research communications
Synthesis, characterization, and μ-(2R,3R)-tartrato(4−)]dicopper(II) octahydrate
of aquabis(4,4′-dimethoxy-2,2′-bipyridine)[aInstitut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
*Correspondence e-mail: dennis.wiedemann@chem.tu-berlin.de
Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an L-(+)-tartrate as complexing agent, and a 2,2′-bipyridine derivative as Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and of aqua-1κO-bis(4,4′-dimethoxy-2,2′-bipyridine)-1κ2N,N′;2κ2N,N′-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octahydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the P21 with one chiral dinuclear complex and eight molecules of hydrate water in the The expected retention of the tartrato ligand's was confirmed via determination of the The complex molecules exhibit an ansa-like structure with two planar, nearly parallel bipyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water molecules give rise to a layered supramolecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs.
Keywords: crystal structure; coordination compound; copper(II) complex; dinuclear complex; bipyridine derivative; tartrates; electroless copper baths; hydrogen bonding; π stacks.
CCDC reference: 1920829
1. Chemical context
The production of printed circuit boards (PCB) starts with electroless copper deposition (ECD) on electrically non-conductive plastics. Copper is deposited from an alkaline solution of a copper(II) salt and a reducing agent (in general, formaldehyde). The reduction of copper(II) ions proceeds only at pH > 10, thus making methanediolate (deprotonated formaldehyde hydrate) the actual reactant (Van Den Meerakker, 1981; Jusys & Vaskelis, 1992). A complexing agent prevents the precipitation of copper(II) hydroxide (KL = 0.16 µmol3 L−3), which would otherwise occur at pH > 5.7. Since the early development of ECD in 1946, L-(+)-tartrate has commonly been used as complexing agent (Narcus, 1947). Between pH 11 and 13, it forms bis(tartrato)copper(II), [Cu(C4H2O6)2]6–, where each tartaric-acid-derived ligand is quadruply deprotonated. This complex is also known from Fehling's solution (Fehling, 1848; Hörner & Klüfers, 2016). Reactant solutions facilitating ECD, so-called electroless copper baths (ECB), are metastable with respect to the precipitation of metallic copper, making additional stabilizers necessary. Over the past 60 years, a plethora of compounds has been used for this purpose (Agens, 1960; Saubestre, 1972), affecting not only the lifetime of ECBs but also the rate of ECD and the physical properties of the deposited copper. Amongst the stabilizers, 2,2′-bipyridine and its derivatives are especially popular (Oita et al., 1997).
Herein, we report on the
of a compound that formed from an alkaline solution of a copper(II) salt, a tartrate, and 4,4′-dimethoxy-2,2′-bipyridine (dmobpy) during the investigation of stabilities of various copper(II) complexes with ligands derived from 2,2′-bipyridine (bpy).2. Structural commentary
The compound crystallizes in the P21 with one chiral complex molecule and eight molecules of hydration water in the The copper(II) ions in the dinuclear complex (see Fig. 1) are each coordinated by two azine nitrogen donors, one alcoholate and one carboxylate oxygen donor. The lengths of the respective short bonds (ca 1.89–2.00 Å) reflect the formal charge of the donor atoms, while a cis configuration is enforced by the structure of the ligand. An additional longer bond to an aqua ligand [d(Cu1—O60) = 2.322 (3) Å] augments the coordination environment of Cu1 to a distorted square pyramid. Cu2, on the other hand, is coordinated in a square planar fashion with a short contact to a second alcoholate oxygen atom [d(Cu2⋯O55) = 2.549 (2) Å].
The 4,4′-dimethoxy-2,2′-bipyridine ligands are nearly planar [positional root-mean-square (r.m.s.) deviation excluding hydrogen atoms: 0.032 Å for ligand containing N10 and N20, 0.041 Å for ligand containing N30 and N40], almost parallel [interplanar angle: 2.70 (4)°], and give rise to intramolecular π stacks with an average centroid–plane distance of 3.36 (5) Å. Because of this, the overall molecular structure resembles that of with the tartrato ligand representing the `handle'. The tartrato ligand assumes an antiperiplanar (ap) conformation with respect to the central bond of the carbon-atom chain. The C—O bonds at the carboxylate donors are (sp) to the C—O bonds at the neighboring alcoholate donors.
The via anomalous-dispersion effects [the inversion-distinguishing power of the experiment is strong according to Flack & Bernardinelli 2000)] and matches the of the employed L-(+)-(2R,3R)-tartrate. The is within the statistical range for an untwinned crystal, thus confirming the enantiopurity of the complex molecules (Flack & Bernardinelli, 2000).
of the crystal was established3. Supramolecular features
Roughly parallel to {11}, complexes form infinite π stacks, in which the intermolecular distance of 3.37 (6) Å (average centroid–plane distance) equals the intramolecular one (see Fig. 2a). A hydrogen bond from the aqua ligand to the carboxylato oxygen atom O50 of the neighboring molecule in the stack connects the tartrato(4−) ligands, forming an infinite hydrophilic backbone along the a direction.
The eight unique water molecules constitute a local network of hydrogen bonds (see Table 1) in a pocket formed by aqua (donors only) and tartrato ligands (all oxygen atoms as acceptors). The methoxy groups do not partake in hydrogen bonding but build a hydrophobic lining of the pocket. In this way, a front-to-back arrangement of alternating water and complex layers along b is formed (see Fig. 2b).
4. Database survey
The Cambridge Structural Database [CDS 5.40 Update 1 (February 2019); Allen, 2002; Groom et al., 2016] contains 33 structures of tartratometal (CoII, CrIII, CuII, PdII, PtII) complexes with bipyridine-related ligands, amongst which twelve contain copper(II). The palladium(II) and platinum(II) complexes are structurally loosely related to [Cu2(dmobpy)2(μ-C4H2O6)(H2O)] in that they form isolated neutral dinuclear complexes [{MIIL}2(μ-C4H2O6)] (M: metal, L: bipyridine-related ligand). Their centers, however, are coordinated in a square-planar fashion without additional longer bonds to oxygen donors.
The copper(II) complexes fall into two groups containing either regular tartrate(2−) or deprotonated tartrate(4−). The former group comprises isolated cationic complexes such as [{Cu(bpy)2}2(μ-C4H4O6)]2+ (Wu et al., 2008) and poly-/oligomeric complexes such as [Cu(bpy)(μ-C4H4O6)]n (Liu et al., 2008). The latter group, on the other hand, incorporates isolated neutral complexes like aqua-terminated [Cu2L2(μ-C4H2O6)(H2O)] (L: bis[2-pyridyl]amine; Li et al., 2006) or polymeric complexes bridged by carboxylate-O donors such as [{Cu(bpy)}2(μ4-C4H2O6)]n presenting Cu2O2 motifs (Li et al., 2005).
The closest known relative to the title compound, however, is [Cu2(phen)2(μ-C4H2O6)(H2O)]·8H2O (phen: 1,10-phenanthroline), which crystallizes in the same space-group type with comparable cell dimensions (Saha et al., 2011). Both structures are crystal-chemically homeotypic and differ mainly in the replacement of the 4,4′-methoxy groups at the bipyridine-like ligands by a 3,3′-(1,2-ethenediyl) bridge.
5. Synthesis and crystallization
Copper(II) sulfate pentahydrate (4.96 g, 19.9 mmol, 1.00 eq), potassium sodium L-(+)-tartrate tetrahydrate (12.33 g, 43.7 mmol, 2.20 eq), and sodium hydroxide (5.60 g, 140.0 mmol, 7.04 eq) were dissolved in deionized water (1 L), resulting in a solution with pH = 12.8. 4,4′-Dimethoxy-2,2′-bipyridine (216 mg, 1.00 mmol) was dissolved in sulfuric acid (10 mL, 0.1 mol L−1). In a plastic centrifuge tube, the tartratocopper solution (5 mL) was mixed with the bipyridine solution (0.12 mmol). The mixture was then filled up to a final volume of 7 mL with deionized water and sodium hydroxide solution to adjust the final pH to 12.8.
After two days of standing unsealed at ambient temperature, dark-blue crystals of [Cu2(dmobpy)2(μ-C4H2O6)(H2O)]·8H2O formed.
An infrared (IR) spectrum in attenuated total reflectance (ATR) was acquired from a ground crystal using a Thermo Nicolet iS5 equipped with a Thermo Nicolet iD5 ZnSe sample holder. Bands (vs: very strong, s: strong, m: medium, w: weak, br: broad) were assigned using literature data (Hesse et al., 1979; Socrates, 2001), as well as reference spectra of the dmobpy ligand and potassium sodium L-(+)-tartrate. The crystals were insoluble in common laboratory solvents (alkanes, dimethylformamide, dimethyl sulfoxide, and water) at ambient and elevated temperature and decomposed in boiling coordinating solvents. Therefore, we cannot provide data of analyses relying on solutions.
IR (ATR): ~ν = 3467, 3295 (all br w, ν[OH]), 1669 (s, ν[OC=O]), 1600 (vs, ν[OC—O], ν[C=C], ν[C=N]), 1558 (vs, ν[C=C], ν[C=N]), 1499 (s), 1476, 1461, 1437, 1418 (all s, δ[CH], dmobpy), 1344 (s, δ[CH], tartrato), 1317 (m), 1280 (vs, νs[C—OMe]), 1253 (s, tartrato), 1226 (s, dmobpy), 1186 (w), 1137 (w), 1103 (w), 1040, 1025, 1016, 1005 (all s, νas[C—OMe], ν[C=C], ν[C=N]), 872 (w), 851 (s, γ[CH]), 838 (vs, γ[CH]), 794 (s, δs[COO]), 662 (br m, ω[COO]), 572 cm−1 (s, ρ[COO]).
6. Refinement
Crystal data, data collection and structure . All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were located in difference-Fourier maps (for the complex and most water molecules) or their positions were inferred from neighboring sites (for the water molecule containing O68). Carbon-bound hydrogen atoms were refined with standard riding models. Oxygen-bound hydrogen atoms were refined semi-freely with restrained 1,2- [d(O—H) ≃ 0.84 (2) Å] and 1,3-distances [d(H⋯H) ≃ 1.33 (4) Å], as well as constrained isotropic displacement parameters [Uiso(H) = 1.2Ueq(O)]. Final bond lengths ranged between 0.77 (5) and 0.91 (2) Å with an r.m.s. deviation of 0.036 Å from the target value.
details are summarized in Table 2
|
After close inspection of the reflection statistics, data with 2θ > 60° (essentially noise) and the high-angle reflection 1 0 (mismeasurement) were excluded from the final The somewhat lower coverage is due to an inadequate choice of data-collection strategy. Unfortunately, we could not repeat the experiment because of sample loss.
Supporting information
CCDC reference: 1920829
https://doi.org/10.1107/S2056989019008053/zq2247sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019008053/zq2247Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019008053/zq2247Isup3.mol
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).[Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O | F(000) = 900 |
Mr = 867.75 | Dx = 1.631 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5134 (4) Å | Cell parameters from 8483 reflections |
b = 23.7812 (9) Å | θ = 3.7–32.5° |
c = 8.9028 (4) Å | µ = 1.29 mm−1 |
β = 101.401 (4)° | T = 150 K |
V = 1766.87 (13) Å3 | Plate, dark blue |
Z = 2 | 0.84 × 0.70 × 0.09 mm |
Agilent Xcalibur diffractometer | 8971 independent reflections |
Radiation source: fine-focus sealed tube, Agilent Enhance | 8476 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 16.3031 pixels mm-1 | θmax = 30.0°, θmin = 3.5° |
ω scans | h = −11→11 |
Absorption correction: analytical (CrysAlis PRO; Rigaku OD, 2015) | k = −33→31 |
Tmin = 0.440, Tmax = 0.886 | l = −11→12 |
19893 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.028 | Heteroxyz |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0455P)2 + 0.0799P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
8971 reflections | Δρmax = 0.49 e Å−3 |
536 parameters | Δρmin = −0.50 e Å−3 |
25 restraints | Absolute structure: Flack x determined using 2429 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: −0.010 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ———————————————————————— l.s. plane 1 ———————————————————————— Equation (x, y, z in crystal coordinates): –6.8237 (16) x + 5.2625 (12) y + 6.259 (2) z = 3.953 (6) Defining atoms and their deviation from the plane: N30: –0.014 (2) Å C31: –0.046 (3) Å C32: –0.024 (3) Å C33: 0.024 (3) Å C34: 0.042 (3) Å C35: 0.024 (2) Å O36: 0.055 (2) Å C37: –0.075 (3) Å N40: 0.042 (2) Å C41: 0.018 (3) Å C42: –0.029 (3) Å C43: –0.033 (3) Å C44: –0.014 (3) Å C45: 0.023 (2) Å O46: –0.059 (2) Å C47: 0.065 (3) Å Rms deviation: 0.041 Å ———————————————————————— l.s. plane 2 ———————————————————————— Equation (x, y, z in crystal coordinates): –6.6296 (17) x + 6.166 (11) y + 6.3561 (18) z = 1.306 (6) Defining atoms and their deviation from the plane: N10: –0.025 (2) Å C11: –0.035 (2) Å C12: –0.025 (3) Å C13: –0.001 (3) Å C14: 0.002 (3) Å C15: –0.014 (2) Å O16: 0.013 (2) Å C17: 0.056 (3) Å N20: 0.074 (2) Å C21: 0.043 (2) Å C22: –0.003 (3) Å C23: –0.019 (3) Å C24: –0.046 (2) Å C25: 0.003 (2) Å O26: 0.004 (2) Å C27: –0.026 (3) Å Rms deviation: 0.032 Å ———————————————————————— Angle between planes 1 and 2: 2.70 (4)° |
Refinement. Hydrogen atoms were located on difference Fourier maps for the complex and most water molecules or inferred from neighbouring sites for the water molecule containing O68. Hydrogen positions were refined semi-freely for oxygen-bound atoms with d(O—H) ≈ 0.84 (2) Å, d(H···H) ≈ 1.33 Å, and Uiso(H) = 1.2Ueq(O). |
x | y | z | Uiso*/Ueq | ||
C11 | 1.2715 (3) | 0.41601 (12) | 1.1226 (3) | 0.0182 (5) | |
H11 | 1.283890 | 0.379796 | 1.168495 | 0.022* | |
C12 | 1.3710 (3) | 0.45876 (13) | 1.1865 (3) | 0.0200 (5) | |
H12 | 1.451278 | 0.452042 | 1.275142 | 0.024* | |
C13 | 1.3535 (3) | 0.51201 (13) | 1.1204 (3) | 0.0170 (5) | |
C14 | 1.2344 (3) | 0.52043 (12) | 0.9885 (3) | 0.0164 (5) | |
H14 | 1.219570 | 0.556191 | 0.940163 | 0.020* | |
C15 | 1.1396 (3) | 0.47504 (12) | 0.9311 (3) | 0.0145 (5) | |
C17 | 1.4390 (4) | 0.60720 (13) | 1.1263 (4) | 0.0245 (6) | |
H17A | 1.456712 | 0.606259 | 1.020808 | 0.037* | |
H17B | 1.518812 | 0.631776 | 1.188359 | 0.037* | |
H17C | 1.331302 | 0.621650 | 1.126726 | 0.037* | |
C21 | 0.8061 (3) | 0.42851 (13) | 0.6374 (3) | 0.0193 (5) | |
H21 | 0.749051 | 0.394330 | 0.612752 | 0.023* | |
C22 | 0.7652 (3) | 0.47396 (13) | 0.5435 (3) | 0.0200 (5) | |
H22 | 0.681591 | 0.471184 | 0.455702 | 0.024* | |
C23 | 0.8477 (3) | 0.52418 (13) | 0.5782 (3) | 0.0178 (5) | |
C24 | 0.9754 (3) | 0.52630 (12) | 0.7051 (3) | 0.0159 (5) | |
H24 | 1.037174 | 0.559525 | 0.729475 | 0.019* | |
C25 | 1.0079 (3) | 0.47817 (11) | 0.7933 (3) | 0.0145 (5) | |
C27 | 0.8802 (4) | 0.62092 (14) | 0.5171 (4) | 0.0300 (7) | |
H27A | 0.865758 | 0.635393 | 0.616547 | 0.045* | |
H27B | 0.836620 | 0.647981 | 0.436580 | 0.045* | |
H27C | 0.994577 | 0.615298 | 0.519038 | 0.045* | |
C31 | 0.3834 (3) | 0.43168 (13) | 0.6794 (3) | 0.0205 (5) | |
H31 | 0.349432 | 0.393596 | 0.668076 | 0.025* | |
C32 | 0.3125 (4) | 0.46999 (14) | 0.5734 (3) | 0.0213 (5) | |
H32 | 0.230184 | 0.458718 | 0.490547 | 0.026* | |
C33 | 0.3622 (3) | 0.52578 (13) | 0.5883 (3) | 0.0193 (5) | |
C34 | 0.4843 (3) | 0.54103 (12) | 0.7115 (3) | 0.0166 (5) | |
H34 | 0.521299 | 0.578745 | 0.724106 | 0.020* | |
C35 | 0.5496 (3) | 0.49946 (12) | 0.8148 (3) | 0.0154 (5) | |
C37 | 0.3456 (4) | 0.61790 (14) | 0.4770 (4) | 0.0290 (7) | |
H37A | 0.338665 | 0.637059 | 0.572958 | 0.043* | |
H37B | 0.280905 | 0.638229 | 0.390659 | 0.043* | |
H37C | 0.457485 | 0.616927 | 0.464978 | 0.043* | |
C41 | 0.8415 (3) | 0.46603 (13) | 1.1602 (3) | 0.0192 (5) | |
H41 | 0.869537 | 0.433356 | 1.220971 | 0.023* | |
C42 | 0.9236 (3) | 0.51491 (13) | 1.2011 (3) | 0.0213 (6) | |
H42 | 1.008567 | 0.515850 | 1.288088 | 0.026* | |
C43 | 0.8816 (3) | 0.56337 (13) | 1.1140 (3) | 0.0204 (5) | |
C44 | 0.7578 (3) | 0.56044 (12) | 0.9846 (3) | 0.0168 (5) | |
H44 | 0.727153 | 0.592557 | 0.922194 | 0.020* | |
C45 | 0.6817 (3) | 0.50923 (12) | 0.9505 (3) | 0.0160 (5) | |
C47 | 0.9181 (4) | 0.66188 (15) | 1.0865 (5) | 0.0335 (7) | |
H47A | 0.933207 | 0.659815 | 0.980339 | 0.050* | |
H47B | 0.983627 | 0.692454 | 1.139794 | 0.050* | |
H47C | 0.804933 | 0.669051 | 1.087414 | 0.050* | |
C51 | 0.5003 (3) | 0.28733 (12) | 0.9647 (3) | 0.0164 (5) | |
C54 | 0.6577 (3) | 0.29477 (12) | 1.0809 (3) | 0.0152 (5) | |
H54 | 0.664279 | 0.266896 | 1.165969 | 0.018* | |
C56 | 0.7939 (3) | 0.28407 (12) | 0.9911 (3) | 0.0148 (5) | |
H56 | 0.776060 | 0.246864 | 0.938153 | 0.018* | |
C58 | 0.9527 (3) | 0.28248 (13) | 1.1070 (3) | 0.0192 (5) | |
N10 | 1.1565 (3) | 0.42400 (10) | 0.9965 (3) | 0.0151 (4) | |
N20 | 0.9238 (3) | 0.43016 (10) | 0.7633 (3) | 0.0150 (4) | |
N30 | 0.4999 (3) | 0.44568 (10) | 0.7997 (3) | 0.0175 (4) | |
N40 | 0.7216 (3) | 0.46292 (10) | 1.0359 (3) | 0.0167 (4) | |
O16 | 1.4539 (3) | 0.55171 (10) | 1.1887 (2) | 0.0223 (4) | |
O26 | 0.7974 (3) | 0.56828 (10) | 0.4865 (2) | 0.0239 (4) | |
O36 | 0.2861 (3) | 0.56124 (10) | 0.4806 (2) | 0.0244 (4) | |
O46 | 0.9656 (3) | 0.60980 (10) | 1.1623 (3) | 0.0265 (5) | |
O50 | 0.4432 (2) | 0.33278 (9) | 0.8974 (2) | 0.0206 (4) | |
O52 | 0.4392 (3) | 0.24029 (9) | 0.9335 (2) | 0.0217 (4) | |
O53 | 0.6716 (3) | 0.34935 (8) | 1.1395 (2) | 0.0185 (4) | |
O55 | 0.7926 (2) | 0.32664 (9) | 0.8810 (2) | 0.0170 (4) | |
O57 | 1.0554 (3) | 0.31931 (10) | 1.0907 (3) | 0.0293 (5) | |
O59 | 0.9761 (3) | 0.24641 (10) | 1.2100 (2) | 0.0233 (4) | |
O60 | 1.1234 (3) | 0.32417 (11) | 0.7440 (3) | 0.0333 (6) | |
H60A | 1.217 (6) | 0.321 (2) | 0.788 (5) | 0.040* | |
H60B | 1.084 (6) | 0.300 (2) | 0.691 (5) | 0.040* | |
Cu1 | 0.98891 (3) | 0.36813 (2) | 0.91447 (4) | 0.01545 (7) | |
Cu2 | 0.59542 (4) | 0.39447 (2) | 0.96609 (4) | 0.01590 (7) | |
O61 | 0.4573 (3) | 0.17342 (10) | 0.1868 (3) | 0.0273 (5) | |
H61A | 0.421 (5) | 0.1934 (16) | 0.245 (4) | 0.033* | |
H61B | 0.450 (5) | 0.1945 (16) | 0.112 (3) | 0.033* | |
O62 | 0.6964 (3) | 0.27767 (12) | 0.6111 (3) | 0.0283 (5) | |
H62A | 0.633 (4) | 0.2548 (15) | 0.623 (5) | 0.034* | |
H62B | 0.720 (5) | 0.2935 (17) | 0.692 (3) | 0.034* | |
O63 | 0.7991 (3) | 0.14628 (10) | 0.1929 (3) | 0.0292 (5) | |
H63A | 0.852 (4) | 0.1759 (14) | 0.196 (5) | 0.035* | |
H63B | 0.703 (3) | 0.1559 (18) | 0.192 (5) | 0.035* | |
O64 | 0.4289 (3) | 0.21351 (11) | 0.6298 (3) | 0.0284 (5) | |
H64A | 0.403 (5) | 0.2303 (18) | 0.701 (3) | 0.034* | |
H64B | 0.364 (4) | 0.2296 (18) | 0.558 (3) | 0.034* | |
O65 | 0.3108 (3) | 0.25427 (12) | 0.3445 (3) | 0.0295 (5) | |
H65A | 0.219 (3) | 0.2590 (18) | 0.297 (4) | 0.035* | |
H65B | 0.359 (5) | 0.2835 (13) | 0.351 (5) | 0.035* | |
O66 | 0.5228 (3) | 0.34554 (12) | 0.3780 (3) | 0.0312 (5) | |
H66A | 0.562 (5) | 0.3509 (19) | 0.306 (3) | 0.037* | |
H66B | 0.582 (4) | 0.330 (2) | 0.446 (4) | 0.037* | |
O67 | 0.9808 (3) | 0.24228 (14) | 0.5446 (3) | 0.0396 (6) | |
H67A | 0.887 (4) | 0.251 (2) | 0.552 (5) | 0.048* | |
H67B | 0.982 (6) | 0.243 (2) | 0.452 (3) | 0.048* | |
O68 | 0.0583 (5) | 0.37893 (15) | 0.4180 (4) | 0.0594 (9) | |
H68A | 0.037 (7) | 0.3483 (18) | 0.359 (5) | 0.071* | |
H68B | 0.065 (7) | 0.366 (2) | 0.515 (3) | 0.071* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0168 (12) | 0.0151 (13) | 0.0211 (12) | −0.0010 (10) | 0.0000 (9) | 0.0043 (10) |
C12 | 0.0184 (12) | 0.0220 (14) | 0.0180 (12) | −0.0040 (11) | −0.0004 (10) | 0.0012 (11) |
C13 | 0.0165 (11) | 0.0191 (13) | 0.0158 (11) | −0.0048 (10) | 0.0038 (9) | −0.0034 (10) |
C14 | 0.0170 (11) | 0.0150 (12) | 0.0175 (11) | −0.0018 (10) | 0.0042 (9) | 0.0004 (10) |
C15 | 0.0121 (11) | 0.0158 (13) | 0.0157 (11) | −0.0003 (9) | 0.0033 (9) | −0.0004 (9) |
C17 | 0.0309 (15) | 0.0152 (13) | 0.0274 (14) | −0.0069 (11) | 0.0058 (12) | −0.0028 (11) |
C21 | 0.0177 (12) | 0.0203 (14) | 0.0196 (12) | −0.0036 (10) | 0.0031 (9) | −0.0013 (11) |
C22 | 0.0165 (12) | 0.0229 (14) | 0.0189 (12) | −0.0005 (10) | −0.0007 (9) | 0.0004 (11) |
C23 | 0.0169 (12) | 0.0186 (13) | 0.0179 (11) | 0.0022 (10) | 0.0032 (9) | 0.0026 (10) |
C24 | 0.0151 (11) | 0.0148 (12) | 0.0183 (11) | 0.0004 (9) | 0.0048 (9) | −0.0007 (10) |
C25 | 0.0140 (11) | 0.0145 (12) | 0.0157 (10) | 0.0014 (9) | 0.0046 (9) | −0.0005 (9) |
C27 | 0.0337 (16) | 0.0181 (15) | 0.0348 (16) | 0.0021 (12) | −0.0014 (13) | 0.0074 (12) |
C31 | 0.0218 (12) | 0.0159 (13) | 0.0233 (12) | −0.0016 (10) | 0.0030 (10) | −0.0001 (11) |
C32 | 0.0222 (12) | 0.0211 (14) | 0.0193 (12) | −0.0021 (11) | 0.0008 (10) | 0.0011 (11) |
C33 | 0.0220 (13) | 0.0204 (14) | 0.0161 (11) | 0.0038 (11) | 0.0055 (10) | 0.0036 (10) |
C34 | 0.0209 (12) | 0.0122 (12) | 0.0179 (11) | 0.0012 (10) | 0.0068 (9) | 0.0015 (9) |
C35 | 0.0167 (11) | 0.0138 (12) | 0.0167 (11) | 0.0005 (9) | 0.0061 (9) | −0.0003 (10) |
C37 | 0.0421 (18) | 0.0213 (16) | 0.0224 (14) | 0.0019 (13) | 0.0037 (13) | 0.0062 (12) |
C41 | 0.0242 (13) | 0.0146 (13) | 0.0189 (12) | 0.0047 (10) | 0.0043 (10) | 0.0012 (10) |
C42 | 0.0209 (13) | 0.0214 (15) | 0.0200 (12) | 0.0027 (11) | 0.0007 (10) | −0.0017 (11) |
C43 | 0.0208 (13) | 0.0176 (13) | 0.0239 (12) | −0.0001 (10) | 0.0074 (10) | −0.0036 (11) |
C44 | 0.0189 (12) | 0.0129 (12) | 0.0195 (11) | 0.0005 (10) | 0.0057 (9) | −0.0012 (10) |
C45 | 0.0179 (11) | 0.0147 (13) | 0.0174 (11) | 0.0021 (9) | 0.0079 (9) | 0.0004 (10) |
C47 | 0.0354 (17) | 0.0169 (15) | 0.0461 (19) | −0.0074 (13) | 0.0026 (14) | 0.0008 (14) |
C51 | 0.0161 (11) | 0.0152 (13) | 0.0193 (12) | −0.0019 (10) | 0.0067 (9) | 0.0033 (10) |
C54 | 0.0177 (11) | 0.0101 (12) | 0.0176 (11) | −0.0009 (9) | 0.0028 (9) | 0.0014 (9) |
C56 | 0.0144 (11) | 0.0133 (12) | 0.0155 (10) | −0.0021 (9) | 0.0002 (8) | 0.0000 (9) |
C58 | 0.0179 (12) | 0.0160 (13) | 0.0216 (12) | −0.0012 (10) | −0.0012 (9) | 0.0015 (10) |
N10 | 0.0141 (9) | 0.0144 (11) | 0.0161 (9) | −0.0022 (8) | 0.0014 (8) | 0.0000 (8) |
N20 | 0.0142 (9) | 0.0138 (11) | 0.0168 (9) | 0.0004 (8) | 0.0024 (7) | 0.0007 (8) |
N30 | 0.0196 (10) | 0.0129 (11) | 0.0199 (10) | 0.0012 (9) | 0.0038 (8) | 0.0013 (9) |
N40 | 0.0190 (10) | 0.0131 (11) | 0.0184 (10) | 0.0024 (9) | 0.0044 (8) | 0.0000 (9) |
O16 | 0.0244 (10) | 0.0199 (11) | 0.0207 (9) | −0.0093 (8) | −0.0003 (8) | −0.0036 (8) |
O26 | 0.0247 (10) | 0.0198 (10) | 0.0241 (10) | 0.0019 (8) | −0.0026 (8) | 0.0062 (8) |
O36 | 0.0289 (11) | 0.0200 (11) | 0.0218 (9) | 0.0034 (9) | −0.0011 (8) | 0.0063 (8) |
O46 | 0.0256 (10) | 0.0192 (11) | 0.0326 (11) | −0.0032 (9) | 0.0005 (8) | −0.0027 (9) |
O50 | 0.0162 (9) | 0.0165 (10) | 0.0281 (10) | −0.0012 (8) | 0.0017 (8) | 0.0054 (8) |
O52 | 0.0233 (10) | 0.0175 (10) | 0.0240 (9) | −0.0051 (8) | 0.0039 (8) | 0.0022 (8) |
O53 | 0.0294 (10) | 0.0093 (9) | 0.0169 (8) | 0.0006 (7) | 0.0048 (7) | −0.0002 (7) |
O55 | 0.0145 (8) | 0.0188 (10) | 0.0166 (8) | −0.0041 (7) | 0.0007 (6) | 0.0039 (7) |
O57 | 0.0209 (10) | 0.0231 (12) | 0.0374 (12) | −0.0077 (9) | −0.0102 (9) | 0.0142 (10) |
O59 | 0.0221 (10) | 0.0192 (10) | 0.0262 (10) | −0.0021 (8) | −0.0013 (8) | 0.0067 (9) |
O60 | 0.0181 (10) | 0.0263 (13) | 0.0525 (15) | 0.0028 (9) | −0.0001 (10) | −0.0113 (11) |
Cu1 | 0.01300 (13) | 0.01261 (15) | 0.01936 (14) | −0.00242 (12) | −0.00014 (10) | 0.00193 (13) |
Cu2 | 0.01896 (15) | 0.01035 (14) | 0.01850 (14) | 0.00071 (13) | 0.00396 (10) | 0.00248 (12) |
O61 | 0.0383 (13) | 0.0166 (11) | 0.0283 (11) | 0.0021 (9) | 0.0101 (10) | 0.0035 (9) |
O62 | 0.0311 (12) | 0.0342 (14) | 0.0183 (10) | −0.0094 (10) | 0.0014 (9) | −0.0032 (9) |
O63 | 0.0298 (11) | 0.0163 (11) | 0.0406 (13) | −0.0026 (9) | 0.0051 (10) | 0.0010 (10) |
O64 | 0.0360 (13) | 0.0240 (12) | 0.0227 (10) | −0.0019 (10) | 0.0002 (9) | 0.0003 (9) |
O65 | 0.0235 (11) | 0.0343 (14) | 0.0274 (11) | 0.0028 (10) | −0.0032 (9) | 0.0015 (10) |
O66 | 0.0395 (13) | 0.0320 (13) | 0.0245 (11) | 0.0059 (11) | 0.0121 (9) | 0.0053 (10) |
O67 | 0.0366 (14) | 0.0479 (17) | 0.0336 (13) | 0.0007 (13) | 0.0052 (11) | −0.0124 (12) |
O68 | 0.085 (2) | 0.038 (2) | 0.0514 (18) | −0.0002 (17) | 0.0039 (17) | 0.0004 (14) |
C11—H11 | 0.9500 | C42—C43 | 1.396 (4) |
C11—C12 | 1.373 (4) | C43—C44 | 1.401 (4) |
C11—N10 | 1.350 (3) | C43—O46 | 1.340 (4) |
C12—H12 | 0.9500 | C44—H44 | 0.9500 |
C12—C13 | 1.392 (4) | C44—C45 | 1.385 (4) |
C13—C14 | 1.406 (4) | C45—N40 | 1.344 (4) |
C13—O16 | 1.336 (3) | C47—H47A | 0.9800 |
C14—H14 | 0.9500 | C47—H47B | 0.9800 |
C14—C15 | 1.384 (4) | C47—H47C | 0.9800 |
C15—C25 | 1.491 (4) | C47—O46 | 1.430 (4) |
C15—N10 | 1.342 (4) | C51—C54 | 1.532 (4) |
C17—H17A | 0.9800 | C51—O50 | 1.284 (4) |
C17—H17B | 0.9800 | C51—O52 | 1.242 (4) |
C17—H17C | 0.9800 | C54—H54 | 1.0000 |
C17—O16 | 1.428 (4) | C54—C56 | 1.554 (4) |
C21—H21 | 0.9500 | C54—O53 | 1.395 (3) |
C21—C22 | 1.368 (4) | C56—H56 | 1.0000 |
C21—N20 | 1.349 (3) | C56—C58 | 1.530 (4) |
C22—H22 | 0.9500 | C56—O55 | 1.408 (3) |
C22—C23 | 1.389 (4) | C58—O57 | 1.266 (4) |
C23—C24 | 1.406 (4) | C58—O59 | 1.242 (4) |
C23—O26 | 1.346 (3) | N10—Cu1 | 1.980 (2) |
C24—H24 | 0.9500 | N20—Cu1 | 2.000 (2) |
C24—C25 | 1.385 (4) | N30—Cu2 | 1.965 (2) |
C25—N20 | 1.346 (4) | N40—Cu2 | 1.981 (2) |
C27—H27A | 0.9800 | O50—Cu2 | 1.973 (2) |
C27—H27B | 0.9800 | O53—Cu2 | 1.887 (2) |
C27—H27C | 0.9800 | O55—Cu1 | 1.9128 (19) |
C27—O26 | 1.436 (4) | O57—Cu1 | 1.944 (2) |
C31—H31 | 0.9500 | O60—H60A | 0.81 (5) |
C31—C32 | 1.364 (4) | O60—H60B | 0.77 (5) |
C31—N30 | 1.350 (4) | O60—Cu1 | 2.322 (3) |
C32—H32 | 0.9500 | O61—H61A | 0.81 (2) |
C32—C33 | 1.391 (4) | O61—H61B | 0.82 (2) |
C33—C34 | 1.402 (4) | O62—H62A | 0.79 (2) |
C33—O36 | 1.343 (3) | O62—H62B | 0.80 (2) |
C34—H34 | 0.9500 | O63—H63A | 0.83 (2) |
C34—C35 | 1.389 (4) | O63—H63B | 0.85 (2) |
C35—C45 | 1.497 (4) | O64—H64A | 0.81 (2) |
C35—N30 | 1.345 (4) | O64—H64B | 0.85 (2) |
C37—H37A | 0.9800 | O65—H65A | 0.82 (2) |
C37—H37B | 0.9800 | O65—H65B | 0.81 (2) |
C37—H37C | 0.9800 | O66—H66A | 0.79 (2) |
C37—O36 | 1.442 (4) | O66—H66B | 0.80 (2) |
C41—H41 | 0.9500 | O67—H67A | 0.84 (2) |
C41—C42 | 1.368 (4) | O67—H67B | 0.83 (2) |
C41—N40 | 1.351 (4) | O68—H68A | 0.90 (3) |
C42—H42 | 0.9500 | O68—H68B | 0.91 (2) |
O55···Cu2 | 2.549 (2) | ||
C12—C11—H11 | 119.1 | H47A—C47—H47B | 109.5 |
N10—C11—H11 | 119.1 | H47A—C47—H47C | 109.5 |
N10—C11—C12 | 121.8 (3) | H47B—C47—H47C | 109.5 |
C11—C12—H12 | 120.2 | O46—C47—H47A | 109.5 |
C11—C12—C13 | 119.6 (2) | O46—C47—H47B | 109.5 |
C13—C12—H12 | 120.2 | O46—C47—H47C | 109.5 |
C12—C13—C14 | 118.8 (3) | O50—C51—C54 | 114.7 (2) |
O16—C13—C12 | 116.4 (2) | O52—C51—C54 | 121.8 (2) |
O16—C13—C14 | 124.7 (3) | O52—C51—O50 | 123.4 (2) |
C13—C14—H14 | 121.0 | C51—C54—H54 | 110.2 |
C15—C14—C13 | 118.0 (3) | C51—C54—C56 | 106.0 (2) |
C15—C14—H14 | 121.0 | C56—C54—H54 | 110.2 |
C14—C15—C25 | 123.6 (3) | O53—C54—C51 | 111.0 (2) |
N10—C15—C14 | 122.7 (2) | O53—C54—H54 | 110.2 |
N10—C15—C25 | 113.6 (2) | O53—C54—C56 | 109.1 (2) |
H17A—C17—H17B | 109.5 | C54—C56—H56 | 109.1 |
H17A—C17—H17C | 109.5 | C58—C56—C54 | 107.9 (2) |
H17B—C17—H17C | 109.5 | C58—C56—H56 | 109.1 |
O16—C17—H17A | 109.5 | O55—C56—C54 | 109.6 (2) |
O16—C17—H17B | 109.5 | O55—C56—H56 | 109.1 |
O16—C17—H17C | 109.5 | O55—C56—C58 | 111.8 (2) |
C22—C21—H21 | 118.6 | O57—C58—C56 | 116.4 (2) |
N20—C21—H21 | 118.6 | O59—C58—C56 | 120.4 (2) |
N20—C21—C22 | 122.8 (3) | O59—C58—O57 | 123.3 (3) |
C21—C22—H22 | 120.4 | C11—N10—Cu1 | 124.3 (2) |
C21—C22—C23 | 119.2 (2) | C15—N10—C11 | 119.1 (2) |
C23—C22—H22 | 120.4 | C15—N10—Cu1 | 116.08 (17) |
C22—C23—C24 | 119.1 (3) | C21—N20—Cu1 | 126.8 (2) |
O26—C23—C22 | 116.7 (2) | C25—N20—C21 | 117.9 (2) |
O26—C23—C24 | 124.2 (3) | C25—N20—Cu1 | 115.24 (17) |
C23—C24—H24 | 121.2 | C31—N30—Cu2 | 125.1 (2) |
C25—C24—C23 | 117.5 (3) | C35—N30—C31 | 118.7 (2) |
C25—C24—H24 | 121.2 | C35—N30—Cu2 | 116.03 (19) |
C24—C25—C15 | 122.8 (2) | C41—N40—Cu2 | 125.2 (2) |
N20—C25—C15 | 113.9 (2) | C45—N40—C41 | 119.0 (3) |
N20—C25—C24 | 123.4 (2) | C45—N40—Cu2 | 115.79 (18) |
H27A—C27—H27B | 109.5 | C13—O16—C17 | 118.4 (2) |
H27A—C27—H27C | 109.5 | C23—O26—C27 | 118.6 (2) |
H27B—C27—H27C | 109.5 | C33—O36—C37 | 118.7 (2) |
O26—C27—H27A | 109.5 | C43—O46—C47 | 118.6 (2) |
O26—C27—H27B | 109.5 | C51—O50—Cu2 | 108.45 (17) |
O26—C27—H27C | 109.5 | C54—O53—Cu2 | 103.46 (15) |
C32—C31—H31 | 118.7 | C56—O55—Cu1 | 112.06 (15) |
N30—C31—H31 | 118.7 | C56—O55—Cu2 | 99.39 (15) |
N30—C31—C32 | 122.7 (3) | Cu1—O55—Cu2 | 103.52 (9) |
C31—C32—H32 | 120.4 | C58—O57—Cu1 | 114.07 (18) |
C31—C32—C33 | 119.1 (3) | H60A—O60—H60B | 119 (5) |
C33—C32—H32 | 120.4 | Cu1—O60—H60A | 107 (3) |
C32—C33—C34 | 119.1 (3) | Cu1—O60—H60B | 122 (4) |
O36—C33—C32 | 115.9 (3) | N10—Cu1—N20 | 80.60 (9) |
O36—C33—C34 | 125.1 (3) | N10—Cu1—O60 | 97.51 (9) |
C33—C34—H34 | 120.9 | N20—Cu1—O60 | 89.96 (10) |
C35—C34—C33 | 118.2 (3) | O55—Cu1—N10 | 161.28 (9) |
C35—C34—H34 | 120.9 | O55—Cu1—N20 | 99.09 (9) |
C34—C35—C45 | 124.2 (2) | O55—Cu1—O57 | 85.65 (8) |
N30—C35—C34 | 122.3 (2) | O55—Cu1—O60 | 101.20 (9) |
N30—C35—C45 | 113.5 (2) | O57—Cu1—N10 | 91.69 (9) |
H37A—C37—H37B | 109.5 | O57—Cu1—N20 | 168.93 (10) |
H37A—C37—H37C | 109.5 | O57—Cu1—O60 | 98.98 (11) |
H37B—C37—H37C | 109.5 | N30—Cu2—N40 | 81.11 (10) |
O36—C37—H37A | 109.5 | N30—Cu2—O50 | 94.51 (10) |
O36—C37—H37B | 109.5 | N30—Cu2—O55 | 111.51 (8) |
O36—C37—H37C | 109.5 | N40—Cu2—O55 | 105.38 (8) |
C42—C41—H41 | 119.1 | O50—Cu2—N40 | 172.01 (10) |
N40—C41—H41 | 119.1 | O50—Cu2—O55 | 82.41 (8) |
N40—C41—C42 | 121.9 (3) | O53—Cu2—N30 | 173.36 (10) |
C41—C42—H42 | 120.2 | O53—Cu2—N40 | 97.64 (9) |
C41—C42—C43 | 119.5 (3) | O53—Cu2—O50 | 85.94 (9) |
C43—C42—H42 | 120.2 | O53—Cu2—O55 | 75.12 (7) |
C42—C43—C44 | 119.0 (3) | H61A—O61—H61B | 100 (4) |
O46—C43—C42 | 116.1 (3) | H62A—O62—H62B | 105 (4) |
O46—C43—C44 | 124.9 (3) | H63A—O63—H63B | 107 (4) |
C43—C44—H44 | 121.1 | H64A—O64—H64B | 97 (4) |
C45—C44—C43 | 117.9 (3) | H65A—O65—H65B | 110 (4) |
C45—C44—H44 | 121.1 | H66A—O66—H66B | 113 (4) |
C44—C45—C35 | 123.9 (2) | H67A—O67—H67B | 106 (4) |
N40—C45—C35 | 113.3 (2) | H68A—O68—H68B | 104 (4) |
N40—C45—C44 | 122.8 (2) | ||
C11—C12—C13—C14 | −0.6 (4) | C42—C43—C44—C45 | 0.7 (4) |
C11—C12—C13—O16 | 179.8 (3) | C42—C43—O46—C47 | −174.1 (3) |
C12—C11—N10—C15 | 0.4 (4) | C43—C44—C45—C35 | −179.0 (2) |
C12—C11—N10—Cu1 | −170.9 (2) | C43—C44—C45—N40 | 0.1 (4) |
C12—C13—C14—C15 | 0.3 (4) | C44—C43—O46—C47 | 6.1 (4) |
C12—C13—O16—C17 | −179.2 (3) | C44—C45—N40—C41 | −0.3 (4) |
C13—C14—C15—C25 | 179.2 (2) | C44—C45—N40—Cu2 | 179.6 (2) |
C13—C14—C15—N10 | 0.3 (4) | C45—C35—N30—C31 | −178.6 (2) |
C14—C13—O16—C17 | 1.2 (4) | C45—C35—N30—Cu2 | 5.5 (3) |
C14—C15—C25—C24 | 4.0 (4) | C51—C54—C56—C58 | −171.8 (2) |
C14—C15—C25—N20 | −175.8 (2) | C51—C54—C56—O55 | 66.2 (3) |
C14—C15—N10—C11 | −0.7 (4) | C51—C54—O53—Cu2 | −41.2 (2) |
C14—C15—N10—Cu1 | 171.4 (2) | C54—C51—O50—Cu2 | 3.5 (3) |
C15—C25—N20—C21 | −177.6 (2) | C54—C56—C58—O57 | −118.9 (3) |
C15—C25—N20—Cu1 | 2.6 (3) | C54—C56—C58—O59 | 61.3 (3) |
C21—C22—C23—C24 | 2.7 (4) | C54—C56—O55—Cu1 | 119.29 (19) |
C21—C22—C23—O26 | −176.8 (3) | C54—C56—O55—Cu2 | 10.5 (2) |
C22—C21—N20—C25 | −2.7 (4) | C54—O53—Cu2—N40 | −152.04 (16) |
C22—C21—N20—Cu1 | 177.2 (2) | C54—O53—Cu2—O50 | 35.14 (17) |
C22—C23—C24—C25 | −2.7 (4) | C54—O53—Cu2—O55 | −48.08 (15) |
C22—C23—O26—C27 | −179.3 (3) | C56—C54—O53—Cu2 | 75.3 (2) |
C23—C24—C25—C15 | −179.8 (2) | C56—C58—O57—Cu1 | −2.3 (4) |
C23—C24—C25—N20 | 0.0 (4) | C58—C56—O55—Cu1 | −0.3 (3) |
C24—C23—O26—C27 | 1.2 (4) | C58—C56—O55—Cu2 | −109.1 (2) |
C24—C25—N20—C21 | 2.6 (4) | N10—C11—C12—C13 | 0.2 (4) |
C24—C25—N20—Cu1 | −177.2 (2) | N10—C15—C25—C24 | −177.0 (2) |
C25—C15—N10—C11 | −179.7 (2) | N10—C15—C25—N20 | 3.3 (3) |
C25—C15—N10—Cu1 | −7.7 (3) | N20—C21—C22—C23 | 0.0 (4) |
C31—C32—C33—C34 | 0.2 (4) | N30—C31—C32—C33 | 0.5 (4) |
C31—C32—C33—O36 | −179.4 (3) | N30—C35—C45—C44 | 176.4 (2) |
C32—C31—N30—C35 | −0.8 (4) | N30—C35—C45—N40 | −2.7 (3) |
C32—C31—N30—Cu2 | 174.7 (2) | N40—C41—C42—C43 | 1.0 (4) |
C32—C33—C34—C35 | −0.5 (4) | O16—C13—C14—C15 | 180.0 (3) |
C32—C33—O36—C37 | −171.8 (3) | O26—C23—C24—C25 | 176.8 (3) |
C33—C34—C35—C45 | 179.2 (2) | O36—C33—C34—C35 | 179.1 (3) |
C33—C34—C35—N30 | 0.2 (4) | O46—C43—C44—C45 | −179.5 (3) |
C34—C33—O36—C37 | 8.5 (4) | O50—C51—C54—C56 | −92.3 (3) |
C34—C35—C45—C44 | −2.7 (4) | O50—C51—C54—O53 | 26.1 (3) |
C34—C35—C45—N40 | 178.2 (2) | O52—C51—C54—C56 | 84.0 (3) |
C34—C35—N30—C31 | 0.5 (4) | O52—C51—C54—O53 | −157.6 (3) |
C34—C35—N30—Cu2 | −175.4 (2) | O52—C51—O50—Cu2 | −172.7 (2) |
C35—C45—N40—C41 | 178.8 (2) | O53—C54—C56—C58 | 68.6 (3) |
C35—C45—N40—Cu2 | −1.2 (3) | O53—C54—C56—O55 | −53.4 (3) |
C41—C42—C43—C44 | −1.2 (4) | O55—C56—C58—O57 | 1.8 (4) |
C41—C42—C43—O46 | 179.0 (3) | O55—C56—C58—O59 | −178.1 (3) |
C42—C41—N40—C45 | −0.2 (4) | O59—C58—O57—Cu1 | 177.5 (2) |
C42—C41—N40—Cu2 | 179.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O60—H60A···O50i | 0.81 (5) | 2.00 (5) | 2.802 (3) | 167 (5) |
O60—H60B···O67 | 0.77 (5) | 1.98 (5) | 2.750 (4) | 177 (5) |
O61—H61A···O65 | 0.81 (2) | 2.02 (3) | 2.813 (4) | 166 (4) |
O61—H61B···O52ii | 0.82 (2) | 1.92 (2) | 2.739 (3) | 177 (4) |
O62—H62A···O64 | 0.79 (2) | 2.01 (3) | 2.774 (3) | 164 (5) |
O62—H62B···O55 | 0.80 (2) | 1.85 (2) | 2.650 (3) | 174 (5) |
O63—H63A···O59ii | 0.83 (2) | 1.97 (2) | 2.806 (3) | 178 (4) |
O63—H63B···O61 | 0.85 (2) | 2.13 (2) | 2.970 (3) | 176 (4) |
O64—H64A···O52 | 0.81 (2) | 2.05 (3) | 2.762 (3) | 146 (4) |
O64—H64B···O65 | 0.85 (2) | 1.95 (3) | 2.719 (3) | 149 (4) |
O65—H65A···O59iii | 0.82 (2) | 2.08 (3) | 2.871 (3) | 162 (4) |
O65—H65B···O66 | 0.81 (2) | 2.01 (2) | 2.801 (4) | 167 (4) |
O66—H66A···O53ii | 0.79 (2) | 1.91 (3) | 2.680 (3) | 169 (5) |
O66—H66B···O62 | 0.80 (2) | 2.02 (3) | 2.808 (4) | 167 (5) |
O67—H67A···O62 | 0.84 (2) | 1.91 (3) | 2.737 (4) | 168 (5) |
O67—H67B···O59ii | 0.83 (2) | 2.15 (2) | 2.973 (3) | 178 (5) |
O68—H68A···O57iii | 0.90 (3) | 2.52 (4) | 3.236 (4) | 138 (5) |
O68—H68B···O60iv | 0.91 (2) | 2.23 (3) | 3.129 (5) | 169 (5) |
Symmetry codes: (i) x+1, y, z; (ii) x, y, z−1; (iii) x−1, y, z−1; (iv) x−1, y, z. |
Acknowledgements
We thank Ms Paula Nixdorf for the collection of diffraction data and Dr. Julia Kohl (both Technische Universität Berlin) for solubility assessment and spectroscopic analyses. We acknowledge support by the German Research Foundation and the Open Access Publication Fund of TU Berlin.
References
Agens, M. C. (1960). US-American Patent No. 2938805. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fehling, H. (1848). Arch. Physiol. Heilkd. 7, 64–73. Google Scholar
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hesse, M., Meier, H. & Zeeh, B. (1979). Spektroskopische Methoden in der organischen Chemie, pp. 55–92. Suttgart: Thieme. Google Scholar
Hörner, T. G. & Klüfers, P. (2016). Eur. J. Inorg. Chem. pp. 1798–1807. Google Scholar
Jusys, Z. & Vaskelis, A. (1992). Langmuir, 8, 1230–1231. CrossRef CAS Web of Science Google Scholar
Li, D.-S., Wang, Y.-Y., Liu, P., Luan, X.-J., Zhou, C.-H. & Shi, Q.-Z. (2005). Acta Chim. Sinica, 63, 1633–1637. CAS Google Scholar
Li, D.-S., Zhou, C.-H., Wang, Y.-Y., Fu, F., Wu, Y.-P., Qi, G.-C. & Shi, Q.-Z. (2006). Chin. J. Chem. 24, 1352–1358. Web of Science CSD CrossRef CAS Google Scholar
Liu, J.-Q., Wang, Y.-Y., Ma, L.-F., Zhang, W.-H., Zeng, X.-R., Shi, Q.-Z. & Peng, S.-M. (2008). Inorg. Chim. Acta, 361, 2327–2334. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Narcus, H. (1947). Met. Finish. 45, 64–70. CAS Google Scholar
Oita, M., Matsuoka, M. & Iwakura, C. (1997). Electrochim. Acta, 42, 1435–1440. CrossRef CAS Web of Science Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Saha, R., Biswas, S. & Mostafa, G. (2011). CrystEngComm, 13, 1018–1028. Web of Science CSD CrossRef CAS Google Scholar
Saubestre, E. B. (1972). Plating 59, 563–566. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Socrates, G. (2001). Infrared and Raman Characteristic Group Frequencies, 3rd ed. Chichester: Wiley. Google Scholar
Van Den Meerakker, J. E. A. M. (1981). J. Appl. Electrochem. 11, 387–393. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, Y.-P., Fu, F., Li, D.-S., Yang, Z.-H., Zou, K. & Wang, Y.-Y. (2008). Inorg. Chem. Commun. 11, 621–625. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.