research communications
Structure and Hirshfeld surface analysis of the salt N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium 4-vinylbenzenesulfonate
aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz
In the title compound, the N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium cation and a 4-vinylbenzenesulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported.
comprises anKeywords: crystal structure; N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium cation; 4-vinylbenzenesulfonate anion; hydrogen bonds; Hirshfeld surface analysis.
CCDC reference: 1919325
1. Chemical context
Hydrogels continue to be the subject of intense study, particularly with regard to biomedical applications and new technologies (Van Vlierberghe et al., 2011; Sun et al., 2015; Goswami et al., 2017; Pushparajan et al., 2018). Limiting development has been the poor mechanical strength of conventional hydrogel formulations. Numerous strategies, singly and in combination, have been utilized in efforts to improve toughness and stretchability, and the results have been extensively reviewed (Naficy et al., 2011; Peak et al., 2013; Zhao, 2014). Our current approach is to build in capacity for self-healing, and exploits polyampholytes (Zurick & Bernards, 2014), polymers formed from the covalent cross-linking of mixed cationic and anionic monomers. The title compound is one such set of ion-pair co-monomers, simply prepared from commercially available trimethylammonium cation and sulfonate anion salts.
2. Structural commentary
The , comprises an N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium cation and a 4-vinylbenzenesulfonate anion, linked by a C14—H14B⋯O3 hydrogen bond (Table 1) between a methyl group of the trimethylmethanaminium unit and a sulfonate oxygen, Fig. 1. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the cation, the C7/C13/N1 and C10/C101/C102 planes of the methanaminium and major vinyl substituents on the benzene ring subtend angles of 86.6 (3) and 10.5 (9)°, respectively, to the ring plane. In contrast, excluding the sulfonate O atoms, the S and ordered vinyl substituents lie close to the benzene ring plane in the anion with an r.m.s. deviation of 0.0753 Å from the S1/C1–C6/C41/C42 plane.
of the title salt, (I)3. Supramolecular features
Packing in this salt is dominated by an extensive number of C—H⋯O hydrogen bonds, Table 1. O2 acts as a trifurcated acceptor forming C14—H14A⋯O2i, C15—H15A⋯O2i and C16—H16C⋯O2i hydrogen bonds [symmetry code: (i) x − 1, y, z]. C14 and C15 are bifurcated donors with the C15—H15A⋯O1i and C15—H15A⋯O2i contacts forming R12(4) ring motifs. C14—H14B⋯O3 contacts link the cation–anion pairs into chains along the a-axis direction, Fig. 2. Cation–anion dimers are generated by C13—H13B⋯O3ii and C15—H15B⋯O2ii contacts with adjacent dimers linked into columns along b by C16—H16B⋯O1iii hydrogen bonds [symmetry codes: (ii) 1 − x, + y, − z; (iii) 1 − x, − + y, − z]. Additional C14—H14B⋯O3 hydrogen bonds form double columns along b with the vinyl substituents of the proximate cations and anions pointing in opposite directions, Fig. 3. Chains of anions form along a through C41—H41⋯O2iv hydrogen bonds augmented by C5—H5⋯Cg1iv contacts, Fig. 4 [symmetry code: (iv) x − , − y, −z]. Finally, weak C42—H42B⋯O1v hydrogen bonds link the anions in a head-to-tail fashion into zigzag chains along c, Fig. 5 [symmetry code: (v) − x, 1 − y, z − ]. This extensive series of contact combines to assemble an extended network structure with the cations and anions stacked along the a-axis direction, Fig. 6.
4. Hirshfeld surface analysis
Further details of the intermolecular architecture of this salt were obtained using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) with surfaces and two-dimensional fingerprint plots generated by CrystalExplorer (Turner et al., 2017). Hirshfeld surfaces viewed for opposite faces of the complete salt are shown in Fig. 7. Both disorder components are included in these surface calculations. The red circles on the Hirshfeld surfaces correspond to the numerous C—H⋯O contacts that play a significant role in stabilizing the packing in this structure. Fingerprint plots of the principal contacts on the Hirshfeld surface of the salt are shown in Fig. 8. These comprise H⋯H, H⋯C/C⋯H, and H⋯O/O⋯H contacts. The much less significant C⋯C and H⋯S/S⋯H contributions are not shown in the figure but are detailed in Table 2.
|
It is also instructive to investigate the differences in contacts for the discrete cation and anion components of (I) by recording fingerprint plots of the cation and anion individually. All of the surface contributions for the cation and anion are also shown in Table 2, with fingerprint plots for principal contacts found in the individual cation and anion also displayed in Fig. 8. The most notable differences between the values for the salt and its components are that the H⋯H van der Waals interactions increase significantly for the cation, while the anion shows considerable increases in the H⋯O/O⋯H and H⋯C/C⋯H contacts. These differences reflect the fact that, whereas the contacts for the cations are limited to cation–anion interactions, the anions are also involved in distinct anion–anion contacts, vide supra. The C⋯C and H⋯S/S⋯H contributions to all of the surfaces are very weak but are included in Table 2 for completeness.
5. Database survey
A search of the Cambridge Structural Database (Version 5.40 November 2018 with one update; Groom et al., 2016) reveals the fact that the salt reported here is quite unusual. Only two structures involving the N,N,N-trimethyl(4-vinylphenyl)methylammonium cation acting as counter-ions to poly-molybdate (QAJXEH) and poly-tungstate (QAJXAD) anions were found (Vorotnikov et al., 2015). Structures of salts of the 4-vinylbenzenesulfonate anion are slightly more abundant, with organic methylquinolinium (RUMGAJ; Lee et al., 2015) and 4-{2-[4-(dimethylamino)phenyl]vinyl}-1-methylpyridinium (SAPDAR; Vijay et al., 2012) cations and hexaaqua manganese, cobalt and nickel complex cations (SUVBOA, SUVBUG and SUVCAN; Leonard et al., 1999).
6. Synthesis and crystallization
The title compound was prepared via an argentometric mixing approach (Li et al., 2010) from the silver salt of 4-vinylbenzenesulfonic acid, Ag-VBS (Woeste et al., 1993; Sikkema et al., 2007) and (vinylbenzyl)trimethylammonium chloride, VBT-Cl (Sigma Aldrich). A suspension of Ag-VBS in water and equimolar amount of VBT-Cl were stirred 30 minutes. After filtration of the AgCl precipitate, the solution was freeze-dried and the ion-pair co-monomers recrystallized from chloroform as irregular colourless blocks.
ESI MS +ve (m/z): 176.14 [C12H18N]+; -ve: 183.01 [C8H7SO3]−. 1H NMR (400 MHz, DMSO-d6): 5.95 (dd, J = 18, 1 Hz, 1H, VBT =CH2), 5.38 (dd, J = 11, 1 Hz, 1H, VBT =CH2), 6.80 (dd, J = 18, 11 Hz, 1H, VBT –CH=), 7.61 & 7.50 [2 × (d, J = 8 Hz, 2H, VBT benzene H)], 4.51 (s, 2H, VBT CH2), 4.51 (s, 2H, VBT CH2), 3.02 (s, 9H, VBT CH3). 5.84 (dd, J = 18, 1 Hz, 1H, VBS =CH2), 5.27 (dd, J = 11, 1 Hz, 1H, VBS =CH2), 6.73 (dd, J = 18, 11 Hz, 1H, VBS –CH=), 7.57 & 7.42 [2 × (d, J = 8 Hz, 2H, VBS benzene H)]
7. Refinement
Crystal data, data collection and structure . All H atoms were refined using a riding model with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and vinyl H atoms, d(C—H) = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene and d(C—H) = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites (C101=C102 and C103=C104) with a refined occupancy ratio of 0.542 (11):0.458 (11).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1919325
https://doi.org/10.1107/S2056989019007758/xi2014sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019007758/xi2014Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019007758/xi2014Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).C12H18N+·C8H7O3S− | Dx = 1.280 Mg m−3 |
Mr = 359.47 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2591 reflections |
a = 8.3344 (3) Å | θ = 4.2–72.3° |
b = 10.5937 (4) Å | µ = 1.69 mm−1 |
c = 21.1228 (8) Å | T = 100 K |
V = 1864.98 (12) Å3 | Irregular block, colourless |
Z = 4 | 0.20 × 0.18 × 0.08 mm |
F(000) = 768 |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, Atlas diffractometer | 3103 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 2784 reflections with I > 2σ(I) |
Detector resolution: 5.1725 pixels mm-1 | Rint = 0.029 |
ω scans | θmax = 72.8°, θmin = 4.2° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | h = −6→10 |
Tmin = 0.911, Tmax = 1.000 | k = −12→12 |
4767 measured reflections | l = −25→24 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0465P)2 + 0.5842P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.103 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.37 e Å−3 |
3103 reflections | Δρmin = −0.29 e Å−3 |
248 parameters | Absolute structure: Flack x determined using 870 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
10 restraints | Absolute structure parameter: −0.040 (19) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.7129 (3) | 0.3773 (2) | 0.23060 (11) | 0.0340 (6) | |
O2 | 0.9047 (3) | 0.2234 (2) | 0.19192 (11) | 0.0324 (6) | |
O3 | 0.6241 (3) | 0.1666 (2) | 0.20070 (11) | 0.0316 (6) | |
S1 | 0.73918 (10) | 0.26835 (7) | 0.19052 (3) | 0.0240 (2) | |
C1 | 0.7098 (4) | 0.3210 (3) | 0.11156 (14) | 0.0213 (7) | |
C2 | 0.8167 (4) | 0.4059 (3) | 0.08477 (16) | 0.0254 (7) | |
H2 | 0.901987 | 0.439140 | 0.109530 | 0.030* | |
C3 | 0.8000 (4) | 0.4426 (3) | 0.02186 (16) | 0.0267 (8) | |
H3 | 0.873464 | 0.501524 | 0.004257 | 0.032* | |
C4 | 0.6771 (4) | 0.3943 (3) | −0.01563 (16) | 0.0259 (7) | |
C41 | 0.6602 (5) | 0.4228 (3) | −0.08413 (17) | 0.0304 (8) | |
H41 | 0.567919 | 0.390300 | −0.104880 | 0.036* | |
C42 | 0.7607 (5) | 0.4885 (3) | −0.11868 (16) | 0.0351 (8) | |
H42A | 0.854786 | 0.522910 | −0.100025 | 0.042* | |
H42B | 0.739494 | 0.501740 | −0.162365 | 0.042* | |
C5 | 0.5676 (4) | 0.3129 (3) | 0.01217 (17) | 0.0302 (8) | |
H5 | 0.480488 | 0.281673 | −0.012223 | 0.036* | |
C6 | 0.5829 (4) | 0.2760 (3) | 0.07539 (16) | 0.0283 (8) | |
H6 | 0.506511 | 0.220260 | 0.093620 | 0.034* | |
C7 | 0.3486 (4) | 0.3494 (4) | 0.39999 (17) | 0.0282 (8) | |
C8 | 0.2924 (5) | 0.4592 (4) | 0.4279 (2) | 0.0391 (10) | |
H8 | 0.270082 | 0.530860 | 0.402275 | 0.047* | |
C9 | 0.2687 (6) | 0.4656 (5) | 0.4924 (2) | 0.0577 (14) | |
H9 | 0.228496 | 0.541594 | 0.510296 | 0.069* | |
C10 | 0.3017 (5) | 0.3649 (6) | 0.5319 (2) | 0.0600 (15) | |
C101 | 0.2819 (10) | 0.3361 (8) | 0.6023 (3) | 0.038 (2) | 0.542 (11) |
H101 | 0.324589 | 0.260969 | 0.620146 | 0.046* | 0.542 (11) |
C102 | 0.2045 (14) | 0.4175 (8) | 0.6374 (4) | 0.066 (4) | 0.542 (11) |
H10A | 0.162395 | 0.492277 | 0.618983 | 0.080* | 0.542 (11) |
H10B | 0.190496 | 0.401869 | 0.681348 | 0.080* | 0.542 (11) |
C103 | 0.2724 (12) | 0.4160 (9) | 0.5973 (3) | 0.033 (2) | 0.458 (11) |
H103 | 0.251488 | 0.503001 | 0.604321 | 0.040* | 0.458 (11) |
C104 | 0.2771 (11) | 0.3345 (9) | 0.6444 (4) | 0.038 (3) | 0.458 (11) |
H10C | 0.298320 | 0.247947 | 0.636175 | 0.045* | 0.458 (11) |
H10D | 0.259356 | 0.362379 | 0.686556 | 0.045* | 0.458 (11) |
C11 | 0.3597 (5) | 0.2564 (6) | 0.5043 (2) | 0.0538 (13) | |
H11 | 0.384283 | 0.185948 | 0.530359 | 0.065* | |
C12 | 0.3830 (5) | 0.2473 (4) | 0.43947 (19) | 0.0385 (9) | |
H12 | 0.422829 | 0.171040 | 0.421795 | 0.046* | |
C13 | 0.3803 (4) | 0.3451 (4) | 0.32982 (17) | 0.0329 (8) | |
H13A | 0.468168 | 0.284452 | 0.321549 | 0.039* | |
H13B | 0.417035 | 0.429445 | 0.315753 | 0.039* | |
C14 | 0.2826 (5) | 0.3111 (5) | 0.22225 (17) | 0.0528 (13) | |
H14A | 0.190237 | 0.290203 | 0.195519 | 0.079* | |
H14B | 0.368715 | 0.249929 | 0.214829 | 0.079* | |
H14C | 0.320828 | 0.396094 | 0.211787 | 0.079* | |
C15 | 0.0986 (4) | 0.3955 (3) | 0.30061 (19) | 0.0330 (8) | |
H15A | 0.010714 | 0.374402 | 0.271685 | 0.050* | |
H15B | 0.134872 | 0.481981 | 0.292401 | 0.050* | |
H15C | 0.061038 | 0.388818 | 0.344442 | 0.050* | |
N1 | 0.2336 (4) | 0.3069 (3) | 0.29050 (13) | 0.0289 (7) | |
C16 | 0.1808 (5) | 0.1749 (3) | 0.3060 (2) | 0.0444 (10) | |
H16A | 0.148219 | 0.170607 | 0.350491 | 0.067* | |
H16B | 0.269731 | 0.116280 | 0.298539 | 0.067* | |
H16C | 0.089814 | 0.151749 | 0.278940 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0421 (16) | 0.0313 (13) | 0.0287 (12) | 0.0004 (12) | 0.0005 (11) | −0.0081 (10) |
O2 | 0.0250 (12) | 0.0454 (14) | 0.0269 (12) | 0.0102 (11) | −0.0034 (10) | −0.0010 (13) |
O3 | 0.0370 (14) | 0.0303 (13) | 0.0275 (13) | −0.0076 (12) | −0.0008 (11) | 0.0046 (11) |
S1 | 0.0258 (4) | 0.0259 (4) | 0.0203 (3) | 0.0004 (4) | −0.0009 (3) | −0.0022 (3) |
C1 | 0.0243 (17) | 0.0198 (14) | 0.0198 (14) | 0.0036 (14) | −0.0016 (13) | −0.0010 (12) |
C2 | 0.0218 (16) | 0.0237 (16) | 0.0307 (17) | −0.0006 (15) | −0.0001 (14) | −0.0042 (14) |
C3 | 0.0259 (18) | 0.0232 (16) | 0.0311 (17) | −0.0003 (15) | 0.0064 (15) | 0.0011 (14) |
C4 | 0.0283 (18) | 0.0244 (16) | 0.0249 (17) | 0.0043 (15) | −0.0011 (14) | −0.0019 (14) |
C41 | 0.035 (2) | 0.0286 (18) | 0.0280 (18) | 0.0035 (17) | −0.0043 (16) | 0.0003 (15) |
C42 | 0.035 (2) | 0.0423 (19) | 0.0275 (17) | 0.005 (2) | 0.0014 (18) | 0.0049 (15) |
C5 | 0.0280 (18) | 0.0302 (18) | 0.0324 (19) | −0.0023 (16) | −0.0100 (15) | 0.0016 (15) |
C6 | 0.0283 (18) | 0.0257 (17) | 0.0308 (18) | −0.0034 (16) | −0.0057 (14) | 0.0030 (16) |
C7 | 0.0211 (17) | 0.0344 (19) | 0.0292 (18) | −0.0060 (16) | −0.0032 (14) | −0.0010 (16) |
C8 | 0.034 (2) | 0.038 (2) | 0.046 (2) | 0.0006 (18) | −0.0138 (18) | −0.0090 (18) |
C9 | 0.034 (2) | 0.088 (4) | 0.051 (3) | 0.008 (3) | −0.013 (2) | −0.036 (3) |
C10 | 0.031 (2) | 0.116 (5) | 0.034 (2) | −0.018 (3) | −0.0053 (18) | −0.012 (3) |
C101 | 0.045 (5) | 0.032 (5) | 0.038 (5) | −0.016 (4) | −0.016 (4) | 0.009 (4) |
C102 | 0.126 (11) | 0.043 (5) | 0.030 (5) | −0.009 (6) | −0.009 (6) | 0.005 (4) |
C103 | 0.040 (5) | 0.031 (5) | 0.028 (5) | −0.003 (5) | −0.002 (4) | −0.001 (4) |
C104 | 0.044 (6) | 0.045 (6) | 0.023 (5) | −0.010 (5) | 0.002 (4) | 0.002 (4) |
C11 | 0.048 (3) | 0.073 (3) | 0.040 (2) | −0.026 (3) | −0.0168 (19) | 0.025 (2) |
C12 | 0.036 (2) | 0.033 (2) | 0.046 (2) | −0.007 (2) | −0.0098 (17) | 0.0038 (18) |
C13 | 0.0223 (17) | 0.042 (2) | 0.0347 (19) | −0.0019 (17) | −0.0027 (15) | 0.0019 (17) |
C14 | 0.039 (2) | 0.094 (4) | 0.0250 (19) | 0.000 (3) | 0.0010 (17) | −0.007 (2) |
C15 | 0.0293 (18) | 0.0291 (18) | 0.041 (2) | 0.0064 (16) | −0.0063 (17) | −0.0055 (17) |
N1 | 0.0267 (15) | 0.0331 (15) | 0.0271 (14) | 0.0018 (14) | −0.0027 (13) | −0.0027 (11) |
C16 | 0.056 (2) | 0.0216 (17) | 0.055 (3) | −0.0022 (18) | −0.019 (2) | −0.0020 (19) |
O1—S1 | 1.448 (2) | C10—C101 | 1.527 (7) |
O2—S1 | 1.460 (2) | C101—C102 | 1.307 (9) |
O3—S1 | 1.459 (2) | C101—H101 | 0.9500 |
S1—C1 | 1.776 (3) | C102—H10A | 0.9500 |
C1—C2 | 1.387 (4) | C102—H10B | 0.9500 |
C1—C6 | 1.389 (5) | C103—C104 | 1.317 (9) |
C2—C3 | 1.392 (5) | C103—H103 | 0.9500 |
C2—H2 | 0.9500 | C104—H10C | 0.9500 |
C3—C4 | 1.392 (5) | C104—H10D | 0.9500 |
C3—H3 | 0.9500 | C11—C12 | 1.387 (6) |
C4—C5 | 1.386 (5) | C11—H11 | 0.9500 |
C4—C41 | 1.485 (5) | C12—H12 | 0.9500 |
C41—C42 | 1.311 (5) | C13—N1 | 1.533 (5) |
C41—H41 | 0.9500 | C13—H13A | 0.9900 |
C42—H42A | 0.9500 | C13—H13B | 0.9900 |
C42—H42B | 0.9500 | C14—N1 | 1.499 (4) |
C5—C6 | 1.397 (4) | C14—H14A | 0.9800 |
C5—H5 | 0.9500 | C14—H14B | 0.9800 |
C6—H6 | 0.9500 | C14—H14C | 0.9800 |
C7—C8 | 1.386 (5) | C15—N1 | 1.481 (4) |
C7—C12 | 1.395 (5) | C15—H15A | 0.9800 |
C7—C13 | 1.506 (5) | C15—H15B | 0.9800 |
C8—C9 | 1.380 (6) | C15—H15C | 0.9800 |
C8—H8 | 0.9500 | N1—C16 | 1.501 (4) |
C9—C10 | 1.382 (8) | C16—H16A | 0.9800 |
C9—H9 | 0.9500 | C16—H16B | 0.9800 |
C10—C11 | 1.376 (8) | C16—H16C | 0.9800 |
C10—C103 | 1.504 (7) | ||
O1—S1—O3 | 113.77 (15) | C10—C101—H101 | 120.8 |
O1—S1—O2 | 113.04 (15) | C101—C102—H10A | 120.0 |
O3—S1—O2 | 112.16 (16) | C101—C102—H10B | 120.0 |
O1—S1—C1 | 106.15 (14) | H10A—C102—H10B | 120.0 |
O3—S1—C1 | 106.25 (15) | C104—C103—C10 | 116.9 (8) |
O2—S1—C1 | 104.59 (15) | C104—C103—H103 | 121.5 |
C2—C1—C6 | 119.2 (3) | C10—C103—H103 | 121.5 |
C2—C1—S1 | 119.9 (2) | C103—C104—H10C | 120.0 |
C6—C1—S1 | 120.9 (3) | C103—C104—H10D | 120.0 |
C1—C2—C3 | 120.4 (3) | H10C—C104—H10D | 120.0 |
C1—C2—H2 | 119.8 | C10—C11—C12 | 121.7 (5) |
C3—C2—H2 | 119.8 | C10—C11—H11 | 119.1 |
C2—C3—C4 | 120.9 (3) | C12—C11—H11 | 119.1 |
C2—C3—H3 | 119.5 | C11—C12—C7 | 120.5 (4) |
C4—C3—H3 | 119.5 | C11—C12—H12 | 119.8 |
C5—C4—C3 | 118.2 (3) | C7—C12—H12 | 119.8 |
C5—C4—C41 | 118.5 (3) | C7—C13—N1 | 113.7 (3) |
C3—C4—C41 | 123.3 (3) | C7—C13—H13A | 108.8 |
C42—C41—C4 | 126.1 (4) | N1—C13—H13A | 108.8 |
C42—C41—H41 | 116.9 | C7—C13—H13B | 108.8 |
C4—C41—H41 | 116.9 | N1—C13—H13B | 108.8 |
C41—C42—H42A | 120.0 | H13A—C13—H13B | 107.7 |
C41—C42—H42B | 120.0 | N1—C14—H14A | 109.5 |
H42A—C42—H42B | 120.0 | N1—C14—H14B | 109.5 |
C4—C5—C6 | 121.3 (3) | H14A—C14—H14B | 109.5 |
C4—C5—H5 | 119.4 | N1—C14—H14C | 109.5 |
C6—C5—H5 | 119.4 | H14A—C14—H14C | 109.5 |
C1—C6—C5 | 119.9 (3) | H14B—C14—H14C | 109.5 |
C1—C6—H6 | 120.0 | N1—C15—H15A | 109.5 |
C5—C6—H6 | 120.0 | N1—C15—H15B | 109.5 |
C8—C7—C12 | 117.8 (4) | H15A—C15—H15B | 109.5 |
C8—C7—C13 | 120.1 (4) | N1—C15—H15C | 109.5 |
C12—C7—C13 | 121.9 (4) | H15A—C15—H15C | 109.5 |
C9—C8—C7 | 120.6 (4) | H15B—C15—H15C | 109.5 |
C9—C8—H8 | 119.7 | C15—N1—C16 | 109.7 (3) |
C7—C8—H8 | 119.7 | C15—N1—C14 | 109.1 (3) |
C8—C9—C10 | 122.0 (5) | C16—N1—C14 | 108.5 (3) |
C8—C9—H9 | 119.0 | C15—N1—C13 | 111.1 (3) |
C10—C9—H9 | 119.0 | C16—N1—C13 | 111.2 (3) |
C11—C10—C9 | 117.4 (4) | C14—N1—C13 | 107.2 (3) |
C11—C10—C103 | 138.3 (6) | N1—C16—H16A | 109.5 |
C9—C10—C103 | 104.1 (6) | N1—C16—H16B | 109.5 |
C11—C10—C101 | 106.5 (6) | H16A—C16—H16B | 109.5 |
C9—C10—C101 | 136.0 (6) | N1—C16—H16C | 109.5 |
C102—C101—C10 | 118.3 (8) | H16A—C16—H16C | 109.5 |
C102—C101—H101 | 120.8 | H16B—C16—H16C | 109.5 |
O1—S1—C1—C2 | 67.5 (3) | C7—C8—C9—C10 | 1.0 (7) |
O3—S1—C1—C2 | −171.1 (2) | C8—C9—C10—C11 | −0.1 (7) |
O2—S1—C1—C2 | −52.3 (3) | C8—C9—C10—C103 | 175.4 (6) |
O1—S1—C1—C6 | −114.1 (3) | C8—C9—C10—C101 | −175.7 (6) |
O3—S1—C1—C6 | 7.3 (3) | C11—C10—C101—C102 | −169.3 (7) |
O2—S1—C1—C6 | 126.1 (3) | C9—C10—C101—C102 | 6.6 (12) |
C6—C1—C2—C3 | −1.9 (5) | C11—C10—C103—C104 | −13.7 (13) |
S1—C1—C2—C3 | 176.5 (3) | C9—C10—C103—C104 | 172.3 (8) |
C1—C2—C3—C4 | −0.7 (5) | C9—C10—C11—C12 | −0.6 (7) |
C2—C3—C4—C5 | 2.9 (5) | C103—C10—C11—C12 | −174.0 (7) |
C2—C3—C4—C41 | −175.4 (3) | C101—C10—C11—C12 | 176.3 (5) |
C5—C4—C41—C42 | −173.8 (4) | C10—C11—C12—C7 | 0.2 (6) |
C3—C4—C41—C42 | 4.5 (6) | C8—C7—C12—C11 | 0.7 (5) |
C3—C4—C5—C6 | −2.5 (5) | C13—C7—C12—C11 | 176.9 (4) |
C41—C4—C5—C6 | 175.9 (3) | C8—C7—C13—N1 | −88.7 (4) |
C2—C1—C6—C5 | 2.3 (5) | C12—C7—C13—N1 | 95.2 (4) |
S1—C1—C6—C5 | −176.2 (3) | C7—C13—N1—C15 | 59.1 (4) |
C4—C5—C6—C1 | −0.1 (6) | C7—C13—N1—C16 | −63.3 (4) |
C12—C7—C8—C9 | −1.3 (6) | C7—C13—N1—C14 | 178.2 (3) |
C13—C7—C8—C9 | −177.6 (4) |
Cg1 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14B···O3 | 0.98 | 2.32 | 3.264 (5) | 161 |
C14—H14A···O2i | 0.98 | 2.48 | 3.346 (5) | 147 |
C15—H15A···O1i | 0.98 | 2.63 | 3.544 (4) | 155 |
C15—H15A···O2i | 0.98 | 2.49 | 3.348 (4) | 147 |
C13—H13B···O3ii | 0.99 | 2.56 | 3.466 (5) | 152 |
C15—H15B···O2ii | 0.98 | 2.60 | 3.477 (4) | 149 |
C16—H16B···O1iii | 0.98 | 2.61 | 3.365 (4) | 134 |
C16—H16C···O2i | 0.98 | 2.52 | 3.370 (5) | 146 |
C41—H41···O2iv | 0.95 | 2.58 | 3.481 (4) | 157 |
C42—H42B···O1v | 0.95 | 2.63 | 3.494 (4) | 151 |
C5—H5···Cg1iv | 0.95 | 2.93 | 3.837 (4) | 161 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1/2, −y+1/2, −z; (v) −x+3/2, −y+1, z−1/2. |
Contacts | Included surface area | ||
Salt | Cation | Anion | |
H···H | 52.5 | 60.3 | 37.9 |
H···C/C···H | 26.1 | 20.8 | 27.8 |
H···O/O···H | 20.7 | 17.8 | 34.2 |
C···C | 0.5 | 0.9 | 0.0 |
H···S/S···H | 0.1 | 0.1 | 0.1 |
Funding information
We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer. JS also thanks the Department of Chemistry, University of Otago for support of his work.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goswami, S. K., McAdam, C. J., Hanton, L. R. & Moratti, S. C. (2017). Macromol. Rapid Commun. 38, 1700103. Web of Science CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Lee, S.-H., Yoo, B.-W., Yun, H., Jazbinsek, M. & Kwon, O.-P. (2015). J. Mol. Struct. 1100, 359–365. Web of Science CSD CrossRef CAS Google Scholar
Leonard, M. A., Squattrito, P. J. & Dubey, S. N. (1999). Acta Cryst. C55, 35–39. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Li, G., Xue, H., Gao, C., Zhang, F. & Jiang, S. (2010). Macromolecules, 43, 14–16. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Naficy, S., Brown, H. R., Razal, J. M., Spinks, G. M. & Whitten, P. G. (2011). Aust. J. Chem. 64, 1007–1025. Web of Science CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Peak, C. W., Wilker, J. J. & Schmidt, G. (2013). Colloid Polym. Sci. 291, 2031–2047. Web of Science CrossRef CAS Google Scholar
Pushparajan, C., Goswami, S. K., McAdam, C. J., Hanton, L. R., Dearden, P. K., Moratti, S. C. & Cridge, A. G. (2018). Electrophoresis, 39, 824–832. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sikkema, F. D., Comellas-Aragonès, M., Fokkink, R. G., Verduin, B. J. M., Cornelissen, J. J. L. M. & Nolte, R. J. M. (2007). Org. Biomol. Chem. 5, 54–57. Web of Science CrossRef PubMed CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Z., Lv, F., Cao, L., Liu, L., Zhang, Y. & Lu, Z. (2015). Angew. Chem. Int. Ed. 54, 7944–7948. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia, Nedlands, Western Australia; https://hirshfeldsurface.net. Google Scholar
Van Vlierberghe, S., Dubruel, P. & Schacht, E. (2011). Biomacromolecules, 12, 1387–1408. Web of Science CrossRef CAS PubMed Google Scholar
Vijay, R. J., Melikechi, N., Thomas, T., Gunaseelan, R., Arockiaraj, M. A. & Sagayaraj, P. (2012). J. Cryst. Growth, 338, 170–176. Google Scholar
Vorotnikov, Y. A., Mikhailov, M. A., Brylev, K. A., Piryazev, D. A., Kuratieva, N. V., Sokolov, M. N., Mironov, Y. V. & Shestopalov, M. A. (2015). Izv. Akad. Nauk SSSR, Ser. Khim. (Russ. Chem. Bull.), 64, 2591–2596. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Woeste, G., Meyer, W. H. & Wegner, G. (1993). Makromol. Chem. 194, 1237–1248. CrossRef CAS Google Scholar
Zhao, X. (2014). Soft Matter, 10, 672–687. Web of Science CrossRef CAS PubMed Google Scholar
Zurick, K. M. & Bernards, M. (2014). J. Appl. Polym. Sci. 131, 40069. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.