research communications
of 4,4′-bis(4-bromophenyl)-1,1′,3,3′-tetrathiafulvalene
aDepartment of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA
*Correspondence e-mail: rigindale@gmail.com
The molecule of the title compound, C18H10Br2S4, has a C-shape, with Cs molecular symmetry. The dihedral angle between the planes of the dithiol and phenyl rings is 8.35 (9)°. In the crystal, molecules form helical chains along [001], the shortest interactions being π⋯S contacts within the helices. The intermolecular interactions were investigated by Hirshfeld surface analysis. Density functional theory (DFT) was used to calculate HOMO–LUMO energy levels of the title compound and its trans isomer.
Keywords: crystal structure; tetrathiafulvalene; derivative; weak interactions; Hirshfeld surface analysis; DFT calculations.
CCDC reference: 1940080
1. Chemical context
So far significant progress has been achieved in improving the performance of organic field-effect transistors (OFETs) using such materials as oligoacenes, oligothiophenes and polythiophenes (Mas-Torrent & Rovira, 2011; Pfattner, et al., 2016). Numerous derivatives of the sulfur heterocycle 2,2′-bis(1,3-dithiolylidene), known as tetrathiafulvalene (TTF), have been noted as components of OFETs (Fourmigué & Batail, 2004; Bendikov et al., 2004). High charge mobilities have been reported for thiophene-fused TTF and dibenzo-TTF in single-crystal OFETs obtained from solutions, as well as in tetra(octadecylthio)-TTF films (Mas-Torrent et al., 2004a,b). A comparatively high mobility was reported for biphenyl-substituted TTF (Noda et al., 2005, 2007). Correlations between mobilities and herring-bone crystal structures have been investigated (Pfattner, et al., 2016; Mas-Torrent & Rovira, 2011), including for phenyl-substituted oligothiophenes (Noda et al., 2007). Among the numerous reported halogenated tetrathiafulvalenes (Fourmigué & Batail, 2004), only a few have been crystallographically characterized. The synthesis and characterization of two halogen TTF derivatives, 4,4′-bis(4-chlorophenyl)tetrathiafulvalene and 4,4′-bis(4-bromophenyl)tetrathiafulvalene have been reported, but only the of the chloro-substituted compound has been documented (Madhu & Das, 2008), which shows short Cl⋯Cl contacts. Herein, we report the the Hirshfeld surface analysis and the molecular orbital analysis of the title compound, 4,4′-bis(4-bromophenyl)-1,1′,3,3′-tetrathiafulvalene (BBP-TTF).
2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The molecule has a C-shape with Cs molecular symmetry and resides on the mirror plane passing through the central C1=C1(x, −y + 3/2, z) bond [1.343 (7) Å]. The C—S distances in the TTF moiety are in the range 1.729 (4)–1.778 (4) Å and correspond to reported values (CSD version 5.40, last update November 2018; Groom et al., 2016). The dihedral angle between the dithiol and phenyl rings is 8.35 (9)°.
3. Supramolecular features
In the crystal (Fig. 2), no significant intermolecular interactions were found. Molecules related by the twofold screw axis form helices along the c-axis direction. The dihedral angle between the mean planes of the adjacent molecules in the helix is 36.59 (3)° and the helical pitch is 6.1991 (5) Å. The shortest interactions within the chain, as indicated by Mercury (Macrae et al., 2006), are the S⋯π contacts C3⋯S2(1 − x, y, z − ) = 3.458 (4) and C2⋯S2(1 − x, y, z − ) = 3.465 (4) Å, followed by the C2—H2⋯C4(1 − x, y, + z) [2.72, 3.467 (5) Å] short contacts that are in agreement with the Hirshfeld (1977) surface analysis.
4. Hirshfeld surface analysis
CrystalExplorer17.5 (Wolff et al., 2012, Mackenzie et al., 2017) was used to generate the molecular Hirshfeld surface. The total dnorm surface of the title compound is shown in Fig. 3 where the red spots correspond to the most significant interactions in the crystal. In the studied molecule, they include only weak C—H⋯π interactions at distances that are slightly higher than the sum of van der Waals radii.
5. Frontier molecular orbital calculations
The highest occupied molecular orbital (HOMO) acts as an Gaussian 16W software (Frisch et al., 2016) using density functional theory (DFT) at the B3LYP/6-311+G(d,p) level of theory. The of the title compound and its trans-isomer are shown in Figs. 4 and 5, respectively. The energy gap determines chemical hardness, and the index. The values for the title compound, its trans-isomer and unsubstituted TTF are summarized in Table 1. The conformation energy difference between the cis- and trans isomers is 1.6331 kJ mol−1. For both isomers the energy gap is large; hence both molecules are considered to be hard materials and would be difficult to polarize. As seen from Table 1, the bromophenyl substituents reduce the HOMO–LUMO energy gap and therefore the unsubstituted TTF molecule would be even more difficult to polarize.
and the lowest unoccupied molecular orbital (LUMO) acts as an A small HOMO–LUMO energy gap indicates a highly polarizable molecule and high chemical reactivity. Molecular levels for the title compound were calculated with
|
6. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, last update November 2018, Groom et al., 2016) for substituted TTF-phenyl derivatives related to the title compound yielded six structures. They include: bis(4,4′-diphenyltetrathiafulvalenium)bis(pentafluorophenyl)gold(I) (CAKTAJ; Cerrada et al., 1998), 4,5′-diphenyltetrathiafulvalene (DPTFUL; Escande & Lapasset, 1979, and DPTFUL01; Noda et al., 2007), 4,4′-bis(4-chlorophenyl)-1,1′,3,3′-tetrathiafulvalene (GOBVUP; Madhu & Das, 2008), 4,5′-bis(p-tolyl)tetrathiafulvalene (MOPJOR; Noda et al., 2007), 4,5′-bis(4-ethylphenyl)tetrathiafulvalene (MOPJUX; Noda et al., 2007), and 4,5′-bis(4-(trifluoromethyl)phenyl)tetrathiafulvalene (MOPKEI; Noda et al., 2007). Contrary to the title compound, they all exhibit inversion or pseudo-inversion symmetry with a trans-arrangement of the phenyl substituents about the central C=C bond. The C=C bond lengths vary from 1.339 Å (MOPJUX) to 1.353 Å (DPTFUL); the value observed for the title compound falls within this limit. All of the above molecules are almost planar, with tilt angles between the dithiol and phenyl rings varying from 5.39 to 10.18° for the two independent molecules in DPTFUL01 to 28.28° in GOBVUP and 30.29° in MOPKEI; the greatest twisting was observed for halogen-substituted derivatives.
7. Crystallization
The single crystals of the title compound were obtained in attempt to co-crystallize it with tetracyanoquinodimethane (TCNQ) in a 1:1 molar ratio. A
of 4,4′-bis(4-bromophenyl)-1,1′,3,3′-tetrathiafulvalene (2 mg, Aldrich) in chloroform was mixed with a of TCNQ (1 mg, Aldrich) in acetonitrile and left at room temperature. Red prismatic crystals suitable for the X-ray were obtained after a week of slow evaporation.8. Refinement
Crystal data, data collection and structure . The hydrogen atoms were positioned geometrically and refined using a riding model: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1940080
https://doi.org/10.1107/S2056989019009952/eb2019sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019009952/eb2019Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019009952/eb2019Isup3.cml
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C18H10Br2S4 | Dx = 1.939 Mg m−3 |
Mr = 514.32 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Abm2 | Cell parameters from 9390 reflections |
a = 7.5981 (6) Å | θ = 2.2–28.4° |
b = 37.411 (3) Å | µ = 5.07 mm−1 |
c = 6.1991 (5) Å | T = 90 K |
V = 1762.1 (2) Å3 | Prism, red |
Z = 4 | 0.17 × 0.11 × 0.05 mm |
F(000) = 1008 |
Bruker APEXII CCD diffractometer | 1530 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.066 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | θmax = 25.0°, θmin = 1.1° |
Tmin = 0.625, Tmax = 0.747 | h = −9→9 |
34235 measured reflections | k = −44→44 |
1580 independent reflections | l = −7→7 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.017 | w = 1/[σ2(Fo2) + (0.0126P)2 + 2.1911P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.041 | (Δ/σ)max = 0.003 |
S = 1.09 | Δρmax = 0.29 e Å−3 |
1580 reflections | Δρmin = −0.29 e Å−3 |
109 parameters | Absolute structure: Flack x determined using 663 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.014 (5) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.79020 (5) | 0.53149 (2) | 0.04905 (9) | 0.02338 (12) | |
S1 | 0.84814 (9) | 0.70527 (2) | 0.54322 (17) | 0.01212 (17) | |
S2 | 0.64506 (12) | 0.70791 (2) | 0.95068 (14) | 0.01322 (19) | |
C1 | 0.7514 (4) | 0.73205 (10) | 0.7447 (6) | 0.0120 (7) | |
C2 | 0.6459 (5) | 0.66817 (10) | 0.8081 (6) | 0.0122 (8) | |
H2 | 0.583254 | 0.648059 | 0.861560 | 0.015* | |
C3 | 0.7350 (5) | 0.66579 (9) | 0.6225 (6) | 0.0117 (8) | |
C4 | 0.7515 (4) | 0.63362 (9) | 0.4874 (6) | 0.0125 (8) | |
C5 | 0.6886 (4) | 0.60030 (9) | 0.5600 (9) | 0.0159 (7) | |
H5 | 0.637106 | 0.598599 | 0.699223 | 0.019* | |
C6 | 0.7004 (5) | 0.56997 (10) | 0.4326 (7) | 0.0182 (8) | |
H6 | 0.658485 | 0.547656 | 0.484660 | 0.022* | |
C7 | 0.7737 (5) | 0.57250 (10) | 0.2289 (7) | 0.0148 (8) | |
C8 | 0.8384 (4) | 0.60494 (10) | 0.1519 (6) | 0.0133 (7) | |
H8 | 0.890749 | 0.606365 | 0.012995 | 0.016* | |
C9 | 0.8253 (4) | 0.63529 (10) | 0.2817 (6) | 0.0129 (8) | |
H9 | 0.867405 | 0.657541 | 0.228922 | 0.015* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0322 (2) | 0.01276 (17) | 0.02519 (19) | −0.00010 (14) | 0.0039 (2) | −0.0046 (2) |
S1 | 0.0126 (4) | 0.0117 (4) | 0.0120 (4) | −0.0005 (3) | 0.0032 (5) | 0.0006 (5) |
S2 | 0.0148 (4) | 0.0149 (4) | 0.0100 (4) | 0.0001 (4) | 0.0030 (4) | 0.0018 (4) |
C1 | 0.0071 (15) | 0.0181 (17) | 0.0109 (16) | 0.0014 (14) | 0.0010 (12) | 0.0008 (15) |
C2 | 0.0111 (17) | 0.0111 (19) | 0.0145 (18) | −0.0007 (13) | −0.0011 (14) | 0.0022 (14) |
C3 | 0.0089 (17) | 0.0126 (19) | 0.0134 (18) | 0.0024 (13) | −0.0025 (12) | 0.0042 (13) |
C4 | 0.0074 (15) | 0.0130 (18) | 0.017 (2) | 0.0019 (12) | −0.0022 (12) | 0.0010 (13) |
C5 | 0.0136 (15) | 0.0191 (17) | 0.0149 (16) | 0.0002 (12) | 0.0022 (19) | 0.002 (2) |
C6 | 0.022 (2) | 0.0124 (19) | 0.020 (2) | 0.0007 (15) | 0.0009 (16) | 0.0067 (17) |
C7 | 0.0141 (18) | 0.0119 (19) | 0.0186 (19) | 0.0014 (14) | −0.0036 (16) | −0.0017 (16) |
C8 | 0.0121 (18) | 0.0160 (19) | 0.0117 (17) | −0.0007 (14) | 0.0003 (15) | 0.0017 (15) |
C9 | 0.0115 (17) | 0.0127 (19) | 0.0144 (18) | 0.0007 (14) | −0.0014 (14) | 0.0029 (15) |
Br1—C7 | 1.901 (4) | C4—C9 | 1.394 (5) |
S1—C1 | 1.762 (4) | C5—H5 | 0.9500 |
S1—C3 | 1.778 (4) | C5—C6 | 1.385 (6) |
S2—C1 | 1.760 (4) | C6—H6 | 0.9500 |
S2—C2 | 1.729 (4) | C6—C7 | 1.384 (6) |
C1—C1i | 1.343 (7) | C7—C8 | 1.394 (5) |
C2—H2 | 0.9500 | C8—H8 | 0.9500 |
C2—C3 | 1.338 (5) | C8—C9 | 1.396 (6) |
C3—C4 | 1.472 (5) | C9—H9 | 0.9500 |
C4—C5 | 1.409 (5) | ||
C1—S1—C3 | 94.28 (17) | C6—C5—C4 | 121.4 (4) |
C2—S2—C1 | 93.94 (18) | C6—C5—H5 | 119.3 |
S2—C1—S1 | 114.5 (2) | C5—C6—H6 | 120.3 |
C1i—C1—S1 | 124.66 (13) | C7—C6—C5 | 119.4 (4) |
C1i—C1—S2 | 120.87 (12) | C7—C6—H6 | 120.3 |
S2—C2—H2 | 120.1 | C6—C7—Br1 | 120.5 (3) |
C3—C2—S2 | 119.9 (3) | C6—C7—C8 | 120.9 (4) |
C3—C2—H2 | 120.1 | C8—C7—Br1 | 118.6 (3) |
C2—C3—S1 | 115.3 (3) | C7—C8—H8 | 120.5 |
C2—C3—C4 | 125.9 (3) | C7—C8—C9 | 119.1 (3) |
C4—C3—S1 | 118.7 (2) | C9—C8—H8 | 120.5 |
C5—C4—C3 | 120.9 (3) | C4—C9—C8 | 121.3 (3) |
C9—C4—C3 | 121.2 (3) | C4—C9—H9 | 119.3 |
C9—C4—C5 | 117.9 (4) | C8—C9—H9 | 119.3 |
C4—C5—H5 | 119.3 |
Symmetry code: (i) x, −y+3/2, z. |
cis isomer | trans isomer | TTF | |
E(HOMO) | -5.0559 | -5.0186 | -4.8488 |
E(LUMO) | -1.8283 | -1.8049 | -1.1252 |
E(HOMO-1) | -6.3966 | -6.3941 | -6.6303 |
E(LUMO+1) | -1.6457 | -1.6515 | -0.7140 |
ΔE(HOMO–LUMO) | 3.2275 | 3.2137 | 3.7236 |
ΔE(HOMO-1–LUMO+1) | 4.7508 | 4.7427 | 5.9163 |
Chemical hardness (η) | 1.6138 | 1.6068 | 1.8618 |
Chemical potential (µ) | 3.4421 | 3.4118 | 2.9870 |
Electronegativity (χ) | -3.4421 | -3.4118 | -2.9870 |
Electrophilicity index (ω) | 3.6709 | 3.6221 | 2.3961 |
ΔE(cis–trans) | 1.6331 |
Funding information
Funding for this research was provided by: NSF DMR 1523611 (PREM).
References
Bendikov, M., Wudl, F. & Perepichka, D. F. (2004). Chem. Rev. 104, 4891–4946. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2016). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cerrada, E., Laguna, M., Bartolomé, J., Campo, J., Orera, V. & Jones, P. G. (1998). Synth. Met. 92, 245–251. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Escande, A. & Lapasset, J. (1979). Cryst. Struct. Commun. 8, 1009. Google Scholar
Fourmigué, M. & Batail, P. (2004). Chem. Rev. 104, 5379–5418. Web of Science CrossRef PubMed CAS Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J, Raghavachari, K.,; Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16W. Gaussian, Inc., Wallingford CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Madhu, V. & Das, S. K. (2008). Inorg. Chem. 47, 5055–5070. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mas-Torrent, M., Durkut, M., Hadley, P., Ribas, X. & Rovira, C. (2004a). J. Am. Chem. Soc. 126, 984–985. Web of Science PubMed CAS Google Scholar
Mas-Torrent, M., Hadley, P., Bromley, S. T., Ribas, X., Tarrés, J., Mas, M., Molins, E., Veciana, J. & Rovira, C. (2004b). J. Am. Chem. Soc. 126, 8546–8553. Web of Science PubMed CAS Google Scholar
Mas-Torrent, M. & Rovira, C. (2011). Chem. Rev. 111, 4833–4856. Web of Science CAS PubMed Google Scholar
Noda, B., Katsuhara, M., Aoyagi, I., Mori, T., Taguchi, T., Kambayashi, T., Ishikawa, K. & Takezoe, H. (2005). Chem. Lett. 34, 392–393. Web of Science CrossRef CAS Google Scholar
Noda, B., Wada, H., Shibata, K., Yoshino, T., Katsuhara, M., Aoyagi, I., Mori, T., Taguchi, T., Kambayashi, T., Ishikawa, K. & Takezoe, H. (2007). Nanotechnology, 18, 424009. Web of Science CSD CrossRef PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pfattner, R., Bromley, S. T., Rovira, C. & Mas-Torrent, M. (2016). Adv. Funct. Mater. 26, 2256–2275. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.