research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-chloro­benzyl­­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, bDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Theoretical and Industrial Heat Engineering (TPT), National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 03056, Kyiv, Ukraine
*Correspondence e-mail: mustford@ukr.net

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 3 June 2019; accepted 10 July 2019; online 12 July 2019)

The title salt, C16H15ClN3S+·Br, is isotypic with (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide [Khalilov et al. (2019[Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.]). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thia­zolidine ring and the atom joining the thia­zolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thia­zolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide, C—H⋯π inter­actions and ππ stacking inter­actions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the mol­ecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) inter­actions.

1. Chemical context

The thia­zolidine ring system posses special importance in synthetic and medicinal chemistry. Substituted thia­zolidine derivatives are known to exhibit various biological activities such as anti­viral, anti­cancer, anti-tubercular, and anti­microbial etc. (Makwana & Malani 2017[Makwana, H. R. & Malani, A. H. (2017). IOSR J. A. Chem. 10, 76-84.]). Schiff bases have been widely used as versatile ligands in the synthesis, catalysis and design of materials (Akbari et al., 2017[Afkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]; Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145-153.]; Gurbanov et al., 2018a[Gurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Inorg. Chim. Acta, 469, 197-201.],b[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018b). Aust. J. Chem. 71, 190-194.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17-23.]; Mamedov et al., 2018[Mamedov, I. G., Farzaliyeva, A. E., Mamedova, Y. V., Hasanova, N. N., Bayramov, M. R. & Maharramov, A. M. (2018). Indian J. Chem. 57B, 1310-1314.]). Weak inter­actions, namely hydrogen bonding, π-inter­actions, etc. provided by N-containing ligands can also contribute to their structural organization, coordination abilities and catalytic activity, among other properties (Khalilov et al., 2019[Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.]; Maharramov et al., 2009[Maharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704-709.], 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]; Mahmoudi et al., 2018a[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812-2821.],b[Mahmoudi, G., Zareba, J. K., Gurbanov, A. V., Bauza, A., Zubkov, F. I., Kubicki, M., Stilinovic?, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763-4772.]; Mahmudov et al., 2014[Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1-37.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]; Mamedov et al., 2015[Mamedov, I. G., Bayramov, M. R., Salamova, A. E. & Maharramov, A. M. (2015). Indian J. Chem. 54B, 1518-1527.]; Mitoraj et al., 2018[Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395-4408.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]; Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]). As part of our ongoing studies in this field, we report herein the crystal structure and Hirshfeld surface analysis of the title compound, (E)-3-[(4-chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide.

[Scheme 1]

2. Structural commentary

The major and minor components (S1/N2/C1/C2′/C3 and S1/N2/C1/C2/C3) of the thia­zolidine ring in the cation of the title salt (Fig. 1[link]) both adopt a distorted envelope conformation, with puckering parameters Q(2) = 0.432 (3) Å, φ(2) = 33.5 (4)° for the major component and Q(2) = 0.414 (4) Å, φ(2) = 326.1 (5)° for the minor component. The mean planes of the major and minor components of the disordered thia­zolidine ring make dihedral angles of 14.99 (14), 88.45 (16), 84.3 (2)° and 22.82 (16), 86.85 (18), 83.9 (2)°, respectively, with the chloro­phenyl ring (C5–C10) and the major- and minor-disorder components (C11′–C16′ and C11–C16) of the phenyl ring. The N2—N1—C4—C5 bridge that links the thia­zolidine and 4-chloro­phenyl rings has a torsion angle of 176.4 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title salt. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. Only the major component of the disorder is shown for clarity.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts, into chains parallel to the a-axis direction (Table 1[link]; Figs. 2[link] and 3[link]). Furthermore, C—H⋯π inter­actions (Table 1[link]) and ππ stacking inter­actions [Cg4 ⋯Cg4(2 − x, − y, 1 − z) = 3.897 (2) Å where Cg4 is the centroid of the major component of the disordered phenyl ring] contribute to the stabilization of the mol­ecular packing.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C5–C10 benzene ring of the chloro­phenyl moiety. Cg4 and Cg5 are the centroids of the major and minor components of the disordered phenyl ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1i 0.90 2.56 3.390 (2) 154
N3—H3B⋯Br1ii 0.90 2.38 3.252 (2) 164
C10—H10A⋯Br1i 0.95 2.91 3.823 (3) 163
C7—H7ACg4iii 0.95 2.71 3.595 (3) 155
C7—H7ACg5iii 0.95 2.70 3.568 (3) 153
C13—H13ACg3iv 0.95 2.97 3.861 (4) 157
Symmetry codes: (i) x+1, y, z+1; (ii) -x+2, -y, -z+1; (iii) -x+1, -y+1, -z+2; (iv) x, y, z-1.
[Figure 2]
Figure 2
Packing viewed along the a-axis direction showing the N—H⋯Br and C—H⋯Br inter­actions (dashed lines).
[Figure 3]
Figure 3
A perspective view of the crystal structure of the title compound.

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was used to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing. CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]) was used to generate dnorm surface plots and two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.4687 (red) to 1.2270 a.u. (blue) is shown in Fig. 4[link]. The shape-index of the Hirshfeld surface is a tool to visualize ππ stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggest that there are ππ inter­actions present in the title salt. Fig. 6[link]a shows the two-dimensional fingerprint for the sum of the contacts contributing to the Hirshfeld surface represented in normal mode (Tables 1[link] and 2[link]). The fingerprint plots delineated into H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) inter­actions are shown in Fig. 6[link]bf, respectively. The most significant inter­molecular inter­actions are the H⋯H inter­actions (30.5%; ig. 6b). The various contributions to the Hirshfeld surface are listed in Table 3[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title salt

Contact Distance Symmetry operation
Br1⋯H3A 2.56 −1 + x, y, −1 + z
Br1⋯H1B 2.56 x, y, −1 + z
Br1⋯H3B 2.38 2 − x, − y, 1 − z
Br1⋯H4A 2.98 1 − x, 1 − y, 1 − z
Br1⋯H16A 2.66 1 − x, −y, 1 − z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt

Contact Percentage contribution
H⋯H 30.5
Br⋯H/H⋯Br 21.2
C⋯H/H⋯C 19.2
Cl⋯H/H⋯Cl 13.0
S⋯H/H⋯S 5.0
N⋯C/C⋯N 3.3
N⋯H/H⋯N 3.0
C⋯C 2.1
S⋯C/C⋯S 1.7
Br⋯S/S⋯Br 0.4
Cl⋯C/C⋯Cl 0.3
Br⋯C/C⋯Br 0.1
N⋯S/S⋯N 0.1
[Figure 4]
Figure 4
Hirshfeld surface of the title salt mapped with dnorm.
[Figure 5]
Figure 5
Hirshfeld surface of the title salt mapped with shape-index.
[Figure 6]
Figure 6
Hirshfeld surface representations and the two-dimensional fingerprint plots of the title salt, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Br⋯H/H⋯Br, (d) C⋯H/H⋯C, (e) Cl⋯H/H⋯Cl and (f) S⋯H/H⋯S inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-thia­zolidiniminium compounds gave eight hits, viz. BOBWIB (Khalilov et al., 2019[Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.]), UDELUN (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]), WILBIC (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI01 (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]), YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) and YOPLUK (Marthi et al., 1995[Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20-27.]).

The structure of BOBWIB (Khalilov et al., 2019[Khalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662-666.]) is isotypic with that of the title salt. In BOBWIB, the phenyl ring is disordered over two sets of sites with a refined occupancy ratio of 0.503 (4):0.497 (4). The mean plane of the thia­zolidine ring makes dihedral angles of 13.51 (14), 48.6 (3) and 76.5 (3)°, respectively, with the fluoro­phenyl ring and the major- and minor-disorder components of the phenyl ring. The central thia­zolidine ring adopts an envelope conformation. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. In the crystal of UDELUN (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions, which only involve the minor-disorder component of the ring, also contribute to the mol­ecular packing. In addition, there are inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts. In the remaining structures, the 3-N atom carries a C-atom substituent instead of an N-atom substituent, as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) of 3-(20-chloro-20-phenyl­eth­yl)-2-thia­zolidiniminium p-toluene­sulfonate. In all three structures, the most disordered fragment of the mol­ecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]) is the product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocyclic N atom, while YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) is the product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5- chloro- and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

5. Synthesis and crystallization

To a 1 mmol solution of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide in 20 mL of ethanol was added 1 mmol of 4-chloro­benzaldehyde. The mixture was refluxed for 2 h and then cooled down. The reaction products, precipitated from the reaction mixture as colourless single crystals, were collected by filtration and washed with cold acetone.

(E)-3-[(4-chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide: yield 78%, m.p. 531–532 K. Analysis calculated for C16H15BrClN3S (Mr = 396.73): C 48.44, H 3.81, N 10.59. Found: C 48.40, H 3.78, N 10.55%. 1H NMR (300 MHz, DMSO-d6): 4.56 (k, 1H, CH2, 3JH–H = 6.9); 4.89 (t, 1H, CH2, 3JH–H = 7.8); 5.61 (t, 1H, CH—Ar, 3JH–H = 7.2); 7.36–8.04 (m, 9H, 9Ar—H); 8.47 (s, 1H, CH=); 10.46 (s, 2H, H2N+=). 13C NMR (75 MHz, DMSO-d6): 45.40, 55.95, 125.13, 127.77, 128.85, 129.06, 130.49, 131.84, 132.15, 137.40, 149.94, 167.96. MS (ESI), m/z: 316.82 [C16H15ClN3S]+ and 79.88 Br.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All C-bound H atoms were placed at calculated positions using a riding model, with aromatic C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C). Hydrogen atoms of the amino groups were located directly from difference-Fourier maps and were constrained with AFIX 3 instructions (N—H = 0.90 Å) in order to ensure a chemically reasonable environment for these groups. These hydrogen atoms were modelled with isotropic thermal displacement parameters fixed at 1.2Ueq(N). One outlier (001) was omitted in the final cycles of refinement. The phenyl group and the carbon atom of the 1,3-thia­zolidine group attached to it were refined as positionally disordered over two sets of sites with refined occupancies of 0.570 (3) and 0.430 (3).

Table 4
Experimental details

Crystal data
Chemical formula C16H15ClN3S+·Br
Mr 396.73
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.3146 (5), 8.9424 (5), 12.2388 (6)
α, β, γ (°) 80.988 (2), 76.458 (2), 70.027 (2)
V3) 828.54 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.77
Crystal size (mm) 0.23 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.584, 0.721
No. of measured, independent and observed [I > 2σ(I)] reflections 13599, 3141, 2768
Rint 0.030
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 1.07
No. of reflections 3141
No. of parameters 167
No. of restraints 13
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2003).

(E)-3-[(4-Chlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide top
Crystal data top
C16H15ClN3S+·BrZ = 2
Mr = 396.73F(000) = 400
Triclinic, P1Dx = 1.590 Mg m3
a = 8.3146 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9424 (5) ÅCell parameters from 5442 reflections
c = 12.2388 (6) Åθ = 2.7–25.6°
α = 80.988 (2)°µ = 2.77 mm1
β = 76.458 (2)°T = 150 K
γ = 70.027 (2)°Prism, colourless
V = 828.54 (8) Å30.23 × 0.15 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
2768 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 25.7°, θmin = 2.4°
Tmin = 0.584, Tmax = 0.721h = 1010
13599 measured reflectionsk = 1010
3141 independent reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.075H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.6849P]
where P = (Fo2 + 2Fc2)/3
3141 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.43 e Å3
13 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.43584 (3)0.27419 (3)0.08917 (3)0.03616 (11)
S11.16201 (8)0.01512 (8)0.77241 (6)0.02962 (17)
Cl10.71456 (9)0.63476 (9)1.50136 (6)0.03926 (19)
N10.9880 (3)0.2905 (3)1.01551 (18)0.0261 (5)
N21.0069 (3)0.2228 (3)0.91692 (18)0.0295 (5)
N31.2932 (3)0.0869 (3)0.9296 (2)0.0400 (6)
H3A1.2927180.1449400.9835510.048*
H3B1.3843180.0027700.9168110.048*
C10.8687 (3)0.2393 (3)0.8545 (2)0.0341 (7)
H1A0.8163000.3535420.8399390.041*
H1B0.7602300.2505820.9085390.041*
C20.9229 (7)0.0699 (7)0.8065 (4)0.0235 (7)0.430 (3)
H2A0.8858450.0082370.8662270.028*0.430 (3)
C2'0.9748 (5)0.1827 (5)0.7375 (3)0.0235 (7)0.570 (3)
H2'A1.0172750.2700760.6927590.028*0.570 (3)
C31.1593 (3)0.1148 (3)0.8835 (2)0.0254 (6)
C40.8369 (3)0.3820 (3)1.0563 (2)0.0241 (5)
H4A0.7431460.4070611.0175880.029*
C50.8106 (3)0.4475 (3)1.1638 (2)0.0223 (5)
C60.6438 (3)0.5335 (3)1.2143 (2)0.0325 (6)
H6A0.5494670.5528361.1770510.039*
C70.6126 (3)0.5916 (3)1.3182 (2)0.0326 (6)
H7A0.4976860.6494141.3530330.039*
C80.7509 (3)0.5642 (3)1.3698 (2)0.0263 (6)
C90.9184 (3)0.4796 (3)1.3208 (2)0.0328 (6)
H9A1.0122630.4615611.3581780.039*
C100.9491 (3)0.4214 (3)1.2178 (2)0.0291 (6)
H10A1.0643380.3636901.1835370.035*
C110.8465 (6)0.0806 (7)0.7014 (3)0.0262 (4)0.430 (3)
C120.8842 (5)0.1707 (5)0.6013 (5)0.0262 (4)0.430 (3)
H12A0.9596180.2321640.5953880.031*0.430 (3)
C130.8115 (6)0.1709 (5)0.5099 (3)0.0262 (4)0.430 (3)
H13A0.8372600.2324570.4415120.031*0.430 (3)
C140.7011 (6)0.0810 (6)0.5186 (3)0.0262 (4)0.430 (3)
H14A0.6514150.0810770.4561680.031*0.430 (3)
C150.6634 (6)0.0091 (5)0.6188 (4)0.0262 (4)0.430 (3)
H15A0.5879260.0705960.6247000.031*0.430 (3)
C160.7361 (6)0.0093 (5)0.7102 (3)0.0262 (4)0.430 (3)
H16A0.7102820.0708910.7785780.031*0.430 (3)
C11'0.8723 (4)0.1315 (5)0.6690 (3)0.0262 (4)0.570 (3)
C12'0.8655 (4)0.1978 (4)0.5589 (3)0.0262 (4)0.570 (3)
H12B0.9226550.2747510.5272760.031*0.570 (3)
C13'0.7752 (5)0.1515 (4)0.49515 (18)0.0262 (4)0.570 (3)
H13B0.7706460.1968390.4199130.031*0.570 (3)
C14'0.6917 (4)0.0390 (4)0.5415 (3)0.0262 (4)0.570 (3)
H14B0.6299620.0073280.4978650.031*0.570 (3)
C15'0.6984 (5)0.0273 (3)0.6515 (3)0.0262 (4)0.570 (3)
H15B0.6412870.1042730.6831800.031*0.570 (3)
C16'0.7887 (5)0.0189 (4)0.71531 (18)0.0262 (4)0.570 (3)
H16B0.7932960.0263630.7905450.031*0.570 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02235 (16)0.03754 (17)0.0473 (2)0.00105 (11)0.01050 (12)0.01367 (13)
S10.0215 (3)0.0316 (4)0.0341 (4)0.0013 (3)0.0070 (3)0.0180 (3)
Cl10.0365 (4)0.0458 (4)0.0323 (4)0.0007 (3)0.0103 (3)0.0202 (3)
N10.0235 (11)0.0293 (12)0.0248 (11)0.0027 (9)0.0063 (9)0.0111 (9)
N20.0204 (11)0.0349 (13)0.0309 (12)0.0048 (9)0.0100 (9)0.0196 (10)
N30.0238 (12)0.0452 (15)0.0480 (15)0.0093 (11)0.0152 (11)0.0292 (12)
C10.0207 (13)0.0397 (16)0.0382 (16)0.0095 (12)0.0123 (12)0.0264 (13)
C20.0187 (17)0.0239 (18)0.0273 (19)0.0033 (14)0.0044 (15)0.0087 (14)
C2'0.0187 (17)0.0239 (18)0.0273 (19)0.0033 (14)0.0044 (15)0.0087 (14)
C30.0220 (13)0.0265 (13)0.0274 (14)0.0039 (11)0.0055 (11)0.0089 (11)
C40.0190 (13)0.0218 (13)0.0307 (14)0.0007 (10)0.0079 (11)0.0083 (11)
C50.0201 (12)0.0201 (12)0.0260 (13)0.0035 (10)0.0052 (10)0.0057 (10)
C60.0201 (13)0.0372 (16)0.0405 (16)0.0008 (11)0.0106 (12)0.0200 (13)
C70.0202 (13)0.0358 (15)0.0401 (16)0.0000 (11)0.0053 (12)0.0190 (13)
C80.0273 (14)0.0260 (13)0.0244 (13)0.0033 (11)0.0051 (11)0.0103 (11)
C90.0225 (14)0.0439 (17)0.0311 (15)0.0019 (12)0.0125 (12)0.0097 (13)
C100.0185 (13)0.0348 (15)0.0288 (14)0.0001 (11)0.0031 (11)0.0100 (12)
C110.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
C120.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
C130.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
C140.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
C150.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
C160.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
C11'0.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
C12'0.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
C13'0.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
C14'0.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
C15'0.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
C16'0.0219 (8)0.0310 (9)0.0269 (9)0.0047 (6)0.0062 (6)0.0127 (7)
Geometric parameters (Å, º) top
S1—C31.731 (3)C8—C91.379 (4)
S1—C2'1.835 (4)C9—C101.374 (4)
S1—C21.838 (5)C9—H9A0.9500
Cl1—C81.744 (3)C10—H10A0.9500
N1—C41.276 (3)C11—C121.3900
N1—N21.386 (3)C11—C161.3900
N2—C31.323 (3)C12—C131.3900
N2—C11.478 (3)C12—H12A0.9500
N3—C31.296 (3)C13—C141.3900
N3—H3A0.8999C13—H13A0.9500
N3—H3B0.9000C14—C151.3900
C1—C2'1.554 (5)C14—H14A0.9500
C1—C21.591 (6)C15—C161.3900
C1—H1A0.9700C15—H15A0.9500
C1—H1B0.9700C16—H16A0.9500
C2—C111.5386 (19)C11'—C12'1.3900
C2—H2A1.0000C11'—C16'1.3900
C2'—C11'1.5363 (19)C12'—C13'1.3900
C2'—H2'A1.0000C12'—H12B0.9500
C4—C51.463 (3)C13'—C14'1.3900
C4—H4A0.9500C13'—H13B0.9500
C5—C61.383 (4)C14'—C15'1.3900
C5—C101.394 (4)C14'—H14B0.9500
C6—C71.384 (4)C15'—C16'1.3900
C6—H6A0.9500C15'—H15B0.9500
C7—C81.371 (4)C16'—H16B0.9500
C7—H7A0.9500
C3—S1—C2'88.72 (12)C7—C8—C9121.5 (2)
C3—S1—C290.61 (15)C7—C8—Cl1119.5 (2)
C4—N1—N2117.6 (2)C9—C8—Cl1119.0 (2)
C3—N2—N1116.3 (2)C10—C9—C8119.8 (2)
C3—N2—C1115.9 (2)C10—C9—H9A120.1
N1—N2—C1127.2 (2)C8—C9—H9A120.1
C3—N3—H3A122.6C9—C10—C5119.8 (2)
C3—N3—H3B119.8C9—C10—H10A120.1
H3A—N3—H3B116.8C5—C10—H10A120.1
N2—C1—C2'102.7 (2)C12—C11—C16120.0
N2—C1—C2104.0 (2)C12—C11—C2124.0 (5)
N2—C1—H1A104.7C16—C11—C2116.0 (5)
C2'—C1—H1A104.2C13—C12—C11120.0
C2—C1—H1A145.2C13—C12—H12A120.0
N2—C1—H1B108.2C11—C12—H12A120.0
C2'—C1—H1B145.6C12—C13—C14120.0
C2—C1—H1B106.5C12—C13—H13A120.0
H1A—C1—H1B82.5C14—C13—H13A120.0
C11—C2—C1112.0 (4)C15—C14—C13120.0
C11—C2—S1111.7 (3)C15—C14—H14A120.0
C1—C2—S1101.9 (3)C13—C14—H14A120.0
C11—C2—H2A110.3C16—C15—C14120.0
C1—C2—H2A110.3C16—C15—H15A120.0
S1—C2—H2A110.3C14—C15—H15A120.0
C11'—C2'—C1114.0 (3)C15—C16—C11120.0
C11'—C2'—S1111.5 (3)C15—C16—H16A120.0
C1—C2'—S1103.5 (2)C11—C16—H16A120.0
C11'—C2'—H2'A109.2C12'—C11'—C16'120.0
C1—C2'—H2'A109.2C12'—C11'—C2'119.2 (3)
S1—C2'—H2'A109.2C16'—C11'—C2'120.8 (3)
N3—C3—N2123.1 (2)C11'—C12'—C13'120.0
N3—C3—S1123.5 (2)C11'—C12'—H12B120.0
N2—C3—S1113.40 (18)C13'—C12'—H12B120.0
N1—C4—C5118.8 (2)C14'—C13'—C12'120.0
N1—C4—H4A120.6C14'—C13'—H13B120.0
C5—C4—H4A120.6C12'—C13'—H13B120.0
C6—C5—C10119.4 (2)C15'—C14'—C13'120.0
C6—C5—C4119.2 (2)C15'—C14'—H14B120.0
C10—C5—C4121.4 (2)C13'—C14'—H14B120.0
C5—C6—C7120.9 (2)C14'—C15'—C16'120.0
C5—C6—H6A119.5C14'—C15'—H15B120.0
C7—C6—H6A119.5C16'—C15'—H15B120.0
C8—C7—C6118.6 (2)C15'—C16'—C11'120.0
C8—C7—H7A120.7C15'—C16'—H16B120.0
C6—C7—H7A120.7C11'—C16'—H16B120.0
C4—N1—N2—C3172.7 (2)C7—C8—C9—C100.2 (4)
C4—N1—N2—C12.6 (4)Cl1—C8—C9—C10179.2 (2)
C3—N2—C1—C2'26.2 (3)C8—C9—C10—C50.4 (4)
N1—N2—C1—C2'163.7 (3)C6—C5—C10—C90.8 (4)
C3—N2—C1—C225.4 (4)C4—C5—C10—C9177.5 (3)
N1—N2—C1—C2144.8 (3)C1—C2—C11—C1261.3 (5)
N2—C1—C2—C11155.9 (4)S1—C2—C11—C1252.3 (5)
N2—C1—C2—S136.4 (3)C1—C2—C11—C16119.8 (4)
C3—S1—C2—C11152.1 (4)S1—C2—C11—C16126.5 (3)
C3—S1—C2—C132.4 (2)C16—C11—C12—C130.0
N2—C1—C2'—C11'159.8 (3)C2—C11—C12—C13178.8 (5)
N2—C1—C2'—S138.5 (3)C11—C12—C13—C140.0
C3—S1—C2'—C11'157.6 (3)C12—C13—C14—C150.0
C3—S1—C2'—C134.6 (2)C13—C14—C15—C160.0
N1—N2—C3—N39.0 (4)C14—C15—C16—C110.0
C1—N2—C3—N3179.8 (3)C12—C11—C16—C150.0
N1—N2—C3—S1171.00 (18)C2—C11—C16—C15178.9 (4)
C1—N2—C3—S10.2 (3)C1—C2'—C11'—C12'127.7 (3)
C2'—S1—C3—N3158.3 (3)S1—C2'—C11'—C12'115.5 (3)
C2—S1—C3—N3159.2 (3)C1—C2'—C11'—C16'53.1 (4)
C2'—S1—C3—N221.7 (2)S1—C2'—C11'—C16'63.7 (3)
C2—S1—C3—N220.8 (3)C16'—C11'—C12'—C13'0.0
N2—N1—C4—C5176.4 (2)C2'—C11'—C12'—C13'179.2 (3)
N1—C4—C5—C6173.6 (3)C11'—C12'—C13'—C14'0.0
N1—C4—C5—C104.7 (4)C12'—C13'—C14'—C15'0.0
C10—C5—C6—C71.0 (4)C13'—C14'—C15'—C16'0.0
C4—C5—C6—C7177.3 (3)C14'—C15'—C16'—C11'0.0
C5—C6—C7—C80.8 (4)C12'—C11'—C16'—C15'0.0
C6—C7—C8—C90.5 (4)C2'—C11'—C16'—C15'179.2 (3)
C6—C7—C8—Cl1179.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C5–C10 benzene ring of the chlorophenyl moiety. Cg4 and Cg5 are the centroids of the major and minor components of the disordered phenyl ring, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3A···Br1i0.902.563.390 (2)154
N3—H3B···Br1ii0.902.383.252 (2)164
C10—H10A···Br1i0.952.913.823 (3)163
C7—H7A···Cg4iii0.952.713.595 (3)155
C7—H7A···Cg5iii0.952.703.568 (3)153
C13—H13A···Cg3iv0.952.973.861 (4)157
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x+1, y+1, z+2; (iv) x, y, z1.
Summary of short interatomic contacts (Å) in the title salt top
ContactDistanceSymmetry operation
Br1···H3A2.56-1 + x, y, -1 + z
Br1···H1B2.56x, y, -1 + z
Br1···H3B2.382 - x, - y, 1 - z
Br1···H4A2.981 - x, 1 - y, 1 - z
Br1···H16A2.661 - x, -y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title salt top
ContactPercentage contribution
H···H30.5
Br···H/H···Br21.2
C···H/H···C19.2
Cl···H/H···Cl13.0
S···H/H···S5.0
N···C/C···N3.3
N···H/H···N3.0
C···C2.1
S···C/C···S1.7
Br···S/S···Br0.4
Cl···C/C···Cl0.3
Br···C/C···Br0.1
N···S/S···N0.1
 

Funding information

AK is grateful to Baku State University for the `50 + 50′ individual grant in support of this work.

References

First citationAfkhami, F. A., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science PubMed Google Scholar
First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Huseynov, F. E., Mahmoudi, G., Maharramov, A. M., Guedes da Silva, F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2018a). Inorg. Chim. Acta, 469, 197–201.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018b). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationKhalilov, A. N., Atioğlu, Z., Akkurt, M., Duruskari, G. S., Toze, F. A. A. & Huseynova, A. T. (2019). Acta Cryst. E75, 662–666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17–23.  CAS Google Scholar
First citationMaharramov, A. M., Alieva, R. A., Mahmudov, K. T., Kurbanov, A. V. & Askerov, R. K. (2009). Russ. J. Coord. Chem. 35, 704–709.  Web of Science CrossRef CAS Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zareba, J. K., Gurbanov, A. V., Bauza, A., Zubkov, F. I., Kubicki, M., Stilinovic?, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763–4772.  Google Scholar
First citationMahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018). Inorg. Chem. 57, 4395–4408.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014). Coord. Chem. Rev. 265, 1–37.  Web of Science CrossRef CAS Google Scholar
First citationMakwana, H. R. & Malani, A. H. (2017). IOSR J. A. Chem. 10, 76–84.  CAS Google Scholar
First citationMamedov, I. G., Bayramov, M. R., Salamova, A. E. & Maharramov, A. M. (2015). Indian J. Chem. 54B, 1518–1527.  CAS Google Scholar
First citationMamedov, I. G., Farzaliyeva, A. E., Mamedova, Y. V., Hasanova, N. N., Bayramov, M. R. & Maharramov, A. M. (2018). Indian J. Chem. 57B, 1310–1314.  CAS Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.  Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.  Google Scholar
First citationMarthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds