research communications
E)-3-[(4-chlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide
and Hirshfeld surface analysis of (aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Theoretical and Industrial Heat Engineering (TPT), National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 03056, Kyiv, Ukraine
*Correspondence e-mail: mustford@ukr.net
The title salt, C16H15ClN3S+·Br−, is isotypic with (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide [Khalilov et al. (2019). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thiazolidine ring and the atom joining the thiazolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thiazolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide, C—H⋯π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the molecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) interactions.
Keywords: crystal structure; isotypic; charge-assisted hydrogen bonding; thiazolidine ring; disorder; Hirshfeld surface analysis.
CCDC reference: 1837122
1. Chemical context
The thiazolidine ring system posses special importance in synthetic and medicinal chemistry. Substituted thiazolidine derivatives are known to exhibit various biological activities such as antiviral, anticancer, anti-tubercular, and antimicrobial etc. (Makwana & Malani 2017). have been widely used as versatile ligands in the synthesis, catalysis and design of materials (Akbari et al., 2017; Akkurt et al., 2018; Asadov et al., 2016; Gurbanov et al., 2018a,b; Ma et al., 2017a,b; Mamedov et al., 2018). Weak interactions, namely hydrogen bonding, π-interactions, etc. provided by N-containing ligands can also contribute to their structural organization, coordination abilities and among other properties (Khalilov et al., 2019; Maharramov et al., 2009, 2010; Mahmoudi et al., 2018a,b; Mahmudov et al., 2014, 2019; Mamedov et al., 2015; Mitoraj et al., 2018; Shixaliyev et al., 2014; Zubkov et al., 2018). As part of our ongoing studies in this field, we report herein the and Hirshfeld surface analysis of the title compound, (E)-3-[(4-chlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide.
2. Structural commentary
The major and minor components (S1/N2/C1/C2′/C3 and S1/N2/C1/C2/C3) of the thiazolidine ring in the cation of the title salt (Fig. 1) both adopt a distorted with puckering parameters Q(2) = 0.432 (3) Å, φ(2) = 33.5 (4)° for the major component and Q(2) = 0.414 (4) Å, φ(2) = 326.1 (5)° for the minor component. The mean planes of the major and minor components of the disordered thiazolidine ring make dihedral angles of 14.99 (14), 88.45 (16), 84.3 (2)° and 22.82 (16), 86.85 (18), 83.9 (2)°, respectively, with the chlorophenyl ring (C5–C10) and the major- and minor-disorder components (C11′–C16′ and C11–C16) of the phenyl ring. The N2—N1—C4—C5 bridge that links the thiazolidine and 4-chlorophenyl rings has a torsion angle of 176.4 (2)°.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts, into chains parallel to the a-axis direction (Table 1; Figs. 2 and 3). Furthermore, C—H⋯π interactions (Table 1) and π–π stacking interactions [Cg4 ⋯Cg4(2 − x, − y, 1 − z) = 3.897 (2) Å where Cg4 is the centroid of the major component of the disordered phenyl ring] contribute to the stabilization of the molecular packing.
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was used to quantify and visualize the intermolecular interactions and to explain the observed crystal packing. CrystalExplorer3.1 (Wolff et al., 2012) was used to generate dnorm surface plots and two-dimensional fingerprint plots (Spackman & McKinnon, 2002). The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.4687 (red) to 1.2270 a.u. (blue) is shown in Fig. 4. The shape-index of the Hirshfeld surface is a tool to visualize π–π stacking interactions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggest that there are π–π interactions present in the title salt. Fig. 6a shows the two-dimensional fingerprint for the sum of the contacts contributing to the Hirshfeld surface represented in normal mode (Tables 1 and 2). The fingerprint plots delineated into H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) interactions are shown in Fig. 6b–f, respectively. The most significant intermolecular interactions are the H⋯H interactions (30.5%; ig. 6b). The various contributions to the Hirshfeld surface are listed in Table 3.
|
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016) for 2-thiazolidiniminium compounds gave eight hits, viz. BOBWIB (Khalilov et al., 2019), UDELUN (Akkurt et al., 2018), WILBIC (Marthi et al., 1994), WILBOI (Marthi et al., 1994), WILBOI01 (Marthi et al., 1994), YITCEJ (Martem'yanova et al., 1993a), YITCAF (Martem'yanova et al., 1993b) and YOPLUK (Marthi et al., 1995).
The structure of BOBWIB (Khalilov et al., 2019) is isotypic with that of the title salt. In BOBWIB, the phenyl ring is disordered over two sets of sites with a refined occupancy ratio of 0.503 (4):0.497 (4). The mean plane of the thiazolidine ring makes dihedral angles of 13.51 (14), 48.6 (3) and 76.5 (3)°, respectively, with the fluorophenyl ring and the major- and minor-disorder components of the phenyl ring. The central thiazolidine ring adopts an In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. In the crystal of UDELUN (Akkurt et al., 2018), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π interactions, which only involve the minor-disorder component of the ring, also contribute to the molecular packing. In addition, there are inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts. In the remaining structures, the 3-N atom carries a C-atom substituent instead of an N-atom substituent, as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994) of 3-(20-chloro-20-phenylethyl)-2-thiazolidiniminium p-toluenesulfonate. In all three structures, the most disordered fragment of the molecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enantiomers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a) is the product of the interaction of 2-amino-5-methylthiazoline with methyl iodide, with alkylation at the endocyclic N atom, while YITCAF (Martem'yanova et al., 1993b) is the product of the reaction of 3-nitro-5-methoxy-, 3-nitro-5- chloro- and 3-bromo-5-nitrosalicylaldehyde with the heterocyclic base to form the salt-like complexes.
5. Synthesis and crystallization
To a 1 mmol solution of 3-amino-5-phenylthiazolidin-2-iminium bromide in 20 mL of ethanol was added 1 mmol of 4-chlorobenzaldehyde. The mixture was refluxed for 2 h and then cooled down. The reaction products, precipitated from the reaction mixture as colourless single crystals, were collected by filtration and washed with cold acetone.
(E)-3-[(4-chlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide: yield 78%, m.p. 531–532 K. Analysis calculated for C16H15BrClN3S (Mr = 396.73): C 48.44, H 3.81, N 10.59. Found: C 48.40, H 3.78, N 10.55%. 1H NMR (300 MHz, DMSO-d6): 4.56 (k, 1H, CH2, 3JH–H = 6.9); 4.89 (t, 1H, CH2, 3JH–H = 7.8); 5.61 (t, 1H, CH—Ar, 3JH–H = 7.2); 7.36–8.04 (m, 9H, 9Ar—H); 8.47 (s, 1H, CH=); 10.46 (s, 2H, H2N+=). 13C NMR (75 MHz, DMSO-d6): 45.40, 55.95, 125.13, 127.77, 128.85, 129.06, 130.49, 131.84, 132.15, 137.40, 149.94, 167.96. MS (ESI), m/z: 316.82 [C16H15ClN3S]+ and 79.88 Br−.
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed at calculated positions using a riding model, with aromatic C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C). Hydrogen atoms of the amino groups were located directly from difference-Fourier maps and were constrained with AFIX 3 instructions (N—H = 0.90 Å) in order to ensure a chemically reasonable environment for these groups. These hydrogen atoms were modelled with isotropic thermal displacement parameters fixed at 1.2Ueq(N). One outlier (001) was omitted in the final cycles of The phenyl group and the carbon atom of the 1,3-thiazolidine group attached to it were refined as positionally disordered over two sets of sites with refined occupancies of 0.570 (3) and 0.430 (3).
details are summarized in Table 4
|
Supporting information
CCDC reference: 1837122
https://doi.org/10.1107/S2056989019009885/ff2160sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019009885/ff2160Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019009885/ff2160Isup3.cml
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2003).C16H15ClN3S+·Br− | Z = 2 |
Mr = 396.73 | F(000) = 400 |
Triclinic, P1 | Dx = 1.590 Mg m−3 |
a = 8.3146 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.9424 (5) Å | Cell parameters from 5442 reflections |
c = 12.2388 (6) Å | θ = 2.7–25.6° |
α = 80.988 (2)° | µ = 2.77 mm−1 |
β = 76.458 (2)° | T = 150 K |
γ = 70.027 (2)° | Prism, colourless |
V = 828.54 (8) Å3 | 0.23 × 0.15 × 0.12 mm |
Bruker APEXII CCD diffractometer | 2768 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.030 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 25.7°, θmin = 2.4° |
Tmin = 0.584, Tmax = 0.721 | h = −10→10 |
13599 measured reflections | k = −10→10 |
3141 independent reflections | l = −14→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: mixed |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0318P)2 + 0.6849P] where P = (Fo2 + 2Fc2)/3 |
3141 reflections | (Δ/σ)max < 0.001 |
167 parameters | Δρmax = 0.43 e Å−3 |
13 restraints | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.43584 (3) | 0.27419 (3) | 0.08917 (3) | 0.03616 (11) | |
S1 | 1.16201 (8) | 0.01512 (8) | 0.77241 (6) | 0.02962 (17) | |
Cl1 | 0.71456 (9) | 0.63476 (9) | 1.50136 (6) | 0.03926 (19) | |
N1 | 0.9880 (3) | 0.2905 (3) | 1.01551 (18) | 0.0261 (5) | |
N2 | 1.0069 (3) | 0.2228 (3) | 0.91692 (18) | 0.0295 (5) | |
N3 | 1.2932 (3) | 0.0869 (3) | 0.9296 (2) | 0.0400 (6) | |
H3A | 1.292718 | 0.144940 | 0.983551 | 0.048* | |
H3B | 1.384318 | −0.002770 | 0.916811 | 0.048* | |
C1 | 0.8687 (3) | 0.2393 (3) | 0.8545 (2) | 0.0341 (7) | |
H1A | 0.816300 | 0.353542 | 0.839939 | 0.041* | |
H1B | 0.760230 | 0.250582 | 0.908539 | 0.041* | |
C2 | 0.9229 (7) | 0.0699 (7) | 0.8065 (4) | 0.0235 (7) | 0.430 (3) |
H2A | 0.885845 | −0.008237 | 0.866227 | 0.028* | 0.430 (3) |
C2' | 0.9748 (5) | 0.1827 (5) | 0.7375 (3) | 0.0235 (7) | 0.570 (3) |
H2'A | 1.017275 | 0.270076 | 0.692759 | 0.028* | 0.570 (3) |
C3 | 1.1593 (3) | 0.1148 (3) | 0.8835 (2) | 0.0254 (6) | |
C4 | 0.8369 (3) | 0.3820 (3) | 1.0563 (2) | 0.0241 (5) | |
H4A | 0.743146 | 0.407061 | 1.017588 | 0.029* | |
C5 | 0.8106 (3) | 0.4475 (3) | 1.1638 (2) | 0.0223 (5) | |
C6 | 0.6438 (3) | 0.5335 (3) | 1.2143 (2) | 0.0325 (6) | |
H6A | 0.549467 | 0.552836 | 1.177051 | 0.039* | |
C7 | 0.6126 (3) | 0.5916 (3) | 1.3182 (2) | 0.0326 (6) | |
H7A | 0.497686 | 0.649414 | 1.353033 | 0.039* | |
C8 | 0.7509 (3) | 0.5642 (3) | 1.3698 (2) | 0.0263 (6) | |
C9 | 0.9184 (3) | 0.4796 (3) | 1.3208 (2) | 0.0328 (6) | |
H9A | 1.012263 | 0.461561 | 1.358178 | 0.039* | |
C10 | 0.9491 (3) | 0.4214 (3) | 1.2178 (2) | 0.0291 (6) | |
H10A | 1.064338 | 0.363690 | 1.183537 | 0.035* | |
C11 | 0.8465 (6) | 0.0806 (7) | 0.7014 (3) | 0.0262 (4) | 0.430 (3) |
C12 | 0.8842 (5) | 0.1707 (5) | 0.6013 (5) | 0.0262 (4) | 0.430 (3) |
H12A | 0.959618 | 0.232164 | 0.595388 | 0.031* | 0.430 (3) |
C13 | 0.8115 (6) | 0.1709 (5) | 0.5099 (3) | 0.0262 (4) | 0.430 (3) |
H13A | 0.837260 | 0.232457 | 0.441512 | 0.031* | 0.430 (3) |
C14 | 0.7011 (6) | 0.0810 (6) | 0.5186 (3) | 0.0262 (4) | 0.430 (3) |
H14A | 0.651415 | 0.081077 | 0.456168 | 0.031* | 0.430 (3) |
C15 | 0.6634 (6) | −0.0091 (5) | 0.6188 (4) | 0.0262 (4) | 0.430 (3) |
H15A | 0.587926 | −0.070596 | 0.624700 | 0.031* | 0.430 (3) |
C16 | 0.7361 (6) | −0.0093 (5) | 0.7102 (3) | 0.0262 (4) | 0.430 (3) |
H16A | 0.710282 | −0.070891 | 0.778578 | 0.031* | 0.430 (3) |
C11' | 0.8723 (4) | 0.1315 (5) | 0.6690 (3) | 0.0262 (4) | 0.570 (3) |
C12' | 0.8655 (4) | 0.1978 (4) | 0.5589 (3) | 0.0262 (4) | 0.570 (3) |
H12B | 0.922655 | 0.274751 | 0.527276 | 0.031* | 0.570 (3) |
C13' | 0.7752 (5) | 0.1515 (4) | 0.49515 (18) | 0.0262 (4) | 0.570 (3) |
H13B | 0.770646 | 0.196839 | 0.419913 | 0.031* | 0.570 (3) |
C14' | 0.6917 (4) | 0.0390 (4) | 0.5415 (3) | 0.0262 (4) | 0.570 (3) |
H14B | 0.629962 | 0.007328 | 0.497865 | 0.031* | 0.570 (3) |
C15' | 0.6984 (5) | −0.0273 (3) | 0.6515 (3) | 0.0262 (4) | 0.570 (3) |
H15B | 0.641287 | −0.104273 | 0.683180 | 0.031* | 0.570 (3) |
C16' | 0.7887 (5) | 0.0189 (4) | 0.71531 (18) | 0.0262 (4) | 0.570 (3) |
H16B | 0.793296 | −0.026363 | 0.790545 | 0.031* | 0.570 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02235 (16) | 0.03754 (17) | 0.0473 (2) | −0.00105 (11) | −0.01050 (12) | −0.01367 (13) |
S1 | 0.0215 (3) | 0.0316 (4) | 0.0341 (4) | 0.0013 (3) | −0.0070 (3) | −0.0180 (3) |
Cl1 | 0.0365 (4) | 0.0458 (4) | 0.0323 (4) | 0.0007 (3) | −0.0103 (3) | −0.0202 (3) |
N1 | 0.0235 (11) | 0.0293 (12) | 0.0248 (11) | −0.0027 (9) | −0.0063 (9) | −0.0111 (9) |
N2 | 0.0204 (11) | 0.0349 (13) | 0.0309 (12) | 0.0048 (9) | −0.0100 (9) | −0.0196 (10) |
N3 | 0.0238 (12) | 0.0452 (15) | 0.0480 (15) | 0.0093 (11) | −0.0152 (11) | −0.0292 (12) |
C1 | 0.0207 (13) | 0.0397 (16) | 0.0382 (16) | 0.0095 (12) | −0.0123 (12) | −0.0264 (13) |
C2 | 0.0187 (17) | 0.0239 (18) | 0.0273 (19) | −0.0033 (14) | −0.0044 (15) | −0.0087 (14) |
C2' | 0.0187 (17) | 0.0239 (18) | 0.0273 (19) | −0.0033 (14) | −0.0044 (15) | −0.0087 (14) |
C3 | 0.0220 (13) | 0.0265 (13) | 0.0274 (14) | −0.0039 (11) | −0.0055 (11) | −0.0089 (11) |
C4 | 0.0190 (13) | 0.0218 (13) | 0.0307 (14) | −0.0007 (10) | −0.0079 (11) | −0.0083 (11) |
C5 | 0.0201 (12) | 0.0201 (12) | 0.0260 (13) | −0.0035 (10) | −0.0052 (10) | −0.0057 (10) |
C6 | 0.0201 (13) | 0.0372 (16) | 0.0405 (16) | 0.0008 (11) | −0.0106 (12) | −0.0200 (13) |
C7 | 0.0202 (13) | 0.0358 (15) | 0.0401 (16) | 0.0000 (11) | −0.0053 (12) | −0.0190 (13) |
C8 | 0.0273 (14) | 0.0260 (13) | 0.0244 (13) | −0.0033 (11) | −0.0051 (11) | −0.0103 (11) |
C9 | 0.0225 (14) | 0.0439 (17) | 0.0311 (15) | −0.0019 (12) | −0.0125 (12) | −0.0097 (13) |
C10 | 0.0185 (13) | 0.0348 (15) | 0.0288 (14) | 0.0001 (11) | −0.0031 (11) | −0.0100 (12) |
C11 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
C12 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
C13 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
C14 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
C15 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
C16 | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
C11' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
C12' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
C13' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
C14' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
C15' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
C16' | 0.0219 (8) | 0.0310 (9) | 0.0269 (9) | −0.0047 (6) | −0.0062 (6) | −0.0127 (7) |
S1—C3 | 1.731 (3) | C8—C9 | 1.379 (4) |
S1—C2' | 1.835 (4) | C9—C10 | 1.374 (4) |
S1—C2 | 1.838 (5) | C9—H9A | 0.9500 |
Cl1—C8 | 1.744 (3) | C10—H10A | 0.9500 |
N1—C4 | 1.276 (3) | C11—C12 | 1.3900 |
N1—N2 | 1.386 (3) | C11—C16 | 1.3900 |
N2—C3 | 1.323 (3) | C12—C13 | 1.3900 |
N2—C1 | 1.478 (3) | C12—H12A | 0.9500 |
N3—C3 | 1.296 (3) | C13—C14 | 1.3900 |
N3—H3A | 0.8999 | C13—H13A | 0.9500 |
N3—H3B | 0.9000 | C14—C15 | 1.3900 |
C1—C2' | 1.554 (5) | C14—H14A | 0.9500 |
C1—C2 | 1.591 (6) | C15—C16 | 1.3900 |
C1—H1A | 0.9700 | C15—H15A | 0.9500 |
C1—H1B | 0.9700 | C16—H16A | 0.9500 |
C2—C11 | 1.5386 (19) | C11'—C12' | 1.3900 |
C2—H2A | 1.0000 | C11'—C16' | 1.3900 |
C2'—C11' | 1.5363 (19) | C12'—C13' | 1.3900 |
C2'—H2'A | 1.0000 | C12'—H12B | 0.9500 |
C4—C5 | 1.463 (3) | C13'—C14' | 1.3900 |
C4—H4A | 0.9500 | C13'—H13B | 0.9500 |
C5—C6 | 1.383 (4) | C14'—C15' | 1.3900 |
C5—C10 | 1.394 (4) | C14'—H14B | 0.9500 |
C6—C7 | 1.384 (4) | C15'—C16' | 1.3900 |
C6—H6A | 0.9500 | C15'—H15B | 0.9500 |
C7—C8 | 1.371 (4) | C16'—H16B | 0.9500 |
C7—H7A | 0.9500 | ||
C3—S1—C2' | 88.72 (12) | C7—C8—C9 | 121.5 (2) |
C3—S1—C2 | 90.61 (15) | C7—C8—Cl1 | 119.5 (2) |
C4—N1—N2 | 117.6 (2) | C9—C8—Cl1 | 119.0 (2) |
C3—N2—N1 | 116.3 (2) | C10—C9—C8 | 119.8 (2) |
C3—N2—C1 | 115.9 (2) | C10—C9—H9A | 120.1 |
N1—N2—C1 | 127.2 (2) | C8—C9—H9A | 120.1 |
C3—N3—H3A | 122.6 | C9—C10—C5 | 119.8 (2) |
C3—N3—H3B | 119.8 | C9—C10—H10A | 120.1 |
H3A—N3—H3B | 116.8 | C5—C10—H10A | 120.1 |
N2—C1—C2' | 102.7 (2) | C12—C11—C16 | 120.0 |
N2—C1—C2 | 104.0 (2) | C12—C11—C2 | 124.0 (5) |
N2—C1—H1A | 104.7 | C16—C11—C2 | 116.0 (5) |
C2'—C1—H1A | 104.2 | C13—C12—C11 | 120.0 |
C2—C1—H1A | 145.2 | C13—C12—H12A | 120.0 |
N2—C1—H1B | 108.2 | C11—C12—H12A | 120.0 |
C2'—C1—H1B | 145.6 | C12—C13—C14 | 120.0 |
C2—C1—H1B | 106.5 | C12—C13—H13A | 120.0 |
H1A—C1—H1B | 82.5 | C14—C13—H13A | 120.0 |
C11—C2—C1 | 112.0 (4) | C15—C14—C13 | 120.0 |
C11—C2—S1 | 111.7 (3) | C15—C14—H14A | 120.0 |
C1—C2—S1 | 101.9 (3) | C13—C14—H14A | 120.0 |
C11—C2—H2A | 110.3 | C16—C15—C14 | 120.0 |
C1—C2—H2A | 110.3 | C16—C15—H15A | 120.0 |
S1—C2—H2A | 110.3 | C14—C15—H15A | 120.0 |
C11'—C2'—C1 | 114.0 (3) | C15—C16—C11 | 120.0 |
C11'—C2'—S1 | 111.5 (3) | C15—C16—H16A | 120.0 |
C1—C2'—S1 | 103.5 (2) | C11—C16—H16A | 120.0 |
C11'—C2'—H2'A | 109.2 | C12'—C11'—C16' | 120.0 |
C1—C2'—H2'A | 109.2 | C12'—C11'—C2' | 119.2 (3) |
S1—C2'—H2'A | 109.2 | C16'—C11'—C2' | 120.8 (3) |
N3—C3—N2 | 123.1 (2) | C11'—C12'—C13' | 120.0 |
N3—C3—S1 | 123.5 (2) | C11'—C12'—H12B | 120.0 |
N2—C3—S1 | 113.40 (18) | C13'—C12'—H12B | 120.0 |
N1—C4—C5 | 118.8 (2) | C14'—C13'—C12' | 120.0 |
N1—C4—H4A | 120.6 | C14'—C13'—H13B | 120.0 |
C5—C4—H4A | 120.6 | C12'—C13'—H13B | 120.0 |
C6—C5—C10 | 119.4 (2) | C15'—C14'—C13' | 120.0 |
C6—C5—C4 | 119.2 (2) | C15'—C14'—H14B | 120.0 |
C10—C5—C4 | 121.4 (2) | C13'—C14'—H14B | 120.0 |
C5—C6—C7 | 120.9 (2) | C14'—C15'—C16' | 120.0 |
C5—C6—H6A | 119.5 | C14'—C15'—H15B | 120.0 |
C7—C6—H6A | 119.5 | C16'—C15'—H15B | 120.0 |
C8—C7—C6 | 118.6 (2) | C15'—C16'—C11' | 120.0 |
C8—C7—H7A | 120.7 | C15'—C16'—H16B | 120.0 |
C6—C7—H7A | 120.7 | C11'—C16'—H16B | 120.0 |
C4—N1—N2—C3 | −172.7 (2) | C7—C8—C9—C10 | 0.2 (4) |
C4—N1—N2—C1 | −2.6 (4) | Cl1—C8—C9—C10 | 179.2 (2) |
C3—N2—C1—C2' | −26.2 (3) | C8—C9—C10—C5 | −0.4 (4) |
N1—N2—C1—C2' | 163.7 (3) | C6—C5—C10—C9 | 0.8 (4) |
C3—N2—C1—C2 | 25.4 (4) | C4—C5—C10—C9 | −177.5 (3) |
N1—N2—C1—C2 | −144.8 (3) | C1—C2—C11—C12 | 61.3 (5) |
N2—C1—C2—C11 | −155.9 (4) | S1—C2—C11—C12 | −52.3 (5) |
N2—C1—C2—S1 | −36.4 (3) | C1—C2—C11—C16 | −119.8 (4) |
C3—S1—C2—C11 | 152.1 (4) | S1—C2—C11—C16 | 126.5 (3) |
C3—S1—C2—C1 | 32.4 (2) | C16—C11—C12—C13 | 0.0 |
N2—C1—C2'—C11' | 159.8 (3) | C2—C11—C12—C13 | 178.8 (5) |
N2—C1—C2'—S1 | 38.5 (3) | C11—C12—C13—C14 | 0.0 |
C3—S1—C2'—C11' | −157.6 (3) | C12—C13—C14—C15 | 0.0 |
C3—S1—C2'—C1 | −34.6 (2) | C13—C14—C15—C16 | 0.0 |
N1—N2—C3—N3 | −9.0 (4) | C14—C15—C16—C11 | 0.0 |
C1—N2—C3—N3 | 179.8 (3) | C12—C11—C16—C15 | 0.0 |
N1—N2—C3—S1 | 171.00 (18) | C2—C11—C16—C15 | −178.9 (4) |
C1—N2—C3—S1 | −0.2 (3) | C1—C2'—C11'—C12' | 127.7 (3) |
C2'—S1—C3—N3 | −158.3 (3) | S1—C2'—C11'—C12' | −115.5 (3) |
C2—S1—C3—N3 | 159.2 (3) | C1—C2'—C11'—C16' | −53.1 (4) |
C2'—S1—C3—N2 | 21.7 (2) | S1—C2'—C11'—C16' | 63.7 (3) |
C2—S1—C3—N2 | −20.8 (3) | C16'—C11'—C12'—C13' | 0.0 |
N2—N1—C4—C5 | 176.4 (2) | C2'—C11'—C12'—C13' | 179.2 (3) |
N1—C4—C5—C6 | −173.6 (3) | C11'—C12'—C13'—C14' | 0.0 |
N1—C4—C5—C10 | 4.7 (4) | C12'—C13'—C14'—C15' | 0.0 |
C10—C5—C6—C7 | −1.0 (4) | C13'—C14'—C15'—C16' | 0.0 |
C4—C5—C6—C7 | 177.3 (3) | C14'—C15'—C16'—C11' | 0.0 |
C5—C6—C7—C8 | 0.8 (4) | C12'—C11'—C16'—C15' | 0.0 |
C6—C7—C8—C9 | −0.5 (4) | C2'—C11'—C16'—C15' | −179.2 (3) |
C6—C7—C8—Cl1 | −179.4 (2) |
Cg3 is the centroid of the C5–C10 benzene ring of the chlorophenyl moiety. Cg4 and Cg5 are the centroids of the major and minor components of the disordered phenyl ring, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Br1i | 0.90 | 2.56 | 3.390 (2) | 154 |
N3—H3B···Br1ii | 0.90 | 2.38 | 3.252 (2) | 164 |
C10—H10A···Br1i | 0.95 | 2.91 | 3.823 (3) | 163 |
C7—H7A···Cg4iii | 0.95 | 2.71 | 3.595 (3) | 155 |
C7—H7A···Cg5iii | 0.95 | 2.70 | 3.568 (3) | 153 |
C13—H13A···Cg3iv | 0.95 | 2.97 | 3.861 (4) | 157 |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+2, −y, −z+1; (iii) −x+1, −y+1, −z+2; (iv) x, y, z−1. |
Contact | Distance | Symmetry operation |
Br1···H3A | 2.56 | -1 + x, y, -1 + z |
Br1···H1B | 2.56 | x, y, -1 + z |
Br1···H3B | 2.38 | 2 - x, - y, 1 - z |
Br1···H4A | 2.98 | 1 - x, 1 - y, 1 - z |
Br1···H16A | 2.66 | 1 - x, -y, 1 - z |
Contact | Percentage contribution |
H···H | 30.5 |
Br···H/H···Br | 21.2 |
C···H/H···C | 19.2 |
Cl···H/H···Cl | 13.0 |
S···H/H···S | 5.0 |
N···C/C···N | 3.3 |
N···H/H···N | 3.0 |
C···C | 2.1 |
S···C/C···S | 1.7 |
Br···S/S···Br | 0.4 |
Cl···C/C···Cl | 0.3 |
Br···C/C···Br | 0.1 |
N···S/S···N | 0.1 |
Funding information
AK is grateful to Baku State University for the `50 + 50′ individual grant in support of this work.
References
Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science PubMed Google Scholar
Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145–153. Web of Science CrossRef CAS Google Scholar
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Inorg. Chim. Acta, 469, 197–201. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018b). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17–23. CAS Google Scholar
Maharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704–709. Web of Science CrossRef CAS Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zareba, J. K., Gurbanov, A. V., Bauza, A., Zubkov, F. I., Kubicki, M., Stilinovic?, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763–4772. Google Scholar
Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37. Web of Science CrossRef CAS Google Scholar
Makwana, H. R. & Malani, A. H. (2017). IOSR J. A. Chem. 10, 76–84. CAS Google Scholar
Mamedov, I. G., Bayramov, M. R., Salamova, A. E. & Maharramov, A. M. (2015). Indian J. Chem. 54B, 1518–1527. CAS Google Scholar
Mamedov, I. G., Farzaliyeva, A. E., Mamedova, Y. V., Hasanova, N. N., Bayramov, M. R. & Maharramov, A. M. (2018). Indian J. Chem. 57B, 1310–1314. CAS Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419. Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425. Google Scholar
Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27. CSD CrossRef CAS Web of Science Google Scholar
Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia. Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.