research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, characterization, and crystal structure of aqua­bis­­(4,4′-dimeth­­oxy-2,2′-bi­pyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octa­hydrate

CROSSMARK_Color_square_no_text.svg

aInstitut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
*Correspondence e-mail: dennis.wiedemann@chem.tu-berlin.de

Edited by O. Blacque, University of Zürich, Switzerland (Received 9 May 2019; accepted 4 June 2019; online 11 June 2019)

Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an L-(+)-tartrate as complexing agent, and a 2,2′-bi­pyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis­(4,4′-dimeth­oxy-2,2′-bi­pyri­dine)-1κ2N,N′;2κ2N,N′-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octa­hydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight mol­ecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex mol­ecules exhibit an ansa-like structure with two planar, nearly parallel bi­pyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water mol­ecules give rise to a layered supra­molecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs.

1. Chemical context

The production of printed circuit boards (PCB) starts with electroless copper deposition (ECD) on electrically non-conductive plastics. Copper is deposited from an alkaline solution of a copper(II) salt and a reducing agent (in general, formaldehyde). The reduction of copper(II) ions proceeds only at pH > 10, thus making methane­diolate (deprotonated formaldehyde hydrate) the actual reactant (Van Den Meerakker, 1981[Van Den Meerakker, J. E. A. M. (1981). J. Appl. Electrochem. 11, 387-393.]; Jusys & Vaskelis, 1992[Jusys, Z. & Vaskelis, A. (1992). Langmuir, 8, 1230-1231.]). A complexing agent prevents the precipitation of copper(II) hydroxide (KL = 0.16 µmol3 L−3), which would otherwise occur at pH > 5.7. Since the early development of ECD in 1946, L-(+)-tartrate has commonly been used as complexing agent (Narcus, 1947[Narcus, H. (1947). Met. Finish. 45, 64-70.]). Between pH 11 and 13, it forms bis­(tartrato)copper(II), [Cu(C4H2O6)2]6–, where each tartaric-acid-derived ligand is quadruply deprotonated. This complex is also known from Fehling's solution (Fehling, 1848[Fehling, H. (1848). Arch. Physiol. Heilkd. 7, 64-73.]; Hörner & Klüfers, 2016[Hörner, T. G. & Klüfers, P. (2016). Eur. J. Inorg. Chem. pp. 1798-1807.]). Reactant solutions facilitating ECD, so-called electroless copper baths (ECB), are metastable with respect to the precipitation of metallic copper, making additional stabilizers necessary. Over the past 60 years, a plethora of compounds has been used for this purpose (Agens, 1960[Agens, M. C. (1960). US-American Patent No. 2938805.]; Saubestre, 1972[Saubestre, E. B. (1972). Plating 59, 563-566.]), affecting not only the lifetime of ECBs but also the rate of ECD and the physical properties of the deposited copper. Amongst the stabilizers, 2,2′-bi­pyridine and its derivatives are especially popular (Oita et al., 1997[Oita, M., Matsuoka, M. & Iwakura, C. (1997). Electrochim. Acta, 42, 1435-1440.]).

[Scheme 1]

Herein, we report on the crystal structure of a compound that formed from an alkaline solution of a copper(II) salt, a tartrate, and 4,4′-dimeth­oxy-2,2′-bi­pyridine (dmobpy) during the investigation of stabilities of various copper(II) complexes with ligands derived from 2,2′-bi­pyridine (bpy).

2. Structural commentary

The compound crystallizes in the Sohncke group P21 with one chiral complex mol­ecule and eight mol­ecules of hydration water in the asymmetric unit. The copper(II) ions in the dinuclear complex (see Fig. 1[link]) are each coordinated by two azine nitro­gen donors, one alcoholate and one carboxyl­ate oxygen donor. The lengths of the respective short bonds (ca 1.89–2.00 Å) reflect the formal charge of the donor atoms, while a cis configuration is enforced by the structure of the ligand. An additional longer bond to an aqua ligand [d(Cu1—O60) = 2.322 (3) Å] augments the coordination environment of Cu1 to a distorted square pyramid. Cu2, on the other hand, is coordinated in a square planar fashion with a short contact to a second alcoholate oxygen atom [d(Cu2⋯O55) = 2.549 (2) Å].

[Figure 1]
Figure 1
Molecular structure of the title compound as an ORTEP plot (complex mol­ecule only, solvent water mol­ecules omitted for clarity). Hydrogen atoms are depicted as spheres with arbitrary radius, all other atoms as displacement ellipsoids of 50% probability. The dashed line indicates a non-bonding short contact.

The 4,4′-dimeth­oxy-2,2′-bi­pyridine ligands are nearly planar [positional root-mean-square (r.m.s.) deviation excluding hydrogen atoms: 0.032 Å for ligand containing N10 and N20, 0.041 Å for ligand containing N30 and N40], almost parallel [inter­planar angle: 2.70 (4)°], and give rise to intra­molecular π stacks with an average centroid–plane distance of 3.36 (5) Å. Because of this, the overall mol­ecular structure resembles that of ansa compounds, with the tartrato ligand representing the `handle'. The tartrato ligand assumes an anti­periplanar (ap) conformation with respect to the central bond of the carbon-atom chain. The C—O bonds at the carboxyl­ate donors are synperiplanar (sp) to the C—O bonds at the neighboring alcoholate donors.

The absolute structure of the crystal was established via anomalous-dispersion effects [the inversion-distinguishing power of the experiment is strong according to Flack & Bernardinelli 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.])] and matches the absolute configuration of the employed L-(+)-(2R,3R)-tartrate. The Flack parameter is within the statistical range for an untwinned crystal, thus confirming the enanti­opurity of the complex mol­ecules (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]).

3. Supra­molecular features

Roughly parallel to {[\overline{1}]11}, complexes form infinite π stacks, in which the inter­molecular distance of 3.37 (6) Å (average centroid–plane distance) equals the intra­molecular one (see Fig. 2[link]a). A hydrogen bond from the aqua ligand to the carboxyl­ato oxygen atom O50 of the neighboring mol­ecule in the stack connects the tartrato(4−) ligands, forming an infinite hydrophilic backbone along the a direction.

[Figure 2]
Figure 2
Packing diagram in views along (a) the vector a + c showing the π-stacked bi­pyridine-type ligands and (b) the cell vector c showing the layer-like arrangement. Dashed bright blue lines indicate hydrogen bonds. Unit-cell boundaries are depicted in black or red/green/blue marking the directions a/b/c, respectively. Symmetry code: (i) x − 1, y, z.

The eight unique water mol­ecules constitute a local network of hydrogen bonds (see Table 1[link]) in a pocket formed by aqua (donors only) and tartrato ligands (all oxygen atoms as acceptors). The meth­oxy groups do not partake in hydrogen bonding but build a hydro­phobic lining of the pocket. In this way, a front-to-back arrangement of alternating water and complex layers along b is formed (see Fig. 2[link]b).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O60—H60A⋯O50i 0.81 (5) 2.00 (5) 2.802 (3) 167 (5)
O60—H60B⋯O67 0.77 (5) 1.98 (5) 2.750 (4) 177 (5)
O61—H61A⋯O65 0.81 (2) 2.02 (3) 2.813 (4) 166 (4)
O61—H61B⋯O52ii 0.82 (2) 1.92 (2) 2.739 (3) 177 (4)
O62—H62A⋯O64 0.79 (2) 2.01 (3) 2.774 (3) 164 (5)
O62—H62B⋯O55 0.80 (2) 1.85 (2) 2.650 (3) 174 (5)
O63—H63A⋯O59ii 0.83 (2) 1.97 (2) 2.806 (3) 178 (4)
O63—H63B⋯O61 0.85 (2) 2.13 (2) 2.970 (3) 176 (4)
O64—H64A⋯O52 0.81 (2) 2.05 (3) 2.762 (3) 146 (4)
O64—H64B⋯O65 0.85 (2) 1.95 (3) 2.719 (3) 149 (4)
O65—H65A⋯O59iii 0.82 (2) 2.08 (3) 2.871 (3) 162 (4)
O65—H65B⋯O66 0.81 (2) 2.01 (2) 2.801 (4) 167 (4)
O66—H66A⋯O53ii 0.79 (2) 1.91 (3) 2.680 (3) 169 (5)
O66—H66B⋯O62 0.80 (2) 2.02 (3) 2.808 (4) 167 (5)
O67—H67A⋯O62 0.84 (2) 1.91 (3) 2.737 (4) 168 (5)
O67—H67B⋯O59ii 0.83 (2) 2.15 (2) 2.973 (3) 178 (5)
O68—H68A⋯O57iii 0.90 (3) 2.52 (4) 3.236 (4) 138 (5)
O68—H68B⋯O60iv 0.91 (2) 2.23 (3) 3.129 (5) 169 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z-1; (iii) x-1, y, z-1; (iv) x-1, y, z.

4. Database survey

The Cambridge Structural Database [CDS 5.40 Update 1 (February 2019); Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]] contains 33 structures of tartratometal (CoII, CrIII, CuII, PdII, PtII) complexes with bi­pyridine-related ligands, amongst which twelve contain copper(II). The palladium(II) and platinum(II) complexes are structurally loosely related to [Cu2(dmobpy)2(μ-C4H2O6)(H2O)] in that they form isolated neutral dinuclear complexes [{MIIL}2(μ-C4H2O6)] (M: metal, L: bi­pyridine-related ligand). Their centers, however, are coordinated in a square-planar fashion without additional longer bonds to oxygen donors.

The copper(II) complexes fall into two groups containing either regular tartrate(2−) or deprotonated tartrate(4−). The former group comprises isolated cationic complexes such as [{Cu(bpy)2}2(μ-C4H4O6)]2+ (Wu et al., 2008[Wu, Y.-P., Fu, F., Li, D.-S., Yang, Z.-H., Zou, K. & Wang, Y.-Y. (2008). Inorg. Chem. Commun. 11, 621-625.]) and poly-/oligomeric complexes such as [Cu(bpy)(μ-C4H4O6)]n (Liu et al., 2008[Liu, J.-Q., Wang, Y.-Y., Ma, L.-F., Zhang, W.-H., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2008). Inorg. Chim. Acta, 361, 2327-2334.]). The latter group, on the other hand, incorporates isolated neutral complexes like aqua-terminated [Cu2L2(μ-C4H2O6)(H2O)] (L: bis­[2-pyrid­yl]amine; Li et al., 2006[Li, D.-S., Zhou, C.-H., Wang, Y.-Y., Fu, F., Wu, Y.-P., Qi, G.-C. & Shi, Q.-Z. (2006). Chin. J. Chem. 24, 1352-1358.]) or polymeric complexes bridged by carboxyl­ate-O donors such as [{Cu(bpy)}2(μ4-C4H2O6)]n presenting Cu2O2 motifs (Li et al., 2005[Li, D.-S., Wang, Y.-Y., Liu, P., Luan, X.-J., Zhou, C.-H. & Shi, Q.-Z. (2005). Acta Chim. Sinica, 63, 1633-1637.]).

The closest known relative to the title compound, however, is [Cu2(phen)2(μ-C4H2O6)(H2O)]·8H2O (phen: 1,10-phenanthroline), which crystallizes in the same space-group type with comparable cell dimensions (Saha et al., 2011[Saha, R., Biswas, S. & Mostafa, G. (2011). CrystEngComm, 13, 1018-1028.]). Both structures are crystal-chemically homeotypic and differ mainly in the replacement of the 4,4′-meth­oxy groups at the bi­pyridine-like ligands by a 3,3′-(1,2-ethenedi­yl) bridge.

5. Synthesis and crystallization

Copper(II) sulfate penta­hydrate (4.96 g, 19.9 mmol, 1.00 eq), potassium sodium L-(+)-tartrate tetra­hydrate (12.33 g, 43.7 mmol, 2.20 eq), and sodium hydroxide (5.60 g, 140.0 mmol, 7.04 eq) were dissolved in deionized water (1 L), resulting in a solution with pH = 12.8. 4,4′-Dimeth­oxy-2,2′-bi­pyridine (216 mg, 1.00 mmol) was dissolved in sulfuric acid (10 mL, 0.1 mol L−1). In a plastic centrifuge tube, the tartratocopper solution (5 mL) was mixed with the bi­pyridine solution (0.12 mmol). The mixture was then filled up to a final volume of 7 mL with deionized water and sodium hydroxide solution to adjust the final pH to 12.8.

After two days of standing unsealed at ambient temperature, dark-blue crystals of [Cu2(dmobpy)2(μ-C4H2O6)(H2O)]·8H2O formed.

An infrared (IR) spectrum in attenuated total reflectance (ATR) was acquired from a ground crystal using a Thermo Nicolet iS5 equipped with a Thermo Nicolet iD5 ZnSe sample holder. Bands (vs: very strong, s: strong, m: medium, w: weak, br: broad) were assigned using literature data (Hesse et al., 1979[Hesse, M., Meier, H. & Zeeh, B. (1979). Spektroskopische Methoden in der organischen Chemie, pp. 55-92. Suttgart: Thieme.]; Socrates, 2001[Socrates, G. (2001). Infrared and Raman Characteristic Group Frequencies, 3rd ed. Chichester: Wiley.]), as well as reference spectra of the dmobpy ligand and potassium sodium L-(+)-tartrate. The crystals were insoluble in common laboratory solvents (alkanes, ethers, alcohols, di­methyl­formamide, dimethyl sulfoxide, and water) at ambient and elevated temperature and decomposed in boiling coordinating solvents. Therefore, we cannot provide data of analyses relying on solutions.

IR (ATR): ~ν = 3467, 3295 (all br w, ν[OH]), 1669 (s, ν[OC=O]), 1600 (vs, ν[OC—O], ν[C=C], ν[C=N]), 1558 (vs, ν[C=C], ν[C=N]), 1499 (s), 1476, 1461, 1437, 1418 (all s, δ[CH], dmobpy), 1344 (s, δ[CH], tartrato), 1317 (m), 1280 (vs, νs[C—OMe]), 1253 (s, tartrato), 1226 (s, dmobpy), 1186 (w), 1137 (w), 1103 (w), 1040, 1025, 1016, 1005 (all s, νas[C—OMe], ν[C=C], ν[C=N]), 872 (w), 851 (s, γ[CH]), 838 (vs, γ[CH]), 794 (s, δs[COO]), 662 (br m, ω[COO]), 572 cm−1 (s, ρ[COO]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were located in difference-Fourier maps (for the complex and most water mol­ecules) or their positions were inferred from neighboring sites (for the water mol­ecule containing O68). Carbon-bound hydrogen atoms were refined with standard riding models. Oxygen-bound hydrogen atoms were refined semi-freely with restrained 1,2- [d(O—H) ≃ 0.84 (2) Å] and 1,3-distances [d(H⋯H) ≃ 1.33 (4) Å], as well as constrained isotropic displacement parameters [Uiso(H) = 1.2Ueq(O)]. Final bond lengths ranged between 0.77 (5) and 0.91 (2) Å with an r.m.s. deviation of 0.036 Å from the target value.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O
Mr 867.75
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 8.5134 (4), 23.7812 (9), 8.9028 (4)
β (°) 101.401 (4)
V3) 1766.87 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.29
Crystal size (mm) 0.84 × 0.70 × 0.09
 
Data collection
Diffractometer Agilent Xcalibur
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.440, 0.886
No. of measured, independent and observed [I > 2σ(I)] reflections 19893, 8971, 8476
Rint 0.021
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.04
No. of reflections 8971
No. of parameters 536
No. of restraints 25
H-atom treatment H-atom parameters constrained for H on C, refined H-atom coordinates only for H on heteroatoms
Δρmax, Δρmin (e Å−3) 0.49, −0.50
Absolute structure Flack x determined using 2429 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.010 (6)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

After close inspection of the reflection statistics, data with 2θ > 60° (essentially noise) and the high-angle reflection 1 [\overline{21}] 0 (mismeasurement) were excluded from the final refinement. The somewhat lower Friedel pair coverage is due to an inadequate choice of data-collection strategy. Unfortunately, we could not repeat the experiment because of sample loss.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Aqua-1κO-bis(4,4'-dimethoxy-2,2'-bipyridine)-1κ2N,N';2κ2N,N'-[µ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octahydrate top
Crystal data top
[Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2OF(000) = 900
Mr = 867.75Dx = 1.631 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.5134 (4) ÅCell parameters from 8483 reflections
b = 23.7812 (9) Åθ = 3.7–32.5°
c = 8.9028 (4) ŵ = 1.29 mm1
β = 101.401 (4)°T = 150 K
V = 1766.87 (13) Å3Plate, dark blue
Z = 20.84 × 0.70 × 0.09 mm
Data collection top
Agilent Xcalibur
diffractometer
8971 independent reflections
Radiation source: fine-focus sealed tube, Agilent Enhance8476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.3031 pixels mm-1θmax = 30.0°, θmin = 3.5°
ω scansh = 1111
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2015)
k = 3331
Tmin = 0.440, Tmax = 0.886l = 1112
19893 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028Heteroxyz
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.0799P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
8971 reflectionsΔρmax = 0.49 e Å3
536 parametersΔρmin = 0.50 e Å3
25 restraintsAbsolute structure: Flack x determined using 2429 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.010 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

————————————————————————

l.s. plane 1

————————————————————————

Equation (x, y, z in crystal coordinates):

–6.8237 (16) x + 5.2625 (12) y + 6.259 (2) z = 3.953 (6)

Defining atoms and their deviation from the plane:

N30: –0.014 (2) Å

C31: –0.046 (3) Å

C32: –0.024 (3) Å

C33: 0.024 (3) Å

C34: 0.042 (3) Å

C35: 0.024 (2) Å

O36: 0.055 (2) Å

C37: –0.075 (3) Å

N40: 0.042 (2) Å

C41: 0.018 (3) Å

C42: –0.029 (3) Å

C43: –0.033 (3) Å

C44: –0.014 (3) Å

C45: 0.023 (2) Å

O46: –0.059 (2) Å

C47: 0.065 (3) Å

Rms deviation: 0.041 Å

————————————————————————

l.s. plane 2

————————————————————————

Equation (x, y, z in crystal coordinates):

–6.6296 (17) x + 6.166 (11) y + 6.3561 (18) z = 1.306 (6)

Defining atoms and their deviation from the plane:

N10: –0.025 (2) Å

C11: –0.035 (2) Å

C12: –0.025 (3) Å

C13: –0.001 (3) Å

C14: 0.002 (3) Å

C15: –0.014 (2) Å

O16: 0.013 (2) Å

C17: 0.056 (3) Å

N20: 0.074 (2) Å

C21: 0.043 (2) Å

C22: –0.003 (3) Å

C23: –0.019 (3) Å

C24: –0.046 (2) Å

C25: 0.003 (2) Å

O26: 0.004 (2) Å

C27: –0.026 (3) Å

Rms deviation: 0.032 Å

————————————————————————

Angle between planes 1 and 2: 2.70 (4)°

Refinement. Hydrogen atoms were located on difference Fourier maps for the complex and most water molecules or inferred from neighbouring sites for the water molecule containing O68. Hydrogen positions were refined semi-freely for oxygen-bound atoms with d(O—H) 0.84 (2) Å, d(H···H) 1.33 Å, and Uiso(H) = 1.2Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C111.2715 (3)0.41601 (12)1.1226 (3)0.0182 (5)
H111.2838900.3797961.1684950.022*
C121.3710 (3)0.45876 (13)1.1865 (3)0.0200 (5)
H121.4512780.4520421.2751420.024*
C131.3535 (3)0.51201 (13)1.1204 (3)0.0170 (5)
C141.2344 (3)0.52043 (12)0.9885 (3)0.0164 (5)
H141.2195700.5561910.9401630.020*
C151.1396 (3)0.47504 (12)0.9311 (3)0.0145 (5)
C171.4390 (4)0.60720 (13)1.1263 (4)0.0245 (6)
H17A1.4567120.6062591.0208080.037*
H17B1.5188120.6317761.1883590.037*
H17C1.3313020.6216501.1267260.037*
C210.8061 (3)0.42851 (13)0.6374 (3)0.0193 (5)
H210.7490510.3943300.6127520.023*
C220.7652 (3)0.47396 (13)0.5435 (3)0.0200 (5)
H220.6815910.4711840.4557020.024*
C230.8477 (3)0.52418 (13)0.5782 (3)0.0178 (5)
C240.9754 (3)0.52630 (12)0.7051 (3)0.0159 (5)
H241.0371740.5595250.7294750.019*
C251.0079 (3)0.47817 (11)0.7933 (3)0.0145 (5)
C270.8802 (4)0.62092 (14)0.5171 (4)0.0300 (7)
H27A0.8657580.6353930.6165470.045*
H27B0.8366200.6479810.4365800.045*
H27C0.9945770.6152980.5190380.045*
C310.3834 (3)0.43168 (13)0.6794 (3)0.0205 (5)
H310.3494320.3935960.6680760.025*
C320.3125 (4)0.46999 (14)0.5734 (3)0.0213 (5)
H320.2301840.4587180.4905470.026*
C330.3622 (3)0.52578 (13)0.5883 (3)0.0193 (5)
C340.4843 (3)0.54103 (12)0.7115 (3)0.0166 (5)
H340.5212990.5787450.7241060.020*
C350.5496 (3)0.49946 (12)0.8148 (3)0.0154 (5)
C370.3456 (4)0.61790 (14)0.4770 (4)0.0290 (7)
H37A0.3386650.6370590.5729580.043*
H37B0.2809050.6382290.3906590.043*
H37C0.4574850.6169270.4649780.043*
C410.8415 (3)0.46603 (13)1.1602 (3)0.0192 (5)
H410.8695370.4333561.2209710.023*
C420.9236 (3)0.51491 (13)1.2011 (3)0.0213 (6)
H421.0085670.5158501.2880880.026*
C430.8816 (3)0.56337 (13)1.1140 (3)0.0204 (5)
C440.7578 (3)0.56044 (12)0.9846 (3)0.0168 (5)
H440.7271530.5925570.9221940.020*
C450.6817 (3)0.50923 (12)0.9505 (3)0.0160 (5)
C470.9181 (4)0.66188 (15)1.0865 (5)0.0335 (7)
H47A0.9332070.6598150.9803390.050*
H47B0.9836270.6924541.1397940.050*
H47C0.8049330.6690511.0874140.050*
C510.5003 (3)0.28733 (12)0.9647 (3)0.0164 (5)
C540.6577 (3)0.29477 (12)1.0809 (3)0.0152 (5)
H540.6642790.2668961.1659690.018*
C560.7939 (3)0.28407 (12)0.9911 (3)0.0148 (5)
H560.7760600.2468640.9381530.018*
C580.9527 (3)0.28248 (13)1.1070 (3)0.0192 (5)
N101.1565 (3)0.42400 (10)0.9965 (3)0.0151 (4)
N200.9238 (3)0.43016 (10)0.7633 (3)0.0150 (4)
N300.4999 (3)0.44568 (10)0.7997 (3)0.0175 (4)
N400.7216 (3)0.46292 (10)1.0359 (3)0.0167 (4)
O161.4539 (3)0.55171 (10)1.1887 (2)0.0223 (4)
O260.7974 (3)0.56828 (10)0.4865 (2)0.0239 (4)
O360.2861 (3)0.56124 (10)0.4806 (2)0.0244 (4)
O460.9656 (3)0.60980 (10)1.1623 (3)0.0265 (5)
O500.4432 (2)0.33278 (9)0.8974 (2)0.0206 (4)
O520.4392 (3)0.24029 (9)0.9335 (2)0.0217 (4)
O530.6716 (3)0.34935 (8)1.1395 (2)0.0185 (4)
O550.7926 (2)0.32664 (9)0.8810 (2)0.0170 (4)
O571.0554 (3)0.31931 (10)1.0907 (3)0.0293 (5)
O590.9761 (3)0.24641 (10)1.2100 (2)0.0233 (4)
O601.1234 (3)0.32417 (11)0.7440 (3)0.0333 (6)
H60A1.217 (6)0.321 (2)0.788 (5)0.040*
H60B1.084 (6)0.300 (2)0.691 (5)0.040*
Cu10.98891 (3)0.36813 (2)0.91447 (4)0.01545 (7)
Cu20.59542 (4)0.39447 (2)0.96609 (4)0.01590 (7)
O610.4573 (3)0.17342 (10)0.1868 (3)0.0273 (5)
H61A0.421 (5)0.1934 (16)0.245 (4)0.033*
H61B0.450 (5)0.1945 (16)0.112 (3)0.033*
O620.6964 (3)0.27767 (12)0.6111 (3)0.0283 (5)
H62A0.633 (4)0.2548 (15)0.623 (5)0.034*
H62B0.720 (5)0.2935 (17)0.692 (3)0.034*
O630.7991 (3)0.14628 (10)0.1929 (3)0.0292 (5)
H63A0.852 (4)0.1759 (14)0.196 (5)0.035*
H63B0.703 (3)0.1559 (18)0.192 (5)0.035*
O640.4289 (3)0.21351 (11)0.6298 (3)0.0284 (5)
H64A0.403 (5)0.2303 (18)0.701 (3)0.034*
H64B0.364 (4)0.2296 (18)0.558 (3)0.034*
O650.3108 (3)0.25427 (12)0.3445 (3)0.0295 (5)
H65A0.219 (3)0.2590 (18)0.297 (4)0.035*
H65B0.359 (5)0.2835 (13)0.351 (5)0.035*
O660.5228 (3)0.34554 (12)0.3780 (3)0.0312 (5)
H66A0.562 (5)0.3509 (19)0.306 (3)0.037*
H66B0.582 (4)0.330 (2)0.446 (4)0.037*
O670.9808 (3)0.24228 (14)0.5446 (3)0.0396 (6)
H67A0.887 (4)0.251 (2)0.552 (5)0.048*
H67B0.982 (6)0.243 (2)0.452 (3)0.048*
O680.0583 (5)0.37893 (15)0.4180 (4)0.0594 (9)
H68A0.037 (7)0.3483 (18)0.359 (5)0.071*
H68B0.065 (7)0.366 (2)0.515 (3)0.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0168 (12)0.0151 (13)0.0211 (12)0.0010 (10)0.0000 (9)0.0043 (10)
C120.0184 (12)0.0220 (14)0.0180 (12)0.0040 (11)0.0004 (10)0.0012 (11)
C130.0165 (11)0.0191 (13)0.0158 (11)0.0048 (10)0.0038 (9)0.0034 (10)
C140.0170 (11)0.0150 (12)0.0175 (11)0.0018 (10)0.0042 (9)0.0004 (10)
C150.0121 (11)0.0158 (13)0.0157 (11)0.0003 (9)0.0033 (9)0.0004 (9)
C170.0309 (15)0.0152 (13)0.0274 (14)0.0069 (11)0.0058 (12)0.0028 (11)
C210.0177 (12)0.0203 (14)0.0196 (12)0.0036 (10)0.0031 (9)0.0013 (11)
C220.0165 (12)0.0229 (14)0.0189 (12)0.0005 (10)0.0007 (9)0.0004 (11)
C230.0169 (12)0.0186 (13)0.0179 (11)0.0022 (10)0.0032 (9)0.0026 (10)
C240.0151 (11)0.0148 (12)0.0183 (11)0.0004 (9)0.0048 (9)0.0007 (10)
C250.0140 (11)0.0145 (12)0.0157 (10)0.0014 (9)0.0046 (9)0.0005 (9)
C270.0337 (16)0.0181 (15)0.0348 (16)0.0021 (12)0.0014 (13)0.0074 (12)
C310.0218 (12)0.0159 (13)0.0233 (12)0.0016 (10)0.0030 (10)0.0001 (11)
C320.0222 (12)0.0211 (14)0.0193 (12)0.0021 (11)0.0008 (10)0.0011 (11)
C330.0220 (13)0.0204 (14)0.0161 (11)0.0038 (11)0.0055 (10)0.0036 (10)
C340.0209 (12)0.0122 (12)0.0179 (11)0.0012 (10)0.0068 (9)0.0015 (9)
C350.0167 (11)0.0138 (12)0.0167 (11)0.0005 (9)0.0061 (9)0.0003 (10)
C370.0421 (18)0.0213 (16)0.0224 (14)0.0019 (13)0.0037 (13)0.0062 (12)
C410.0242 (13)0.0146 (13)0.0189 (12)0.0047 (10)0.0043 (10)0.0012 (10)
C420.0209 (13)0.0214 (15)0.0200 (12)0.0027 (11)0.0007 (10)0.0017 (11)
C430.0208 (13)0.0176 (13)0.0239 (12)0.0001 (10)0.0074 (10)0.0036 (11)
C440.0189 (12)0.0129 (12)0.0195 (11)0.0005 (10)0.0057 (9)0.0012 (10)
C450.0179 (11)0.0147 (13)0.0174 (11)0.0021 (9)0.0079 (9)0.0004 (10)
C470.0354 (17)0.0169 (15)0.0461 (19)0.0074 (13)0.0026 (14)0.0008 (14)
C510.0161 (11)0.0152 (13)0.0193 (12)0.0019 (10)0.0067 (9)0.0033 (10)
C540.0177 (11)0.0101 (12)0.0176 (11)0.0009 (9)0.0028 (9)0.0014 (9)
C560.0144 (11)0.0133 (12)0.0155 (10)0.0021 (9)0.0002 (8)0.0000 (9)
C580.0179 (12)0.0160 (13)0.0216 (12)0.0012 (10)0.0012 (9)0.0015 (10)
N100.0141 (9)0.0144 (11)0.0161 (9)0.0022 (8)0.0014 (8)0.0000 (8)
N200.0142 (9)0.0138 (11)0.0168 (9)0.0004 (8)0.0024 (7)0.0007 (8)
N300.0196 (10)0.0129 (11)0.0199 (10)0.0012 (9)0.0038 (8)0.0013 (9)
N400.0190 (10)0.0131 (11)0.0184 (10)0.0024 (9)0.0044 (8)0.0000 (9)
O160.0244 (10)0.0199 (11)0.0207 (9)0.0093 (8)0.0003 (8)0.0036 (8)
O260.0247 (10)0.0198 (10)0.0241 (10)0.0019 (8)0.0026 (8)0.0062 (8)
O360.0289 (11)0.0200 (11)0.0218 (9)0.0034 (9)0.0011 (8)0.0063 (8)
O460.0256 (10)0.0192 (11)0.0326 (11)0.0032 (9)0.0005 (8)0.0027 (9)
O500.0162 (9)0.0165 (10)0.0281 (10)0.0012 (8)0.0017 (8)0.0054 (8)
O520.0233 (10)0.0175 (10)0.0240 (9)0.0051 (8)0.0039 (8)0.0022 (8)
O530.0294 (10)0.0093 (9)0.0169 (8)0.0006 (7)0.0048 (7)0.0002 (7)
O550.0145 (8)0.0188 (10)0.0166 (8)0.0041 (7)0.0007 (6)0.0039 (7)
O570.0209 (10)0.0231 (12)0.0374 (12)0.0077 (9)0.0102 (9)0.0142 (10)
O590.0221 (10)0.0192 (10)0.0262 (10)0.0021 (8)0.0013 (8)0.0067 (9)
O600.0181 (10)0.0263 (13)0.0525 (15)0.0028 (9)0.0001 (10)0.0113 (11)
Cu10.01300 (13)0.01261 (15)0.01936 (14)0.00242 (12)0.00014 (10)0.00193 (13)
Cu20.01896 (15)0.01035 (14)0.01850 (14)0.00071 (13)0.00396 (10)0.00248 (12)
O610.0383 (13)0.0166 (11)0.0283 (11)0.0021 (9)0.0101 (10)0.0035 (9)
O620.0311 (12)0.0342 (14)0.0183 (10)0.0094 (10)0.0014 (9)0.0032 (9)
O630.0298 (11)0.0163 (11)0.0406 (13)0.0026 (9)0.0051 (10)0.0010 (10)
O640.0360 (13)0.0240 (12)0.0227 (10)0.0019 (10)0.0002 (9)0.0003 (9)
O650.0235 (11)0.0343 (14)0.0274 (11)0.0028 (10)0.0032 (9)0.0015 (10)
O660.0395 (13)0.0320 (13)0.0245 (11)0.0059 (11)0.0121 (9)0.0053 (10)
O670.0366 (14)0.0479 (17)0.0336 (13)0.0007 (13)0.0052 (11)0.0124 (12)
O680.085 (2)0.038 (2)0.0514 (18)0.0002 (17)0.0039 (17)0.0004 (14)
Geometric parameters (Å, º) top
C11—H110.9500C42—C431.396 (4)
C11—C121.373 (4)C43—C441.401 (4)
C11—N101.350 (3)C43—O461.340 (4)
C12—H120.9500C44—H440.9500
C12—C131.392 (4)C44—C451.385 (4)
C13—C141.406 (4)C45—N401.344 (4)
C13—O161.336 (3)C47—H47A0.9800
C14—H140.9500C47—H47B0.9800
C14—C151.384 (4)C47—H47C0.9800
C15—C251.491 (4)C47—O461.430 (4)
C15—N101.342 (4)C51—C541.532 (4)
C17—H17A0.9800C51—O501.284 (4)
C17—H17B0.9800C51—O521.242 (4)
C17—H17C0.9800C54—H541.0000
C17—O161.428 (4)C54—C561.554 (4)
C21—H210.9500C54—O531.395 (3)
C21—C221.368 (4)C56—H561.0000
C21—N201.349 (3)C56—C581.530 (4)
C22—H220.9500C56—O551.408 (3)
C22—C231.389 (4)C58—O571.266 (4)
C23—C241.406 (4)C58—O591.242 (4)
C23—O261.346 (3)N10—Cu11.980 (2)
C24—H240.9500N20—Cu12.000 (2)
C24—C251.385 (4)N30—Cu21.965 (2)
C25—N201.346 (4)N40—Cu21.981 (2)
C27—H27A0.9800O50—Cu21.973 (2)
C27—H27B0.9800O53—Cu21.887 (2)
C27—H27C0.9800O55—Cu11.9128 (19)
C27—O261.436 (4)O57—Cu11.944 (2)
C31—H310.9500O60—H60A0.81 (5)
C31—C321.364 (4)O60—H60B0.77 (5)
C31—N301.350 (4)O60—Cu12.322 (3)
C32—H320.9500O61—H61A0.81 (2)
C32—C331.391 (4)O61—H61B0.82 (2)
C33—C341.402 (4)O62—H62A0.79 (2)
C33—O361.343 (3)O62—H62B0.80 (2)
C34—H340.9500O63—H63A0.83 (2)
C34—C351.389 (4)O63—H63B0.85 (2)
C35—C451.497 (4)O64—H64A0.81 (2)
C35—N301.345 (4)O64—H64B0.85 (2)
C37—H37A0.9800O65—H65A0.82 (2)
C37—H37B0.9800O65—H65B0.81 (2)
C37—H37C0.9800O66—H66A0.79 (2)
C37—O361.442 (4)O66—H66B0.80 (2)
C41—H410.9500O67—H67A0.84 (2)
C41—C421.368 (4)O67—H67B0.83 (2)
C41—N401.351 (4)O68—H68A0.90 (3)
C42—H420.9500O68—H68B0.91 (2)
O55···Cu22.549 (2)
C12—C11—H11119.1H47A—C47—H47B109.5
N10—C11—H11119.1H47A—C47—H47C109.5
N10—C11—C12121.8 (3)H47B—C47—H47C109.5
C11—C12—H12120.2O46—C47—H47A109.5
C11—C12—C13119.6 (2)O46—C47—H47B109.5
C13—C12—H12120.2O46—C47—H47C109.5
C12—C13—C14118.8 (3)O50—C51—C54114.7 (2)
O16—C13—C12116.4 (2)O52—C51—C54121.8 (2)
O16—C13—C14124.7 (3)O52—C51—O50123.4 (2)
C13—C14—H14121.0C51—C54—H54110.2
C15—C14—C13118.0 (3)C51—C54—C56106.0 (2)
C15—C14—H14121.0C56—C54—H54110.2
C14—C15—C25123.6 (3)O53—C54—C51111.0 (2)
N10—C15—C14122.7 (2)O53—C54—H54110.2
N10—C15—C25113.6 (2)O53—C54—C56109.1 (2)
H17A—C17—H17B109.5C54—C56—H56109.1
H17A—C17—H17C109.5C58—C56—C54107.9 (2)
H17B—C17—H17C109.5C58—C56—H56109.1
O16—C17—H17A109.5O55—C56—C54109.6 (2)
O16—C17—H17B109.5O55—C56—H56109.1
O16—C17—H17C109.5O55—C56—C58111.8 (2)
C22—C21—H21118.6O57—C58—C56116.4 (2)
N20—C21—H21118.6O59—C58—C56120.4 (2)
N20—C21—C22122.8 (3)O59—C58—O57123.3 (3)
C21—C22—H22120.4C11—N10—Cu1124.3 (2)
C21—C22—C23119.2 (2)C15—N10—C11119.1 (2)
C23—C22—H22120.4C15—N10—Cu1116.08 (17)
C22—C23—C24119.1 (3)C21—N20—Cu1126.8 (2)
O26—C23—C22116.7 (2)C25—N20—C21117.9 (2)
O26—C23—C24124.2 (3)C25—N20—Cu1115.24 (17)
C23—C24—H24121.2C31—N30—Cu2125.1 (2)
C25—C24—C23117.5 (3)C35—N30—C31118.7 (2)
C25—C24—H24121.2C35—N30—Cu2116.03 (19)
C24—C25—C15122.8 (2)C41—N40—Cu2125.2 (2)
N20—C25—C15113.9 (2)C45—N40—C41119.0 (3)
N20—C25—C24123.4 (2)C45—N40—Cu2115.79 (18)
H27A—C27—H27B109.5C13—O16—C17118.4 (2)
H27A—C27—H27C109.5C23—O26—C27118.6 (2)
H27B—C27—H27C109.5C33—O36—C37118.7 (2)
O26—C27—H27A109.5C43—O46—C47118.6 (2)
O26—C27—H27B109.5C51—O50—Cu2108.45 (17)
O26—C27—H27C109.5C54—O53—Cu2103.46 (15)
C32—C31—H31118.7C56—O55—Cu1112.06 (15)
N30—C31—H31118.7C56—O55—Cu299.39 (15)
N30—C31—C32122.7 (3)Cu1—O55—Cu2103.52 (9)
C31—C32—H32120.4C58—O57—Cu1114.07 (18)
C31—C32—C33119.1 (3)H60A—O60—H60B119 (5)
C33—C32—H32120.4Cu1—O60—H60A107 (3)
C32—C33—C34119.1 (3)Cu1—O60—H60B122 (4)
O36—C33—C32115.9 (3)N10—Cu1—N2080.60 (9)
O36—C33—C34125.1 (3)N10—Cu1—O6097.51 (9)
C33—C34—H34120.9N20—Cu1—O6089.96 (10)
C35—C34—C33118.2 (3)O55—Cu1—N10161.28 (9)
C35—C34—H34120.9O55—Cu1—N2099.09 (9)
C34—C35—C45124.2 (2)O55—Cu1—O5785.65 (8)
N30—C35—C34122.3 (2)O55—Cu1—O60101.20 (9)
N30—C35—C45113.5 (2)O57—Cu1—N1091.69 (9)
H37A—C37—H37B109.5O57—Cu1—N20168.93 (10)
H37A—C37—H37C109.5O57—Cu1—O6098.98 (11)
H37B—C37—H37C109.5N30—Cu2—N4081.11 (10)
O36—C37—H37A109.5N30—Cu2—O5094.51 (10)
O36—C37—H37B109.5N30—Cu2—O55111.51 (8)
O36—C37—H37C109.5N40—Cu2—O55105.38 (8)
C42—C41—H41119.1O50—Cu2—N40172.01 (10)
N40—C41—H41119.1O50—Cu2—O5582.41 (8)
N40—C41—C42121.9 (3)O53—Cu2—N30173.36 (10)
C41—C42—H42120.2O53—Cu2—N4097.64 (9)
C41—C42—C43119.5 (3)O53—Cu2—O5085.94 (9)
C43—C42—H42120.2O53—Cu2—O5575.12 (7)
C42—C43—C44119.0 (3)H61A—O61—H61B100 (4)
O46—C43—C42116.1 (3)H62A—O62—H62B105 (4)
O46—C43—C44124.9 (3)H63A—O63—H63B107 (4)
C43—C44—H44121.1H64A—O64—H64B97 (4)
C45—C44—C43117.9 (3)H65A—O65—H65B110 (4)
C45—C44—H44121.1H66A—O66—H66B113 (4)
C44—C45—C35123.9 (2)H67A—O67—H67B106 (4)
N40—C45—C35113.3 (2)H68A—O68—H68B104 (4)
N40—C45—C44122.8 (2)
C11—C12—C13—C140.6 (4)C42—C43—C44—C450.7 (4)
C11—C12—C13—O16179.8 (3)C42—C43—O46—C47174.1 (3)
C12—C11—N10—C150.4 (4)C43—C44—C45—C35179.0 (2)
C12—C11—N10—Cu1170.9 (2)C43—C44—C45—N400.1 (4)
C12—C13—C14—C150.3 (4)C44—C43—O46—C476.1 (4)
C12—C13—O16—C17179.2 (3)C44—C45—N40—C410.3 (4)
C13—C14—C15—C25179.2 (2)C44—C45—N40—Cu2179.6 (2)
C13—C14—C15—N100.3 (4)C45—C35—N30—C31178.6 (2)
C14—C13—O16—C171.2 (4)C45—C35—N30—Cu25.5 (3)
C14—C15—C25—C244.0 (4)C51—C54—C56—C58171.8 (2)
C14—C15—C25—N20175.8 (2)C51—C54—C56—O5566.2 (3)
C14—C15—N10—C110.7 (4)C51—C54—O53—Cu241.2 (2)
C14—C15—N10—Cu1171.4 (2)C54—C51—O50—Cu23.5 (3)
C15—C25—N20—C21177.6 (2)C54—C56—C58—O57118.9 (3)
C15—C25—N20—Cu12.6 (3)C54—C56—C58—O5961.3 (3)
C21—C22—C23—C242.7 (4)C54—C56—O55—Cu1119.29 (19)
C21—C22—C23—O26176.8 (3)C54—C56—O55—Cu210.5 (2)
C22—C21—N20—C252.7 (4)C54—O53—Cu2—N40152.04 (16)
C22—C21—N20—Cu1177.2 (2)C54—O53—Cu2—O5035.14 (17)
C22—C23—C24—C252.7 (4)C54—O53—Cu2—O5548.08 (15)
C22—C23—O26—C27179.3 (3)C56—C54—O53—Cu275.3 (2)
C23—C24—C25—C15179.8 (2)C56—C58—O57—Cu12.3 (4)
C23—C24—C25—N200.0 (4)C58—C56—O55—Cu10.3 (3)
C24—C23—O26—C271.2 (4)C58—C56—O55—Cu2109.1 (2)
C24—C25—N20—C212.6 (4)N10—C11—C12—C130.2 (4)
C24—C25—N20—Cu1177.2 (2)N10—C15—C25—C24177.0 (2)
C25—C15—N10—C11179.7 (2)N10—C15—C25—N203.3 (3)
C25—C15—N10—Cu17.7 (3)N20—C21—C22—C230.0 (4)
C31—C32—C33—C340.2 (4)N30—C31—C32—C330.5 (4)
C31—C32—C33—O36179.4 (3)N30—C35—C45—C44176.4 (2)
C32—C31—N30—C350.8 (4)N30—C35—C45—N402.7 (3)
C32—C31—N30—Cu2174.7 (2)N40—C41—C42—C431.0 (4)
C32—C33—C34—C350.5 (4)O16—C13—C14—C15180.0 (3)
C32—C33—O36—C37171.8 (3)O26—C23—C24—C25176.8 (3)
C33—C34—C35—C45179.2 (2)O36—C33—C34—C35179.1 (3)
C33—C34—C35—N300.2 (4)O46—C43—C44—C45179.5 (3)
C34—C33—O36—C378.5 (4)O50—C51—C54—C5692.3 (3)
C34—C35—C45—C442.7 (4)O50—C51—C54—O5326.1 (3)
C34—C35—C45—N40178.2 (2)O52—C51—C54—C5684.0 (3)
C34—C35—N30—C310.5 (4)O52—C51—C54—O53157.6 (3)
C34—C35—N30—Cu2175.4 (2)O52—C51—O50—Cu2172.7 (2)
C35—C45—N40—C41178.8 (2)O53—C54—C56—C5868.6 (3)
C35—C45—N40—Cu21.2 (3)O53—C54—C56—O5553.4 (3)
C41—C42—C43—C441.2 (4)O55—C56—C58—O571.8 (4)
C41—C42—C43—O46179.0 (3)O55—C56—C58—O59178.1 (3)
C42—C41—N40—C450.2 (4)O59—C58—O57—Cu1177.5 (2)
C42—C41—N40—Cu2179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O60—H60A···O50i0.81 (5)2.00 (5)2.802 (3)167 (5)
O60—H60B···O670.77 (5)1.98 (5)2.750 (4)177 (5)
O61—H61A···O650.81 (2)2.02 (3)2.813 (4)166 (4)
O61—H61B···O52ii0.82 (2)1.92 (2)2.739 (3)177 (4)
O62—H62A···O640.79 (2)2.01 (3)2.774 (3)164 (5)
O62—H62B···O550.80 (2)1.85 (2)2.650 (3)174 (5)
O63—H63A···O59ii0.83 (2)1.97 (2)2.806 (3)178 (4)
O63—H63B···O610.85 (2)2.13 (2)2.970 (3)176 (4)
O64—H64A···O520.81 (2)2.05 (3)2.762 (3)146 (4)
O64—H64B···O650.85 (2)1.95 (3)2.719 (3)149 (4)
O65—H65A···O59iii0.82 (2)2.08 (3)2.871 (3)162 (4)
O65—H65B···O660.81 (2)2.01 (2)2.801 (4)167 (4)
O66—H66A···O53ii0.79 (2)1.91 (3)2.680 (3)169 (5)
O66—H66B···O620.80 (2)2.02 (3)2.808 (4)167 (5)
O67—H67A···O620.84 (2)1.91 (3)2.737 (4)168 (5)
O67—H67B···O59ii0.83 (2)2.15 (2)2.973 (3)178 (5)
O68—H68A···O57iii0.90 (3)2.52 (4)3.236 (4)138 (5)
O68—H68B···O60iv0.91 (2)2.23 (3)3.129 (5)169 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x1, y, z1; (iv) x1, y, z.
 

Acknowledgements

We thank Ms Paula Nixdorf for the collection of diffraction data and Dr. Julia Kohl (both Technische Universität Berlin) for solubility assessment and spectroscopic analyses. We acknowledge support by the German Research Foundation and the Open Access Publication Fund of TU Berlin.

References

First citationAgens, M. C. (1960). US-American Patent No. 2938805.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFehling, H. (1848). Arch. Physiol. Heilkd. 7, 64–73.  Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHesse, M., Meier, H. & Zeeh, B. (1979). Spektroskopische Methoden in der organischen Chemie, pp. 55–92. Suttgart: Thieme.  Google Scholar
First citationHörner, T. G. & Klüfers, P. (2016). Eur. J. Inorg. Chem. pp. 1798–1807.  Google Scholar
First citationJusys, Z. & Vaskelis, A. (1992). Langmuir, 8, 1230–1231.  CrossRef CAS Web of Science Google Scholar
First citationLi, D.-S., Wang, Y.-Y., Liu, P., Luan, X.-J., Zhou, C.-H. & Shi, Q.-Z. (2005). Acta Chim. Sinica, 63, 1633–1637.  CAS Google Scholar
First citationLi, D.-S., Zhou, C.-H., Wang, Y.-Y., Fu, F., Wu, Y.-P., Qi, G.-C. & Shi, Q.-Z. (2006). Chin. J. Chem. 24, 1352–1358.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, J.-Q., Wang, Y.-Y., Ma, L.-F., Zhang, W.-H., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2008). Inorg. Chim. Acta, 361, 2327–2334.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNarcus, H. (1947). Met. Finish. 45, 64–70.  CAS Google Scholar
First citationOita, M., Matsuoka, M. & Iwakura, C. (1997). Electrochim. Acta, 42, 1435–1440.  CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaha, R., Biswas, S. & Mostafa, G. (2011). CrystEngComm, 13, 1018–1028.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaubestre, E. B. (1972). Plating 59, 563–566.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSocrates, G. (2001). Infrared and Raman Characteristic Group Frequencies, 3rd ed. Chichester: Wiley.  Google Scholar
First citationVan Den Meerakker, J. E. A. M. (1981). J. Appl. Electrochem. 11, 387–393.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y.-P., Fu, F., Li, D.-S., Yang, Z.-H., Zou, K. & Wang, Y.-Y. (2008). Inorg. Chem. Commun. 11, 621–625.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds