research communications
An unexpected rhenium(IV)–rhenium(VII) salt: [Co(NH3)6]3[ReVIIO4][ReIVF6]4·6H2O
aDepartment of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 South Maryland Parkway, Las Vegas, Nevada, 89154, USA, and bDepartment of Chemistry and Biochemistry, Freie University Berlin, Berlin 14195, Germany
*Correspondence e-mail: louisjea@unlv.nevada.edu
The title hydrated salt, tris[hexaamminecobalt(III)] tetraoxidorhenate(VII) tetrakis[hexafluoridorhenate(IV)] hexahydrate, arose unexpectedly due to possible contamination of the K2ReF6 starting material with KReO4. It consists of octahedral [Co(NH3)6]3+ cation (Co1 1), tetrahedral [ReVIIO4]− anions (Re 1) and octahedral [ReIVF6]2− anions (Re site symmetries 1and ). The [ReF6]2− octahedral anions (mean Re—F = 1.834 Å), [Co(NH3)6]3+ octahedral cations (mean Co—N = 1.962 Å), and the [ReO4]− tetrahedral anion (mean Re—O = 1.719 Å) are slightly distorted. A network of N—H⋯F hydrogen bonds consolidates the structure. The crystal studied was refined as a two-component twin.
Keywords: crystal structure; hexamine-cobalt; perrhenate; hexafluororhenate.
CCDC reference: 1939234
1. Chemical context
The chemistry of ReVII is dominated by the tetrahedral perrhenate anion, [ReO4]− (Latimer, 1952; Abram, 2003) while ReIV is typically found in salts containing octahedral [ReX6]2− (X = F, Cl, Br, I) anions (Berthold & Jakobson, 1964; Jorgensen & Schwochau, 1965; Grundy & Brown, 1970; Louis-Jean et al., 2018). The salts of [ReX6]2− (X = Cl, Br, I) can be prepared in high yield by the reduction of a perrhenate starting material in the corresponding concentrated HX acid (Briscoe et al., 1931; Watt et al., 1963). However, salts of [ReF6]2− are typically prepared from the solid-state melting reaction of [ReX6]2− (X = Cl, Br, I) with AHF2 (A = NH4+, K+) followed by an aqueous work-up (Ruff & Kwasnik, 1934; Louis-Jean et al., 2018). Such a procedure is found to be challenging. Nonetheless, an improved procedure for the preparation of A2[ReF6] (A = K, Rb, Cs) salts as well as their X-ray single-crystal structures was recently reported (Louis-Jean et al., 2018).
In the process of exploring the coordination chemistry of hexafluororhenate(IV) compounds, the title compound (I), an unexpected mixed-valence rhenium(IV)–rhenium(VII) salt arose in an effort to prepare [Co(NH3)6]2[ReF6]3 by metathesis from K2[ReF6] and Co(NH3)6Cl3 in water (353 K). Yellow–orange needle-like crystals of (I) were obtained within two hours by slow evaporation in water at room temperature. The crystals of (I) are air stable over short periods, but decompose to a black material after six months of storage at ambient temperature.
2. Structural commentary
The structure of (I) (Fig. 1) is built up from a [Co(NH3)6]3+ cation, three distinct [ReF6]2− anions, one [ReO4]− anion, and two water molecules of crystallization: these components are held together by electrostatic forces and hydrogen bonding. Site symmetries for the metal atoms are Co1: 1 (Wyckoff position 18f), Re1: 3 (Wyckoff position 6c), Re2: 1 (Wyckoff position 18f), Re3: (Wyckoff position 3a), and Re4: (Wyckoff position 3b).
The octahedral [Co(NH3)6]3+ cation in (I) is slightly distorted; the average Co—N bond length of 1.962 Å is in agreement with the average Co—N bond lengths of 1.963 Å in [Co(NH3)6](ReO4)·2H2O (Baidina et al., 2012) and 1.966 Å in [Co(NH3)6](TcO4)3 (Poineau et al., 2017). In (I), the shortest Co⋯Co and N⋯N separations between nearby [Co(NH3)6]3+ cations are 7.035 (1) and 4.473 (1) Å, respectively.
In the tetrahedral [ReO4]− anion in (I), the average Re—O bond length (1.719 Å) is in agreement with the average Re—O bond length of 1.720 Å in [Co(NH3)6](ReO4)·2H2O (Baidina et al., 2012). In (I) the values of three Re—O bond lengths, [Re1—O2i, Re—O2 and Re—O2ii = 1.715 (8) Å; symmetry codes: (i) 1 − x + y, 1 − x, z; (ii) 1 − y, x − y, z] are slightly shorter than the fourth one [Re—O1 = 1.748 (14) Å]. In (I), all O—Re—O bond angles in the [ReO4]− anion are 109.5 (3)°. However, in [Co(NH3)6](ReO4)·2H2O, the [ReO4]− anion is slightly distorted by up to 2.7° (Baidina et al., 2012).
The [ReF6]2− anions are slightly distorted, with Re—F bond lengths varying from 1.916 (6) Å to 1.929 (6) Å. All the Re—F bond lengths in the Re3- and Re4-centred anions are of equal distances of 1.952 (6) and 1.950 (6) Å, respectively, by symmetry. Overall, the average Re—F bond length (1.834 Å) in (I) is notably shorter than the average Re—F bond length (1.951 Å) in A2[ReF6] (A = K, Rb, Cs) salts previously studied (Louis-Jean et al., 2018).
3. Supramolecular features
A perspective view of the unit-cell plots for (I) and its component ions ([ReF6]2−, [ReO4]−, and [Co(NH3)6]3+) are shown in Fig. 2. In the supramolecular structure of the title compound, the ammine ligands of the cations form numerous N—H⋯F and N—H⋯O hydrogen bonds with the fluorine atoms of [ReF6]2− anions and the water molecules (Table 1, Fig. 3).
4. Database survey
To the best of our knowledge, (I) is the only reported hexahalogenorhenate–perrhenate structure containing both rhenium(IV) and rhenium(VII). It is noted that K2[ReF6] used for the preparation of (I) was not characterized before use and the presence of perrhenate in (I) may be due to the presence of K[ReO4] in the starting material. Efforts to isolate the technetium (Tc-99) derivative compound, [Co(NH3)6]3 [(Tc(vii)O4) (Tc(iv)F6)4] are in progress.
5. Synthesis and crystallization
All chemicals were obtained commercially from Sigma Aldrich® and used without any further purification. The starting material, K2[ReF6], was prepared following the method described in our previous publication (Louis-Jean et al., 2018).
K2[ReF6] (114 mg, 0.3 mmol) was dissolved in 2 ml of hot water (353 K), and [Co(NH3)6]Cl3 (53.5 mg, 0.2 mmol) dissolved in 1 ml of H2O was added. The solution was allowed to evaporate slowly at room temperature and yellow-orange needle-like crystals of (I) were obtained within two hours. The compound was washed with H2O (3 × 1 ml), followed by isopropanol (3 × 1 ml) and then diethyl ether (3 × 1 ml). Single crystals of (I) were grown in H2O by slow evaporation at room temperature. Yield: ca 91%. The presence of perrhenate in (I) is probably due to the presence of K[ReO4] in the starting material (i.e. K2ReF6).
6. Refinement
Crystal data, data collection and structure . The H atoms of the co-crystallized water molecules could not be located in the present experiment.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1939234
https://doi.org/10.1107/S2056989019009757/hb7830sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019009757/hb7830Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).[Co(NH3)6]3[ReO4][ReF6]4·6H2O | Dx = 3.075 Mg m−3 |
Mr = 2030.40 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 618 reflections |
a = 15.982 (3) Å | θ = 3.2–32.0° |
c = 29.740 (5) Å | µ = 15.00 mm−1 |
V = 6579 (2) Å3 | T = 293 K |
Z = 6 | Rectangular box, translucent orange |
F(000) = 5592 | 0.63 × 0.08 × 0.07 mm |
Bruker D8 QUEST diffractometer | 5223 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 4885 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.082 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 26.8°, θmin = 1.6° |
'φ and ω scans' | h = −20→20 |
Absorption correction: numerical (Krause et al., 2015) | k = −20→20 |
Tmin = 0.02, Tmax = 0.43 | l = −37→37 |
45169 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0476P)2 + 166.9724P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
5223 reflections | Δρmax = 2.36 e Å−3 |
189 parameters | Δρmin = −4.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.30664 (8) | 0.34382 (8) | 0.58013 (3) | 0.0133 (2) | |
N1 | 0.4055 (5) | 0.4205 (6) | 0.6252 (2) | 0.0215 (15) | |
H1A | 0.3824 | 0.3987 | 0.6526 | 0.032* | |
H1B | 0.4211 | 0.4822 | 0.623 | 0.032* | |
H1C | 0.4577 | 0.4154 | 0.6205 | 0.032* | |
N2 | 0.3377 (7) | 0.4637 (6) | 0.5488 (3) | 0.0257 (17) | |
H2A | 0.2965 | 0.4506 | 0.5262 | 0.038* | |
H2B | 0.3977 | 0.4909 | 0.538 | 0.038* | |
H2C | 0.3333 | 0.5041 | 0.5679 | 0.038* | |
N3 | 0.2114 (6) | 0.3556 (6) | 0.6173 (3) | 0.0244 (16) | |
H3A | 0.1533 | 0.3039 | 0.6133 | 0.037* | |
H3B | 0.2098 | 0.4085 | 0.6094 | 0.037* | |
H3C | 0.228 | 0.3597 | 0.6461 | 0.037* | |
N4 | 0.2051 (6) | 0.2661 (6) | 0.5359 (3) | 0.0236 (16) | |
H4A | 0.22 | 0.2963 | 0.5095 | 0.035* | |
H4B | 0.1488 | 0.2582 | 0.5454 | 0.035* | |
H4C | 0.2008 | 0.2086 | 0.5329 | 0.035* | |
N5 | 0.2754 (6) | 0.2239 (6) | 0.6122 (3) | 0.0255 (17) | |
H5A | 0.2133 | 0.1932 | 0.62 | 0.038* | |
H5B | 0.3118 | 0.2381 | 0.6367 | 0.038* | |
H5C | 0.2869 | 0.1861 | 0.5943 | 0.038* | |
N6 | 0.4042 (6) | 0.3341 (6) | 0.5441 (2) | 0.0220 (15) | |
H6A | 0.3851 | 0.3229 | 0.5155 | 0.033* | |
H6B | 0.4115 | 0.2859 | 0.5544 | 0.033* | |
H6C | 0.4602 | 0.3893 | 0.546 | 0.033* | |
Re2 | 0.65656 (3) | 0.62285 (3) | 0.58421 (2) | 0.02226 (14) | |
F1 | 0.7514 (5) | 0.7013 (5) | 0.6281 (2) | 0.0413 (16) | |
F2 | 0.7555 (5) | 0.6161 (5) | 0.5496 (2) | 0.0356 (14) | |
F3 | 0.6309 (5) | 0.5116 (5) | 0.6198 (2) | 0.0411 (16) | |
F4 | 0.5603 (5) | 0.5407 (5) | 0.5415 (2) | 0.0368 (14) | |
F5 | 0.5608 (5) | 0.6319 (5) | 0.6196 (2) | 0.0337 (14) | |
F6 | 0.6801 (5) | 0.7340 (4) | 0.54917 (19) | 0.0306 (12) | |
Re1 | 0.6667 | 0.3333 | 0.51213 (2) | 0.02289 (17) | |
O1 | 0.6667 | 0.3333 | 0.5709 (5) | 0.048 (4) | |
O2 | 0.7663 (6) | 0.4359 (6) | 0.4929 (3) | 0.0384 (17) | |
Re4 | 0.6667 | 0.3333 | 0.8333 | 0.01831 (19) | |
F8 | 0.5515 (4) | 0.2843 (5) | 0.7957 (2) | 0.0336 (13) | |
Re3 | 0.3333 | 0.6667 | 0.6667 | 0.01401 (18) | |
F7 | 0.3284 (5) | 0.5638 (5) | 0.6295 (2) | 0.0396 (15) | |
O1S | 0.7924 (6) | 0.4886 (6) | 0.6292 (3) | 0.0379 (18) | |
O2S | 0.0654 (6) | 0.1416 (6) | 0.6190 (3) | 0.0417 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0161 (5) | 0.0146 (5) | 0.0097 (5) | 0.0079 (4) | 0.0003 (4) | −0.0008 (4) |
N1 | 0.019 (4) | 0.028 (4) | 0.014 (3) | 0.009 (3) | −0.001 (3) | −0.003 (3) |
N2 | 0.040 (5) | 0.022 (4) | 0.019 (4) | 0.019 (4) | 0.003 (4) | 0.002 (3) |
N3 | 0.027 (4) | 0.030 (4) | 0.018 (4) | 0.015 (4) | −0.003 (3) | −0.009 (3) |
N4 | 0.025 (4) | 0.032 (4) | 0.016 (4) | 0.015 (3) | −0.005 (3) | −0.006 (3) |
N5 | 0.029 (4) | 0.024 (4) | 0.022 (4) | 0.013 (3) | 0.002 (3) | 0.006 (3) |
N6 | 0.029 (4) | 0.025 (4) | 0.019 (4) | 0.018 (3) | 0.003 (3) | 0.000 (3) |
Re2 | 0.0227 (2) | 0.0252 (2) | 0.0173 (2) | 0.01086 (15) | 0.00121 (13) | 0.00071 (13) |
F1 | 0.033 (3) | 0.051 (4) | 0.026 (3) | 0.010 (3) | −0.006 (3) | −0.006 (3) |
F2 | 0.039 (3) | 0.053 (4) | 0.027 (3) | 0.032 (3) | 0.007 (3) | 0.004 (3) |
F3 | 0.044 (4) | 0.038 (4) | 0.045 (4) | 0.023 (3) | 0.009 (3) | 0.018 (3) |
F4 | 0.035 (3) | 0.033 (3) | 0.031 (3) | 0.009 (3) | −0.007 (3) | −0.005 (3) |
F5 | 0.035 (3) | 0.038 (3) | 0.030 (3) | 0.019 (3) | 0.010 (3) | 0.004 (3) |
F6 | 0.039 (3) | 0.026 (3) | 0.027 (3) | 0.016 (3) | 0.003 (3) | 0.005 (2) |
Re1 | 0.0219 (2) | 0.0219 (2) | 0.0248 (3) | 0.01097 (11) | 0 | 0 |
O1 | 0.058 (6) | 0.058 (6) | 0.028 (7) | 0.029 (3) | 0 | 0 |
O2 | 0.030 (4) | 0.033 (4) | 0.043 (4) | 0.010 (3) | 0.001 (3) | 0.001 (3) |
Re4 | 0.0199 (3) | 0.0199 (3) | 0.0151 (4) | 0.00997 (13) | 0 | 0 |
F8 | 0.030 (3) | 0.033 (3) | 0.034 (3) | 0.013 (3) | −0.005 (3) | 0.001 (3) |
Re3 | 0.0135 (2) | 0.0135 (2) | 0.0151 (4) | 0.00674 (12) | 0 | 0 |
F7 | 0.042 (4) | 0.034 (3) | 0.043 (4) | 0.019 (3) | 0.003 (3) | −0.015 (3) |
O1S | 0.033 (4) | 0.040 (4) | 0.039 (4) | 0.017 (4) | −0.006 (3) | −0.003 (3) |
O2S | 0.032 (4) | 0.048 (5) | 0.038 (4) | 0.015 (4) | 0.005 (3) | −0.004 (4) |
Co1—N2 | 1.958 (8) | N6—H6C | 0.89 |
Co1—N6 | 1.960 (7) | Re2—F1 | 1.916 (6) |
Co1—N1 | 1.965 (7) | Re2—F4 | 1.918 (6) |
Co1—N3 | 1.965 (8) | Re2—F5 | 1.922 (6) |
Co1—N5 | 1.968 (8) | Re2—F6 | 1.928 (6) |
Co1—N4 | 1.972 (8) | Re2—F3 | 1.929 (6) |
N1—H1A | 0.89 | Re2—F2 | 1.934 (6) |
N1—H1B | 0.89 | Re1—O2i | 1.715 (8) |
N1—H1C | 0.89 | Re1—O2 | 1.715 (8) |
N2—H2A | 0.89 | Re1—O2ii | 1.715 (8) |
N2—H2B | 0.89 | Re1—O1 | 1.748 (14) |
N2—H2C | 0.89 | Re4—F8iii | 1.952 (6) |
N3—H3A | 0.89 | Re4—F8iv | 1.952 (6) |
N3—H3B | 0.89 | Re4—F8ii | 1.952 (6) |
N3—H3C | 0.89 | Re4—F8v | 1.952 (6) |
N4—H4A | 0.89 | Re4—F8 | 1.952 (6) |
N4—H4B | 0.89 | Re4—F8i | 1.952 (6) |
N4—H4C | 0.89 | Re3—F7vi | 1.950 (6) |
N5—H5A | 0.89 | Re3—F7vii | 1.950 (6) |
N5—H5B | 0.89 | Re3—F7 | 1.950 (6) |
N5—H5C | 0.89 | Re3—F7viii | 1.950 (6) |
N6—H6A | 0.89 | Re3—F7ix | 1.950 (6) |
N6—H6B | 0.89 | Re3—F7x | 1.950 (6) |
N2—Co1—N6 | 89.7 (4) | F1—Re2—F4 | 178.1 (3) |
N2—Co1—N1 | 89.0 (4) | F1—Re2—F5 | 88.7 (3) |
N6—Co1—N1 | 90.0 (3) | F4—Re2—F5 | 91.0 (3) |
N2—Co1—N3 | 90.2 (4) | F1—Re2—F6 | 92.3 (3) |
N6—Co1—N3 | 178.6 (3) | F4—Re2—F6 | 89.6 (3) |
N1—Co1—N3 | 88.6 (3) | F5—Re2—F6 | 91.3 (3) |
N2—Co1—N5 | 179.4 (3) | F1—Re2—F3 | 87.9 (3) |
N6—Co1—N5 | 90.7 (4) | F4—Re2—F3 | 90.2 (3) |
N1—Co1—N5 | 90.6 (4) | F5—Re2—F3 | 87.6 (3) |
N3—Co1—N5 | 89.4 (4) | F6—Re2—F3 | 178.9 (3) |
N2—Co1—N4 | 91.5 (4) | F1—Re2—F2 | 89.8 (3) |
N6—Co1—N4 | 91.2 (3) | F4—Re2—F2 | 90.5 (3) |
N1—Co1—N4 | 178.7 (3) | F5—Re2—F2 | 178.5 (3) |
N3—Co1—N4 | 90.2 (3) | F6—Re2—F2 | 88.6 (3) |
N5—Co1—N4 | 88.9 (4) | F3—Re2—F2 | 92.5 (3) |
Co1—N1—H1A | 109.5 | O2i—Re1—O2 | 109.5 (3) |
Co1—N1—H1B | 109.5 | O2i—Re1—O2ii | 109.5 (3) |
H1A—N1—H1B | 109.5 | O2—Re1—O2ii | 109.5 (3) |
Co1—N1—H1C | 109.5 | O2i—Re1—O1 | 109.5 (3) |
H1A—N1—H1C | 109.5 | O2—Re1—O1 | 109.5 (3) |
H1B—N1—H1C | 109.5 | O2ii—Re1—O1 | 109.5 (3) |
Co1—N2—H2A | 109.5 | F8iii—Re4—F8iv | 90.5 (3) |
Co1—N2—H2B | 109.5 | F8iii—Re4—F8ii | 180.0 (3) |
H2A—N2—H2B | 109.5 | F8iv—Re4—F8ii | 89.5 (3) |
Co1—N2—H2C | 109.5 | F8iii—Re4—F8v | 90.5 (3) |
H2A—N2—H2C | 109.5 | F8iv—Re4—F8v | 90.5 (3) |
H2B—N2—H2C | 109.5 | F8ii—Re4—F8v | 89.5 (3) |
Co1—N3—H3A | 109.5 | F8iii—Re4—F8 | 89.5 (3) |
Co1—N3—H3B | 109.5 | F8iv—Re4—F8 | 89.6 (3) |
H3A—N3—H3B | 109.5 | F8ii—Re4—F8 | 90.5 (3) |
Co1—N3—H3C | 109.5 | F8v—Re4—F8 | 180.0 |
H3A—N3—H3C | 109.5 | F8iii—Re4—F8i | 89.5 (3) |
H3B—N3—H3C | 109.5 | F8iv—Re4—F8i | 180.0 |
Co1—N4—H4A | 109.5 | F8ii—Re4—F8i | 90.5 (3) |
Co1—N4—H4B | 109.5 | F8v—Re4—F8i | 89.5 (3) |
H4A—N4—H4B | 109.5 | F8—Re4—F8i | 90.5 (3) |
Co1—N4—H4C | 109.5 | F7vi—Re3—F7vii | 91.0 (3) |
H4A—N4—H4C | 109.5 | F7vi—Re3—F7 | 89.0 (3) |
H4B—N4—H4C | 109.5 | F7vii—Re3—F7 | 89.0 (3) |
Co1—N5—H5A | 109.5 | F7vi—Re3—F7viii | 91.0 (3) |
Co1—N5—H5B | 109.5 | F7vii—Re3—F7viii | 91.0 (3) |
H5A—N5—H5B | 109.5 | F7—Re3—F7viii | 180.0 (4) |
Co1—N5—H5C | 109.5 | F7vi—Re3—F7ix | 180.0 |
H5A—N5—H5C | 109.5 | F7vii—Re3—F7ix | 89.0 (3) |
H5B—N5—H5C | 109.5 | F7—Re3—F7ix | 91.0 (3) |
Co1—N6—H6A | 109.5 | F7viii—Re3—F7ix | 89.0 (3) |
Co1—N6—H6B | 109.5 | F7vi—Re3—F7x | 89.0 (3) |
H6A—N6—H6B | 109.5 | F7vii—Re3—F7x | 180.0 |
Co1—N6—H6C | 109.5 | F7—Re3—F7x | 91.0 (3) |
H6A—N6—H6C | 109.5 | F7viii—Re3—F7x | 89.0 (3) |
H6B—N6—H6C | 109.5 | F7ix—Re3—F7x | 91.0 (3) |
Symmetry codes: (i) −x+y+1, −x+1, z; (ii) −y+1, x−y, z; (iii) y+1/3, −x+y+2/3, −z+5/3; (iv) x−y+1/3, x−1/3, −z+5/3; (v) −x+4/3, −y+2/3, −z+5/3; (vi) x−y+2/3, x+1/3, −z+4/3; (vii) y−1/3, −x+y+1/3, −z+4/3; (viii) −x+2/3, −y+4/3, −z+4/3; (ix) −x+y, −x+1, z; (x) −y+1, x−y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···F1vii | 0.89 | 2.34 | 3.085 (11) | 141 |
N1—H1A···F5vii | 0.89 | 2.29 | 3.078 (10) | 148 |
N1—H1B···F5 | 0.89 | 2.32 | 3.037 (10) | 138 |
N1—H1B···F7 | 0.89 | 2.42 | 3.098 (11) | 133 |
N1—H1C···F3 | 0.89 | 2.40 | 3.144 (10) | 141 |
N1—H1C···O1Sii | 0.89 | 2.35 | 3.084 (12) | 140 |
N2—H2A···F2xi | 0.89 | 2.46 | 3.243 (10) | 148 |
N2—H2A···O2xi | 0.89 | 2.54 | 3.089 (12) | 121 |
N2—H2B···F4 | 0.89 | 2.31 | 3.137 (12) | 155 |
N2—H2B···F4xi | 0.89 | 2.58 | 3.161 (10) | 124 |
N2—H2C···F7 | 0.89 | 2.08 | 2.928 (10) | 158 |
N3—H3A···F6ix | 0.89 | 2.57 | 3.054 (10) | 115 |
N3—H3A···O2S | 0.89 | 2.26 | 3.027 (12) | 145 |
N3—H3B···F5ix | 0.89 | 2.52 | 3.132 (10) | 127 |
N3—H3B···F7 | 0.89 | 2.32 | 2.911 (11) | 123 |
N3—H3C···F5vii | 0.89 | 2.24 | 3.112 (10) | 166 |
N4—H4A···F2xi | 0.89 | 2.16 | 3.038 (10) | 170 |
N4—H4A···F6xi | 0.89 | 2.57 | 3.126 (10) | 121 |
N4—H4B···F6ix | 0.89 | 2.19 | 2.969 (10) | 146 |
N4—H4C···F8xii | 0.89 | 2.21 | 3.019 (11) | 150 |
N5—H5A···O2S | 0.89 | 2.08 | 2.936 (12) | 162 |
N5—H5B···F1vii | 0.89 | 2.20 | 3.057 (11) | 162 |
N5—H5C···F1ii | 0.89 | 2.49 | 3.019 (11) | 119 |
N5—H5C···F2ii | 0.89 | 2.43 | 3.261 (11) | 157 |
N6—H6A···F4xi | 0.89 | 2.55 | 3.110 (10) | 122 |
N6—H6A···F6xi | 0.89 | 2.16 | 3.037 (10) | 168 |
N6—H6B···F2ii | 0.89 | 2.16 | 2.968 (10) | 151 |
N6—H6B···O1Sii | 0.89 | 2.67 | 3.227 (11) | 122 |
N6—H6C···F4 | 0.89 | 2.14 | 2.982 (10) | 159 |
Symmetry codes: (ii) −y+1, x−y, z; (vii) y−1/3, −x+y+1/3, −z+4/3; (ix) −x+y, −x+1, z; (xi) −x+1, −y+1, −z+1; (xii) −x+2/3, −y+1/3, −z+4/3. |
Acknowledgements
The authors thank Ms Julie Bertoia, Mr Charles Bynum, and Dr Hugues Badet for laboratory support.
Funding information
Funding for this research was provided by the US Department of Energy – Nuclear Science and Security Consortium (award No. DE-NA0003180).
References
Abram, U. (2003). Rhenium. In Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, pp. 271–402. New York: Elsevier Science. Google Scholar
Baidina, I. A., Filatov, E. Y., Makotchenko, E. V. & Smolentsev, A. I. (2012). J. Struct. Chem. 53, 112–118. Web of Science CrossRef ICSD CAS Google Scholar
Berthold, H. J. & Jakobson, G. (1964). Angew. Chem. Int. Ed. Engl. 3, 445–445. CrossRef Web of Science Google Scholar
Briscoe, H. V. A., Robinson, P. L. & Rudge, A. J. (1931). J. Chem. Soc. pp. 3218–3220. CrossRef Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Grundy, H. D. & Brown, I. D. (1970). Can. J. Chem. 48, 1151–1154. CrossRef ICSD CAS Web of Science Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Jorgensen, C. K. & Schwochau, K. (1965). Z. Naturforsch. Teil A, 20, 65–75. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Latimer, W. M. (1952). The Oxidation State of the Elements and Their Potential in Aqueous Solutions. New York: Prentice-Hall Inc. Google Scholar
Louis-Jean, J., Mariappan Balasekaran, S., Smith, D., Salamat, A., Pham, C. T. & Poineau, F. (2018). Acta Cryst. E74, 646–649. Web of Science CrossRef ICSD IUCr Journals Google Scholar
Poineau, F., Mausolf, E., Kerlin, W. & Czerwinski, K. (2017). J. Radioanal. Nucl. Chem. 311, 775–778. Web of Science CrossRef ICSD CAS Google Scholar
Ruff, O. & Kwasnik, W. (1934). Z. Anorg. Allg. Chem. 219, 65–81. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Watt, G. W., Thompson, R. J. & Gibbons, J. M. (1963). Inorganic Syntheses, edited by J. Kleinberg, Vol. VII, pp. 189–192. New York: McGraw-Hill. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.