research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra-μ-acetato-bis­­[(5-amino-2-methyl­sulfanyl-1,3,4-thia­diazole-κN1)copper(II)]

CROSSMARK_Color_square_no_text.svg

aNational University of Uzbekistan named after Mirzo Ulugbek, 100174, Tashkent, Uzbekistan, bInstitute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo-Ulugbek str. 77, 100170, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str, 83, Tashkent, 700125, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru

Edited by A. M. Chippindale, University of Reading, England (Received 10 July 2019; accepted 18 July 2019; online 23 July 2019)

The reaction of 2-methyl­thio-5-amino-1,3,4-thia­diazole (Me-SNTD; C3H5N3S2) with copper(II) acetate monohydrate [Cu(OAc)2·H2O; C4H8CuO5] resulted in the formation of the title binuclear compound, [Cu2(C2H3O2)4(C3H5N3S2)2] or [Cu2(OAc)4(Me-SNTD)2]. The structure has triclinic (P [\overline{1}]) symmetry with a crystallographic inversion centre located at the midpoint of the line connecting the Cu atoms in the dimer. These two Cu atoms of the dimer [Cu⋯Cu = 2.6727 (6) Å] are held together by four carboxyl­ate groups. Each Cu atom is further coordinated to the N atom of an Me-SNTD mol­ecule and exhibits a Jahn–Teller-distorted octa­hedral geometry. The dimers are connected into infinite chains by hydrogen bonds between the NH (Me-SNTD) and the carboxyl­ate groups of neighbouring mol­ecules, generating an R22(12) ring motif. The mol­ecules are further linked by C—H⋯π inter­actions between the thia­diazole rings and the methyl groups of the acetate units.

1. Chemical context

1,3,4-Thia­dazoles are an important class of heterocycles and are of great inter­est because of their broad spectrum of biological activity. 1,3,4-Thia­diazole derivatives and their metal complexes have been shown to display anti­microbial (Önkol et al., 2008[Önkol, T., Doğruer, D. S., Uzun, L., Adak, S., Özkan, S. & Fethi Şahin, M. (2008). J. Enzyme Inhib. Med. Chem. 23, 277-284.]; Abdel-Wahab et al., 2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601-605.]; Kadi et al., 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. A., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]), anti­tuberculosis (Karakuşs et al., 2002[Karakuş, S. & Rollas, S. (2002). Farmaco, 57, 577-581.]; Foroumadi et al., 2004[Foroumadi, A., Soltani, F., Jabini, R., Moshafi, M. H. & Rasnani, F. M. (2004). Arch. Pharm. Res. 27, 502-506.]), anti­oxidant (Chitale et al., 2011[Chitale, S. K., Ramesh, B., Bhalgat, Ch. M., Jaishree, V., Puttaraj, C. & Bharathi, D. R. (2011). Res. J. Pharm. Technol. 4, 1540-1544.]; Sunil et al., 2010[Sunil, D., Isloor, A. M., Shetty, P., Satyamoorthy, K. & Prasad, A. S. B. (2010). Arab. J. Chem. 3, 211-217.]; Khan et al., 2010[Khan, I., Ali, S., Hameed, S., Rama, N. H., Hussain, M. T., Wadood, A., Uddin, R., Ul-Haq, Z., Khan, A., Ali, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 5200-5207.]), anti­cancer (Padmavathi et al., 2009[Padmavathi, V., Sudhakar Reddy, G., Padmaja, A., Kondaiah, P. & Ali-Shazia (2009). Eur. J. Med. Chem. 44, 2106-2112.]; Kumar et al., 2010[Kumar, D., Kumar, N. M., Chang, K. & Shah, K. (2010). Eur. J. Med. Chem. 45, 4664-4668.];) and anti­fungal (Matysiak et al., 2007[Matysiak, J. & Malinski, Z. (2007). Russ. J. Bioorg. Chem. 33, 594-601.]; Klip et al., 2010[Klip, N. T., Çapan, G., Gürsoy, A., Uzun, M. & Satana, D. (2010). J. Enzyme Inhib. Med. Chem. 25, 126-131.]; Verma et al., 2011[Verma, S., Srivastava, S. K. & Samadhiya, P. (2011). Int. J. Pharm. Res. Dev. 11, 73-81.]; Zoumpoulakis et al., 2012[Zoumpoulakis, P., Camoutsis, C., Pairas, G., Soković, M., Glamočlija, J., Potamitis, C. & Pitsas, A. (2012). Bioorg. Med. Chem. 20, 1569-1583.]) activities. In addition, some of the 1,3,4-thia­diazole-ring-containing ligands can be efficient uptake agents of toxic metal ions (Mincione et al., 1997[Mincione, G., Scozzafava, A. & Supuran, C. T. (1997). Met.-Based Drugs, 4, 27-34.]). 1,3,4-Thia­diazo­les also exhibit great potential as pesticides in the fields of herbicides, fungicides, insecticides and even as plant-growth regulators. Their diverse biological activity possibly arises from the presence of the =NCS moiety in the mol­ecule (Oruç et al., 2004[Oruç, E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. (2004). J. Med. Chem. 47, 6760-6767.]). An inter­esting feature of the metal–ligand chemistry of these compounds is that the complexes can be either mononuclear (Tzeng et al., 2004[Tzeng, B.-C., Huang, Y.-C., Wu, W.-M., Lee, S.-Y., Lee, G.-H. & Peng, S.-M. (2004). Cryst. Growth Des. 4, 63-70.]; Varna et al., 2018[Varna, D., Kapetanaki, E., Koutsari, A., Hatzidimitriou, A. G., Psomas, G., Angaridis, P., Papi, R., Pantazaki, A. A. & Aslanidis, P. (2018). Polyhedron, 151, 131-140.]; Qiu et al., 2014[Qiu, Q.-M., Liu, M., Li, Z.-F., Jin, Q.-H., Huang, X., Zhang, Z.-W., Zhang, C.-L. & Meng, Q.-X. (2014). J. Mol. Struct. 1062, 125-132.]) or binuclear (Deckert et al., 2016[Deckert, C., Bittner, D., Carrella, L. M., Schollmeyer, D. & Rentschler, E. (2016). Eur. J. Inorg. Chem. pp. 1738-1747.]; Ardan et al., 2017[Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk`yanov, M., Lis, T. & Mys`kiv, M. (2017). Acta Cryst. C73, 36-46.]). A search of the Cambridge Structural Database (CSD Version 5.4, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that although crystal structures have been reported for complexes of either 1,3,4-thia­diazole derivatives or OAc with a number of metal ions, including zinc, copper, nickel, manganese, cadmium, cobalt and palladium, no examples are known of mixed-ligand metal complexes containing both 1,3,4-thia­diazole derivatives and OAc. Herein, we report on the synthesis and crystal structure of a new binuclear complex, [Cu2(OAc)4L2], with L = 2-methyl­thio-5-amino-1,3,4-thia­diazole (Me-SNTD).

[Scheme 1]

2. Structural commentary

The title binuclear CuII complex, (I)[link] (Fig. 1[link]), is arranged about a crystallographic inversion centre located at the midpoint of the Cu⋯Cu-connecting line. The asymmetric unit comprises one half of the complex mol­ecule, namely, one Cu atom, two acetate groups and one 2-methyl­thio-5-amino-1,3,4-thia­diazole mol­ecule. The two Cu atoms in the dimer are held together by the four carboxyl­ate groups. Each Cu atom is bound in a square-pyramidal configuration to four carboxyl­ate O atoms and to the N atom of an Me-SNTD mol­ecule.

[Figure 1]
Figure 1
The mol­ecular structure of [Cu2(OAc)4(Me-SNTD)2] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 25% probability level. Intra­molecular hydrogen bonds are shown as dashed lines. Atoms labelled with the suffix A are generated by the symmetry operation 2 − x, 1 − y, 1 − z.

Each copper atom is displaced by 0.754 (3) Å from the plane defined by basal-plane atoms O1, O2, O3 and O4 towards the nitro­gen atom, N2. The Cu1A —Cu1—N2 angle is 177.95 (7)° [symmetry code: (A) 2 − x, 1 − y, 1 - z]. The Cu—O bond lengths range from 1.962 (2) to 2.001 (2) Å and the Cu—N distance is 2.180 (3) Å. The Cu⋯Cu distance is 2.6727 (6) Å and each metal atom exhibits a Jahn–Teller-distorted octa­hedral geometry. The observed Cu—O2 bond length of 1.983 (2) Å is longer than the Cu—O1 distance of 1.962 (2) Å. The elongation of this Cu—O distance may be due to the intra­molecular N3—H⋯O2 hydrogen bond (Table 1[link]). The conformation of the ligand is approximately planar, with a maximum deviation from the least-squares plane of 0.066 (2) Å for atom N3. The thia­diazole ring is planar (r.m.s. deviation 0.0063 Å). The dihedral angle between the planes of the two independent acetate groups is 82.646 (14)°. The thia­diazole ring is twisted by 18.37 (2)° with respect to the acetate (C4/C5/O1/O2) ligand mean plane.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the S1/N1/N2/C1/C2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4i 0.86 (1) 2.16 (2) 2.963 (4) 156 (4)
N3—H3B⋯O2ii 0.86 (1) 2.11 (3) 2.884 (4) 150 (4)
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y+1, -z+1.

3. Supra­molecular features

The packing of (I)[link] is shown in Fig. 2[link]. The acetate group containing oxygen atoms O1 and O3 does not form any hydrogen bonds. However, the acetate group containing oxygen atoms O2 and O4 forms both intra- and inter­molecular hydrogen bonds. Each binuclear complex mol­ecule exhibits one intra­molecular N3—H3⋯O2i hydrogen bond, forming a six-membered ring. The dimers are connected through an inter­molecular N3—H3⋯O4ii hydrogen bond between the NH (Me-SNTD) and the carboxyl­ate groups, forming chains propagating parallel to [001]. The above-mentioned hydrogen bonds give rise to R22(12), C22(14) and S11(6) graph-set motifs (Table 1[link] and Fig. 2[link]). Additional C—H⋯π inter­actions between the thia­diazole rings and the acetate methyl groups generate a three-dimensional supra­molecular framework (Fig. 3[link]).

[Figure 2]
Figure 2
Part of the crystal structure with hydrogen bonds shown as dashed lines. For clarity, H atoms not involved in hydrogen bonding are omitted.
[Figure 3]
Figure 3
Packing of the structural units in (I)[link]. Hydrogen bonds are indicated by blue dashed lines and C—H⋯π inter­actions by black dashed lines.

4. Database survey

A survey of the Cambridge Structural Database (CSD Version 5.4, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that crystal structures have been reported for complexes of 1,3,4-thia­diazole derivatives and OAc with a number of metal ions, including zinc, copper, nickel, manganese, cadmium, cobalt and palladium. Copper(II) acetate complexes of the general formula [Cu2(OAc)4L2], where L is a ligand with an oxygen or nitro­gen ligator atom, have been well explored. The structures of 2-methyl­thio-5-amino-1,3,4-thia­diazole and a complex of this mol­ecule with cadmium have been deposited in the CSD [XUVPEK (Lynch, 2010[Lynch, D. E. (2010). Private Communication (refcode XUVPEK). CCDC, Cambridge, England.]) and JIZKEK (Soudani et al., 2014[Soudani, S., Zeller, M., Wenger, E., Jelsch, C., Lefebvre, F. & Nasr, C. B. (2014). J. Mol. Struct. 1075, 442-449.]), respectively]. However, no mixed-ligand metal complexes containing both 1,3,4-thia­diazole derivatives and OAc have been documented in the CSD.

5. Synthesis and crystallization

Cu(OAc)2·H2O (0.218 g, 1 mmol) and 2-methyl­thio-5-amino-1,3,4-thia­diazole (0.147 g, 1 mmol) were dissolved separately in a mixture of methanol-di­chloro­methane (10 mL, 1:1 v/v), mixed together and stirred for 1.5 h. The green solid that precipitated was dissolved in methanol to form a green solution. Single crystals of the complex suitable for X-ray analysis were obtained by slow evaporation of the solution over a period of 10 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The restraint N—H = 0.86 ± (1) Å was applied. Methyl H atoms were positioned geometrically C—H = 0.96) and refined as riding with Uiso(H) = 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C2H3O2)4(C3H5N3S2)2]
Mr 657.69
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 571
a, b, c (Å) 8.1069 (4), 8.8955 (4), 9.0421 (5)
α, β, γ (°) 100.656 (4), 98.966 (4), 97.643 (4)
V3) 624.14 (5)
Z 1
Radiation type Cu Kα
μ (mm−1) 5.70
Crystal size (mm) 0.44 × 0.38 × 0.28
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.083, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11239, 2582, 2244
Rint 0.052
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.07
No. of reflections 2582
No. of parameters 165
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.44
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Tetra-µ-acetato-bis[(5-amino-2-methylsulfanyl-1,3,4-thiadiazole-κN1)copper(II)] top
Crystal data top
[Cu2(C2H3O2)4(C3H5N3S2)2]Z = 1
Mr = 657.69F(000) = 334
Triclinic, P1Dx = 1.750 Mg m3
a = 8.1069 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.8955 (4) ÅCell parameters from 5762 reflections
c = 9.0421 (5) Åθ = 5.0–75.8°
α = 100.656 (4)°µ = 5.70 mm1
β = 98.966 (4)°T = 571 K
γ = 97.643 (4)°Block, blue
V = 624.14 (5) Å30.44 × 0.38 × 0.28 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Ruby
diffractometer
2582 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10.2576 pixels mm-1θmax = 76.2°, θmin = 5.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1111
Tmin = 0.083, Tmax = 1.000l = 1011
11239 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.1915P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2582 reflectionsΔρmax = 0.47 e Å3
165 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.94133 (5)0.41682 (4)0.59528 (5)0.03080 (16)
S10.77895 (10)0.21114 (9)1.00281 (9)0.0416 (2)
S20.42143 (12)0.08505 (14)0.83586 (12)0.0659 (3)
O41.0956 (3)0.3780 (2)0.2926 (2)0.0403 (5)
O20.8200 (3)0.5370 (3)0.2953 (3)0.0409 (5)
O10.7249 (3)0.3994 (3)0.4563 (3)0.0458 (5)
O31.0032 (3)0.2430 (2)0.4575 (3)0.0438 (5)
N31.0840 (4)0.3406 (3)0.9585 (3)0.0442 (6)
N20.8489 (3)0.2883 (3)0.7575 (3)0.0354 (5)
N10.6790 (3)0.2193 (3)0.7215 (3)0.0385 (6)
C10.9196 (4)0.2903 (3)0.8988 (3)0.0327 (6)
C61.0679 (4)0.2556 (3)0.3428 (3)0.0363 (6)
C40.7032 (4)0.4586 (3)0.3410 (4)0.0367 (6)
C20.6271 (4)0.1756 (3)0.8362 (4)0.0383 (6)
C71.1194 (5)0.1119 (4)0.2574 (5)0.0567 (9)
H7A1.1068500.1142810.1505850.085*
H7B1.0486570.0214730.2701160.085*
H7C1.2354950.1087160.2973390.085*
C50.5263 (4)0.4374 (5)0.2518 (5)0.0565 (9)
H5A0.4590750.4956340.3116490.085*
H5B0.4773580.3294100.2282700.085*
H5C0.5292610.4734770.1583890.085*
C30.3241 (6)0.0719 (6)0.6412 (5)0.0740 (13)
H3C0.3737410.0011720.5747240.111*
H3D0.3415040.1725150.6163650.111*
H3E0.2048710.0349890.6279430.111*
H3A1.119 (5)0.357 (4)1.0554 (14)0.048 (10)*
H3B1.149 (5)0.377 (5)0.903 (5)0.070 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0315 (2)0.0301 (2)0.0309 (3)0.00161 (15)0.00874 (17)0.00645 (16)
S10.0421 (4)0.0494 (4)0.0336 (4)0.0010 (3)0.0112 (3)0.0114 (3)
S20.0408 (5)0.0941 (7)0.0623 (6)0.0141 (5)0.0082 (4)0.0347 (6)
O40.0516 (13)0.0353 (10)0.0367 (12)0.0105 (9)0.0164 (10)0.0054 (9)
O20.0312 (10)0.0497 (11)0.0409 (12)0.0015 (9)0.0043 (9)0.0130 (10)
O10.0333 (11)0.0572 (13)0.0450 (13)0.0018 (9)0.0039 (9)0.0154 (11)
O30.0599 (14)0.0309 (9)0.0423 (13)0.0072 (9)0.0171 (11)0.0056 (9)
N30.0374 (14)0.0580 (16)0.0353 (16)0.0021 (11)0.0051 (12)0.0132 (13)
N20.0371 (13)0.0357 (11)0.0334 (13)0.0002 (9)0.0077 (10)0.0106 (10)
N10.0375 (13)0.0409 (12)0.0373 (14)0.0007 (10)0.0072 (11)0.0138 (10)
C10.0377 (14)0.0286 (11)0.0339 (15)0.0037 (10)0.0127 (12)0.0081 (11)
C60.0389 (15)0.0318 (13)0.0352 (16)0.0085 (11)0.0027 (12)0.0006 (11)
C40.0294 (13)0.0399 (14)0.0369 (17)0.0024 (11)0.0060 (12)0.0004 (12)
C20.0365 (15)0.0382 (14)0.0408 (17)0.0001 (11)0.0084 (13)0.0130 (12)
C70.077 (3)0.0424 (17)0.056 (2)0.0278 (17)0.0212 (19)0.0030 (15)
C50.0329 (16)0.075 (2)0.059 (2)0.0039 (15)0.0028 (16)0.0144 (19)
C30.053 (2)0.093 (3)0.067 (3)0.015 (2)0.004 (2)0.024 (2)
Geometric parameters (Å, º) top
Cu1—Cu1i2.6728 (8)N3—H3B0.856 (10)
Cu1—O4i2.0007 (19)N2—N11.394 (3)
Cu1—O2i1.983 (2)N2—C11.313 (4)
Cu1—O11.962 (2)N1—C21.282 (4)
Cu1—O31.970 (2)C6—C71.510 (4)
Cu1—N22.180 (2)C4—C51.502 (4)
S1—C11.745 (3)C7—H7A0.9600
S1—C21.740 (3)C7—H7B0.9600
S2—C21.752 (3)C7—H7C0.9600
S2—C31.789 (5)C5—H5A0.9600
O4—C61.262 (4)C5—H5B0.9600
O2—C41.267 (4)C5—H5C0.9600
O1—C41.251 (4)C3—H3C0.9600
O3—C61.249 (4)C3—H3D0.9600
N3—C11.339 (4)C3—H3E0.9600
N3—H3A0.857 (10)
O4i—Cu1—Cu1i83.88 (6)N2—C1—S1113.1 (2)
O4i—Cu1—N294.39 (9)N2—C1—N3124.8 (3)
O2i—Cu1—Cu1i84.10 (7)O4—C6—C7117.0 (3)
O2i—Cu1—O4i89.30 (9)O3—C6—O4125.8 (3)
O2i—Cu1—N294.80 (9)O3—C6—C7117.2 (3)
O1—Cu1—Cu1i82.97 (7)O2—C4—C5117.6 (3)
O1—Cu1—O4i89.12 (10)O1—C4—O2124.5 (3)
O1—Cu1—O2i167.07 (9)O1—C4—C5117.8 (3)
O1—Cu1—O390.92 (10)S1—C2—S2119.34 (18)
O1—Cu1—N298.11 (10)N1—C2—S1115.2 (2)
O3—Cu1—Cu1i83.44 (7)N1—C2—S2125.5 (3)
O3—Cu1—O4i167.22 (9)C6—C7—H7A109.5
O3—Cu1—O2i87.81 (10)C6—C7—H7B109.5
O3—Cu1—N298.26 (9)C6—C7—H7C109.5
N2—Cu1—Cu1i177.95 (7)H7A—C7—H7B109.5
C2—S1—C186.58 (14)H7A—C7—H7C109.5
C2—S2—C3100.75 (18)H7B—C7—H7C109.5
C6—O4—Cu1i122.12 (19)C4—C5—H5A109.5
C4—O2—Cu1i122.8 (2)C4—C5—H5B109.5
C4—O1—Cu1125.6 (2)C4—C5—H5C109.5
C6—O3—Cu1124.56 (19)H5A—C5—H5B109.5
C1—N3—H3A121 (3)H5A—C5—H5C109.5
C1—N3—H3B119 (3)H5B—C5—H5C109.5
H3A—N3—H3B119 (4)S2—C3—H3C109.5
N1—N2—Cu1116.61 (18)S2—C3—H3D109.5
C1—N2—Cu1128.89 (19)S2—C3—H3E109.5
C1—N2—N1113.1 (2)H3C—C3—H3D109.5
C2—N1—N2112.1 (3)H3C—C3—H3E109.5
N3—C1—S1122.1 (2)H3D—C3—H3E109.5
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S1/N1/N2/C1/C2 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4ii0.86 (1)2.16 (2)2.963 (4)156 (4)
N3—H3B···O2i0.86 (1)2.11 (3)2.884 (4)150 (4)
C7—H7B···Cgiii0.963.003.346 (4)103
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1; (iii) x+2, y, z+1.
 

Funding information

This work was supported by a Grant for Fundamental Research of the Center of Science and Technology, Uzbekistan (No. BA-FA– F7–004).

References

First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.  CAS Google Scholar
First citationArdan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk`yanov, M., Lis, T. & Mys`kiv, M. (2017). Acta Cryst. C73, 36–46.  Google Scholar
First citationChitale, S. K., Ramesh, B., Bhalgat, Ch. M., Jaishree, V., Puttaraj, C. & Bharathi, D. R. (2011). Res. J. Pharm. Technol. 4, 1540–1544.  Google Scholar
First citationDeckert, C., Bittner, D., Carrella, L. M., Schollmeyer, D. & Rentschler, E. (2016). Eur. J. Inorg. Chem. pp. 1738–1747.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForoumadi, A., Soltani, F., Jabini, R., Moshafi, M. H. & Rasnani, F. M. (2004). Arch. Pharm. Res. 27, 502–506.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. A., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  CrossRef CAS PubMed Google Scholar
First citationKarakuş, S. & Rollas, S. (2002). Farmaco, 57, 577–581.  PubMed Google Scholar
First citationKhan, I., Ali, S., Hameed, S., Rama, N. H., Hussain, M. T., Wadood, A., Uddin, R., Ul-Haq, Z., Khan, A., Ali, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 5200–5207.  CrossRef CAS PubMed Google Scholar
First citationKlip, N. T., Çapan, G., Gürsoy, A., Uzun, M. & Satana, D. (2010). J. Enzyme Inhib. Med. Chem. 25, 126–131.  PubMed Google Scholar
First citationKumar, D., Kumar, N. M., Chang, K. & Shah, K. (2010). Eur. J. Med. Chem. 45, 4664–4668.  CrossRef CAS PubMed Google Scholar
First citationLynch, D. E. (2010). Private Communication (refcode XUVPEK). CCDC, Cambridge, England.  Google Scholar
First citationMatysiak, J. & Malinski, Z. (2007). Russ. J. Bioorg. Chem. 33, 594–601.  CrossRef CAS Google Scholar
First citationMincione, G., Scozzafava, A. & Supuran, C. T. (1997). Met.-Based Drugs, 4, 27–34.  CrossRef CAS Google Scholar
First citationÖnkol, T., Doğruer, D. S., Uzun, L., Adak, S., Özkan, S. & Fethi Şahin, M. (2008). J. Enzyme Inhib. Med. Chem. 23, 277–284.  PubMed Google Scholar
First citationOruç, E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. (2004). J. Med. Chem. 47, 6760–6767.  PubMed Google Scholar
First citationPadmavathi, V., Sudhakar Reddy, G., Padmaja, A., Kondaiah, P. & Ali-Shazia (2009). Eur. J. Med. Chem. 44, 2106–2112.  Google Scholar
First citationQiu, Q.-M., Liu, M., Li, Z.-F., Jin, Q.-H., Huang, X., Zhang, Z.-W., Zhang, C.-L. & Meng, Q.-X. (2014). J. Mol. Struct. 1062, 125–132.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoudani, S., Zeller, M., Wenger, E., Jelsch, C., Lefebvre, F. & Nasr, C. B. (2014). J. Mol. Struct. 1075, 442–449.  CSD CrossRef CAS Google Scholar
First citationSunil, D., Isloor, A. M., Shetty, P., Satyamoorthy, K. & Prasad, A. S. B. (2010). Arab. J. Chem. 3, 211–217.  CrossRef CAS Google Scholar
First citationTzeng, B.-C., Huang, Y.-C., Wu, W.-M., Lee, S.-Y., Lee, G.-H. & Peng, S.-M. (2004). Cryst. Growth Des. 4, 63–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationVarna, D., Kapetanaki, E., Koutsari, A., Hatzidimitriou, A. G., Psomas, G., Angaridis, P., Papi, R., Pantazaki, A. A. & Aslanidis, P. (2018). Polyhedron, 151, 131–140.  CSD CrossRef CAS Google Scholar
First citationVerma, S., Srivastava, S. K. & Samadhiya, P. (2011). Int. J. Pharm. Res. Dev. 11, 73–81.  Google Scholar
First citationZoumpoulakis, P., Camoutsis, C., Pairas, G., Soković, M., Glamočlija, J., Potamitis, C. & Pitsas, A. (2012). Bioorg. Med. Chem. 20, 1569–1583.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds