by CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; http://hirshfeldsurface.net.]). Hirshfeld surfaces viewed for opposite faces of the complete salt are shown in Fig. 7[link]. Both disorder components are included in these surface calculations. The red circles on the Hirshfeld surfaces correspond to the numerous C—H⋯O contacts that play a significant role in stabilizing the packing in this structure. Fingerprint plots of the principal contacts on the Hirshfeld surface of the salt are shown in Fig. 8[link]. These comprise H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H contacts. The much less significant C⋯C and H⋯S/S⋯H contributions are not shown in the figure but are detailed in Table 2[link].

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contacts Included surface area
  Salt Cation Anion
H⋯H 52.5 60.3 37.9
H⋯C/C⋯H 26.1 20.8 27.8
H⋯O/O⋯H 20.7 17.8 34.2
C⋯C 0.5 0.9 0.0
H⋯S/S⋯H 0.1 0.1 0.1
[Figure 7]
Figure 7
Hirshfeld surfaces of (1) viewed for opposite faces of the salt.
[Figure 8]
Figure 8
Full two-dimensional fingerprint plots for the salt (a), cation (b) and anion (c) together with (d)–(l) separate principal contact types for the salt, cation and anion systems respectively. These are found to be H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H contacts.

It is also instructive to investigate the differences in contacts for the discrete cation and anion components of (I)[link] by recording fingerprint plots of the cation and anion individually. All of the surface contributions for the cation and anion are also shown in Table 2[link], with fingerprint plots for principal contacts found in the individual cation and anion also displayed in Fig. 8[link]. The most notable differences between the values for the salt and its components are that the H⋯H van der Waals inter­actions increase significantly for the cation, while the anion shows considerable increases in the H⋯O/O⋯H and H⋯C/C⋯H contacts. These differences reflect the fact that, whereas the contacts for the cations are limited to cation–anion inter­actions, the anions are also involved in distinct anion–anion contacts, vide supra. The C⋯C and H⋯S/S⋯H contributions to all of the surfaces are very weak but are included in Table 2[link] for completeness.

5. Database survey

A search of the Cambridge Structural Database (Version 5.40 November 2018 with one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals the fact that the salt reported here is quite unusual. Only two structures involving the N,N,N-trimeth­yl(4-vinyl­phen­yl)methyl­ammonium cation acting as counter-ions to poly-molybdate (QAJXEH) and poly-tungstate (QAJXAD) anions were found (Vorotnikov et al., 2015[Vorotnikov, Y. A., Mikhailov, M. A., Brylev, K. A., Piryazev, D. A., Kuratieva, N. V., Sokolov, M. N., Mironov, Y. V. & Shestopalov, M. A. (2015). Izv. Akad. Nauk SSSR, Ser. Khim. (Russ. Chem. Bull.), 64, 2591-2596.]). Structures of salts of the 4-vinyl­benzene­sulfonate anion are slightly more abundant, with organic methyl­quinolinium (RUMGAJ; Lee et al., 2015[Lee, S.-H., Yoo, B.-W., Yun, H., Jazbinsek, M. & Kwon, O.-P. (2015). J. Mol. Struct. 1100, 359-365.]) and 4-{2-[4-(di­methyl­amino)­phen­yl]vin­yl}-1-methyl­pyridinium (SAPDAR; Vijay et al., 2012[Vijay, R. J., Melikechi, N., Thomas, T., Gunaseelan, R., Arockiaraj, M. A. & Sagayaraj, P. (2012). J. Cryst. Growth, 338, 170-176.]) cations and hexa­aqua manganese, cobalt and nickel complex cations (SUVBOA, SUVBUG and SUVCAN; Leonard et al., 1999[Leonard, M. A., Squattrito, P. J. & Dubey, S. N. (1999). Acta Cryst. C55, 35-39.]).

6. Synthesis and crystallization

The title compound was prepared via an argentometric mixing approach (Li et al., 2010[Li, G., Xue, H., Gao, C., Zhang, F. & Jiang, S. (2010). Macromolecules, 43, 14-16.]) from the silver salt of 4-vinyl­benzene­sulfonic acid, Ag-VBS (Woeste et al., 1993[Woeste, G., Meyer, W. H. & Wegner, G. (1993). Makromol. Chem. 194, 1237-1248.]; Sikkema et al., 2007[Sikkema, F. D., Comellas-Aragonès, M., Fokkink, R. G., Verduin, B. J. M., Cornelissen, J. J. L. M. & Nolte, R. J. M. (2007). Org. Biomol. Chem. 5, 54-57.]) and (vinyl­benz­yl)tri­methyl­ammonium chloride, VBT-Cl (Sigma Aldrich). A suspension of Ag-VBS in water and equimolar amount of VBT-Cl were stirred 30 minutes. After filtration of the AgCl precipitate, the solution was freeze-dried and the ion-pair co-monomers recrystallized from chloro­form as irregular colourless blocks.

ESI MS +ve (m/z): 176.14 [C12H18N]+; -ve: 183.01 [C8H7SO3]. 1H NMR (400 MHz, DMSO-d6): 5.95 (dd, J = 18, 1 Hz, 1H, VBT =CH2), 5.38 (dd, J = 11, 1 Hz, 1H, VBT =CH2), 6.80 (dd, J = 18, 11 Hz, 1H, VBT –CH=), 7.61 & 7.50 [2 × (d, J = 8 Hz, 2H, VBT benzene H)], 4.51 (s, 2H, VBT CH2), 4.51 (s, 2H, VBT CH2), 3.02 (s, 9H, VBT CH3). 5.84 (dd, J = 18, 1 Hz, 1H, VBS =CH2), 5.27 (dd, J = 11, 1 Hz, 1H, VBS =CH2), 6.73 (dd, J = 18, 11 Hz, 1H, VBS –CH=), 7.57 & 7.42 [2 × (d, J = 8 Hz, 2H, VBS benzene H)]

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were refined using a riding model with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and vinyl H atoms, d(C—H) = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene and d(C—H) = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites (C101=C102 and C103=C104) with a refined occupancy ratio of 0.542 (11):0.458 (11).

Table 3
Experimental details

Crystal data
Chemical formula C12H18N+·C8H7O3S
Mr 359.47
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 8.3344 (3), 10.5937 (4), 21.1228 (8)
V3) 1864.98 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.69
Crystal size (mm) 0.20 × 0.18 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.911, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4767, 3103, 2784
Rint 0.029
(sin θ/λ)max−1) 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.103, 1.04
No. of reflections 3103
No. of parameters 248
No. of restraints 10
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.29
Absolute structure Flack x determined using 870 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.040 (19)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

N,N,N-Trimethyl-1-(4-vinylphenyl)methanaminium 4-vinylbenzenesulfonate top
Crystal data top
C12H18N+·C8H7O3SDx = 1.280 Mg m3
Mr = 359.47Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2591 reflections
a = 8.3344 (3) Åθ = 4.2–72.3°
b = 10.5937 (4) ŵ = 1.69 mm1
c = 21.1228 (8) ÅT = 100 K
V = 1864.98 (12) Å3Irregular block, colourless
Z = 40.20 × 0.18 × 0.08 mm
F(000) = 768
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas
diffractometer
3103 independent reflections
Radiation source: micro-focus sealed X-ray tube2784 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.029
ω scansθmax = 72.8°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 610
Tmin = 0.911, Tmax = 1.000k = 1212
4767 measured reflectionsl = 2524
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.5842P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.37 e Å3
3103 reflectionsΔρmin = 0.29 e Å3
248 parametersAbsolute structure: Flack x determined using 870 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
10 restraintsAbsolute structure parameter: 0.040 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7129 (3)0.3773 (2)0.23060 (11)0.0340 (6)
O20.9047 (3)0.2234 (2)0.19192 (11)0.0324 (6)
O30.6241 (3)0.1666 (2)0.20070 (11)0.0316 (6)
S10.73918 (10)0.26835 (7)0.19052 (3)0.0240 (2)
C10.7098 (4)0.3210 (3)0.11156 (14)0.0213 (7)
C20.8167 (4)0.4059 (3)0.08477 (16)0.0254 (7)
H20.9019870.4391400.1095300.030*
C30.8000 (4)0.4426 (3)0.02186 (16)0.0267 (8)
H30.8734640.5015240.0042570.032*
C40.6771 (4)0.3943 (3)0.01563 (16)0.0259 (7)
C410.6602 (5)0.4228 (3)0.08413 (17)0.0304 (8)
H410.5679190.3903000.1048800.036*
C420.7607 (5)0.4885 (3)0.11868 (16)0.0351 (8)
H42A0.8547860.5229100.1000250.042*
H42B0.7394940.5017400.1623650.042*
C50.5676 (4)0.3129 (3)0.01217 (17)0.0302 (8)
H50.4804880.2816730.0122230.036*
C60.5829 (4)0.2760 (3)0.07539 (16)0.0283 (8)
H60.5065110.2202600.0936200.034*
C70.3486 (4)0.3494 (4)0.39999 (17)0.0282 (8)
C80.2924 (5)0.4592 (4)0.4279 (2)0.0391 (10)
H80.2700820.5308600.4022750.047*
C90.2687 (6)0.4656 (5)0.4924 (2)0.0577 (14)
H90.2284960.5415940.5102960.069*
C100.3017 (5)0.3649 (6)0.5319 (2)0.0600 (15)
C1010.2819 (10)0.3361 (8)0.6023 (3)0.038 (2)0.542 (11)
H1010.3245890.2609690.6201460.046*0.542 (11)
C1020.2045 (14)0.4175 (8)0.6374 (4)0.066 (4)0.542 (11)
H10A0.1623950.4922770.6189830.080*0.542 (11)
H10B0.1904960.4018690.6813480.080*0.542 (11)
C1030.2724 (12)0.4160 (9)0.5973 (3)0.033 (2)0.458 (11)
H1030.2514880.5030010.6043210.040*0.458 (11)
C1040.2771 (11)0.3345 (9)0.6444 (4)0.038 (3)0.458 (11)
H10C0.2983200.2479470.6361750.045*0.458 (11)
H10D0.2593560.3623790.6865560.045*0.458 (11)
C110.3597 (5)0.2564 (6)0.5043 (2)0.0538 (13)
H110.3842830.1859480.5303590.065*
C120.3830 (5)0.2473 (4)0.43947 (19)0.0385 (9)
H120.4228290.1710400.4217950.046*
C130.3803 (4)0.3451 (4)0.32982 (17)0.0329 (8)
H13A0.4681680.2844520.3215490.039*
H13B0.4170350.4294450.3157530.039*
C140.2826 (5)0.3111 (5)0.22225 (17)0.0528 (13)
H14A0.1902370.2902030.1955190.079*
H14B0.3687150.2499290.2148290.079*
H14C0.3208280.3960940.2117870.079*
C150.0986 (4)0.3955 (3)0.30061 (19)0.0330 (8)
H15A0.0107140.3744020.2716850.050*
H15B0.1348720.4819810.2924010.050*
H15C0.0610380.3888180.3444420.050*
N10.2336 (4)0.3069 (3)0.29050 (13)0.0289 (7)
C160.1808 (5)0.1749 (3)0.3060 (2)0.0444 (10)
H16A0.1482190.1706070.3504910.067*
H16B0.2697310.1162800.2985390.067*
H16C0.0898140.1517490.2789400.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0421 (16)0.0313 (13)0.0287 (12)0.0004 (12)0.0005 (11)0.0081 (10)
O20.0250 (12)0.0454 (14)0.0269 (12)0.0102 (11)0.0034 (10)0.0010 (13)
O30.0370 (14)0.0303 (13)0.0275 (13)0.0076 (12)0.0008 (11)0.0046 (11)
S10.0258 (4)0.0259 (4)0.0203 (3)0.0004 (4)0.0009 (3)0.0022 (3)
C10.0243 (17)0.0198 (14)0.0198 (14)0.0036 (14)0.0016 (13)0.0010 (12)
C20.0218 (16)0.0237 (16)0.0307 (17)0.0006 (15)0.0001 (14)0.0042 (14)
C30.0259 (18)0.0232 (16)0.0311 (17)0.0003 (15)0.0064 (15)0.0011 (14)
C40.0283 (18)0.0244 (16)0.0249 (17)0.0043 (15)0.0011 (14)0.0019 (14)
C410.035 (2)0.0286 (18)0.0280 (18)0.0035 (17)0.0043 (16)0.0003 (15)
C420.035 (2)0.0423 (19)0.0275 (17)0.005 (2)0.0014 (18)0.0049 (15)
C50.0280 (18)0.0302 (18)0.0324 (19)0.0023 (16)0.0100 (15)0.0016 (15)
C60.0283 (18)0.0257 (17)0.0308 (18)0.0034 (16)0.0057 (14)0.0030 (16)
C70.0211 (17)0.0344 (19)0.0292 (18)0.0060 (16)0.0032 (14)0.0010 (16)
C80.034 (2)0.038 (2)0.046 (2)0.0006 (18)0.0138 (18)0.0090 (18)
C90.034 (2)0.088 (4)0.051 (3)0.008 (3)0.013 (2)0.036 (3)
C100.031 (2)0.116 (5)0.034 (2)0.018 (3)0.0053 (18)0.012 (3)
C1010.045 (5)0.032 (5)0.038 (5)0.016 (4)0.016 (4)0.009 (4)
C1020.126 (11)0.043 (5)0.030 (5)0.009 (6)0.009 (6)0.005 (4)
C1030.040 (5)0.031 (5)0.028 (5)0.003 (5)0.002 (4)0.001 (4)
C1040.044 (6)0.045 (6)0.023 (5)0.010 (5)0.002 (4)0.002 (4)
C110.048 (3)0.073 (3)0.040 (2)0.026 (3)0.0168 (19)0.025 (2)
C120.036 (2)0.033 (2)0.046 (2)0.007 (2)0.0098 (17)0.0038 (18)
C130.0223 (17)0.042 (2)0.0347 (19)0.0019 (17)0.0027 (15)0.0019 (17)
C140.039 (2)0.094 (4)0.0250 (19)0.000 (3)0.0010 (17)0.007 (2)
C150.0293 (18)0.0291 (18)0.041 (2)0.0064 (16)0.0063 (17)0.0055 (17)
N10.0267 (15)0.0331 (15)0.0271 (14)0.0018 (14)0.0027 (13)0.0027 (11)
C160.056 (2)0.0216 (17)0.055 (3)0.0022 (18)0.019 (2)0.0020 (19)
Geometric parameters (Å, º) top
O1—S11.448 (2)C10—C1011.527 (7)
O2—S11.460 (2)C101—C1021.307 (9)
O3—S11.459 (2)C101—H1010.9500
S1—C11.776 (3)C102—H10A0.9500
C1—C21.387 (4)C102—H10B0.9500
C1—C61.389 (5)C103—C1041.317 (9)
C2—C31.392 (5)C103—H1030.9500
C2—H20.9500C104—H10C0.9500
C3—C41.392 (5)C104—H10D0.9500
C3—H30.9500C11—C121.387 (6)
C4—C51.386 (5)C11—H110.9500
C4—C411.485 (5)C12—H120.9500
C41—C421.311 (5)C13—N11.533 (5)
C41—H410.9500C13—H13A0.9900
C42—H42A0.9500C13—H13B0.9900
C42—H42B0.9500C14—N11.499 (4)
C5—C61.397 (4)C14—H14A0.9800
C5—H50.9500C14—H14B0.9800
C6—H60.9500C14—H14C0.9800
C7—C81.386 (5)C15—N11.481 (4)
C7—C121.395 (5)C15—H15A0.9800
C7—C131.506 (5)C15—H15B0.9800
C8—C91.380 (6)C15—H15C0.9800
C8—H80.9500N1—C161.501 (4)
C9—C101.382 (8)C16—H16A0.9800
C9—H90.9500C16—H16B0.9800
C10—C111.376 (8)C16—H16C0.9800
C10—C1031.504 (7)
O1—S1—O3113.77 (15)C10—C101—H101120.8
O1—S1—O2113.04 (15)C101—C102—H10A120.0
O3—S1—O2112.16 (16)C101—C102—H10B120.0
O1—S1—C1106.15 (14)H10A—C102—H10B120.0
O3—S1—C1106.25 (15)C104—C103—C10116.9 (8)
O2—S1—C1104.59 (15)C104—C103—H103121.5
C2—C1—C6119.2 (3)C10—C103—H103121.5
C2—C1—S1119.9 (2)C103—C104—H10C120.0
C6—C1—S1120.9 (3)C103—C104—H10D120.0
C1—C2—C3120.4 (3)H10C—C104—H10D120.0
C1—C2—H2119.8C10—C11—C12121.7 (5)
C3—C2—H2119.8C10—C11—H11119.1
C2—C3—C4120.9 (3)C12—C11—H11119.1
C2—C3—H3119.5C11—C12—C7120.5 (4)
C4—C3—H3119.5C11—C12—H12119.8
C5—C4—C3118.2 (3)C7—C12—H12119.8
C5—C4—C41118.5 (3)C7—C13—N1113.7 (3)
C3—C4—C41123.3 (3)C7—C13—H13A108.8
C42—C41—C4126.1 (4)N1—C13—H13A108.8
C42—C41—H41116.9C7—C13—H13B108.8
C4—C41—H41116.9N1—C13—H13B108.8
C41—C42—H42A120.0H13A—C13—H13B107.7
C41—C42—H42B120.0N1—C14—H14A109.5
H42A—C42—H42B120.0N1—C14—H14B109.5
C4—C5—C6121.3 (3)H14A—C14—H14B109.5
C4—C5—H5119.4N1—C14—H14C109.5
C6—C5—H5119.4H14A—C14—H14C109.5
C1—C6—C5119.9 (3)H14B—C14—H14C109.5
C1—C6—H6120.0N1—C15—H15A109.5
C5—C6—H6120.0N1—C15—H15B109.5
C8—C7—C12117.8 (4)H15A—C15—H15B109.5
C8—C7—C13120.1 (4)N1—C15—H15C109.5
C12—C7—C13121.9 (4)H15A—C15—H15C109.5
C9—C8—C7120.6 (4)H15B—C15—H15C109.5
C9—C8—H8119.7C15—N1—C16109.7 (3)
C7—C8—H8119.7C15—N1—C14109.1 (3)
C8—C9—C10122.0 (5)C16—N1—C14108.5 (3)
C8—C9—H9119.0C15—N1—C13111.1 (3)
C10—C9—H9119.0C16—N1—C13111.2 (3)
C11—C10—C9117.4 (4)C14—N1—C13107.2 (3)
C11—C10—C103138.3 (6)N1—C16—H16A109.5
C9—C10—C103104.1 (6)N1—C16—H16B109.5
C11—C10—C101106.5 (6)H16A—C16—H16B109.5
C9—C10—C101136.0 (6)N1—C16—H16C109.5
C102—C101—C10118.3 (8)H16A—C16—H16C109.5
C102—C101—H101120.8H16B—C16—H16C109.5
O1—S1—C1—C267.5 (3)C7—C8—C9—C101.0 (7)
O3—S1—C1—C2171.1 (2)C8—C9—C10—C110.1 (7)
O2—S1—C1—C252.3 (3)C8—C9—C10—C103175.4 (6)
O1—S1—C1—C6114.1 (3)C8—C9—C10—C101175.7 (6)
O3—S1—C1—C67.3 (3)C11—C10—C101—C102169.3 (7)
O2—S1—C1—C6126.1 (3)C9—C10—C101—C1026.6 (12)
C6—C1—C2—C31.9 (5)C11—C10—C103—C10413.7 (13)
S1—C1—C2—C3176.5 (3)C9—C10—C103—C104172.3 (8)
C1—C2—C3—C40.7 (5)C9—C10—C11—C120.6 (7)
C2—C3—C4—C52.9 (5)C103—C10—C11—C12174.0 (7)
C2—C3—C4—C41175.4 (3)C101—C10—C11—C12176.3 (5)
C5—C4—C41—C42173.8 (4)C10—C11—C12—C70.2 (6)
C3—C4—C41—C424.5 (6)C8—C7—C12—C110.7 (5)
C3—C4—C5—C62.5 (5)C13—C7—C12—C11176.9 (4)
C41—C4—C5—C6175.9 (3)C8—C7—C13—N188.7 (4)
C2—C1—C6—C52.3 (5)C12—C7—C13—N195.2 (4)
S1—C1—C6—C5176.2 (3)C7—C13—N1—C1559.1 (4)
C4—C5—C6—C10.1 (6)C7—C13—N1—C1663.3 (4)
C12—C7—C8—C91.3 (6)C7—C13—N1—C14178.2 (3)
C13—C7—C8—C9177.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C14—H14B···O30.982.323.264 (5)161
C14—H14A···O2i0.982.483.346 (5)147
C15—H15A···O1i0.982.633.544 (4)155
C15—H15A···O2i0.982.493.348 (4)147
C13—H13B···O3ii0.992.563.466 (5)152
C15—H15B···O2ii0.982.603.477 (4)149
C16—H16B···O1iii0.982.613.365 (4)134
C16—H16C···O2i0.982.523.370 (5)146
C41—H41···O2iv0.952.583.481 (4)157
C42—H42B···O1v0.952.633.494 (4)151
C5—H5···Cg1iv0.952.933.837 (4)161
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1/2, y+1/2, z; (v) x+3/2, y+1, z1/2.
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactsIncluded surface area
SaltCationAnion
H···H52.560.337.9
H···C/C···H26.120.827.8
H···O/O···H20.717.834.2
C···C0.50.90.0
H···S/S···H0.10.10.1
 

Funding information

We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS also thanks the Department of Chemistry, University of Otago for support of his work.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoswami, S. K., McAdam, C. J., Hanton, L. R. & Moratti, S. C. (2017). Macromol. Rapid Commun. 38, 1700103.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationLee, S.-H., Yoo, B.-W., Yun, H., Jazbinsek, M. & Kwon, O.-P. (2015). J. Mol. Struct. 1100, 359–365.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeonard, M. A., Squattrito, P. J. & Dubey, S. N. (1999). Acta Cryst. C55, 35–39.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, G., Xue, H., Gao, C., Zhang, F. & Jiang, S. (2010). Macromolecules, 43, 14–16.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaficy, S., Brown, H. R., Razal, J. M., Spinks, G. M. & Whitten, P. G. (2011). Aust. J. Chem. 64, 1007–1025.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeak, C. W., Wilker, J. J. & Schmidt, G. (2013). Colloid Polym. Sci. 291, 2031–2047.  Web of Science CrossRef CAS Google Scholar
First citationPushparajan, C., Goswami, S. K., McAdam, C. J., Hanton, L. R., Dearden, P. K., Moratti, S. C. & Cridge, A. G. (2018). Electrophoresis, 39, 824–832.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSikkema, F. D., Comellas-Aragonès, M., Fokkink, R. G., Verduin, B. J. M., Cornelissen, J. J. L. M. & Nolte, R. J. M. (2007). Org. Biomol. Chem. 5, 54–57.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Z., Lv, F., Cao, L., Liu, L., Zhang, Y. & Lu, Z. (2015). Angew. Chem. Int. Ed. 54, 7944–7948.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; http://hirshfeldsurface.net.  Google Scholar
First citationVan Vlierberghe, S., Dubruel, P. & Schacht, E. (2011). Biomacromolecules, 12, 1387–1408.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVijay, R. J., Melikechi, N., Thomas, T., Gunaseelan, R., Arockiaraj, M. A. & Sagayaraj, P. (2012). J. Cryst. Growth, 338, 170–176.  Google Scholar
First citationVorotnikov, Y. A., Mikhailov, M. A., Brylev, K. A., Piryazev, D. A., Kuratieva, N. V., Sokolov, M. N., Mironov, Y. V. & Shestopalov, M. A. (2015). Izv. Akad. Nauk SSSR, Ser. Khim. (Russ. Chem. Bull.), 64, 2591–2596.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoeste, G., Meyer, W. H. & Wegner, G. (1993). Makromol. Chem. 194, 1237–1248.  CrossRef CAS Google Scholar
First citationZhao, X. (2014). Soft Matter, 10, 672–687.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZurick, K. M. & Bernards, M. (2014). J. Appl. Polym. Sci. 131, 40069.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds