research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,5-Di­methyl­adamantan-1-yl)ammonium methane­sulfonate (memanti­nium mesylate): synthesis, structure and solid-state properties

CROSSMARK_Color_square_no_text.svg

aPLIVA Croatia Ltd., TAPI Research and Development, Prilaz baruna Filipovića 29, HR-10000 Zagreb, Croatia, and bDepartment of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
*Correspondence e-mail: mirta@chem.pmf.hr

Edited by L. Fabian, University of East Anglia, England (Received 18 April 2019; accepted 12 July 2019; online 26 July 2019)

The asymmetric unit of the title compound, C12H22N+·CH3O3S, consists of three (3,5-di­methyl­adamantan-1-yl)ammonium cations, C12H22N+, and three methane­sulfonate anions, CH3O3S. In the crystal, the cations and anions associate via N—H⋯O hydrogen bonds into layers, parallel to the (001) plane, which include large supra­molecular hydrogen-bonded rings.

1. Chemical context

Memantine or 3,5-di­methyl­adamantane-1-yl­amine is an active pharmaceutical ingredient which acts as an uncompetitive NMDA receptor antagonist (Reisberg et al., 2003[Reisberg, B., Doody, R., Stöffler, A., Schmitt, F., Ferris, S. & Möbius, H. J. (2003). N. Engl. J. Med. 348, 1333-1341.]; Rammes et al., 2008[Rammes, G., Danysz, W. & Parsons, C. G. (2008). Curr. Neuropharmacol. 6, 55-78.]; Parsons et al., 2013[Parsons, C. G., Danysz, W., Dekundy, A. & Pulte, I. (2013). Neurotox. Res. 24, 358-369.]). The compound was approved for the treatment of moderate-to-severe Alzheimer's disease and is currently marketed as the chloride salt. The crystal structure of memanti­nium chloride 0.1-hydrate has previously been described (Lou et al., 2009[Lou, W.-J., Hu, X.-R. & Gu, J.-M. (2009). Acta Cryst. E65, o2191.]). Herein we report the structure of an alternative salt, (3,5-di­methyl­adamantan-1-yl)ammonium methane­sulfonate (I)[link] (memanti­nium mesylate), developed with the aim of producing a material with physico-chemical properties superior to those of memanti­nium chloride.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (3,5-di­methyl­adamantan-1-yl)ammonium methane­sulfonate, (I)[link] (Fig. 1[link]) consists of three crystallographically independent (3,5-di­methyl­adamantan-1-yl)ammonium cations and three methane­sulfonate anions. The structure of the cations is rigid, with all four six-membered rings of the adamantane core of the (3,5-di­methyl­adamantan-1-yl)ammonium cations assuming a typical chair conformation. No significant geometrical differences are observed between the independent cations, or between the methane­sulfonate anions. The (3,5-di­methyl­adamantan-1-yl)ammonium cations are achiral. They possess a plane of symmetry by which two enanti­omorphic halves of the ion, containing chiral centers (C3 and C5, C15 and C17, C27 and C29), are reflections of each other.

[Figure 1]
Figure 1
ORTEP plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary small radii.

3. Supra­molecular features

The crystal packing of the title compound is characterized by hydrogen-bonding inter­actions between the protonated amino groups of cations and the oxygen atoms of the methane­sulfonate anions (Table 1[link], Fig. 2[link]). Each hydrogen atom of the protonated amino groups of the (3,5-di­methyl­adamantan-1-yl)ammonium cations is engaged in hydrogen bonding with the neighbouring methane­sulfonate anions. While each of the established N—H⋯O hydrogen bonds has a characteristic D11(2) graph-set motif, they combine into larger R44(12) motifs (Fig. 2[link]). Assemblies formed in such a way are supported by weaker C—H⋯O contacts, as shown in Fig. 2[link]. Such connectivity leads to the formation of supra­molecular layers parallel to the (001) plane, which involve large hydrogen-bonded rings (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O7i 0.90 (2) 1.92 (2) 2.819 (2) 177 (2)
N1—H1B⋯O1 0.90 (2) 1.94 (2) 2.833 (2) 179 (2)
N1—H1C⋯O4 0.89 (2) 1.96 (2) 2.844 (2) 170 (2)
N2—H2A⋯O2ii 0.88 (2) 1.92 (2) 2.7991 (18) 179 (2)
N2—H2B⋯O9ii 0.87 (2) 1.94 (2) 2.8090 (19) 175 (2)
N2—H2C⋯O6 0.90 (2) 1.90 (2) 2.7923 (19) 177 (2)
N3—H3A⋯O3 0.90 (2) 1.91 (2) 2.7717 (19) 159 (2)
N3—H3B⋯O5 0.90 (2) 1.89 (2) 2.7752 (19) 172 (2)
N3—H3C⋯O8i 0.89 (2) 1.90 (2) 2.785 (2) 172 (2)
C39—H39B⋯O6iii 0.96 2.59 3.423 (3) 145
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
(a) A view of the D11(2) and R44(12) motifs formed via N—H⋯O hydrogen bonds. (b) Crystal packing of the title compound showing relevant hydrogen bonds and C—H⋯O contacts. Hydrogen bonds are indicated by black dashed lines, while the C—H⋯O contacts are shown as green dashed lines.
[Figure 3]
Figure 3
Crystal packing of the title compound showing the layers parallel to (001) based on hydrogen bonded rings. View of the structure: (a) along the [100] direction; (b) along the [001] direction. Hydrogen bonds are indicated by dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing the (3,5-di­methyl­adamantan-1-yl)ammonium cation gave four hits: (3,5-dimethyl-1-adamant­yl)ammonium chloride hydrate (DUCYAC; Lou et al., 2009[Lou, W.-J., Hu, X.-R. & Gu, J.-M. (2009). Acta Cryst. E65, o2191.]), 3,5-di­methyl­adamantane-1-ammonium cucurbit[8]uril chloride hexa­cosa­hydrate (GAWLIC, Hostaš et al., 2016[Hostaš, J., Sigwalt, D., Šekutor, M., Ajani, H., Dubecký, M., Řezáč, J., Zavalij, P. Y., Cao, L., Wohlschlager, C., Mlinarić-Majerski, K., Isaacs, L., Glaser, R. & Hobza, P. (2016). Chem. Eur. J. 22, 17226-17238.]), cucurbit[7]uril memantine clathrate chloride hydrate (SULZIJ, McInnes et al., 2010[McInnes, F. J., Anthony, N. G., Kennedy, A. R. & Wheate, N. J. (2010). Org. Biomol. Chem. 8, 765-773.]) and 3,5-di­methyl­adamantan-1-yl­ammonium 2,4,6-triiso­propyl­benzene­sulfonate (YECDIW, Tkachev et al., 2017[Tkachev, V. V., Tkacheva, N. S. & Kazachenko, V. P. (2017). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 58, 615-617.]). Among these, the structure of 3,5-di­methyl­adamantan-1-yl­ammonium 2,4,6-triiso­propyl­benzene­sulfonate shows the greatest similarity in its hydrogen-bonding motifs with those observed in the title compound. In the structure of YECDIW, N—H⋯O hydrogen bonds having a D11(2) graph-set motif dominate the crystal packing. However, in contrast to the hydrogen-bonded layers in the title structure, a complex chain-like hydrogen-bonding network is formed. Such differences can be attributed, at least to some extent, to the distinct steric demands of the anions present in these structures.

5. Hirshfeld surface analysis

The Hirshfeld surfaces for the cations and anions constituting the asymmetric unit of (I)[link] were calculated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]) and are shown in Fig. 4[link]. Mapping the dnorm values on the corresponding Hirshfeld surface allows a detailed analysis of hydrogen bonds and short inter­molecular contacts (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). In this case, red spots indicate N—H⋯O hydrogen bonds, blue regions correspond to positive dnorm values, and white areas indicate contacts of equal length to the sum of the van der Waals radii, i.e. dnorm is 0. While the Hirshfeld surfaces for the three cations appear similar to each other, the two-dimensional fingerprint plots reveal distinctive differences between them. The full two-dimensional fingerprint plots along with the decomposed ones, displaying the contributions of the relevant contacts, are shown in Fig. 5[link]. It can be seen that the N3-containing cation has the largest contribution of H⋯O/O⋯H contacts (23.9%), while for the N1- and N2-containing cations this contribution amounts to 14.9 and 17.1%, respectively. Analysis of the fingerprint plots for the anions reveals that they have fairly similar environments within the crystal and consequently a comparable distribution of the inter­molecular contacts (Fig. 5[link]).

[Figure 4]
Figure 4
Views of the Hirshfeld surfaces mapped over dnorm for: (a) the N1-containing cation; (b) the S1-containing anion, (c) the N2-containing cation; (d) the S2-containing anion, (e) the N3-containing cation and (f) the S3-containing anion (range: −0.6178 to 1.7852 a.u.).
[Figure 5]
Figure 5
The fingerprint plots for the ions constituting the asymmetric unit of (I)[link]: (a) the N1-containing cation; (b) the N2-containing cation, (c) the N3-containing cation; (d) the S1-containing anion, (e) the S2-containing anion and (f) the S3-containing anion. Left side: full fingerprint plot, middle: contribution of the H⋯O/O⋯H contacts, and right side: contribution of the H⋯H contacts to the inter­molecular inter­actions.

6. Synthesis and crystallization

To a solution of 10.0 g of (3,5-di­methyl­adamantan-1-yl)ammonium chloride (supplied by PLIVA Croatia Ltd.) in 300 ml of water, 140 ml of toluene was added and the pH adjusted to about 10.7 by using 40% NaOH (aq). The toluene and water layers were separated. To the toluene solution of 3,5-di­methyl­adamantane-1-yl­amine, 3.3 ml of methane­sulfonic acid at 293–298 K was added. The reaction mixture was stirred at 293–298 K for 1 h, cooled to 273–278 K and stirred at that temperature for 1 h. The resulting crystals were filtered off, washed with toluene and dried at 313 K/20 mbar for about 15 h. The obtained solid was slurried in 125 ml of acetone at 293–298 K for about 18 h, filtered off, washed with acetone and dried at 313 K/20 mbar for about 15 h. The product was recrystallized from i-propyl acetate, yielding crystals suitable for single-crystal X-ray diffraction, yield 11.7 g (92%).

7. Thermal analysis

The thermal stability of the title compound was investigated in the solid state by thermogravimetric analysis (TGA) and by differential scanning calorimetry (DSC). Thermogravimetric analysis was performed on TA Instruments TGA in closed aluminium pans with one hole on the crucible under a nitro­gen flow (50 mL min−1) with a heating rate of 10°C min−1 in the temperature range 25–300°C.

Thermogravimetric analysis does not reveal any weight loss during heating up to about 200°C, whereupon a change in mass is observed that can be associated with the thermal decomposition of the sample (Fig. 6[link]a). DSC analysis of (I)[link] reveals two thermal events (Fig. 6[link]b). The first endotherm at about 125°C suggests that the sample is experiencing a phase transition, as no weight loss can be observed on the corresponding TG curve in this temperature region. The second strong endotherm, observed on the DSC curve at about 210°C, can be ascribed to the melting point of the new phase. Existence of a new, stable phase was confirmed via a PXRD experiment, where comparison of the powder patterns of the starting sample (I)[link] and the one obtained by heating (I)[link] at about 130°C for 17 h revealed significant differences (Fig. 7[link]). Additional confirmation for this conclusion is found in the DSC curve of the material obtained after heating (I)[link], where only one endothermic event can be observed, the one appearing at 210°C and corresponding to its melting point.

[Figure 6]
Figure 6
(a) TG curve of (I)[link]; (b) DSC curve of (I)[link].
[Figure 7]
Figure 7
PXRD pattern of the bulk sample of I (red), simulated pattern for (I)[link] (green), and PXRD pattern of the new phase obtained by heating (I)[link] at about 130°C for 17 h (blue).

8. IR spectroscopy

The infrared (IR) spectrum of title compound was recorded by using the ATR (attenuated total reflectance) technique on a PerkinElmer Spectrum Two instrument. The spectrum of (I)[link] displays a broad band positioned at ca 2900 cm−1, which corresponds to N—H stretching vibrations of the protonated amino group of the (3,5-di­methyl­adamantan-1-yl)ammonium cations superimposed with the C—H stretching vibrations of the adamantane skeleton and methyl groups of the methane­sulfonate anion (Fig. 8[link]). The bands corresponding to the S—O asymmetric and symmetric stretching modes appear at 1179 and 1042 cm−1, respectively (Başköse et al., 2012[Başköse, U. C., Bayarı, S. H., Sağlam, S. & Özışık, H. (2012). Open Chem. 10, 395-406.]). The band at 780 cm−1 is associated with the C—S stretching vibration, whereas the one at 540 cm−1 corresponds to the bending mode of the SO3 moiety (Başköse et al., 2012[Başköse, U. C., Bayarı, S. H., Sağlam, S. & Özışık, H. (2012). Open Chem. 10, 395-406.]).

[Figure 8]
Figure 8
IR spectrum of the title compound.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bonded to carbon atoms of the adamantane core were refined as riding with C—H = 0.98 Å for methine C atoms (C7—H7, C19—H19 and C31—H31) and C—H = 0.97 Å for the methyl­ene H atoms, both with Uiso(H) = 1.2Ueq(C). Hydrogen atoms bonded to carbon atoms of the methyl groups of both the memantine cations and the methane­sulfonate anions were refined as rotating rigid groups with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C). Hydrogen atoms bonded to nitro­gen atoms were found in the difference-Fourier maps at final steps of the refinement and refined with Uiso(H) = 1.2Ueq(N). Their coordinates were refined independently, but N—H distances were restrained to 0.89 (2) Å.

Table 2
Experimental details

Crystal data
Chemical formula C12H22N+·CH3O3S
Mr 275.40
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 11.7761 (2), 11.8731 (2), 18.2788 (3)
α, β, γ (°) 92.501 (2), 94.696 (2), 116.609 (2)
V3) 2268.09 (8)
Z 6
Radiation type Cu Kα
μ (mm−1) 1.92
Crystal size (mm) 0.32 × 0.21 × 0.11
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2018[Rigaku (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.200, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 76762, 8992, 8048
Rint 0.062
(sin θ/λ)max−1) 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.06
No. of reflections 8992
No. of parameters 523
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −0.53
Computer programs: CrysAlis PRO (Rigaku, 2018[Rigaku (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku, 2018); cell refinement: CrysAlis PRO (Rigaku, 2018); data reduction: CrysAlis PRO (Rigaku, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

(3,5-Dimethyladamantan-1-yl)ammonium methanesulfonate top
Crystal data top
C12H22N+·CH3O3SZ = 6
Mr = 275.40F(000) = 900
Triclinic, P1Dx = 1.210 Mg m3
a = 11.7761 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.8731 (2) ÅCell parameters from 30823 reflections
c = 18.2788 (3) Åθ = 5.1–72.7°
α = 92.501 (2)°µ = 1.92 mm1
β = 94.696 (2)°T = 295 K
γ = 116.609 (2)°Prism, colorless
V = 2268.09 (8) Å30.32 × 0.21 × 0.11 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
8992 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source8048 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 16.1285 pixels mm-1θmax = 72.9°, θmin = 4.2°
ω scansh = 1314
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku, 2018)
k = 1414
Tmin = 0.200, Tmax = 1.000l = 2222
76762 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0822P)2 + 0.429P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
8992 reflectionsΔρmax = 0.86 e Å3
523 parametersΔρmin = 0.53 e Å3
9 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63651 (4)0.78463 (4)0.39086 (2)0.04527 (12)
S20.67423 (4)0.34333 (4)0.38657 (2)0.04606 (12)
S30.12114 (4)0.83219 (4)0.39052 (2)0.04759 (12)
O20.51832 (13)0.79458 (13)0.39206 (8)0.0608 (3)
O60.66922 (13)0.21916 (12)0.38512 (8)0.0615 (3)
O30.63630 (13)0.68285 (13)0.43196 (8)0.0637 (4)
O90.22683 (12)0.95327 (12)0.38131 (8)0.0597 (3)
N20.46247 (14)0.01597 (13)0.33925 (7)0.0433 (3)
H2A0.4793 (18)0.0755 (16)0.3563 (11)0.052*
H2B0.3914 (16)0.0237 (19)0.3549 (11)0.052*
H2C0.5300 (16)0.0593 (15)0.3524 (11)0.052*
N30.84089 (14)0.66545 (13)0.50755 (7)0.0443 (3)
H3A0.7713 (16)0.6768 (19)0.4943 (11)0.053*
H3B0.8237 (19)0.5892 (15)0.4864 (11)0.053*
H3C0.9054 (17)0.7263 (17)0.4886 (11)0.053*
O50.78864 (13)0.43837 (13)0.42985 (9)0.0681 (4)
O80.03123 (14)0.84536 (14)0.43564 (9)0.0701 (4)
O10.66929 (16)0.77755 (15)0.31635 (8)0.0689 (4)
N10.79465 (15)0.63192 (15)0.27752 (8)0.0492 (3)
H1A0.8792 (15)0.6704 (19)0.2924 (11)0.059*
H1B0.7552 (19)0.6784 (19)0.2896 (11)0.059*
H1C0.7541 (19)0.5562 (16)0.2945 (11)0.059*
O40.65613 (18)0.37874 (16)0.31366 (8)0.0799 (4)
O70.06024 (15)0.75862 (18)0.32090 (8)0.0807 (5)
C10.78006 (15)0.61136 (14)0.19499 (8)0.0403 (3)
C130.44439 (15)0.03377 (14)0.25673 (8)0.0410 (3)
C210.57125 (16)0.00684 (16)0.22910 (9)0.0466 (3)
H21A0.6020300.0639540.2488060.056*
H21B0.6338740.0791040.2458970.056*
C20.85215 (15)0.73767 (14)0.16319 (9)0.0437 (3)
H2D0.9418580.7752090.1823020.052*
H2E0.8183260.7950850.1779640.052*
C250.86750 (14)0.67267 (14)0.58989 (8)0.0388 (3)
C80.63814 (16)0.55422 (17)0.16706 (9)0.0495 (4)
H8A0.6037320.6111280.1818340.059*
H8B0.5917000.4745210.1878500.059*
C140.39642 (17)0.05787 (16)0.22769 (9)0.0465 (4)
H14A0.4581030.1441830.2444200.056*
H14B0.3161970.0413080.2464250.056*
C330.74579 (15)0.58585 (15)0.62134 (9)0.0465 (4)
H33A0.7160380.4996800.6002140.056*
H33B0.6796570.6113940.6085770.056*
C30.83830 (16)0.71802 (15)0.07895 (9)0.0461 (3)
C90.83407 (18)0.52124 (16)0.17324 (9)0.0494 (4)
H9A0.7891490.4417140.1945160.059*
H9B0.9238130.5574570.1921030.059*
C290.77116 (18)0.59194 (16)0.70548 (10)0.0515 (4)
C170.55484 (18)0.02435 (18)0.14428 (9)0.0518 (4)
C200.34628 (19)0.17022 (16)0.23234 (10)0.0550 (4)
H20A0.2655480.1879000.2507510.066*
H20B0.3760240.2281550.2519380.066*
C70.62339 (17)0.53292 (18)0.08302 (10)0.0570 (4)
H70.5325710.4961200.0642820.068*
C100.69578 (17)0.65902 (18)0.05044 (10)0.0551 (4)
H10A0.6612080.7162860.0641690.066*
H10B0.6850280.6454080.0029130.066*
C270.94396 (19)0.81789 (16)0.70574 (10)0.0550 (4)
C280.82115 (19)0.72963 (17)0.73701 (10)0.0547 (4)
H28A0.7561560.7571870.7255150.066*
H28B0.8376950.7348410.7902240.066*
C320.97039 (18)0.63053 (19)0.60735 (10)0.0533 (4)
H32A1.0478820.6857450.5870580.064*
H32B0.9418600.5449710.5855290.064*
C260.91308 (17)0.80841 (14)0.62144 (9)0.0480 (4)
H26A0.8471200.8345880.6096580.058*
H26B0.9888170.8640550.5998130.058*
C150.37718 (19)0.04088 (19)0.14298 (10)0.0541 (4)
C40.89072 (19)0.62571 (18)0.05718 (10)0.0547 (4)
H4A0.9808340.6621370.0751950.066*
H4B0.8824630.6124700.0038750.066*
C160.50501 (19)0.06612 (19)0.11542 (10)0.0560 (4)
H16A0.4944760.0567050.0619620.067*
H16B0.5674000.1525380.1313480.067*
C50.8188 (2)0.49778 (17)0.08899 (10)0.0581 (4)
C310.99688 (19)0.6358 (2)0.69101 (11)0.0613 (5)
H311.0626270.6082600.7030340.074*
C341.04425 (19)0.7718 (2)0.72352 (11)0.0667 (5)
H34A1.1224810.8262260.7035910.080*
H34B1.0631910.7767120.7765540.080*
C180.4547 (2)0.16083 (19)0.11936 (11)0.0642 (5)
H18A0.4426430.1733040.0659540.077*
H18B0.4847590.2192500.1378100.077*
C300.8754 (2)0.55030 (19)0.72313 (11)0.0622 (5)
H30A0.8933690.5534960.7761300.075*
H30B0.8455130.4636850.7027620.075*
C220.2800 (2)0.0963 (2)0.11844 (11)0.0669 (5)
H22A0.2659560.1084760.0650380.080*
H22B0.1990320.1140680.1366080.080*
C110.9113 (2)0.84445 (19)0.04648 (12)0.0637 (5)
H11A0.9062090.8300260.0060450.096*
H11B0.9992800.8829590.0671920.096*
H11C0.8742290.8995320.0579530.096*
C60.6764 (2)0.44274 (18)0.06038 (11)0.0675 (6)
H6A0.6656220.4281490.0070730.081*
H6B0.6294460.3621810.0801790.081*
C190.3283 (2)0.18780 (18)0.14795 (11)0.0624 (5)
H190.2653730.2749720.1314570.075*
C370.7589 (2)0.9253 (2)0.43596 (13)0.0725 (6)
H37A0.8395300.9238550.4346500.109*
H37B0.7435340.9331650.4862610.109*
H37C0.7605640.9960400.4116380.109*
C240.6820 (2)0.0025 (3)0.11616 (13)0.0750 (6)
H24A0.7160070.0489080.1390550.112*
H24B0.7411060.0902040.1280230.112*
H24C0.6691580.0168100.0636790.112*
C390.1879 (3)0.7482 (2)0.43919 (13)0.0772 (6)
H39A0.1214420.6666670.4469640.116*
H39B0.2300090.7942100.4859350.116*
H39C0.2487200.7378120.4113440.116*
C230.3304 (3)0.1337 (3)0.11357 (13)0.0826 (7)
H23A0.3907200.2185500.1318580.124*
H23B0.2487160.1146110.1297630.124*
H23C0.3225310.1260830.0606760.124*
C360.6483 (2)0.5065 (2)0.73711 (14)0.0810 (7)
H36A0.6143090.4222610.7135770.122*
H36B0.5868110.5382700.7284930.122*
H36C0.6663880.5052950.7891610.122*
C380.5456 (2)0.3353 (3)0.43141 (15)0.0786 (6)
H38A0.5418710.4143550.4300890.118*
H38B0.5568910.3187050.4817140.118*
H38C0.4675370.2686000.4070360.118*
C350.9899 (3)0.9543 (2)0.73805 (14)0.0888 (8)
H35A0.9248010.9802660.7259430.133*
H35B1.0664591.0088650.7178290.133*
H35C1.0072260.9592840.7906530.133*
C120.8726 (4)0.4071 (3)0.06721 (16)0.0966 (9)
H12A0.8607770.3907390.0145330.145*
H12B0.8287340.3291280.0890690.145*
H12C0.9621790.4444890.0843280.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0487 (2)0.0458 (2)0.0460 (2)0.02573 (18)0.00387 (16)0.00512 (15)
S20.0469 (2)0.0452 (2)0.0465 (2)0.02134 (17)0.00555 (16)0.00208 (15)
S30.0452 (2)0.0508 (2)0.0449 (2)0.01982 (18)0.00683 (16)0.00448 (16)
O20.0593 (8)0.0671 (8)0.0715 (8)0.0403 (7)0.0124 (6)0.0197 (6)
O60.0610 (8)0.0462 (6)0.0745 (9)0.0241 (6)0.0017 (6)0.0025 (6)
O30.0582 (8)0.0571 (7)0.0800 (9)0.0301 (6)0.0012 (7)0.0199 (6)
O90.0518 (7)0.0555 (7)0.0734 (8)0.0235 (6)0.0180 (6)0.0126 (6)
N20.0448 (7)0.0447 (7)0.0426 (7)0.0218 (6)0.0052 (6)0.0063 (5)
N30.0466 (8)0.0460 (7)0.0408 (7)0.0222 (6)0.0014 (6)0.0012 (5)
O50.0549 (8)0.0566 (7)0.0888 (10)0.0262 (6)0.0052 (7)0.0202 (7)
O80.0662 (9)0.0684 (8)0.0819 (10)0.0310 (7)0.0342 (7)0.0145 (7)
O10.0861 (10)0.0835 (9)0.0517 (7)0.0504 (8)0.0150 (7)0.0031 (6)
N10.0524 (8)0.0561 (8)0.0377 (7)0.0238 (7)0.0040 (6)0.0008 (6)
O40.1053 (12)0.0754 (10)0.0541 (8)0.0353 (9)0.0109 (8)0.0192 (7)
O70.0631 (9)0.1011 (12)0.0585 (8)0.0245 (8)0.0072 (7)0.0159 (8)
C10.0414 (8)0.0436 (7)0.0347 (7)0.0188 (6)0.0020 (6)0.0012 (5)
C130.0452 (8)0.0406 (7)0.0389 (7)0.0213 (6)0.0030 (6)0.0042 (6)
C210.0471 (9)0.0523 (9)0.0459 (8)0.0277 (7)0.0041 (7)0.0049 (6)
C20.0418 (8)0.0392 (7)0.0460 (8)0.0157 (6)0.0002 (6)0.0008 (6)
C250.0394 (8)0.0398 (7)0.0388 (7)0.0199 (6)0.0019 (6)0.0019 (5)
C80.0396 (8)0.0561 (9)0.0469 (9)0.0163 (7)0.0059 (7)0.0045 (7)
C140.0502 (9)0.0506 (8)0.0477 (8)0.0306 (7)0.0058 (7)0.0076 (7)
C330.0417 (8)0.0416 (8)0.0499 (9)0.0141 (7)0.0029 (7)0.0008 (6)
C30.0453 (8)0.0458 (8)0.0436 (8)0.0175 (7)0.0030 (6)0.0079 (6)
C90.0583 (10)0.0490 (8)0.0482 (9)0.0293 (8)0.0122 (7)0.0101 (7)
C290.0529 (10)0.0469 (8)0.0500 (9)0.0174 (7)0.0119 (7)0.0068 (7)
C170.0551 (10)0.0605 (10)0.0454 (8)0.0310 (8)0.0075 (7)0.0030 (7)
C200.0577 (10)0.0423 (8)0.0570 (10)0.0159 (8)0.0051 (8)0.0049 (7)
C70.0425 (9)0.0619 (10)0.0463 (9)0.0079 (8)0.0052 (7)0.0014 (7)
C100.0501 (10)0.0640 (10)0.0459 (9)0.0222 (8)0.0034 (7)0.0089 (7)
C270.0631 (11)0.0425 (8)0.0474 (9)0.0149 (8)0.0012 (8)0.0042 (7)
C280.0646 (11)0.0566 (10)0.0460 (9)0.0300 (9)0.0108 (8)0.0003 (7)
C320.0534 (10)0.0683 (11)0.0518 (9)0.0396 (9)0.0055 (7)0.0049 (8)
C260.0532 (9)0.0369 (7)0.0486 (9)0.0162 (7)0.0029 (7)0.0024 (6)
C150.0604 (10)0.0673 (11)0.0453 (9)0.0385 (9)0.0020 (7)0.0099 (7)
C40.0619 (11)0.0598 (10)0.0468 (9)0.0292 (9)0.0168 (8)0.0087 (7)
C160.0650 (11)0.0644 (10)0.0447 (8)0.0335 (9)0.0100 (8)0.0131 (7)
C50.0807 (13)0.0510 (9)0.0505 (9)0.0346 (9)0.0211 (9)0.0042 (7)
C310.0606 (11)0.0860 (13)0.0547 (10)0.0495 (11)0.0007 (8)0.0110 (9)
C340.0477 (10)0.0842 (14)0.0510 (10)0.0175 (10)0.0082 (8)0.0000 (9)
C180.0839 (14)0.0612 (11)0.0528 (10)0.0394 (11)0.0032 (9)0.0076 (8)
C300.0843 (14)0.0586 (10)0.0519 (10)0.0391 (10)0.0062 (9)0.0132 (8)
C220.0564 (11)0.0861 (14)0.0511 (10)0.0291 (10)0.0084 (8)0.0019 (9)
C110.0627 (11)0.0570 (10)0.0664 (11)0.0210 (9)0.0078 (9)0.0226 (9)
C60.0829 (14)0.0473 (9)0.0471 (9)0.0088 (9)0.0043 (9)0.0066 (7)
C190.0633 (11)0.0510 (10)0.0567 (10)0.0146 (9)0.0034 (9)0.0094 (8)
C370.0709 (13)0.0549 (11)0.0742 (13)0.0149 (10)0.0018 (11)0.0047 (9)
C240.0710 (14)0.1042 (17)0.0612 (12)0.0486 (13)0.0164 (10)0.0057 (11)
C390.1087 (19)0.0742 (13)0.0702 (13)0.0590 (14)0.0121 (12)0.0177 (11)
C230.1070 (19)0.1152 (19)0.0631 (13)0.0822 (17)0.0089 (12)0.0256 (12)
C360.0736 (15)0.0771 (14)0.0745 (14)0.0141 (12)0.0283 (12)0.0176 (11)
C380.0623 (13)0.0978 (17)0.0868 (16)0.0438 (13)0.0230 (11)0.0076 (13)
C350.122 (2)0.0487 (11)0.0681 (13)0.0174 (12)0.0026 (13)0.0133 (9)
C120.157 (3)0.0811 (16)0.0877 (17)0.0780 (18)0.0545 (18)0.0141 (13)
Geometric parameters (Å, º) top
S1—O31.4497 (13)C10—H10A0.9700
S1—O21.4503 (13)C10—H10B0.9700
S1—O11.4548 (14)C27—C341.527 (3)
S1—C371.754 (2)C27—C351.531 (3)
S2—O41.4427 (15)C27—C281.532 (3)
S2—O61.4478 (13)C27—C261.541 (2)
S2—O51.4491 (14)C28—H28A0.9700
S2—C381.748 (2)C28—H28B0.9700
S3—O71.4453 (15)C32—C311.528 (2)
S3—O91.4480 (14)C32—H32A0.9700
S3—O81.4511 (14)C32—H32B0.9700
S3—C391.751 (2)C26—H26A0.9700
N2—C131.4983 (19)C26—H26B0.9700
N2—H2A0.878 (15)C15—C161.531 (3)
N2—H2B0.873 (15)C15—C221.532 (3)
N2—H2C0.896 (15)C15—C231.534 (3)
N3—C251.5026 (19)C4—C51.539 (3)
N3—H3A0.904 (15)C4—H4A0.9700
N3—H3B0.896 (15)C4—H4B0.9700
N3—H3C0.890 (15)C16—H16A0.9700
N1—C11.5008 (19)C16—H16B0.9700
N1—H1A0.901 (15)C5—C121.528 (3)
N1—H1B0.897 (16)C5—C61.535 (3)
N1—H1C0.893 (15)C31—C301.520 (3)
C1—C91.524 (2)C31—C341.526 (3)
C1—C21.525 (2)C31—H310.9800
C1—C81.526 (2)C34—H34A0.9700
C13—C211.516 (2)C34—H34B0.9700
C13—C201.528 (2)C18—C191.519 (3)
C13—C141.529 (2)C18—H18A0.9700
C21—C171.540 (2)C18—H18B0.9700
C21—H21A0.9700C30—H30A0.9700
C21—H21B0.9700C30—H30B0.9700
C2—C31.532 (2)C22—C191.533 (3)
C2—H2D0.9700C22—H22A0.9700
C2—H2E0.9700C22—H22B0.9700
C25—C331.520 (2)C11—H11A0.9600
C25—C261.520 (2)C11—H11B0.9600
C25—C321.521 (2)C11—H11C0.9600
C8—C71.529 (2)C6—H6A0.9700
C8—H8A0.9700C6—H6B0.9700
C8—H8B0.9700C19—H190.9800
C14—C151.538 (2)C37—H37A0.9600
C14—H14A0.9700C37—H37B0.9600
C14—H14B0.9700C37—H37C0.9600
C33—C291.535 (2)C24—H24A0.9600
C33—H33A0.9700C24—H24B0.9600
C33—H33B0.9700C24—H24C0.9600
C3—C41.533 (3)C39—H39A0.9600
C3—C111.533 (2)C39—H39B0.9600
C3—C101.533 (2)C39—H39C0.9600
C9—C51.534 (2)C23—H23A0.9600
C9—H9A0.9700C23—H23B0.9600
C9—H9B0.9700C23—H23C0.9600
C29—C361.527 (3)C36—H36A0.9600
C29—C301.532 (3)C36—H36B0.9600
C29—C281.533 (2)C36—H36C0.9600
C17—C241.524 (3)C38—H38A0.9600
C17—C161.530 (2)C38—H38B0.9600
C17—C181.536 (3)C38—H38C0.9600
C20—C191.532 (3)C35—H35A0.9600
C20—H20A0.9700C35—H35B0.9600
C20—H20B0.9700C35—H35C0.9600
C7—C61.520 (3)C12—H12A0.9600
C7—C101.530 (3)C12—H12B0.9600
C7—H70.9800C12—H12C0.9600
O3—S1—O2112.16 (8)C27—C28—H28B109.3
O3—S1—O1112.49 (9)C29—C28—H28B109.3
O2—S1—O1112.24 (9)H28A—C28—H28B107.9
O3—S1—C37106.48 (10)C25—C32—C31108.64 (14)
O2—S1—C37106.90 (11)C25—C32—H32A110.0
O1—S1—C37106.03 (11)C31—C32—H32A110.0
O4—S2—O6112.33 (9)C25—C32—H32B110.0
O4—S2—O5112.53 (10)C31—C32—H32B110.0
O6—S2—O5111.99 (8)H32A—C32—H32B108.3
O4—S2—C38106.23 (12)C25—C26—C27109.43 (13)
O6—S2—C38107.04 (11)C25—C26—H26A109.8
O5—S2—C38106.18 (11)C27—C26—H26A109.8
O7—S3—O9112.24 (10)C25—C26—H26B109.8
O7—S3—O8112.80 (10)C27—C26—H26B109.8
O9—S3—O8111.98 (8)H26A—C26—H26B108.2
O7—S3—C39106.65 (12)C16—C15—C22108.80 (16)
O9—S3—C39105.98 (11)C16—C15—C23110.50 (17)
O8—S3—C39106.65 (11)C22—C15—C23111.15 (18)
C13—N2—H2A108.9 (13)C16—C15—C14108.38 (14)
C13—N2—H2B108.9 (13)C22—C15—C14108.47 (15)
H2A—N2—H2B108.3 (18)C23—C15—C14109.49 (16)
C13—N2—H2C107.2 (13)C3—C4—C5111.38 (15)
H2A—N2—H2C109.0 (18)C3—C4—H4A109.4
H2B—N2—H2C114.4 (18)C5—C4—H4A109.4
C25—N3—H3A111.5 (13)C3—C4—H4B109.4
C25—N3—H3B111.5 (13)C5—C4—H4B109.4
H3A—N3—H3B105.7 (18)H4A—C4—H4B108.0
C25—N3—H3C111.2 (13)C17—C16—C15111.81 (15)
H3A—N3—H3C105.8 (18)C17—C16—H16A109.3
H3B—N3—H3C110.8 (19)C15—C16—H16A109.3
C1—N1—H1A106.7 (14)C17—C16—H16B109.3
C1—N1—H1B107.8 (14)C15—C16—H16B109.3
H1A—N1—H1B113 (2)H16A—C16—H16B107.9
C1—N1—H1C107.3 (14)C12—C5—C9109.66 (18)
H1A—N1—H1C112.9 (19)C12—C5—C6110.9 (2)
H1B—N1—H1C109 (2)C9—C5—C6108.75 (16)
N1—C1—C9108.80 (13)C12—C5—C4110.77 (18)
N1—C1—C2109.46 (12)C9—C5—C4108.30 (15)
C9—C1—C2110.08 (13)C6—C5—C4108.38 (16)
N1—C1—C8108.44 (13)C30—C31—C34109.47 (17)
C9—C1—C8110.26 (14)C30—C31—C32110.15 (16)
C2—C1—C8109.76 (13)C34—C31—C32108.73 (16)
N2—C13—C21109.02 (12)C30—C31—H31109.5
N2—C13—C20108.75 (13)C34—C31—H31109.5
C21—C13—C20110.00 (14)C32—C31—H31109.5
N2—C13—C14108.56 (12)C31—C34—C27110.87 (15)
C21—C13—C14110.25 (13)C31—C34—H34A109.5
C20—C13—C14110.23 (14)C27—C34—H34A109.5
C13—C21—C17109.86 (13)C31—C34—H34B109.5
C13—C21—H21A109.7C27—C34—H34B109.5
C17—C21—H21A109.7H34A—C34—H34B108.1
C13—C21—H21B109.7C19—C18—C17110.38 (15)
C17—C21—H21B109.7C19—C18—H18A109.6
H21A—C21—H21B108.2C17—C18—H18A109.6
C1—C2—C3110.01 (12)C19—C18—H18B109.6
C1—C2—H2D109.7C17—C18—H18B109.6
C3—C2—H2D109.7H18A—C18—H18B108.1
C1—C2—H2E109.7C31—C30—C29110.54 (15)
C3—C2—H2E109.7C31—C30—H30A109.5
H2D—C2—H2E108.2C29—C30—H30A109.5
N3—C25—C33109.30 (12)C31—C30—H30B109.5
N3—C25—C26108.86 (12)C29—C30—H30B109.5
C33—C25—C26109.96 (13)H30A—C30—H30B108.1
N3—C25—C32108.23 (13)C15—C22—C19110.50 (15)
C33—C25—C32110.02 (13)C15—C22—H22A109.5
C26—C25—C32110.44 (14)C19—C22—H22A109.5
C1—C8—C7108.38 (14)C15—C22—H22B109.5
C1—C8—H8A110.0C19—C22—H22B109.5
C7—C8—H8A110.0H22A—C22—H22B108.1
C1—C8—H8B110.0C3—C11—H11A109.5
C7—C8—H8B110.0C3—C11—H11B109.5
H8A—C8—H8B108.4H11A—C11—H11B109.5
C13—C14—C15109.31 (13)C3—C11—H11C109.5
C13—C14—H14A109.8H11A—C11—H11C109.5
C15—C14—H14A109.8H11B—C11—H11C109.5
C13—C14—H14B109.8C7—C6—C5110.54 (14)
C15—C14—H14B109.8C7—C6—H6A109.5
H14A—C14—H14B108.3C5—C6—H6A109.5
C25—C33—C29110.04 (13)C7—C6—H6B109.5
C25—C33—H33A109.7C5—C6—H6B109.5
C29—C33—H33A109.7H6A—C6—H6B108.1
C25—C33—H33B109.7C18—C19—C20109.84 (16)
C29—C33—H33B109.7C18—C19—C22109.75 (18)
H33A—C33—H33B108.2C20—C19—C22108.95 (17)
C2—C3—C4108.56 (13)C18—C19—H19109.4
C2—C3—C11110.40 (14)C20—C19—H19109.4
C4—C3—C11110.30 (15)C22—C19—H19109.4
C2—C3—C10108.42 (14)S1—C37—H37A109.5
C4—C3—C10108.78 (15)S1—C37—H37B109.5
C11—C3—C10110.32 (14)H37A—C37—H37B109.5
C1—C9—C5109.68 (14)S1—C37—H37C109.5
C1—C9—H9A109.7H37A—C37—H37C109.5
C5—C9—H9A109.7H37B—C37—H37C109.5
C1—C9—H9B109.7C17—C24—H24A109.5
C5—C9—H9B109.7C17—C24—H24B109.5
H9A—C9—H9B108.2H24A—C24—H24B109.5
C36—C29—C30111.16 (18)C17—C24—H24C109.5
C36—C29—C28110.63 (17)H24A—C24—H24C109.5
C30—C29—C28108.68 (16)H24B—C24—H24C109.5
C36—C29—C33109.98 (16)S3—C39—H39A109.5
C30—C29—C33107.91 (15)S3—C39—H39B109.5
C28—C29—C33108.40 (14)H39A—C39—H39B109.5
C24—C17—C16110.87 (17)S3—C39—H39C109.5
C24—C17—C18110.44 (17)H39A—C39—H39C109.5
C16—C17—C18108.76 (15)H39B—C39—H39C109.5
C24—C17—C21110.12 (15)C15—C23—H23A109.5
C16—C17—C21108.09 (14)C15—C23—H23B109.5
C18—C17—C21108.49 (15)H23A—C23—H23B109.5
C13—C20—C19108.48 (14)C15—C23—H23C109.5
C13—C20—H20A110.0H23A—C23—H23C109.5
C19—C20—H20A110.0H23B—C23—H23C109.5
C13—C20—H20B110.0C29—C36—H36A109.5
C19—C20—H20B110.0C29—C36—H36B109.5
H20A—C20—H20B108.4H36A—C36—H36B109.5
C6—C7—C8109.66 (16)C29—C36—H36C109.5
C6—C7—C10109.48 (17)H36A—C36—H36C109.5
C8—C7—C10109.83 (15)H36B—C36—H36C109.5
C6—C7—H7109.3S2—C38—H38A109.5
C8—C7—H7109.3S2—C38—H38B109.5
C10—C7—H7109.3H38A—C38—H38B109.5
C7—C10—C3110.09 (14)S2—C38—H38C109.5
C7—C10—H10A109.6H38A—C38—H38C109.5
C3—C10—H10A109.6H38B—C38—H38C109.5
C7—C10—H10B109.6C27—C35—H35A109.5
C3—C10—H10B109.6C27—C35—H35B109.5
H10A—C10—H10B108.2H35A—C35—H35B109.5
C34—C27—C35111.57 (19)C27—C35—H35C109.5
C34—C27—C28108.39 (16)H35A—C35—H35C109.5
C35—C27—C28110.15 (18)H35B—C35—H35C109.5
C34—C27—C26109.22 (16)C5—C12—H12A109.5
C35—C27—C26109.83 (16)C5—C12—H12B109.5
C28—C27—C26107.59 (15)H12A—C12—H12B109.5
C27—C28—C29111.83 (14)C5—C12—H12C109.5
C27—C28—H28A109.3H12A—C12—H12C109.5
C29—C28—H28A109.3H12B—C12—H12C109.5
N2—C13—C21—C17179.89 (13)C35—C27—C26—C25179.97 (18)
C20—C13—C21—C1760.96 (17)C28—C27—C26—C2560.08 (19)
C14—C13—C21—C1760.81 (17)C13—C14—C15—C1658.79 (19)
N1—C1—C2—C3179.87 (13)C13—C14—C15—C2259.17 (19)
C9—C1—C2—C360.33 (17)C13—C14—C15—C23179.39 (18)
C8—C1—C2—C361.22 (17)C2—C3—C4—C559.02 (19)
N1—C1—C8—C7179.81 (14)C11—C3—C4—C5179.90 (16)
C9—C1—C8—C760.78 (18)C10—C3—C4—C558.78 (19)
C2—C1—C8—C760.66 (18)C24—C17—C16—C15180.00 (16)
N2—C13—C14—C15179.95 (14)C18—C17—C16—C1558.4 (2)
C21—C13—C14—C1560.69 (18)C21—C17—C16—C1559.2 (2)
C20—C13—C14—C1560.94 (18)C22—C15—C16—C1758.15 (19)
N3—C25—C33—C29179.97 (13)C23—C15—C16—C17179.57 (17)
C26—C25—C33—C2960.58 (17)C14—C15—C16—C1759.6 (2)
C32—C25—C33—C2961.26 (17)C1—C9—C5—C12179.83 (19)
C1—C2—C3—C458.56 (18)C1—C9—C5—C658.40 (19)
C1—C2—C3—C11179.59 (14)C1—C9—C5—C459.2 (2)
C1—C2—C3—C1059.46 (17)C3—C4—C5—C12179.67 (19)
N1—C1—C9—C5179.41 (14)C3—C4—C5—C959.4 (2)
C2—C1—C9—C560.65 (18)C3—C4—C5—C658.44 (19)
C8—C1—C9—C560.60 (18)C25—C32—C31—C3059.1 (2)
C25—C33—C29—C36178.98 (17)C25—C32—C31—C3460.8 (2)
C25—C33—C29—C3059.61 (18)C30—C31—C34—C2760.0 (2)
C25—C33—C29—C2857.92 (18)C32—C31—C34—C2760.4 (2)
C13—C21—C17—C24179.97 (16)C35—C27—C34—C31179.94 (18)
C13—C21—C17—C1658.77 (18)C28—C27—C34—C3158.5 (2)
C13—C21—C17—C1859.00 (18)C26—C27—C34—C3158.5 (2)
N2—C13—C20—C19179.97 (15)C24—C17—C18—C19179.54 (17)
C21—C13—C20—C1960.65 (19)C16—C17—C18—C1958.6 (2)
C14—C13—C20—C1961.13 (19)C21—C17—C18—C1958.8 (2)
C1—C8—C7—C660.18 (19)C34—C31—C30—C2959.6 (2)
C1—C8—C7—C1060.2 (2)C32—C31—C30—C2959.9 (2)
C6—C7—C10—C360.18 (19)C36—C29—C30—C31179.75 (18)
C8—C7—C10—C360.3 (2)C28—C29—C30—C3158.3 (2)
C2—C3—C10—C759.00 (19)C33—C29—C30—C3159.08 (19)
C4—C3—C10—C758.89 (19)C16—C15—C22—C1957.9 (2)
C11—C3—C10—C7180.00 (16)C23—C15—C22—C19179.75 (18)
C34—C27—C28—C2958.18 (19)C14—C15—C22—C1959.8 (2)
C35—C27—C28—C29179.51 (18)C8—C7—C6—C560.2 (2)
C26—C27—C28—C2959.8 (2)C10—C7—C6—C560.35 (19)
C36—C29—C28—C27179.52 (17)C12—C5—C6—C7179.38 (17)
C30—C29—C28—C2758.2 (2)C9—C5—C6—C758.7 (2)
C33—C29—C28—C2758.9 (2)C4—C5—C6—C758.82 (19)
N3—C25—C32—C31179.24 (15)C17—C18—C19—C2060.1 (2)
C33—C25—C32—C3159.88 (19)C17—C18—C19—C2259.7 (2)
C26—C25—C32—C3161.68 (19)C13—C20—C19—C1860.0 (2)
N3—C25—C26—C27178.60 (14)C13—C20—C19—C2260.3 (2)
C33—C25—C26—C2761.69 (18)C15—C22—C19—C1859.5 (2)
C32—C25—C26—C2759.91 (18)C15—C22—C19—C2060.8 (2)
C34—C27—C26—C2557.37 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.90 (2)1.92 (2)2.819 (2)177 (2)
N1—H1B···O10.90 (2)1.94 (2)2.833 (2)179 (2)
N1—H1C···O40.89 (2)1.96 (2)2.844 (2)170 (2)
N2—H2A···O2ii0.88 (2)1.92 (2)2.7991 (18)179 (2)
N2—H2B···O9ii0.87 (2)1.94 (2)2.8090 (19)175 (2)
N2—H2C···O60.90 (2)1.90 (2)2.7923 (19)177 (2)
N3—H3A···O30.90 (2)1.91 (2)2.7717 (19)159 (2)
N3—H3B···O50.90 (2)1.89 (2)2.7752 (19)172 (2)
N3—H3C···O8i0.89 (2)1.90 (2)2.785 (2)172 (2)
C39—H39B···O6iii0.962.593.423 (3)145
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x+1, y+1, z+1.
 

Footnotes

Current address: Xellia Ltd, HR-10000 Zagreb, Croatia.

Acknowledgements

MT and EM acknowledge PLIVA for financial support.

References

First citationBaşköse, U. C., Bayarı, S. H., Sağlam, S. & Özışık, H. (2012). Open Chem. 10, 395–406.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHostaš, J., Sigwalt, D., Šekutor, M., Ajani, H., Dubecký, M., Řezáč, J., Zavalij, P. Y., Cao, L., Wohlschlager, C., Mlinarić-Majerski, K., Isaacs, L., Glaser, R. & Hobza, P. (2016). Chem. Eur. J. 22, 17226–17238.  PubMed Google Scholar
First citationLou, W.-J., Hu, X.-R. & Gu, J.-M. (2009). Acta Cryst. E65, o2191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcInnes, F. J., Anthony, N. G., Kennedy, A. R. & Wheate, N. J. (2010). Org. Biomol. Chem. 8, 765–773.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParsons, C. G., Danysz, W., Dekundy, A. & Pulte, I. (2013). Neurotox. Res. 24, 358–369.  CrossRef CAS PubMed Google Scholar
First citationRammes, G., Danysz, W. & Parsons, C. G. (2008). Curr. Neuropharmacol. 6, 55–78.  PubMed CAS Google Scholar
First citationReisberg, B., Doody, R., Stöffler, A., Schmitt, F., Ferris, S. & Möbius, H. J. (2003). N. Engl. J. Med. 348, 1333–1341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTkachev, V. V., Tkacheva, N. S. & Kazachenko, V. P. (2017). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 58, 615–617.  CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds