research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An unexpected rhenium(IV)–rhenium(VII) salt: [Co(NH3)6]3[ReVIIO4][ReIVF6]4·6H2O

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada, 89154, USA, and bDepartment of Chemistry and Biochemistry, Freie University Berlin, Berlin 14195, Germany
*Correspondence e-mail: louisjea@unlv.nevada.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 May 2019; accepted 8 July 2019; online 12 July 2019)

The title hydrated salt, tris­[hexa­amminecobalt(III)] tetraoxidorhenate(VII) tetra­kis­[hexa­fluorido­rhenate(IV)] hexa­hydrate, arose unexpectedly due to possible contamination of the K2ReF6 starting material with KReO4. It consists of octa­hedral [Co(NH3)6]3+ cation (Co1 site symmetry 1), tetra­hedral [ReVIIO4] anions (Re site symmetry 1) and octa­hedral [ReIVF6]2− anions (Re site symmetries 1and [\overline{3}]). The [ReF6]2− octa­hedral anions (mean Re—F = 1.834 Å), [Co(NH3)6]3+ octa­hedral cations (mean Co—N = 1.962 Å), and the [ReO4] tetra­hedral anion (mean Re—O = 1.719 Å) are slightly distorted. A network of N—H⋯F hydrogen bonds consolidates the structure. The crystal studied was refined as a two-component twin.

1. Chemical context

The chemistry of ReVII is dominated by the tetra­hedral perrhenate anion, [ReO4] (Latimer, 1952[Latimer, W. M. (1952). The Oxidation State of the Elements and Their Potential in Aqueous Solutions. New York: Prentice-Hall Inc.]; Abram, 2003[Abram, U. (2003). Rhenium. In Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, pp. 271-402. New York: Elsevier Science.]) while ReIV is typically found in salts containing octa­hedral [ReX6]2− (X = F, Cl, Br, I) anions (Berthold & Jakobson, 1964[Berthold, H. J. & Jakobson, G. (1964). Angew. Chem. Int. Ed. Engl. 3, 445-445.]; Jorgensen & Schwochau, 1965[Jorgensen, C. K. & Schwochau, K. (1965). Z. Naturforsch. Teil A, 20, 65-75.]; Grundy & Brown, 1970[Grundy, H. D. & Brown, I. D. (1970). Can. J. Chem. 48, 1151-1154.]; Louis-Jean et al., 2018[Louis-Jean, J., Mariappan Balasekaran, S., Smith, D., Salamat, A., Pham, C. T. & Poineau, F. (2018). Acta Cryst. E74, 646-649.]). The salts of [ReX6]2− (X = Cl, Br, I) can be prepared in high yield by the reduction of a perrhenate starting material in the corresponding concentrated HX acid (Briscoe et al., 1931[Briscoe, H. V. A., Robinson, P. L. & Rudge, A. J. (1931). J. Chem. Soc. pp. 3218-3220.]; Watt et al., 1963[Watt, G. W., Thompson, R. J. & Gibbons, J. M. (1963). Inorganic Syntheses, edited by J. Kleinberg, Vol. VII, pp. 189-192. New York: McGraw-Hill.]). However, salts of [ReF6]2− are typically prepared from the solid-state melting reaction of [ReX6]2− (X = Cl, Br, I) with AHF2 (A = NH4+, K+) followed by an aqueous work-up (Ruff & Kwasnik, 1934[Ruff, O. & Kwasnik, W. (1934). Z. Anorg. Allg. Chem. 219, 65-81.]; Louis-Jean et al., 2018[Louis-Jean, J., Mariappan Balasekaran, S., Smith, D., Salamat, A., Pham, C. T. & Poineau, F. (2018). Acta Cryst. E74, 646-649.]). Such a procedure is found to be challenging. Nonetheless, an improved procedure for the preparation of A2[ReF6] (A = K, Rb, Cs) salts as well as their X-ray single-crystal structures was recently reported (Louis-Jean et al., 2018[Louis-Jean, J., Mariappan Balasekaran, S., Smith, D., Salamat, A., Pham, C. T. & Poineau, F. (2018). Acta Cryst. E74, 646-649.]).

[Scheme 1]

In the process of exploring the coordination chemistry of hexa­fluoro­rhenate(IV) compounds, the title compound (I), an unexpected mixed-valence rhenium(IV)–rhenium(VII) salt arose in an effort to prepare [Co(NH3)6]2[ReF6]3 by metathesis from K2[ReF6] and Co(NH3)6Cl3 in water (353 K). Yellow–orange needle-like crystals of (I) were obtained within two hours by slow evaporation in water at room temperature. The crystals of (I) are air stable over short periods, but decompose to a black material after six months of storage at ambient temperature.

2. Structural commentary

The structure of (I) (Fig. 1[link]) is built up from a [Co(NH3)6]3+ cation, three distinct [ReF6]2− anions, one [ReO4] anion, and two water mol­ecules of crystallization: these components are held together by electrostatic forces and hydrogen bonding. Site symmetries for the metal atoms are Co1: 1 (Wyckoff position 18f), Re1: 3 (Wyckoff position 6c), Re2: 1 (Wyckoff position 18f), Re3: [\overline{3}] (Wyckoff position 3a), and Re4: [\overline{3}] (Wyckoff position 3b).

[Figure 1]
Figure 1
The mol­ecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level for all non-H atoms. Symmetry codes: (i) 1 − x + y, 1 − x, z; (ii) 1 − y, x − y, z; (iii) [{1\over 3}] + y, [{2\over 3}] − x + y, [{5\over 3}] − z; (iv) [{1\over 3}] + x − y, −[{1\over 3}] + x, [{5\over 3}] − z; (v) [{4\over 3}] − x, [{2\over 3}] − y, [{5\over 3}] − z; (vi) [{2\over 3}] + x − y, [{1\over 3}] + x, [{4\over 3}] − z; (vii) −[{1\over 3}] + y, [{1\over 3}] − x + y, [{4\over 3}] − z; (viii) [{2\over 3}] − x, [{4\over 3}] − y, [{4\over 3}] − z; (ix) −x + y, 1 − x, z; (x) 1 − y, 1 + x − y, z.

The octa­hedral [Co(NH3)6]3+ cation in (I) is slightly distorted; the average Co—N bond length of 1.962 Å is in agreement with the average Co—N bond lengths of 1.963 Å in [Co(NH3)6](ReO4)·2H2O (Baidina et al., 2012[Baidina, I. A., Filatov, E. Y., Makotchenko, E. V. & Smolentsev, A. I. (2012). J. Struct. Chem. 53, 112-118.]) and 1.966 Å in [Co(NH3)6](TcO4)3 (Poineau et al., 2017[Poineau, F., Mausolf, E., Kerlin, W. & Czerwinski, K. (2017). J. Radioanal. Nucl. Chem. 311, 775-778.]). In (I), the shortest Co⋯Co and N⋯N separations between nearby [Co(NH3)6]3+ cations are 7.035 (1) and 4.473 (1) Å, respectively.

In the tetra­hedral [ReO4] anion in (I), the average Re—O bond length (1.719 Å) is in agreement with the average Re—O bond length of 1.720 Å in [Co(NH3)6](ReO4)·2H2O (Baidina et al., 2012[Baidina, I. A., Filatov, E. Y., Makotchenko, E. V. & Smolentsev, A. I. (2012). J. Struct. Chem. 53, 112-118.]). In (I) the values of three Re—O bond lengths, [Re1—O2i, Re—O2 and Re—O2ii = 1.715 (8) Å; symmetry codes: (i) 1 − x + y, 1 − x, z; (ii) 1 − y, x − y, z] are slightly shorter than the fourth one [Re—O1 = 1.748 (14) Å]. In (I), all O—Re­—O bond angles in the [ReO4] anion are 109.5 (3)°. However, in [Co(NH3)6](ReO4)·2H2O, the [ReO4] anion is slightly distorted by up to 2.7° (Baidina et al., 2012[Baidina, I. A., Filatov, E. Y., Makotchenko, E. V. & Smolentsev, A. I. (2012). J. Struct. Chem. 53, 112-118.]).

The [ReF6]2− anions are slightly distorted, with Re—F bond lengths varying from 1.916 (6) Å to 1.929 (6) Å. All the Re—F bond lengths in the Re3- and Re4-centred anions are of equal distances of 1.952 (6) and 1.950 (6) Å, respectively, by symmetry. Overall, the average Re—F bond length (1.834 Å) in (I) is notably shorter than the average Re—F bond length (1.951 Å) in A2[ReF6] (A = K, Rb, Cs) salts previously studied (Louis-Jean et al., 2018[Louis-Jean, J., Mariappan Balasekaran, S., Smith, D., Salamat, A., Pham, C. T. & Poineau, F. (2018). Acta Cryst. E74, 646-649.]).

3. Supra­molecular features

A perspective view of the unit-cell plots for (I) and its component ions ([ReF6]2−, [ReO4], and [Co(NH3)6]3+) are shown in Fig. 2[link]. In the supra­molecular structure of the title compound, the ammine ligands of the cations form numerous N—H⋯F and N—H⋯O hydrogen bonds with the fluorine atoms of [ReF6]2− anions and the water mol­ecules (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F1i 0.89 2.34 3.085 (11) 141
N1—H1A⋯F5i 0.89 2.29 3.078 (10) 148
N1—H1B⋯F5 0.89 2.32 3.037 (10) 138
N1—H1B⋯F7 0.89 2.42 3.098 (11) 133
N1—H1C⋯F3 0.89 2.40 3.144 (10) 141
N1—H1C⋯O1Sii 0.89 2.35 3.084 (12) 140
N2—H2A⋯F2iii 0.89 2.46 3.243 (10) 148
N2—H2A⋯O2iii 0.89 2.54 3.089 (12) 121
N2—H2B⋯F4 0.89 2.31 3.137 (12) 155
N2—H2B⋯F4iii 0.89 2.58 3.161 (10) 124
N2—H2C⋯F7 0.89 2.08 2.928 (10) 158
N3—H3A⋯F6iv 0.89 2.57 3.054 (10) 115
N3—H3A⋯O2S 0.89 2.26 3.027 (12) 145
N3—H3B⋯F5iv 0.89 2.52 3.132 (10) 127
N3—H3B⋯F7 0.89 2.32 2.911 (11) 123
N3—H3C⋯F5i 0.89 2.24 3.112 (10) 166
N4—H4A⋯F2iii 0.89 2.16 3.038 (10) 170
N4—H4A⋯F6iii 0.89 2.57 3.126 (10) 121
N4—H4B⋯F6iv 0.89 2.19 2.969 (10) 146
N4—H4C⋯F8v 0.89 2.21 3.019 (11) 150
N5—H5A⋯O2S 0.89 2.08 2.936 (12) 162
N5—H5B⋯F1i 0.89 2.20 3.057 (11) 162
N5—H5C⋯F1ii 0.89 2.49 3.019 (11) 119
N5—H5C⋯F2ii 0.89 2.43 3.261 (11) 157
N6—H6A⋯F4iii 0.89 2.55 3.110 (10) 122
N6—H6A⋯F6iii 0.89 2.16 3.037 (10) 168
N6—H6B⋯F2ii 0.89 2.16 2.968 (10) 151
N6—H6B⋯O1Sii 0.89 2.67 3.227 (11) 122
N6—H6C⋯F4 0.89 2.14 2.982 (10) 159
Symmetry codes: (i) [y-{\script{1\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (ii) -y+1, x-y, z; (iii) -x+1, -y+1, -z+1; (iv) -x+y, -x+1, z; (v) [-x+{\script{2\over 3}}, -y+{\script{1\over 3}}, -z+{\script{4\over 3}}].
[Figure 2]
Figure 2
Unit-cell plots showing only (a) the complete structure of (I), (b) the [ReF6]2− octa­hedra, (c) the [ReO4] tetra­hedra and (d) the [Co(NH3)6]3+ octa­hedra viewed along the crystallographic b axis. Color of atoms: Re aqua blue, F green, Co purple, N blue, O red, H gray.
[Figure 3]
Figure 3
Detail of the hydrogen bonding (blue dotted lines) in (I). Atom colors as in Fig. 2[link].

4. Database survey

To the best of our knowledge, (I) is the only reported hexa­halogenorhenate–perrhenate structure containing both rhenium(IV) and rhenium(VII). It is noted that K2[ReF6] used for the preparation of (I) was not characterized before use and the presence of perrhenate in (I) may be due to the presence of K[ReO4] in the starting material. Efforts to isolate the technetium (Tc-99) derivative compound, [Co(NH3)6]3 [(Tc(vii)O4) (Tc(iv)F6)4] are in progress.

5. Synthesis and crystallization

All chemicals were obtained commercially from Sigma Aldrich® and used without any further purification. The starting material, K2[ReF6], was prepared following the method described in our previous publication (Louis-Jean et al., 2018[Louis-Jean, J., Mariappan Balasekaran, S., Smith, D., Salamat, A., Pham, C. T. & Poineau, F. (2018). Acta Cryst. E74, 646-649.]).

K2[ReF6] (114 mg, 0.3 mmol) was dissolved in 2 ml of hot water (353 K), and [Co(NH3)6]Cl3 (53.5 mg, 0.2 mmol) dissolved in 1 ml of  H2O was added. The solution was allowed to evaporate slowly at room temperature and yellow-orange needle-like crystals of (I) were obtained within two hours. The compound was washed with H2O (3 × 1 ml), followed by iso­propanol (3 × 1 ml) and then diethyl ether (3 × 1 ml). Single crystals of (I) were grown in H2O by slow evaporation at room temperature. Yield: ca 91%. The presence of perrhenate in (I) is probably due to the presence of K[ReO4] in the starting material (i.e. K2ReF6).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms of the co-crystallized water mol­ecules could not be located in the present experiment.

Table 2
Experimental details

Crystal data
Chemical formula [Co(NH3)6]3[ReO4][ReF6]4·6H2O
Mr 2030.40
Crystal system, space group Trigonal, R[\overline{3}]
Temperature (K) 293
a, c (Å) 15.982 (3), 29.740 (5)
V3) 6579 (2)
Z 6
Radiation type Mo Kα
μ (mm−1) 15.00
Crystal size (mm) 0.63 × 0.08 × 0.07
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Numerical (Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.02, 0.43
No. of measured, independent and observed [I > 2σ(I)] reflections 45169, 5223, 4885
Rint 0.082
(sin θ/λ)max−1) 0.635
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.08
No. of reflections 5223
No. of parameters 189
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.36, −4.16
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Tris[hexaamminecobalt(III)] tetraoxidorhenate(VII) tetrakis[hexafluoridorhenate(IV)] hexahydrate top
Crystal data top
[Co(NH3)6]3[ReO4][ReF6]4·6H2ODx = 3.075 Mg m3
Mr = 2030.40Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 618 reflections
a = 15.982 (3) Åθ = 3.2–32.0°
c = 29.740 (5) ŵ = 15.00 mm1
V = 6579 (2) Å3T = 293 K
Z = 6Rectangular box, translucent orange
F(000) = 55920.63 × 0.08 × 0.07 mm
Data collection top
Bruker D8 QUEST
diffractometer
5223 independent reflections
Radiation source: sealed tube, Siemens KFFMo2K-904885 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.082
Detector resolution: 8.3333 pixels mm-1θmax = 26.8°, θmin = 1.6°
'φ and ω scans'h = 2020
Absorption correction: numerical
(Krause et al., 2015)
k = 2020
Tmin = 0.02, Tmax = 0.43l = 3737
45169 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0476P)2 + 166.9724P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
5223 reflectionsΔρmax = 2.36 e Å3
189 parametersΔρmin = 4.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.30664 (8)0.34382 (8)0.58013 (3)0.0133 (2)
N10.4055 (5)0.4205 (6)0.6252 (2)0.0215 (15)
H1A0.38240.39870.65260.032*
H1B0.42110.48220.6230.032*
H1C0.45770.41540.62050.032*
N20.3377 (7)0.4637 (6)0.5488 (3)0.0257 (17)
H2A0.29650.45060.52620.038*
H2B0.39770.49090.5380.038*
H2C0.33330.50410.56790.038*
N30.2114 (6)0.3556 (6)0.6173 (3)0.0244 (16)
H3A0.15330.30390.61330.037*
H3B0.20980.40850.60940.037*
H3C0.2280.35970.64610.037*
N40.2051 (6)0.2661 (6)0.5359 (3)0.0236 (16)
H4A0.220.29630.50950.035*
H4B0.14880.25820.54540.035*
H4C0.20080.20860.53290.035*
N50.2754 (6)0.2239 (6)0.6122 (3)0.0255 (17)
H5A0.21330.19320.620.038*
H5B0.31180.23810.63670.038*
H5C0.28690.18610.59430.038*
N60.4042 (6)0.3341 (6)0.5441 (2)0.0220 (15)
H6A0.38510.32290.51550.033*
H6B0.41150.28590.55440.033*
H6C0.46020.38930.5460.033*
Re20.65656 (3)0.62285 (3)0.58421 (2)0.02226 (14)
F10.7514 (5)0.7013 (5)0.6281 (2)0.0413 (16)
F20.7555 (5)0.6161 (5)0.5496 (2)0.0356 (14)
F30.6309 (5)0.5116 (5)0.6198 (2)0.0411 (16)
F40.5603 (5)0.5407 (5)0.5415 (2)0.0368 (14)
F50.5608 (5)0.6319 (5)0.6196 (2)0.0337 (14)
F60.6801 (5)0.7340 (4)0.54917 (19)0.0306 (12)
Re10.66670.33330.51213 (2)0.02289 (17)
O10.66670.33330.5709 (5)0.048 (4)
O20.7663 (6)0.4359 (6)0.4929 (3)0.0384 (17)
Re40.66670.33330.83330.01831 (19)
F80.5515 (4)0.2843 (5)0.7957 (2)0.0336 (13)
Re30.33330.66670.66670.01401 (18)
F70.3284 (5)0.5638 (5)0.6295 (2)0.0396 (15)
O1S0.7924 (6)0.4886 (6)0.6292 (3)0.0379 (18)
O2S0.0654 (6)0.1416 (6)0.6190 (3)0.0417 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0161 (5)0.0146 (5)0.0097 (5)0.0079 (4)0.0003 (4)0.0008 (4)
N10.019 (4)0.028 (4)0.014 (3)0.009 (3)0.001 (3)0.003 (3)
N20.040 (5)0.022 (4)0.019 (4)0.019 (4)0.003 (4)0.002 (3)
N30.027 (4)0.030 (4)0.018 (4)0.015 (4)0.003 (3)0.009 (3)
N40.025 (4)0.032 (4)0.016 (4)0.015 (3)0.005 (3)0.006 (3)
N50.029 (4)0.024 (4)0.022 (4)0.013 (3)0.002 (3)0.006 (3)
N60.029 (4)0.025 (4)0.019 (4)0.018 (3)0.003 (3)0.000 (3)
Re20.0227 (2)0.0252 (2)0.0173 (2)0.01086 (15)0.00121 (13)0.00071 (13)
F10.033 (3)0.051 (4)0.026 (3)0.010 (3)0.006 (3)0.006 (3)
F20.039 (3)0.053 (4)0.027 (3)0.032 (3)0.007 (3)0.004 (3)
F30.044 (4)0.038 (4)0.045 (4)0.023 (3)0.009 (3)0.018 (3)
F40.035 (3)0.033 (3)0.031 (3)0.009 (3)0.007 (3)0.005 (3)
F50.035 (3)0.038 (3)0.030 (3)0.019 (3)0.010 (3)0.004 (3)
F60.039 (3)0.026 (3)0.027 (3)0.016 (3)0.003 (3)0.005 (2)
Re10.0219 (2)0.0219 (2)0.0248 (3)0.01097 (11)00
O10.058 (6)0.058 (6)0.028 (7)0.029 (3)00
O20.030 (4)0.033 (4)0.043 (4)0.010 (3)0.001 (3)0.001 (3)
Re40.0199 (3)0.0199 (3)0.0151 (4)0.00997 (13)00
F80.030 (3)0.033 (3)0.034 (3)0.013 (3)0.005 (3)0.001 (3)
Re30.0135 (2)0.0135 (2)0.0151 (4)0.00674 (12)00
F70.042 (4)0.034 (3)0.043 (4)0.019 (3)0.003 (3)0.015 (3)
O1S0.033 (4)0.040 (4)0.039 (4)0.017 (4)0.006 (3)0.003 (3)
O2S0.032 (4)0.048 (5)0.038 (4)0.015 (4)0.005 (3)0.004 (4)
Geometric parameters (Å, º) top
Co1—N21.958 (8)N6—H6C0.89
Co1—N61.960 (7)Re2—F11.916 (6)
Co1—N11.965 (7)Re2—F41.918 (6)
Co1—N31.965 (8)Re2—F51.922 (6)
Co1—N51.968 (8)Re2—F61.928 (6)
Co1—N41.972 (8)Re2—F31.929 (6)
N1—H1A0.89Re2—F21.934 (6)
N1—H1B0.89Re1—O2i1.715 (8)
N1—H1C0.89Re1—O21.715 (8)
N2—H2A0.89Re1—O2ii1.715 (8)
N2—H2B0.89Re1—O11.748 (14)
N2—H2C0.89Re4—F8iii1.952 (6)
N3—H3A0.89Re4—F8iv1.952 (6)
N3—H3B0.89Re4—F8ii1.952 (6)
N3—H3C0.89Re4—F8v1.952 (6)
N4—H4A0.89Re4—F81.952 (6)
N4—H4B0.89Re4—F8i1.952 (6)
N4—H4C0.89Re3—F7vi1.950 (6)
N5—H5A0.89Re3—F7vii1.950 (6)
N5—H5B0.89Re3—F71.950 (6)
N5—H5C0.89Re3—F7viii1.950 (6)
N6—H6A0.89Re3—F7ix1.950 (6)
N6—H6B0.89Re3—F7x1.950 (6)
N2—Co1—N689.7 (4)F1—Re2—F4178.1 (3)
N2—Co1—N189.0 (4)F1—Re2—F588.7 (3)
N6—Co1—N190.0 (3)F4—Re2—F591.0 (3)
N2—Co1—N390.2 (4)F1—Re2—F692.3 (3)
N6—Co1—N3178.6 (3)F4—Re2—F689.6 (3)
N1—Co1—N388.6 (3)F5—Re2—F691.3 (3)
N2—Co1—N5179.4 (3)F1—Re2—F387.9 (3)
N6—Co1—N590.7 (4)F4—Re2—F390.2 (3)
N1—Co1—N590.6 (4)F5—Re2—F387.6 (3)
N3—Co1—N589.4 (4)F6—Re2—F3178.9 (3)
N2—Co1—N491.5 (4)F1—Re2—F289.8 (3)
N6—Co1—N491.2 (3)F4—Re2—F290.5 (3)
N1—Co1—N4178.7 (3)F5—Re2—F2178.5 (3)
N3—Co1—N490.2 (3)F6—Re2—F288.6 (3)
N5—Co1—N488.9 (4)F3—Re2—F292.5 (3)
Co1—N1—H1A109.5O2i—Re1—O2109.5 (3)
Co1—N1—H1B109.5O2i—Re1—O2ii109.5 (3)
H1A—N1—H1B109.5O2—Re1—O2ii109.5 (3)
Co1—N1—H1C109.5O2i—Re1—O1109.5 (3)
H1A—N1—H1C109.5O2—Re1—O1109.5 (3)
H1B—N1—H1C109.5O2ii—Re1—O1109.5 (3)
Co1—N2—H2A109.5F8iii—Re4—F8iv90.5 (3)
Co1—N2—H2B109.5F8iii—Re4—F8ii180.0 (3)
H2A—N2—H2B109.5F8iv—Re4—F8ii89.5 (3)
Co1—N2—H2C109.5F8iii—Re4—F8v90.5 (3)
H2A—N2—H2C109.5F8iv—Re4—F8v90.5 (3)
H2B—N2—H2C109.5F8ii—Re4—F8v89.5 (3)
Co1—N3—H3A109.5F8iii—Re4—F889.5 (3)
Co1—N3—H3B109.5F8iv—Re4—F889.6 (3)
H3A—N3—H3B109.5F8ii—Re4—F890.5 (3)
Co1—N3—H3C109.5F8v—Re4—F8180.0
H3A—N3—H3C109.5F8iii—Re4—F8i89.5 (3)
H3B—N3—H3C109.5F8iv—Re4—F8i180.0
Co1—N4—H4A109.5F8ii—Re4—F8i90.5 (3)
Co1—N4—H4B109.5F8v—Re4—F8i89.5 (3)
H4A—N4—H4B109.5F8—Re4—F8i90.5 (3)
Co1—N4—H4C109.5F7vi—Re3—F7vii91.0 (3)
H4A—N4—H4C109.5F7vi—Re3—F789.0 (3)
H4B—N4—H4C109.5F7vii—Re3—F789.0 (3)
Co1—N5—H5A109.5F7vi—Re3—F7viii91.0 (3)
Co1—N5—H5B109.5F7vii—Re3—F7viii91.0 (3)
H5A—N5—H5B109.5F7—Re3—F7viii180.0 (4)
Co1—N5—H5C109.5F7vi—Re3—F7ix180.0
H5A—N5—H5C109.5F7vii—Re3—F7ix89.0 (3)
H5B—N5—H5C109.5F7—Re3—F7ix91.0 (3)
Co1—N6—H6A109.5F7viii—Re3—F7ix89.0 (3)
Co1—N6—H6B109.5F7vi—Re3—F7x89.0 (3)
H6A—N6—H6B109.5F7vii—Re3—F7x180.0
Co1—N6—H6C109.5F7—Re3—F7x91.0 (3)
H6A—N6—H6C109.5F7viii—Re3—F7x89.0 (3)
H6B—N6—H6C109.5F7ix—Re3—F7x91.0 (3)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, xy, z; (iii) y+1/3, x+y+2/3, z+5/3; (iv) xy+1/3, x1/3, z+5/3; (v) x+4/3, y+2/3, z+5/3; (vi) xy+2/3, x+1/3, z+4/3; (vii) y1/3, x+y+1/3, z+4/3; (viii) x+2/3, y+4/3, z+4/3; (ix) x+y, x+1, z; (x) y+1, xy+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F1vii0.892.343.085 (11)141
N1—H1A···F5vii0.892.293.078 (10)148
N1—H1B···F50.892.323.037 (10)138
N1—H1B···F70.892.423.098 (11)133
N1—H1C···F30.892.403.144 (10)141
N1—H1C···O1Sii0.892.353.084 (12)140
N2—H2A···F2xi0.892.463.243 (10)148
N2—H2A···O2xi0.892.543.089 (12)121
N2—H2B···F40.892.313.137 (12)155
N2—H2B···F4xi0.892.583.161 (10)124
N2—H2C···F70.892.082.928 (10)158
N3—H3A···F6ix0.892.573.054 (10)115
N3—H3A···O2S0.892.263.027 (12)145
N3—H3B···F5ix0.892.523.132 (10)127
N3—H3B···F70.892.322.911 (11)123
N3—H3C···F5vii0.892.243.112 (10)166
N4—H4A···F2xi0.892.163.038 (10)170
N4—H4A···F6xi0.892.573.126 (10)121
N4—H4B···F6ix0.892.192.969 (10)146
N4—H4C···F8xii0.892.213.019 (11)150
N5—H5A···O2S0.892.082.936 (12)162
N5—H5B···F1vii0.892.203.057 (11)162
N5—H5C···F1ii0.892.493.019 (11)119
N5—H5C···F2ii0.892.433.261 (11)157
N6—H6A···F4xi0.892.553.110 (10)122
N6—H6A···F6xi0.892.163.037 (10)168
N6—H6B···F2ii0.892.162.968 (10)151
N6—H6B···O1Sii0.892.673.227 (11)122
N6—H6C···F40.892.142.982 (10)159
Symmetry codes: (ii) y+1, xy, z; (vii) y1/3, x+y+1/3, z+4/3; (ix) x+y, x+1, z; (xi) x+1, y+1, z+1; (xii) x+2/3, y+1/3, z+4/3.
 

Acknowledgements

The authors thank Ms Julie Bertoia, Mr Charles Bynum, and Dr Hugues Badet for laboratory support.

Funding information

Funding for this research was provided by the US Department of Energy – Nuclear Science and Security Consortium (award No. DE-NA0003180).

References

First citationAbram, U. (2003). Rhenium. In Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, pp. 271–402. New York: Elsevier Science.  Google Scholar
First citationBaidina, I. A., Filatov, E. Y., Makotchenko, E. V. & Smolentsev, A. I. (2012). J. Struct. Chem. 53, 112–118.  Web of Science CrossRef ICSD CAS Google Scholar
First citationBerthold, H. J. & Jakobson, G. (1964). Angew. Chem. Int. Ed. Engl. 3, 445–445.  CrossRef Web of Science Google Scholar
First citationBriscoe, H. V. A., Robinson, P. L. & Rudge, A. J. (1931). J. Chem. Soc. pp. 3218–3220.  CrossRef Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrundy, H. D. & Brown, I. D. (1970). Can. J. Chem. 48, 1151–1154.  CrossRef ICSD CAS Web of Science Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJorgensen, C. K. & Schwochau, K. (1965). Z. Naturforsch. Teil A, 20, 65–75.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLatimer, W. M. (1952). The Oxidation State of the Elements and Their Potential in Aqueous Solutions. New York: Prentice-Hall Inc.  Google Scholar
First citationLouis-Jean, J., Mariappan Balasekaran, S., Smith, D., Salamat, A., Pham, C. T. & Poineau, F. (2018). Acta Cryst. E74, 646–649.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationPoineau, F., Mausolf, E., Kerlin, W. & Czerwinski, K. (2017). J. Radioanal. Nucl. Chem. 311, 775–778.  Web of Science CrossRef ICSD CAS Google Scholar
First citationRuff, O. & Kwasnik, W. (1934). Z. Anorg. Allg. Chem. 219, 65–81.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWatt, G. W., Thompson, R. J. & Gibbons, J. M. (1963). Inorganic Syntheses, edited by J. Kleinberg, Vol. VII, pp. 189–192. New York: McGraw-Hill.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds