research communications
μ-acetato-bis[(5-amino-2-methylsulfanyl-1,3,4-thiadiazole-κN1)copper(II)]
of tetra-aNational University of Uzbekistan named after Mirzo Ulugbek, 100174, Tashkent, Uzbekistan, bInstitute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo-Ulugbek str. 77, 100170, Uzbekistan, and cInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str, 83, Tashkent, 700125, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru
The reaction of 2-methylthio-5-amino-1,3,4-thiadiazole (Me-SNTD; C3H5N3S2) with copper(II) acetate monohydrate [Cu(OAc)2·H2O; C4H8CuO5] resulted in the formation of the title binuclear compound, [Cu2(C2H3O2)4(C3H5N3S2)2] or [Cu2(OAc)4(Me-SNTD)2]. The structure has triclinic (P ) symmetry with a crystallographic inversion centre located at the midpoint of the line connecting the Cu atoms in the dimer. These two Cu atoms of the dimer [Cu⋯Cu = 2.6727 (6) Å] are held together by four carboxylate groups. Each Cu atom is further coordinated to the N atom of an Me-SNTD molecule and exhibits a Jahn–Teller-distorted octahedral geometry. The dimers are connected into infinite chains by hydrogen bonds between the NH (Me-SNTD) and the carboxylate groups of neighbouring molecules, generating an R22(12) ring motif. The molecules are further linked by C—H⋯π interactions between the thiadiazole rings and the methyl groups of the acetate units.
Keywords: copper(II); thiadiazole; crystal structure; hydrogen bonding..
CCDC reference: 1941461
1. Chemical context
1,3,4-Thiadazoles are an important class of heterocycles and are of great interest because of their broad spectrum of biological activity. 1,3,4-Thiadiazole derivatives and their metal complexes have been shown to display antimicrobial (Önkol et al., 2008; Abdel-Wahab et al., 2009; Kadi et al., 2010), antituberculosis (Karakuşs et al., 2002; Foroumadi et al., 2004), antioxidant (Chitale et al., 2011; Sunil et al., 2010; Khan et al., 2010), anticancer (Padmavathi et al., 2009; Kumar et al., 2010;) and antifungal (Matysiak et al., 2007; Klip et al., 2010; Verma et al., 2011; Zoumpoulakis et al., 2012) activities. In addition, some of the 1,3,4-thiadiazole-ring-containing ligands can be efficient uptake agents of toxic metal ions (Mincione et al., 1997). 1,3,4-Thiadiazoles also exhibit great potential as pesticides in the fields of herbicides, fungicides, insecticides and even as plant-growth regulators. Their diverse biological activity possibly arises from the presence of the =NCS moiety in the molecule (Oruç et al., 2004). An interesting feature of the metal–ligand chemistry of these compounds is that the complexes can be either mononuclear (Tzeng et al., 2004; Varna et al., 2018; Qiu et al., 2014) or binuclear (Deckert et al., 2016; Ardan et al., 2017). A search of the Cambridge Structural Database (CSD Version 5.4, update of February 2019; Groom et al., 2016) revealed that although crystal structures have been reported for complexes of either 1,3,4-thiadiazole derivatives or OAc with a number of metal ions, including zinc, copper, nickel, manganese, cadmium, cobalt and palladium, no examples are known of mixed-ligand metal complexes containing both 1,3,4-thiadiazole derivatives and OAc. Herein, we report on the synthesis and of a new binuclear complex, [Cu2(OAc)4L2], with L = 2-methylthio-5-amino-1,3,4-thiadiazole (Me-SNTD).
2. Structural commentary
The title binuclear CuII complex, (I) (Fig. 1), is arranged about a crystallographic inversion centre located at the midpoint of the Cu⋯Cu-connecting line. The comprises one half of the complex molecule, namely, one Cu atom, two acetate groups and one 2-methylthio-5-amino-1,3,4-thiadiazole molecule. The two Cu atoms in the dimer are held together by the four carboxylate groups. Each Cu atom is bound in a square-pyramidal configuration to four carboxylate O atoms and to the N atom of an Me-SNTD molecule.
Each copper atom is displaced by 0.754 (3) Å from the plane defined by basal-plane atoms O1, O2, O3 and O4 towards the nitrogen atom, N2. The Cu1A —Cu1—N2 angle is 177.95 (7)° [symmetry code: (A) 2 − x, 1 − y, 1 - z]. The Cu—O bond lengths range from 1.962 (2) to 2.001 (2) Å and the Cu—N distance is 2.180 (3) Å. The Cu⋯Cu distance is 2.6727 (6) Å and each metal atom exhibits a Jahn–Teller-distorted octahedral geometry. The observed Cu—O2 bond length of 1.983 (2) Å is longer than the Cu—O1 distance of 1.962 (2) Å. The elongation of this Cu—O distance may be due to the intramolecular N3—H⋯O2 hydrogen bond (Table 1). The conformation of the ligand is approximately planar, with a maximum deviation from the least-squares plane of 0.066 (2) Å for atom N3. The thiadiazole ring is planar (r.m.s. deviation 0.0063 Å). The dihedral angle between the planes of the two independent acetate groups is 82.646 (14)°. The thiadiazole ring is twisted by 18.37 (2)° with respect to the acetate (C4/C5/O1/O2) ligand mean plane.
3. Supramolecular features
The packing of (I) is shown in Fig. 2. The acetate group containing oxygen atoms O1 and O3 does not form any hydrogen bonds. However, the acetate group containing oxygen atoms O2 and O4 forms both intra- and intermolecular hydrogen bonds. Each binuclear complex molecule exhibits one intramolecular N3—H3⋯O2i hydrogen bond, forming a six-membered ring. The dimers are connected through an intermolecular N3—H3⋯O4ii hydrogen bond between the NH (Me-SNTD) and the carboxylate groups, forming chains propagating parallel to [001]. The above-mentioned hydrogen bonds give rise to R22(12), C22(14) and S11(6) graph-set motifs (Table 1 and Fig. 2). Additional C—H⋯π interactions between the thiadiazole rings and the acetate methyl groups generate a three-dimensional supramolecular framework (Fig. 3).
4. Database survey
A survey of the Cambridge Structural Database (CSD Version 5.4, update of February 2019; Groom et al., 2016) revealed that crystal structures have been reported for complexes of 1,3,4-thiadiazole derivatives and OAc with a number of metal ions, including zinc, copper, nickel, manganese, cadmium, cobalt and palladium. Copper(II) acetate complexes of the general formula [Cu2(OAc)4L2], where L is a ligand with an oxygen or nitrogen ligator atom, have been well explored. The structures of 2-methylthio-5-amino-1,3,4-thiadiazole and a complex of this molecule with cadmium have been deposited in the CSD [XUVPEK (Lynch, 2010) and JIZKEK (Soudani et al., 2014), respectively]. However, no mixed-ligand metal complexes containing both 1,3,4-thiadiazole derivatives and OAc have been documented in the CSD.
5. Synthesis and crystallization
Cu(OAc)2·H2O (0.218 g, 1 mmol) and 2-methylthio-5-amino-1,3,4-thiadiazole (0.147 g, 1 mmol) were dissolved separately in a mixture of methanol-dichloromethane (10 mL, 1:1 v/v), mixed together and stirred for 1.5 h. The green solid that precipitated was dissolved in methanol to form a green solution. Single crystals of the complex suitable for X-ray analysis were obtained by slow evaporation of the solution over a period of 10 d.
6. Refinement
Crystal data, data collection and structure . The restraint N—H = 0.86 ± (1) Å was applied. Methyl H atoms were positioned geometrically C—H = 0.96) and refined as riding with Uiso(H) = 1.5Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1941461
https://doi.org/10.1107/S2056989019010272/cq2032sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019010272/cq2032Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu2(C2H3O2)4(C3H5N3S2)2] | Z = 1 |
Mr = 657.69 | F(000) = 334 |
Triclinic, P1 | Dx = 1.750 Mg m−3 |
a = 8.1069 (4) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 8.8955 (4) Å | Cell parameters from 5762 reflections |
c = 9.0421 (5) Å | θ = 5.0–75.8° |
α = 100.656 (4)° | µ = 5.70 mm−1 |
β = 98.966 (4)° | T = 571 K |
γ = 97.643 (4)° | Block, blue |
V = 624.14 (5) Å3 | 0.44 × 0.38 × 0.28 mm |
Rigaku Oxford Diffraction Xcalibur, Ruby diffractometer | 2582 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 2244 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 10.2576 pixels mm-1 | θmax = 76.2°, θmin = 5.1° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | k = −11→11 |
Tmin = 0.083, Tmax = 1.000 | l = −10→11 |
11239 measured reflections |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0726P)2 + 0.1915P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
2582 reflections | Δρmax = 0.47 e Å−3 |
165 parameters | Δρmin = −0.44 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.94133 (5) | 0.41682 (4) | 0.59528 (5) | 0.03080 (16) | |
S1 | 0.77895 (10) | 0.21114 (9) | 1.00281 (9) | 0.0416 (2) | |
S2 | 0.42143 (12) | 0.08505 (14) | 0.83586 (12) | 0.0659 (3) | |
O4 | 1.0956 (3) | 0.3780 (2) | 0.2926 (2) | 0.0403 (5) | |
O2 | 0.8200 (3) | 0.5370 (3) | 0.2953 (3) | 0.0409 (5) | |
O1 | 0.7249 (3) | 0.3994 (3) | 0.4563 (3) | 0.0458 (5) | |
O3 | 1.0032 (3) | 0.2430 (2) | 0.4575 (3) | 0.0438 (5) | |
N3 | 1.0840 (4) | 0.3406 (3) | 0.9585 (3) | 0.0442 (6) | |
N2 | 0.8489 (3) | 0.2883 (3) | 0.7575 (3) | 0.0354 (5) | |
N1 | 0.6790 (3) | 0.2193 (3) | 0.7215 (3) | 0.0385 (6) | |
C1 | 0.9196 (4) | 0.2903 (3) | 0.8988 (3) | 0.0327 (6) | |
C6 | 1.0679 (4) | 0.2556 (3) | 0.3428 (3) | 0.0363 (6) | |
C4 | 0.7032 (4) | 0.4586 (3) | 0.3410 (4) | 0.0367 (6) | |
C2 | 0.6271 (4) | 0.1756 (3) | 0.8362 (4) | 0.0383 (6) | |
C7 | 1.1194 (5) | 0.1119 (4) | 0.2574 (5) | 0.0567 (9) | |
H7A | 1.106850 | 0.114281 | 0.150585 | 0.085* | |
H7B | 1.048657 | 0.021473 | 0.270116 | 0.085* | |
H7C | 1.235495 | 0.108716 | 0.297339 | 0.085* | |
C5 | 0.5263 (4) | 0.4374 (5) | 0.2518 (5) | 0.0565 (9) | |
H5A | 0.459075 | 0.495634 | 0.311649 | 0.085* | |
H5B | 0.477358 | 0.329410 | 0.228270 | 0.085* | |
H5C | 0.529261 | 0.473477 | 0.158389 | 0.085* | |
C3 | 0.3241 (6) | 0.0719 (6) | 0.6412 (5) | 0.0740 (13) | |
H3C | 0.373741 | 0.001172 | 0.574724 | 0.111* | |
H3D | 0.341504 | 0.172515 | 0.616365 | 0.111* | |
H3E | 0.204871 | 0.034989 | 0.627943 | 0.111* | |
H3A | 1.119 (5) | 0.357 (4) | 1.0554 (14) | 0.048 (10)* | |
H3B | 1.149 (5) | 0.377 (5) | 0.903 (5) | 0.070 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0315 (2) | 0.0301 (2) | 0.0309 (3) | 0.00161 (15) | 0.00874 (17) | 0.00645 (16) |
S1 | 0.0421 (4) | 0.0494 (4) | 0.0336 (4) | −0.0010 (3) | 0.0112 (3) | 0.0114 (3) |
S2 | 0.0408 (5) | 0.0941 (7) | 0.0623 (6) | −0.0141 (5) | 0.0082 (4) | 0.0347 (6) |
O4 | 0.0516 (13) | 0.0353 (10) | 0.0367 (12) | 0.0105 (9) | 0.0164 (10) | 0.0054 (9) |
O2 | 0.0312 (10) | 0.0497 (11) | 0.0409 (12) | 0.0015 (9) | 0.0043 (9) | 0.0130 (10) |
O1 | 0.0333 (11) | 0.0572 (13) | 0.0450 (13) | −0.0018 (9) | 0.0039 (9) | 0.0154 (11) |
O3 | 0.0599 (14) | 0.0309 (9) | 0.0423 (13) | 0.0072 (9) | 0.0171 (11) | 0.0056 (9) |
N3 | 0.0374 (14) | 0.0580 (16) | 0.0353 (16) | −0.0021 (11) | 0.0051 (12) | 0.0132 (13) |
N2 | 0.0371 (13) | 0.0357 (11) | 0.0334 (13) | −0.0002 (9) | 0.0077 (10) | 0.0106 (10) |
N1 | 0.0375 (13) | 0.0409 (12) | 0.0373 (14) | −0.0007 (10) | 0.0072 (11) | 0.0138 (10) |
C1 | 0.0377 (14) | 0.0286 (11) | 0.0339 (15) | 0.0037 (10) | 0.0127 (12) | 0.0081 (11) |
C6 | 0.0389 (15) | 0.0318 (13) | 0.0352 (16) | 0.0085 (11) | 0.0027 (12) | 0.0006 (11) |
C4 | 0.0294 (13) | 0.0399 (14) | 0.0369 (17) | 0.0024 (11) | 0.0060 (12) | 0.0004 (12) |
C2 | 0.0365 (15) | 0.0382 (14) | 0.0408 (17) | 0.0001 (11) | 0.0084 (13) | 0.0130 (12) |
C7 | 0.077 (3) | 0.0424 (17) | 0.056 (2) | 0.0278 (17) | 0.0212 (19) | 0.0030 (15) |
C5 | 0.0329 (16) | 0.075 (2) | 0.059 (2) | 0.0039 (15) | 0.0028 (16) | 0.0144 (19) |
C3 | 0.053 (2) | 0.093 (3) | 0.067 (3) | −0.015 (2) | −0.004 (2) | 0.024 (2) |
Cu1—Cu1i | 2.6728 (8) | N3—H3B | 0.856 (10) |
Cu1—O4i | 2.0007 (19) | N2—N1 | 1.394 (3) |
Cu1—O2i | 1.983 (2) | N2—C1 | 1.313 (4) |
Cu1—O1 | 1.962 (2) | N1—C2 | 1.282 (4) |
Cu1—O3 | 1.970 (2) | C6—C7 | 1.510 (4) |
Cu1—N2 | 2.180 (2) | C4—C5 | 1.502 (4) |
S1—C1 | 1.745 (3) | C7—H7A | 0.9600 |
S1—C2 | 1.740 (3) | C7—H7B | 0.9600 |
S2—C2 | 1.752 (3) | C7—H7C | 0.9600 |
S2—C3 | 1.789 (5) | C5—H5A | 0.9600 |
O4—C6 | 1.262 (4) | C5—H5B | 0.9600 |
O2—C4 | 1.267 (4) | C5—H5C | 0.9600 |
O1—C4 | 1.251 (4) | C3—H3C | 0.9600 |
O3—C6 | 1.249 (4) | C3—H3D | 0.9600 |
N3—C1 | 1.339 (4) | C3—H3E | 0.9600 |
N3—H3A | 0.857 (10) | ||
O4i—Cu1—Cu1i | 83.88 (6) | N2—C1—S1 | 113.1 (2) |
O4i—Cu1—N2 | 94.39 (9) | N2—C1—N3 | 124.8 (3) |
O2i—Cu1—Cu1i | 84.10 (7) | O4—C6—C7 | 117.0 (3) |
O2i—Cu1—O4i | 89.30 (9) | O3—C6—O4 | 125.8 (3) |
O2i—Cu1—N2 | 94.80 (9) | O3—C6—C7 | 117.2 (3) |
O1—Cu1—Cu1i | 82.97 (7) | O2—C4—C5 | 117.6 (3) |
O1—Cu1—O4i | 89.12 (10) | O1—C4—O2 | 124.5 (3) |
O1—Cu1—O2i | 167.07 (9) | O1—C4—C5 | 117.8 (3) |
O1—Cu1—O3 | 90.92 (10) | S1—C2—S2 | 119.34 (18) |
O1—Cu1—N2 | 98.11 (10) | N1—C2—S1 | 115.2 (2) |
O3—Cu1—Cu1i | 83.44 (7) | N1—C2—S2 | 125.5 (3) |
O3—Cu1—O4i | 167.22 (9) | C6—C7—H7A | 109.5 |
O3—Cu1—O2i | 87.81 (10) | C6—C7—H7B | 109.5 |
O3—Cu1—N2 | 98.26 (9) | C6—C7—H7C | 109.5 |
N2—Cu1—Cu1i | 177.95 (7) | H7A—C7—H7B | 109.5 |
C2—S1—C1 | 86.58 (14) | H7A—C7—H7C | 109.5 |
C2—S2—C3 | 100.75 (18) | H7B—C7—H7C | 109.5 |
C6—O4—Cu1i | 122.12 (19) | C4—C5—H5A | 109.5 |
C4—O2—Cu1i | 122.8 (2) | C4—C5—H5B | 109.5 |
C4—O1—Cu1 | 125.6 (2) | C4—C5—H5C | 109.5 |
C6—O3—Cu1 | 124.56 (19) | H5A—C5—H5B | 109.5 |
C1—N3—H3A | 121 (3) | H5A—C5—H5C | 109.5 |
C1—N3—H3B | 119 (3) | H5B—C5—H5C | 109.5 |
H3A—N3—H3B | 119 (4) | S2—C3—H3C | 109.5 |
N1—N2—Cu1 | 116.61 (18) | S2—C3—H3D | 109.5 |
C1—N2—Cu1 | 128.89 (19) | S2—C3—H3E | 109.5 |
C1—N2—N1 | 113.1 (2) | H3C—C3—H3D | 109.5 |
C2—N1—N2 | 112.1 (3) | H3C—C3—H3E | 109.5 |
N3—C1—S1 | 122.1 (2) | H3D—C3—H3E | 109.5 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Cg is the centroid of the S1/N1/N2/C1/C2 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O4ii | 0.86 (1) | 2.16 (2) | 2.963 (4) | 156 (4) |
N3—H3B···O2i | 0.86 (1) | 2.11 (3) | 2.884 (4) | 150 (4) |
C7—H7B···Cgiii | 0.96 | 3.00 | 3.346 (4) | 103 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, y, z+1; (iii) −x+2, −y, −z+1. |
Funding information
This work was supported by a Grant for Fundamental Research of the Center of Science and Technology, Uzbekistan (No. BA-FA– F7–004).
References
Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605. CAS Google Scholar
Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk`yanov, M., Lis, T. & Mys`kiv, M. (2017). Acta Cryst. C73, 36–46. Google Scholar
Chitale, S. K., Ramesh, B., Bhalgat, Ch. M., Jaishree, V., Puttaraj, C. & Bharathi, D. R. (2011). Res. J. Pharm. Technol. 4, 1540–1544. Google Scholar
Deckert, C., Bittner, D., Carrella, L. M., Schollmeyer, D. & Rentschler, E. (2016). Eur. J. Inorg. Chem. pp. 1738–1747. CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Foroumadi, A., Soltani, F., Jabini, R., Moshafi, M. H. & Rasnani, F. M. (2004). Arch. Pharm. Res. 27, 502–506. CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. A., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. CrossRef CAS PubMed Google Scholar
Karakuş, S. & Rollas, S. (2002). Farmaco, 57, 577–581. PubMed Google Scholar
Khan, I., Ali, S., Hameed, S., Rama, N. H., Hussain, M. T., Wadood, A., Uddin, R., Ul-Haq, Z., Khan, A., Ali, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 5200–5207. CrossRef CAS PubMed Google Scholar
Klip, N. T., Çapan, G., Gürsoy, A., Uzun, M. & Satana, D. (2010). J. Enzyme Inhib. Med. Chem. 25, 126–131. PubMed Google Scholar
Kumar, D., Kumar, N. M., Chang, K. & Shah, K. (2010). Eur. J. Med. Chem. 45, 4664–4668. CrossRef CAS PubMed Google Scholar
Lynch, D. E. (2010). Private Communication (refcode XUVPEK). CCDC, Cambridge, England. Google Scholar
Matysiak, J. & Malinski, Z. (2007). Russ. J. Bioorg. Chem. 33, 594–601. CrossRef CAS Google Scholar
Mincione, G., Scozzafava, A. & Supuran, C. T. (1997). Met.-Based Drugs, 4, 27–34. CrossRef CAS Google Scholar
Önkol, T., Doğruer, D. S., Uzun, L., Adak, S., Özkan, S. & Fethi Şahin, M. (2008). J. Enzyme Inhib. Med. Chem. 23, 277–284. PubMed Google Scholar
Oruç, E., Rollas, S., Kandemirli, F., Shvets, N. & Dimoglo, A. (2004). J. Med. Chem. 47, 6760–6767. PubMed Google Scholar
Padmavathi, V., Sudhakar Reddy, G., Padmaja, A., Kondaiah, P. & Ali-Shazia (2009). Eur. J. Med. Chem. 44, 2106–2112. Google Scholar
Qiu, Q.-M., Liu, M., Li, Z.-F., Jin, Q.-H., Huang, X., Zhang, Z.-W., Zhang, C.-L. & Meng, Q.-X. (2014). J. Mol. Struct. 1062, 125–132. CSD CrossRef CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soudani, S., Zeller, M., Wenger, E., Jelsch, C., Lefebvre, F. & Nasr, C. B. (2014). J. Mol. Struct. 1075, 442–449. CSD CrossRef CAS Google Scholar
Sunil, D., Isloor, A. M., Shetty, P., Satyamoorthy, K. & Prasad, A. S. B. (2010). Arab. J. Chem. 3, 211–217. CrossRef CAS Google Scholar
Tzeng, B.-C., Huang, Y.-C., Wu, W.-M., Lee, S.-Y., Lee, G.-H. & Peng, S.-M. (2004). Cryst. Growth Des. 4, 63–70. Web of Science CSD CrossRef CAS Google Scholar
Varna, D., Kapetanaki, E., Koutsari, A., Hatzidimitriou, A. G., Psomas, G., Angaridis, P., Papi, R., Pantazaki, A. A. & Aslanidis, P. (2018). Polyhedron, 151, 131–140. CSD CrossRef CAS Google Scholar
Verma, S., Srivastava, S. K. & Samadhiya, P. (2011). Int. J. Pharm. Res. Dev. 11, 73–81. Google Scholar
Zoumpoulakis, P., Camoutsis, C., Pairas, G., Soković, M., Glamočlija, J., Potamitis, C. & Pitsas, A. (2012). Bioorg. Med. Chem. 20, 1569–1583. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.