research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, crystal structures and Hirshfeld surface analyses of (3aR,4S,7R,7aS)-2-(perfluoro­pyridin-4-yl)-3a,4,7,7a-tetra­hydro-4,7-methano­iso­indole-1,3-dione and (3aR,4S,7R,7aS)-2-[(perfluoro­pyridin-4-yl)­­oxy]-3a,4,7,7a-tetra­hydro-4,7-methano­iso­indole-1,3-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Chemistry Research Center, United States Air Force, Academy, Colorado Springs, CO 80840, USA
*Correspondence e-mail: scott.iacono@usafa.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 June 2019; accepted 8 July 2019; online 12 July 2019)

The syntheses and crystal structures of the title compounds, C14H8F4N2O2 and C14H8F4N2O3, are reported. In each crystal, the packing is driven by C—H⋯F inter­tactions, along with a variety of C—H⋯O, C—O⋯π, and C—F⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing: they showed that the largest contributions to the surface contacts arise from H⋯F/F⋯H inter­actions, followed by H⋯H and O⋯H/H⋯O.

1. Chemical context

Polynorbornenes (PNBs), derived from ring-opening metathesis polymerization reactions, are numerous, owing to their relative ease of synthesis, tolerance of diverse functional groups and high-mol­ecular weights with good processability (Isono et al., 2018[Isono, T., Sasamori, T., Honda, K., Mato, Y., Yamamoto, T., Tajima, K. & Satoh, T. (2018). Macromolecules, 51, 3855-3864.]). The use of di­carb­oxy­imide-substituted norbornenes allows synthetic control of the substituents on the norbornene ring system, and this feature has been exploited for polymer light-emitting diodes (Zeng et al., 2018[Zeng, X., Luo, J., Zhou, T., Chen, T., Zhou, X., Wu, K., Zou, Y., Xie, G., Gong, S. & Yang, C. (2018). Macromolecules, 51, 1598-1604.]) and gas-separation membranes (Yu et al., 2016[Yu, S., Lim, C., Kim, J. & Seo, B. (2016). Sci. Adv. Mater. 8, 2112-2120.]). With its predictable substitution chemistry (Baker & Muir, 2010[Baker, J. & Muir, M. (2010). Can. J. Chem. 88, 588-597.]; Chambers et al., 1988[Chambers, R. D., Seabury, M. J., Williams, D. L. N. & Hughes, N. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 255-257.]), perfluoro­pyridine was added to two di­carb­oxy­imide-norbornene systems, and the resulting crystal structures are herein reported.

[Scheme 1]

2. Structural commentary

Compound I crystallizes in the triclinic space group P[\overline{1}] with two mol­ecules, A and B, per asymmetric unit, and compound II in the monoclinic space group P21/n with one mol­ecule per asymmetric unit (Fig. 1[link]). The synthesis of both compounds is conducted using endo starting materials, and the same configuration is observed in the resulting crystal structures. In I, steric inter­actions between the ortho-fluorine atoms and the carbonyl oxygen atoms prevents free rotation about the nitro­gen–ipso-carbon bond (C3—N2 and C17—N4 in the crystal): this is evidenced by separate 19F NMR peaks in solution for the ortho-F atoms (F2/F7 and F3/F6 in the crystal). In mol­ecule A, the N1/C1–C5 plane is rotated by 58.05 (5)° relative to the N2/C6/C7/C12/C13 plane and the corres­ponding dihedral angle for mol­ecule B is 61.65 (7)°. The addition of an oxygen atom between N2 and C3 in II alleviates this steric restriction and only one 19F NMR peak in solution is observed for the ortho-F atoms; even so, the dihedral angle between the N1/C1–C5 and N2/C6/C7/C12/C13 planes in the crystal of II of 84.01 (5)° is larger than those found in I.

[Figure 1]
Figure 1
The mol­ecular structures of (a) I and (b) II. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

The main directional inter­actions in the crystal structures of I and II are of the type C—H⋯O, C—H⋯F, C—O⋯π, and C—F⋯π (Tables 1[link] and 2[link]). In both compounds, weak hydrogen-bonding inter­actions are observed for the hydrogen atom(s) α to the carbonyl groups (C7—H6⋯O1i, C12—H12⋯F2iii, C21—H21⋯F7iii, C21—H21⋯O3iv and C26—H26⋯O4v in I; C7—H7⋯O2i in II) and the olefinic hydrogen atoms (C9—H9⋯F4ii in I; C9—H9⋯O3ii in II). A weak inter­action is also observed for a bridge hydrogen atom in II, C14—H14B⋯F4iii. The packing is further aided by π-inter­actions with the pyridine ring (C6—O1⋯Cgi, C13—O2⋯Cgvi and C27—O4⋯Cgii in I; C5—F4⋯Cgiv and C13—O3⋯Cgv in II).

Table 1
Contact geometry (Å, °) for I

Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C15–C19 rings, respectively.

Y—X⋯A Y—X X⋯A Y⋯A Y—X⋯A
C7—H7⋯O1i 1.00 2.58 3.347 (2) 133
C9—H9⋯F4ii 0.95 2.49 3.348(20 150
C12—H12⋯F2iii 1.00 2.30 3.1903 (18) 147
C21—H21⋯F7iii 1.00 2.55 3.3855 (17) 141
C21—H21.·O3iv 1.00 2.51 3.2764 (18) 133
C26—H26⋯O4v 1.00 2.51 3.3299 (18) 139
C6—O1⋯Cg1i 1.2075 (17) 3.0462 (14) 4.022 (16) 135.86 (10)
C13—O2⋯Cg2vi 1.2028 (16) 3.1839 (14) 4.0238 (17) 126.98 (9)
C27—O4⋯Cg2ii 1.2102 (16) 3.2978 (14) 4.0644 (16) 121.58 (9)
Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) −x, 1 − y, 2 − z; (iii) 1 + x, y, z; (iv) 2 − x, 1 − y, 1 − z; (v) 2 − x, 2 − y, 1 − z; (iv) x, y, z.

Table 2
Contact geometry (Å, °) for II

Cg1 is the centroid of the N1/C1–C5 ring.

Y—X⋯A Y—X X⋯A Y⋯A Y—X⋯A
C7—H7⋯O2i 1.00 2.58 3.347 (2) 133
C9—H9⋯O3ii 0.95 2.49 3.348(20 150
C14—H14B⋯F4iii 1.00 2.30 3.1903 (18) 147
C5—F4⋯Cg1iv 1.3234 (13) 3.1543 (18) 3.892 (2) 114.36 (7)
C13—O3⋯Cg1v 1.2060 (14) 3.3224 (19) 4.231 (2) 132.8 (8)
Symmetry codes: (i) [{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z; (ii) x, −1 + y, z; (iii) 1 − x, 1 − y, 1 − z; (iv) [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z; (v) x, 1 + y, z.

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was used to investigate the presence of hydrogen bonds and other inter­molecular inter­actions in the crystal structures. The analyses and associated two-dimensional fingerprint plots (Fig. 3[link]) (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were generated with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.]) using a standard surface resolution with the three-dimensional dnorm surfaces plotted over a fixed color scale of −0.02500 (red) to 1.3800 (blue) a.u. The pale-red spots symbolize short contacts and negative dnorm values on the corresponding surface plots shown in Fig. 2[link], associated with their relative contributions to the Hirshfeld surface.

[Figure 3]
Figure 3
The overall two-dimensional fingerprint plots for (a) I and (b) II.
[Figure 2]
Figure 2
Hirshfeld surfaces of (a) I and (b) II mapped with dnorm.

The largest contribution to the overall crystal packing in both compounds is from F⋯H/H⋯F inter­actions (36.5% in I; 39.2% in II; Table 3[link]). The F⋯H/H⋯F contacts appear as a pair of characteristic tips in the fingerprint plots at 0.95 Å < (di + de) < 1.25 Å in I and 1.10 Å < (di + de) < 1.35 Å in II. H⋯H contacts make the second largest contribution (20.2% in I and 14.1% in II), shown in the middle region 1.10 Å < (di + de) < 1.18 Å in I and II. The third largest contribution is from O⋯H/H⋯O contacts. In I, the corresponding spike is partially overlapped with the spike representing F⋯H/H⋯F contacts, appearing at 1.05 Å < (di + de) < 1.40 Å. The O⋯H/H⋯O spike is clearly visible in the fingerprint plot of II, shown in the region of 1.10 Å < (di + de) < 1.40 Å.

Table 3
Percentage contribution of inter-atomic contacts to the Hirshfeld surfaces for I and II

Contact Percentage contribution to I Percentage contribution to II
F⋯H/H⋯F 36.5 39.2
H⋯H 20.2 14.1
O⋯H/H⋯O 13.0 14.0
O⋯C/C⋯O 6.2 6.2
N⋯H/H⋯N 5.3 0.1
F⋯F 5.1 2.1
F⋯C/C⋯F 3.6 4.9
F⋯N/N⋯F 2.4 4.4
O⋯N/N⋯O 0.6 4.1
C⋯H/H⋯C 3.8 3.2
F⋯O/O⋯F 2.4 2.7
O⋯O 1.2 2.7
N⋯C/C⋯N 0.0 2.4

4. Database survey

A search of the November 2018 release of the Cambridge Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), with updates through May 2019, was performed using the program ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). The search was limited to organic structures with R ≤ 0.1. A search for tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione-based compounds with an aromatic substituent on the nitro­gen atom yielded 58 results. The dihedral angle between the aromatic ring plane and the succinimide plane is bimodally distributed between 43 and 90°, with peaks near 60 and 75°.

5. Synthesis and crystallization

Synthesis of (I)[link]: penta­fluoro­pyridine (2.68 ml, 24.5 mmol), (3aR,4S,7R,7aS)-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione (4.0 g, 24.5 mmol), and tri­ethyl­amine (8.56 ml, 61.2 mmol) were combined in DMF (150 ml). The resulting solution was stirred at room temperature for 24 h. Diethyl ether (150 ml) and saturated aqueous ammonium chloride (100 ml) were added and the biphasic solution stirred vigorously for 2 h. The organic layer was separated and the remaining aqueous portion extracted with diethyl ether (2 × 150 ml). The combined organic fractions were washed with water (2 × 1 l) and brine (2 × 300 ml), dried over MgSO4, and the solvent removed via rotary evaporation. The resulting off-white solid was dissolved in refluxing EtOH (20 ml) and cooled to 278 K for 12 h. Vacuum filtration, washing with cold EtOH (20 ml), and vacuum drying afforded the target compound as a white, crystalline solid (6.18 g, 81%). 1H NMR (500 MHz, CDCl3): 6.28 (s, 2H), 3.58 (s, 2H), 3.54 (s, 2H), 1.74 (dd, 2H, J = 96, 9.0 Hz).19F NMR (471 MHz, CDCl3): −90.5 (2F), −141.7 (1F), −143.1 (1F).

Synthesis of (II)[link]: to a stirred solution of potassium carbonate (1 M, 140 ml), (3aR,4S,7R,7aS)-2-hy­droxy-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione (10.0 g, 55.9 mmol), penta­fluoro­pyridine (6.1 ml, 56 mmol), and 140 ml of DMF were added. The resulting solution was stirred at room temperature for 24 h. Diethyl ether (150 ml) and saturated aqueous ammonium chloride (100 ml) were added and the biphasic solution stirred vigorously for 2 h. The organic layer was separated and the remaining aqueous portion extracted with diethyl ether (2 × 150 ml). The combined organic fractions were washed with water (2 × 1 l) and brine (2 × 300 ml), dried over MgSO4, and the solvent removed via rotary evaporation. The resulting off-white solid was dissolved in refluxing EtOH (50 ml) and cooled to 278 K for 12 h. Vacuum filtration, washing with cold EtOH (20 ml) and vacuum drying afforded the target compound as a white, crystalline solid (12.04 g, 66%). 1H NMR (500 MHz, CDCl3): 6.23 (s, 2H), 3.50 (s, 2H), 3.34 (s, 2H), 1.68 (dd, 2H, J = 142, 9.0 Hz).19F NMR (471 MHz, CDCl3): −87.4 (2F), −156.3 (2F).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.0Å and Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

  I II
Crystal data
Chemical formula C14H8F4N2O2 C14H8F4N2O3
Mr 312.22 328.22
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 7.0347 (15), 10.256 (2), 18.129 (4) 12.285 (6), 5.945 (3), 17.888 (8)
α, β, γ (°) 78.844 (10), 80.165 (10), 87.242 (10) 90, 93.44 (3), 90
V3) 1264.2 (5) 1304.1 (10)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.15 0.16
Crystal size (mm) 0.26 × 0.23 × 0.20 0.55 × 0.40 × 0.36
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA]) Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA])
Tmin, Tmax 0.89, 0.97 0.80, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 72226, 7674, 6373 18507, 3823, 3443
Rint 0.034 0.025
(sin θ/λ)max−1) 0.714 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.02 0.038, 0.105, 1.04
No. of reflections 7674 3823
No. of parameters 397 208
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.77, −0.41 0.47, −0.25
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) top
Crystal data top
C14H8F4N2O2Z = 4
Mr = 312.22F(000) = 632
Triclinic, P1Dx = 1.640 Mg m3
a = 7.0347 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.256 (2) ÅCell parameters from 9823 reflections
c = 18.129 (4) Åθ = 2.5–30.7°
α = 78.844 (10)°µ = 0.15 mm1
β = 80.165 (10)°T = 100 K
γ = 87.242 (10)°Rectangular prism, clear colourless
V = 1264.2 (5) Å30.26 × 0.23 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
7674 independent reflections
Radiation source: fine focus sealed tube6373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 2.0°
ω Scans scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1414
Tmin = 0.89, Tmax = 0.97l = 2525
72226 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.7892P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7674 reflectionsΔρmax = 1.77 e Å3
397 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.32163 (13)0.66535 (9)0.80280 (6)0.0299 (2)
F20.04925 (12)0.46899 (8)0.81310 (5)0.02556 (18)
F30.29897 (13)0.74112 (9)0.92385 (5)0.02742 (19)
F40.01062 (15)0.92480 (9)0.90912 (6)0.0340 (2)
F50.40224 (14)0.92684 (9)0.76901 (5)0.02754 (19)
F60.72380 (12)0.90629 (9)0.66496 (5)0.02446 (18)
F70.34503 (12)0.67973 (9)0.53929 (5)0.02272 (17)
F80.04320 (12)0.70789 (9)0.64982 (5)0.02795 (19)
O10.27798 (16)0.45448 (11)1.00080 (6)0.0269 (2)
O20.34535 (16)0.50335 (10)0.74150 (6)0.0233 (2)
O30.71312 (14)0.54609 (9)0.56707 (6)0.02119 (19)
O40.75913 (15)0.99783 (9)0.49291 (6)0.02099 (19)
N10.15423 (18)0.79402 (12)0.85635 (7)0.0235 (2)
N20.28410 (16)0.50134 (11)0.87085 (6)0.0178 (2)
N30.22520 (17)0.81750 (11)0.70839 (7)0.0208 (2)
N40.70733 (15)0.77544 (10)0.54298 (6)0.0154 (2)
C10.16515 (19)0.68212 (14)0.83262 (8)0.0214 (3)
C20.02687 (19)0.58195 (13)0.83713 (8)0.0192 (2)
C30.13494 (18)0.59829 (13)0.86851 (7)0.0172 (2)
C40.1460 (2)0.71642 (14)0.89443 (7)0.0204 (2)
C50.0016 (2)0.80966 (14)0.88622 (8)0.0237 (3)
C60.3481 (2)0.43565 (14)0.93807 (7)0.0201 (2)
C70.5095 (2)0.34170 (14)0.91564 (8)0.0214 (3)
H70.6325910.3648030.9303170.026*
C80.4631 (3)0.19043 (16)0.94528 (9)0.0332 (3)
H80.4797220.152070.9989130.04*
C90.2739 (3)0.16766 (17)0.92242 (10)0.0355 (4)
H90.1577870.1468750.95740.043*
C100.2883 (3)0.17988 (17)0.84872 (10)0.0335 (3)
H100.1882450.1705730.8210190.04*
C110.4917 (2)0.21108 (14)0.81733 (9)0.0269 (3)
H110.5354080.1941480.7645150.032*
C120.52885 (19)0.35524 (13)0.82814 (8)0.0191 (2)
H120.6615560.3841980.8025880.023*
C130.38067 (19)0.45892 (13)0.80420 (7)0.0176 (2)
C140.6008 (3)0.13049 (17)0.87797 (12)0.0400 (4)
H14A0.7376520.1556490.8713070.048*
H14B0.58970.0331860.883050.048*
C150.3933 (2)0.86501 (13)0.71103 (7)0.0201 (2)
C160.55752 (19)0.85513 (13)0.65845 (7)0.0181 (2)
C170.54593 (18)0.79044 (12)0.59868 (7)0.0157 (2)
C180.36863 (19)0.73991 (12)0.59592 (7)0.0169 (2)
C190.21476 (19)0.75621 (13)0.65218 (8)0.0195 (2)
C200.77807 (18)0.64904 (12)0.52953 (7)0.0164 (2)
C210.93999 (18)0.67181 (12)0.46283 (7)0.0167 (2)
H211.06390.6316850.4773180.02*
C220.8943 (2)0.62467 (13)0.39011 (7)0.0197 (2)
H220.9197830.5285290.3881590.024*
C230.6930 (2)0.67662 (14)0.38012 (8)0.0225 (3)
H230.5805060.6248990.3875530.027*
C240.7034 (2)0.80880 (14)0.35888 (8)0.0235 (3)
H240.5986260.8678470.3489180.028*
C250.9114 (2)0.84821 (13)0.35344 (8)0.0223 (3)
H250.9500850.9360470.3206530.027*
C260.95440 (19)0.82471 (12)0.43732 (7)0.0176 (2)
H261.0858030.8561480.4388440.021*
C270.80172 (18)0.88246 (12)0.49164 (7)0.0164 (2)
C281.0183 (2)0.72422 (15)0.32846 (8)0.0263 (3)
H28A1.0049350.7159360.2760880.032*
H28B1.1561180.7198090.3340830.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0193 (4)0.0288 (5)0.0432 (5)0.0001 (3)0.0118 (4)0.0050 (4)
F20.0233 (4)0.0211 (4)0.0368 (5)0.0025 (3)0.0098 (3)0.0115 (3)
F30.0301 (5)0.0295 (4)0.0273 (4)0.0059 (4)0.0112 (4)0.0099 (4)
F40.0406 (5)0.0235 (4)0.0406 (5)0.0017 (4)0.0029 (4)0.0158 (4)
F50.0396 (5)0.0255 (4)0.0190 (4)0.0009 (4)0.0005 (3)0.0116 (3)
F60.0252 (4)0.0264 (4)0.0253 (4)0.0041 (3)0.0062 (3)0.0109 (3)
F70.0219 (4)0.0269 (4)0.0230 (4)0.0013 (3)0.0059 (3)0.0114 (3)
F80.0181 (4)0.0307 (5)0.0352 (5)0.0019 (3)0.0016 (3)0.0086 (4)
O10.0308 (5)0.0333 (6)0.0160 (4)0.0034 (4)0.0036 (4)0.0031 (4)
O20.0312 (5)0.0217 (5)0.0169 (4)0.0030 (4)0.0050 (4)0.0036 (4)
O30.0229 (5)0.0152 (4)0.0238 (5)0.0005 (3)0.0014 (4)0.0020 (4)
O40.0255 (5)0.0145 (4)0.0242 (5)0.0000 (3)0.0055 (4)0.0054 (4)
N10.0226 (6)0.0203 (5)0.0254 (6)0.0001 (4)0.0005 (4)0.0031 (4)
N20.0188 (5)0.0197 (5)0.0148 (5)0.0010 (4)0.0036 (4)0.0025 (4)
N30.0246 (6)0.0153 (5)0.0201 (5)0.0027 (4)0.0003 (4)0.0017 (4)
N40.0174 (5)0.0132 (4)0.0161 (5)0.0007 (4)0.0024 (4)0.0043 (4)
C10.0169 (6)0.0224 (6)0.0241 (6)0.0026 (5)0.0020 (5)0.0027 (5)
C20.0194 (6)0.0184 (6)0.0202 (6)0.0034 (4)0.0024 (5)0.0049 (5)
C30.0173 (6)0.0189 (6)0.0147 (5)0.0018 (4)0.0013 (4)0.0021 (4)
C40.0220 (6)0.0234 (6)0.0166 (5)0.0042 (5)0.0025 (5)0.0053 (5)
C50.0276 (7)0.0197 (6)0.0236 (6)0.0025 (5)0.0008 (5)0.0075 (5)
C60.0221 (6)0.0218 (6)0.0172 (5)0.0057 (5)0.0063 (5)0.0012 (5)
C70.0242 (6)0.0210 (6)0.0207 (6)0.0008 (5)0.0099 (5)0.0024 (5)
C80.0500 (10)0.0231 (7)0.0274 (7)0.0034 (6)0.0171 (7)0.0037 (6)
C90.0504 (10)0.0253 (7)0.0336 (8)0.0101 (7)0.0105 (7)0.0069 (6)
C100.0407 (9)0.0289 (8)0.0327 (8)0.0103 (7)0.0069 (7)0.0072 (6)
C110.0374 (8)0.0175 (6)0.0303 (7)0.0006 (5)0.0164 (6)0.0064 (5)
C120.0197 (6)0.0179 (6)0.0213 (6)0.0004 (4)0.0067 (5)0.0048 (5)
C130.0194 (6)0.0167 (5)0.0172 (5)0.0037 (4)0.0024 (4)0.0039 (4)
C140.0480 (10)0.0213 (7)0.0546 (11)0.0049 (7)0.0255 (9)0.0033 (7)
C150.0297 (7)0.0146 (5)0.0160 (5)0.0019 (5)0.0026 (5)0.0047 (4)
C160.0220 (6)0.0155 (5)0.0181 (5)0.0002 (4)0.0055 (5)0.0042 (4)
C170.0188 (6)0.0128 (5)0.0151 (5)0.0021 (4)0.0029 (4)0.0025 (4)
C180.0201 (6)0.0147 (5)0.0168 (5)0.0020 (4)0.0047 (4)0.0041 (4)
C190.0191 (6)0.0163 (5)0.0220 (6)0.0010 (4)0.0027 (5)0.0018 (5)
C200.0176 (5)0.0149 (5)0.0184 (5)0.0019 (4)0.0059 (4)0.0051 (4)
C210.0168 (5)0.0147 (5)0.0195 (5)0.0010 (4)0.0029 (4)0.0059 (4)
C220.0254 (6)0.0161 (5)0.0187 (6)0.0002 (5)0.0029 (5)0.0065 (5)
C230.0275 (7)0.0226 (6)0.0204 (6)0.0013 (5)0.0081 (5)0.0079 (5)
C240.0314 (7)0.0227 (6)0.0187 (6)0.0019 (5)0.0098 (5)0.0052 (5)
C250.0305 (7)0.0170 (6)0.0176 (6)0.0016 (5)0.0002 (5)0.0021 (5)
C260.0188 (6)0.0148 (5)0.0195 (6)0.0010 (4)0.0018 (4)0.0050 (4)
C270.0184 (5)0.0158 (5)0.0167 (5)0.0011 (4)0.0056 (4)0.0047 (4)
C280.0332 (8)0.0245 (7)0.0199 (6)0.0012 (6)0.0023 (5)0.0069 (5)
Geometric parameters (Å, º) top
F1—C11.3384 (16)C9—C101.304 (2)
F2—C21.3390 (15)C9—H90.95
F3—C41.3343 (16)C10—C111.473 (2)
F4—C51.3364 (16)C10—H100.95
F5—C151.3398 (15)C11—C141.535 (2)
F6—C161.3370 (15)C11—C121.5683 (19)
F7—C181.3325 (14)C11—H111.0
F8—C191.3370 (16)C12—C131.5084 (18)
O1—C61.2075 (17)C12—H121.0
O2—C131.2028 (16)C14—H14A0.99
O3—C201.2038 (16)C14—H14B0.99
O4—C271.2102 (16)C15—C161.3794 (19)
N1—C11.3111 (18)C16—C171.3909 (17)
N1—C51.312 (2)C17—C181.3858 (18)
N2—C61.4077 (17)C18—C191.3825 (18)
N2—C31.4107 (17)C20—C211.5033 (18)
N2—C131.4161 (17)C21—C261.5499 (18)
N3—C191.3103 (18)C21—C221.5753 (18)
N3—C151.3125 (19)C21—H211.0
N4—C271.4056 (17)C22—C231.516 (2)
N4—C171.4086 (16)C22—C281.537 (2)
N4—C201.4165 (16)C22—H221.0
C1—C21.3809 (19)C23—C241.338 (2)
C2—C31.3871 (18)C23—H230.95
C3—C41.3917 (18)C24—C251.519 (2)
C4—C51.385 (2)C24—H240.95
C6—C71.507 (2)C25—C281.550 (2)
C7—C121.5482 (19)C25—C261.5717 (19)
C7—C81.571 (2)C25—H251.0
C7—H71.0C26—C271.5091 (18)
C8—C91.501 (3)C26—H261.0
C8—C141.623 (3)C28—H28A0.99
C8—H81.0C28—H28B0.99
C1—N1—C5116.94 (12)C8—C14—H14A113.4
C6—N2—C3124.33 (11)C11—C14—H14B113.4
C6—N2—C13113.71 (11)C8—C14—H14B113.4
C3—N2—C13121.94 (11)H14A—C14—H14B110.7
C19—N3—C15117.26 (12)N3—C15—F5116.65 (12)
C27—N4—C17123.69 (10)N3—C15—C16124.23 (12)
C27—N4—C20113.87 (11)F5—C15—C16119.11 (12)
C17—N4—C20122.21 (11)F6—C16—C15120.74 (11)
N1—C1—F1117.06 (12)F6—C16—C17120.86 (12)
N1—C1—C2124.07 (13)C15—C16—C17118.40 (12)
F1—C1—C2118.87 (12)C18—C17—C16117.45 (12)
F2—C2—C1120.87 (12)C18—C17—N4120.70 (11)
F2—C2—C3119.96 (12)C16—C17—N4121.85 (12)
C1—C2—C3119.15 (12)F7—C18—C19120.46 (12)
C2—C3—C4116.92 (12)F7—C18—C17120.92 (11)
C2—C3—N2121.00 (11)C19—C18—C17118.60 (12)
C4—C3—N2122.02 (12)N3—C19—F8117.01 (12)
F3—C4—C5120.87 (12)N3—C19—C18124.05 (13)
F3—C4—C3120.66 (12)F8—C19—C18118.94 (12)
C5—C4—C3118.42 (12)O3—C20—N4123.24 (12)
N1—C5—F4116.75 (13)O3—C20—C21129.39 (12)
N1—C5—C4124.49 (13)N4—C20—C21107.37 (10)
F4—C5—C4118.75 (13)C20—C21—C26105.67 (10)
O1—C6—N2123.41 (13)C20—C21—C22113.60 (11)
O1—C6—C7129.08 (13)C26—C21—C22103.31 (10)
N2—C6—C7107.50 (11)C20—C21—H21111.3
C6—C7—C12105.79 (11)C26—C21—H21111.3
C6—C7—C8114.60 (13)C22—C21—H21111.3
C12—C7—C8102.66 (11)C23—C22—C28100.97 (11)
C6—C7—H7111.1C23—C22—C21106.32 (10)
C12—C7—H7111.1C28—C22—C2198.84 (11)
C8—C7—H7111.1C23—C22—H22116.1
C9—C8—C7106.69 (13)C28—C22—H22116.1
C9—C8—C1497.02 (13)C21—C22—H22116.1
C7—C8—C1498.55 (13)C24—C23—C22107.28 (13)
C9—C8—H8117.1C24—C23—H23126.4
C7—C8—H8117.1C22—C23—H23126.4
C14—C8—H8117.1C23—C24—C25108.23 (13)
C10—C9—C8111.81 (17)C23—C24—H24125.9
C10—C9—H9124.1C25—C24—H24125.9
C8—C9—H9124.1C24—C25—C28100.25 (11)
C9—C10—C11105.78 (16)C24—C25—C26106.61 (11)
C9—C10—H10127.1C28—C25—C2698.57 (11)
C11—C10—H10127.1C24—C25—H25116.3
C10—C11—C14103.19 (15)C28—C25—H25116.3
C10—C11—C12107.98 (13)C26—C25—H25116.3
C14—C11—C1299.67 (12)C27—C26—C21105.73 (10)
C10—C11—H11114.8C27—C26—C25113.65 (11)
C14—C11—H11114.8C21—C26—C25102.89 (10)
C12—C11—H11114.8C27—C26—H26111.4
C13—C12—C7105.61 (11)C21—C26—H26111.4
C13—C12—C11115.44 (11)C25—C26—H26111.4
C7—C12—C11103.66 (11)O4—C27—N4123.64 (12)
C13—C12—H12110.6O4—C27—C26128.99 (12)
C7—C12—H12110.6N4—C27—C26107.35 (10)
C11—C12—H12110.6C22—C28—C2594.29 (11)
O2—C13—N2123.30 (12)C22—C28—H28A112.9
O2—C13—C12129.34 (12)C25—C28—H28A112.9
N2—C13—C12107.35 (11)C22—C28—H28B112.9
C11—C14—C891.50 (13)C25—C28—H28B112.9
C11—C14—H14A113.4H28A—C28—H28B110.3
C5—N1—C1—F1179.36 (12)C19—N3—C15—F5179.67 (11)
C5—N1—C1—C20.2 (2)C19—N3—C15—C160.4 (2)
N1—C1—C2—F2178.68 (13)N3—C15—C16—F6179.92 (12)
F1—C1—C2—F20.9 (2)F5—C15—C16—F60.03 (19)
N1—C1—C2—C30.0 (2)N3—C15—C16—C170.2 (2)
F1—C1—C2—C3179.51 (12)F5—C15—C16—C17179.89 (11)
F2—C2—C3—C4178.07 (11)F6—C16—C17—C18179.90 (11)
C1—C2—C3—C40.57 (19)C15—C16—C17—C180.04 (18)
F2—C2—C3—N24.45 (19)F6—C16—C17—N40.29 (19)
C1—C2—C3—N2176.90 (12)C15—C16—C17—N4179.57 (11)
C6—N2—C3—C2122.28 (14)C27—N4—C17—C18115.77 (14)
C13—N2—C3—C256.10 (17)C20—N4—C17—C1858.41 (16)
C6—N2—C3—C460.38 (18)C27—N4—C17—C1664.63 (17)
C13—N2—C3—C4121.24 (14)C20—N4—C17—C16121.18 (13)
C2—C3—C4—F3178.53 (12)C16—C17—C18—F7178.24 (11)
N2—C3—C4—F31.08 (19)N4—C17—C18—F72.15 (18)
C2—C3—C4—C51.01 (19)C16—C17—C18—C190.10 (18)
N2—C3—C4—C5176.44 (12)N4—C17—C18—C19179.52 (11)
C1—N1—C5—F4178.87 (12)C15—N3—C19—F8179.93 (11)
C1—N1—C5—C40.3 (2)C15—N3—C19—C180.5 (2)
F3—C4—C5—N1178.43 (13)F7—C18—C19—N3178.00 (12)
C3—C4—C5—N10.9 (2)C17—C18—C19—N30.3 (2)
F3—C4—C5—F40.7 (2)F7—C18—C19—F81.56 (19)
C3—C4—C5—F4178.23 (12)C17—C18—C19—F8179.90 (11)
C3—N2—C6—O11.5 (2)C27—N4—C20—O3178.97 (12)
C13—N2—C6—O1176.98 (13)C17—N4—C20—O34.26 (19)
C3—N2—C6—C7179.43 (11)C27—N4—C20—C211.03 (14)
C13—N2—C6—C72.06 (15)C17—N4—C20—C21175.74 (11)
O1—C6—C7—C12176.95 (14)O3—C20—C21—C26178.83 (13)
N2—C6—C7—C122.02 (14)N4—C20—C21—C261.17 (13)
O1—C6—C7—C864.62 (19)O3—C20—C21—C2266.28 (17)
N2—C6—C7—C8114.36 (13)N4—C20—C21—C22113.72 (11)
C6—C7—C8—C951.32 (17)C20—C21—C22—C2346.18 (14)
C12—C7—C8—C962.86 (16)C26—C21—C22—C2367.79 (13)
C6—C7—C8—C14151.35 (12)C20—C21—C22—C28150.43 (11)
C12—C7—C8—C1437.17 (14)C26—C21—C22—C2836.46 (12)
C7—C8—C9—C1068.24 (19)C28—C22—C23—C2433.15 (14)
C14—C8—C9—C1032.91 (18)C21—C22—C23—C2469.55 (14)
C8—C9—C10—C110.42 (19)C22—C23—C24—C250.53 (15)
C9—C10—C11—C1435.12 (18)C23—C24—C25—C2831.90 (14)
C9—C10—C11—C1269.79 (17)C23—C24—C25—C2670.35 (14)
C6—C7—C12—C131.33 (14)C20—C21—C26—C270.93 (13)
C8—C7—C12—C13121.79 (12)C22—C21—C26—C27120.51 (11)
C6—C7—C12—C11120.46 (12)C20—C21—C26—C25118.55 (11)
C8—C7—C12—C110.01 (14)C22—C21—C26—C251.04 (12)
C10—C11—C12—C1347.45 (16)C24—C25—C26—C2748.17 (14)
C14—C11—C12—C13154.82 (14)C28—C25—C26—C27151.64 (11)
C10—C11—C12—C767.53 (14)C24—C25—C26—C2165.64 (12)
C14—C11—C12—C739.85 (15)C28—C25—C26—C2137.82 (12)
C6—N2—C13—O2179.80 (12)C17—N4—C27—O43.78 (19)
C3—N2—C13—O21.3 (2)C20—N4—C27—O4178.40 (12)
C6—N2—C13—C121.18 (15)C17—N4—C27—C26175.04 (11)
C3—N2—C13—C12179.73 (11)C20—N4—C27—C260.41 (14)
C7—C12—C13—O2178.76 (14)C21—C26—C27—O4179.08 (13)
C11—C12—C13—O267.39 (19)C25—C26—C27—O466.97 (17)
C7—C12—C13—N20.18 (14)C21—C26—C27—N40.35 (13)
C11—C12—C13—N2113.68 (13)C25—C26—C27—N4111.75 (12)
C10—C11—C14—C850.81 (14)C23—C22—C28—C2549.19 (12)
C12—C11—C14—C860.38 (14)C21—C22—C28—C2559.46 (12)
C9—C8—C14—C1147.84 (14)C24—C25—C28—C2248.49 (12)
C7—C8—C14—C1160.29 (13)C26—C25—C28—C2260.24 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i1.002.583.3467 (18)133
C12—H12···F2ii1.002.303.1902 (17)147
C21—H21···F7ii1.002.553.3855 (16)141
C21—H21···O3iii1.002.513.2765 (16)133
C26—H26···O4iv1.002.513.3299 (17)139
C6—O1···Cg1v3.05 (1)4.0022 (16)136 (1)
C13—O2···Cg23.18 (1)4.0238 (17)127 (1)
C27—O4···Cg2vi3.30 (1)4.0644 (16)122 (1)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x+2, y+1, z+1; (iv) x+2, y+2, z+1; (v) x, y+1, z+2; (vi) x+1, y+2, z+1.
(II) top
Crystal data top
C14H8F4N2O3F(000) = 664
Mr = 328.22Dx = 1.672 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.285 (6) ÅCell parameters from 5752 reflections
b = 5.945 (3) Åθ = 3.3–30.5°
c = 17.888 (8) ŵ = 0.16 mm1
β = 93.44 (3)°T = 100 K
V = 1304.1 (10) Å3Rectangular prism, clear colourless
Z = 40.55 × 0.40 × 0.36 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3823 independent reflections
Radiation source: fine focus sealed tube3443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3333 pixels mm-1θmax = 30.0°, θmin = 2.0°
ω Scans scansh = 1617
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 88
Tmin = 0.80, Tmax = 0.95l = 2525
18507 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.5528P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3823 reflectionsΔρmax = 0.47 e Å3
208 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.61173 (7)0.22134 (14)0.90365 (4)0.03327 (19)
F20.48454 (5)0.59673 (13)0.88542 (4)0.02357 (16)
F30.59308 (6)0.63688 (13)0.63887 (4)0.02478 (16)
F40.71117 (6)0.25516 (14)0.66738 (4)0.02993 (18)
O10.47406 (6)0.82103 (13)0.75548 (4)0.01844 (16)
O20.30179 (7)0.51138 (14)0.73480 (4)0.02086 (17)
O30.45672 (7)1.14224 (14)0.64230 (5)0.02420 (18)
N10.66094 (8)0.24215 (17)0.78498 (6)0.0230 (2)
N20.39641 (7)0.81650 (15)0.69490 (5)0.01503 (17)
C10.60565 (9)0.3286 (2)0.83821 (6)0.0215 (2)
C20.54134 (8)0.51817 (19)0.82990 (6)0.0178 (2)
C30.53515 (8)0.62643 (17)0.76138 (6)0.01569 (19)
C40.59438 (8)0.53864 (18)0.70529 (6)0.0178 (2)
C50.65454 (9)0.3444 (2)0.72060 (6)0.0208 (2)
C60.30836 (8)0.66728 (17)0.69255 (6)0.01506 (18)
C70.23148 (8)0.74245 (16)0.62858 (5)0.01440 (18)
H70.1568990.768920.6463380.017*
C80.22529 (9)0.59170 (17)0.55743 (6)0.01733 (19)
H80.1781430.4549590.5594460.021*
C90.34224 (9)0.55197 (19)0.53633 (6)0.0201 (2)
H90.3811150.4139860.5406790.024*
C100.38003 (9)0.74523 (19)0.51076 (6)0.0204 (2)
H100.4503290.7695460.492850.024*
C110.29036 (9)0.92015 (18)0.51536 (6)0.01784 (19)
H110.2963311.0559510.4828760.021*
C120.28051 (8)0.96515 (17)0.60041 (6)0.01497 (18)
H120.2303051.0942760.6082990.018*
C130.38855 (8)0.99715 (17)0.64552 (6)0.01595 (19)
C140.18776 (9)0.77180 (18)0.49978 (6)0.0193 (2)
H14A0.1195190.8478750.5123180.023*
H14B0.1809810.7134410.4478710.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0372 (4)0.0362 (4)0.0258 (4)0.0035 (3)0.0029 (3)0.0160 (3)
F20.0194 (3)0.0364 (4)0.0149 (3)0.0003 (3)0.0015 (2)0.0005 (3)
F30.0241 (3)0.0353 (4)0.0149 (3)0.0052 (3)0.0016 (2)0.0048 (3)
F40.0248 (4)0.0381 (4)0.0268 (4)0.0120 (3)0.0013 (3)0.0068 (3)
O10.0189 (3)0.0198 (4)0.0157 (3)0.0032 (3)0.0064 (3)0.0024 (3)
O20.0214 (4)0.0224 (4)0.0189 (4)0.0009 (3)0.0014 (3)0.0074 (3)
O30.0243 (4)0.0187 (4)0.0289 (4)0.0060 (3)0.0042 (3)0.0032 (3)
N10.0184 (4)0.0233 (5)0.0265 (5)0.0023 (3)0.0049 (4)0.0021 (4)
N20.0135 (4)0.0177 (4)0.0134 (4)0.0001 (3)0.0031 (3)0.0017 (3)
C10.0195 (5)0.0242 (5)0.0202 (5)0.0011 (4)0.0039 (4)0.0067 (4)
C20.0139 (4)0.0242 (5)0.0150 (4)0.0023 (4)0.0013 (3)0.0013 (4)
C30.0122 (4)0.0182 (4)0.0162 (4)0.0008 (3)0.0029 (3)0.0006 (3)
C40.0151 (4)0.0231 (5)0.0148 (4)0.0003 (4)0.0018 (3)0.0016 (4)
C50.0151 (4)0.0248 (5)0.0220 (5)0.0024 (4)0.0020 (4)0.0032 (4)
C60.0138 (4)0.0170 (4)0.0146 (4)0.0005 (3)0.0021 (3)0.0000 (3)
C70.0135 (4)0.0155 (4)0.0141 (4)0.0004 (3)0.0003 (3)0.0010 (3)
C80.0197 (5)0.0151 (4)0.0168 (4)0.0006 (3)0.0020 (3)0.0007 (3)
C90.0235 (5)0.0196 (5)0.0172 (5)0.0056 (4)0.0004 (4)0.0035 (4)
C100.0207 (5)0.0256 (5)0.0152 (5)0.0027 (4)0.0031 (4)0.0012 (4)
C110.0217 (5)0.0180 (4)0.0136 (4)0.0009 (4)0.0006 (3)0.0027 (3)
C120.0153 (4)0.0140 (4)0.0153 (4)0.0014 (3)0.0014 (3)0.0011 (3)
C130.0180 (4)0.0141 (4)0.0156 (4)0.0019 (3)0.0001 (3)0.0002 (3)
C140.0209 (5)0.0209 (5)0.0155 (4)0.0015 (4)0.0042 (4)0.0000 (4)
Geometric parameters (Å, º) top
F1—C11.3312 (14)C7—C121.5511 (15)
F2—C21.3323 (13)C7—C81.5547 (15)
F3—C41.3231 (13)C7—H71.0
F4—C51.3234 (13)C8—C91.5256 (16)
O1—C31.3796 (13)C8—C141.5380 (15)
O1—N21.4004 (12)C8—H81.0
O2—C61.2017 (13)C9—C101.3305 (17)
O3—C131.2060 (14)C9—H90.95
N1—C51.3005 (16)C10—C111.5207 (16)
N1—C11.3076 (16)C10—H100.95
N2—C131.3901 (14)C11—C141.5499 (16)
N2—C61.3975 (14)C11—C121.5565 (16)
C1—C21.3791 (16)C11—H111.0
C2—C31.3824 (15)C12—C131.5233 (15)
C3—C41.3769 (15)C12—H121.0
C4—C51.3891 (16)C14—H14A0.99
C6—C71.5071 (15)C14—H14B0.99
C3—O1—N2112.66 (8)C14—C8—C798.38 (9)
C5—N1—C1117.04 (10)C9—C8—H8116.0
C13—N2—C6116.56 (9)C14—C8—H8116.0
C13—N2—O1119.66 (8)C7—C8—H8116.0
C6—N2—O1121.70 (8)C10—C9—C8107.73 (9)
N1—C1—F1116.61 (11)C10—C9—H9126.1
N1—C1—C2124.18 (10)C8—C9—H9126.1
F1—C1—C2119.20 (11)C9—C10—C11107.64 (10)
F2—C2—C1121.89 (10)C9—C10—H10126.2
F2—C2—C3119.63 (10)C11—C10—H10126.2
C1—C2—C3118.47 (10)C10—C11—C14100.67 (9)
C4—C3—O1124.82 (9)C10—C11—C12105.64 (8)
C4—C3—C2117.79 (10)C14—C11—C1299.41 (8)
O1—C3—C2117.32 (9)C10—C11—H11116.2
F3—C4—C3120.56 (10)C14—C11—H11116.2
F3—C4—C5121.43 (10)C12—C11—H11116.2
C3—C4—C5118.00 (10)C13—C12—C7106.11 (8)
N1—C5—F4116.30 (10)C13—C12—C11115.01 (9)
N1—C5—C4124.49 (10)C7—C12—C11103.02 (8)
F4—C5—C4119.20 (10)C13—C12—H12110.8
O2—C6—N2123.48 (10)C7—C12—H12110.8
O2—C6—C7130.06 (10)C11—C12—H12110.8
N2—C6—C7106.45 (9)O3—C13—N2124.12 (10)
C6—C7—C12105.18 (8)O3—C13—C12130.51 (10)
C6—C7—C8116.63 (9)N2—C13—C12105.38 (8)
C12—C7—C8103.12 (8)C8—C14—C1193.88 (8)
C6—C7—H7110.5C8—C14—H14A112.9
C12—C7—H7110.5C11—C14—H14A112.9
C8—C7—H7110.5C8—C14—H14B112.9
C9—C8—C14101.00 (9)C11—C14—H14B112.9
C9—C8—C7106.93 (8)H14A—C14—H14B110.4
C3—O1—N2—C13130.66 (10)N2—C6—C7—C8107.89 (10)
C3—O1—N2—C666.28 (12)C6—C7—C8—C950.39 (11)
C5—N1—C1—F1179.27 (10)C12—C7—C8—C964.30 (10)
C5—N1—C1—C20.48 (17)C6—C7—C8—C14154.65 (9)
N1—C1—C2—F2178.42 (10)C12—C7—C8—C1439.97 (9)
F1—C1—C2—F20.34 (16)C14—C8—C9—C1031.98 (11)
N1—C1—C2—C30.67 (17)C7—C8—C9—C1070.39 (11)
F1—C1—C2—C3179.43 (10)C8—C9—C10—C111.02 (12)
N2—O1—C3—C455.79 (13)C9—C10—C11—C1433.35 (11)
N2—O1—C3—C2127.50 (10)C9—C10—C11—C1269.69 (11)
F2—C2—C3—C4179.44 (9)C6—C7—C12—C134.58 (10)
C1—C2—C3—C40.33 (15)C8—C7—C12—C13118.12 (9)
F2—C2—C3—O13.61 (14)C6—C7—C12—C11125.81 (8)
C1—C2—C3—O1177.28 (9)C8—C7—C12—C113.12 (9)
O1—C3—C4—F32.24 (16)C10—C11—C12—C1345.57 (11)
C2—C3—C4—F3178.94 (9)C14—C11—C12—C13149.54 (9)
O1—C3—C4—C5178.10 (9)C10—C11—C12—C769.40 (10)
C2—C3—C4—C51.40 (15)C14—C11—C12—C734.56 (9)
C1—N1—C5—F4179.84 (10)C6—N2—C13—O3178.19 (10)
C1—N1—C5—C40.74 (17)O1—N2—C13—O314.27 (15)
F3—C4—C5—N1178.64 (10)C6—N2—C13—C121.96 (12)
C3—C4—C5—N11.70 (17)O1—N2—C13—C12165.88 (8)
F3—C4—C5—F40.44 (16)C7—C12—C13—O3177.99 (11)
C3—C4—C5—F4179.22 (10)C11—C12—C13—O364.81 (15)
C13—N2—C6—O2175.80 (10)C7—C12—C13—N21.85 (10)
O1—N2—C6—O212.23 (15)C11—C12—C13—N2115.02 (9)
C13—N2—C6—C75.00 (12)C9—C8—C14—C1148.57 (9)
O1—N2—C6—C7168.57 (8)C7—C8—C14—C1160.61 (9)
O2—C6—C7—C12175.23 (11)C10—C11—C14—C849.16 (9)
N2—C6—C7—C125.64 (10)C12—C11—C14—C858.86 (9)
O2—C6—C7—C871.24 (14)
Contact geometry (Å, °) for I top
Cg1 and Cg2 are the centroids of the N1/C1–C5 and N3/C15–C19 rings, respectively.
Y—X···AY—XX···AY···AY—X···A
C7—H7···O1i1.002.583.347 (2)133
C9—H9···F4ii0.952.493.348(20150
C12—H12···F2iii1.002.303.1903 (18)147
C21—H21···F7iii1.002.553.3855 (17)141
C21—H21..O3iv1.002.513.2764 (18)133
C26—H26···O4v1.002.513.3299 (18)139
C6—O1···Cg1i1.2075 (17)3.0462 (14)4.022 (16)135.86 (10)
C13—O2···Cg2vi1.2028 (16)3.1839 (14)4.0238 (17)126.98 (9)
C27—O4···Cg2ii1.2102 (16)3.2978 (14)4.0644 (16)121.58 (9)
Symmetry codes: (i) 1 - x, 1 - y, 2 - z; (ii) -x, 1 - y, 2 - z; (iii) 1 + x, y, z; (iv) 2 - x, 1 - y, 1 - z; (v) 2 - x, 2 - y, 1 - z; (iv) x, y, z.
Contact geometry (Å, °) for II top
Cg1 is the centroid of the N1/C1–C5 ring.
Y—X···AY—XX···AY···AY—X···A
C7—H7···O2i1.002.583.347 (2)133
C9—H9···O3ii0.952.493.348(20150
C14—H14B···F4iii1.002.303.1903 (18)147
C5—F4···Cg1iv1.3234 (13)3.1543 (18)3.892 (2)114.36 (7)
C13—O3···Cg1v1.2060 (14)3.3224 (19)4.231 (2)132.8 (8)
Symmetry codes: (i) 1/2 - x, 1/2 + y, 3/2 - z; (ii) x, -1 + y, z; (iii) 1 - x, 1 - y, 1 - z; (iv) 3/2 - x, -1/2 + y, 3/2 - z; (v) x, 1 + y, z.
Percentage contribution of inter-atomic contacts to the Hirshfeld surfaces for I and II top
ContactPercentage contribution to IPercentage contribution to II
F···H/H···F36.539.2
H···H20.214.1
O···H/H···O13.014.0
O···C/C···O6.26.2
N···H/H···N5.30.1
F···F5.12.1
F···C/C···F3.64.9
F···N/N···F2.44.4
O···N/N···O0.64.1
C···H/H···C3.83.2
F···O/O···F2.42.7
O···O1.22.7
N···C/C···N0.02.4
 

Funding information

Funding for this research was provided by: Air Force Office of Scientific Reseach.

References

First citationBaker, J. & Muir, M. (2010). Can. J. Chem. 88, 588–597.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChambers, R. D., Seabury, M. J., Williams, D. L. N. & Hughes, N. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 255–257.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIsono, T., Sasamori, T., Honda, K., Mato, Y., Yamamoto, T., Tajima, K. & Satoh, T. (2018). Macromolecules, 51, 3855–3864.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, S., Lim, C., Kim, J. & Seo, B. (2016). Sci. Adv. Mater. 8, 2112–2120.  Web of Science CrossRef CAS Google Scholar
First citationZeng, X., Luo, J., Zhou, T., Chen, T., Zhou, X., Wu, K., Zou, Y., Xie, G., Gong, S. & Yang, C. (2018). Macromolecules, 51, 1598–1604.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds