research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analysis of a series of 4-O-aryl­perfluoro­pyridines

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Chemistry Research Center, United States Air Force, Academy, Colorado Springs, CO 80840, USA
*Correspondence e-mail: scott.iacono@usafa.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 June 2019; accepted 28 June 2019; online 4 July 2019)

Five new crystal structures of perfluoro­pyridine substituted in the 4-position with phen­oxy, 4-bromo­phen­oxy, naphthalen-2-yl­oxy, 6-bromo­naphthalen-2-yl­oxy, and 4,4′-biphen­oxy are reported, viz. 2,3,5,6-tetra­fluoro-4-phen­oxy­pyridine, C11H5F4NO (I), 4-(4-bromo­phen­oxy)-2,3,5,6-tetra­fluoro­pyridine, C11H4BrF4NO (II), 2,3,5,6-tetra­fluoro-4-[(naphthalen-2-yl)­oxy]pyridine, C15H7F4NO (III), 4-[(6-bromo­naphthalen-2-yl)­oxy]-2,3,5,6-tetra­fluoropyridine, C15H6BrF4NO (IV), and 2,2′-bis­[(perfluoro­pyridin-4-yl)­oxy]-1,1′-biphenyl, C22H8F8N2O2 (V). The dihedral angles between the aromatic ring systems in IIV are 78.74 (8), 56.35 (8), 74.30 (7), and 64.34 (19)°, respectively. The complete mol­ecule of V is generated by a crystallographic twofold axis: the dihedral angle between the pyridine ring and adjacent phenyl ring is 80.89 (5)° and the equivalent angle between the biphenyl rings is 27.30 (5)°. In each crystal, the packing is driven by C—H⋯F inter­actions, along with a variety of C—F⋯π, C—H⋯π, C—Br⋯N, C—H⋯N, and C—Br⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing.

1. Chemical context

Penta­fluoro­pyridine, or perfluoro­pyridine (C5F5N) is one of the most important perfluoro­heteroaromatic compounds. It is commercially available and its chemistry is well understood. As a result of the presence of five fluorine atoms, in addition to the nitro­gen atom of the pyridine ring, these systems are highly electrophilic and undergo substitution reactions readily in a predictable pattern (Baker & Muir, 2010[Baker, J. & Muir, M. (2010). Can. J. Chem. 88, 588-597.]; Chambers et al., 1988[Chambers, R. D., Seabury, M. J., Williams, D. L. N. & Hughes, N. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 255-257.]). This chemistry has already been used in the design of several drugs (Bhambra et al., 2016[Bhambra, A. S., Edgar, M., Elsegood, M. R. J., Horsburgh, L., Kryštof, V., Lucas, P. D., Mojally, M., Teat, S. J., Warwick, T. G., Weaver, G. W. & Zeinali, F. (2016). J. Fluor. Chem. 188, 99-109.]) and in peptide modification (Gimenez et al., 2017[Gimenez, D., Mooney, C. A., Dose, A., Sandford, G., Coxon, C. R. & Cobb, S. L. (2017). Org. Biomol. Chem. 15, 4086-4095.]). In an effort to further understand the inter­molecular inter­actions in the solid state of these fluorinated compounds, five new crystal structures of penta­fluoro­pyridine derivatives are herein reported as well as their syntheses.

[Scheme 1]

2. Structural commentary

Compounds I, III, and V each crystallize in ortho­rhom­bic space groups, with I and III in P212121 and V in Pbcn. Compounds II and IV crystallize in the monoclinic space groups P21/n and P21 respectively (Fig. 1[link]). With the exception of V, which has one half mol­ecule per asymmetric unit, each compound crystallizes with one mol­ecule per asymmetric unit. The dihedral angle between the aryl susbstituent and the pyridine ring ranges between 56.35 (8) and 80.89 (5)°. In V, the rings of the biphenyl system are rotated by 27.30 (5)° from each other.

[Figure 1]
Figure 1
The mol­ecular structures of (a) I, (b) II, (c) III, (d) IV, and (e) V. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal structures of each compound, the packing is consolidated by various C—H⋯F and C—F⋯π inter­actions (Tables 1[link]–5[link][link][link][link]). In II, the packing is aided by C—H⋯π and C—Br⋯N inter­actions, the latter of which lead to the formation of chains in the [10[\overline{1}]] direction. Compound III also shows C—H⋯N hydrogen bonding. Further, in IV, C—H⋯π and C—Br⋯π inter­actions also contribute to the packing. Finally, in I, III, and IV, the packing is aided by halogen bonds of the type C—F⋯F—C or C—F⋯Br—C. In I, the C2—F2⋯F3 distance is 2.8156 (15) Å, with an angle of 119.54 (8)° (symmetry code: 1 − x, [{1\over 2}] + y, [{1\over 2}] − z). For III, the C2—F2⋯F3 distance is 2.766 (15) Å, with an angle of 146.28 (10)° (symmetry code: 1 − x, [{1\over 2}] + y, [{1\over 2}] − z). The bromine atom participates in the halogen bonding of IV, with the C11—Br1⋯F2 distance being 3.095 (5) Å and the angle 164.46 (14)° (symmetry code: 2 − x, −[{1\over 2}] + y, 1 − z). All the observed halogen-bonding geometries fall within typically observed values (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]).

Table 1
Contact geometry (Å, °) for I

Cg1 is the centroid of the N1/C1–C5 ring.

X—Y⋯A X—Y Y⋯A X⋯A X—Y⋯A
C11—H11⋯F1i 0.95 2.46 3.4049 (19) 170.3
C1—F1⋯Cg1ii 1.3404 (18) 3.6822 (13) 4.8632 (17) 147.20 (9)
Symmetry codes: (i) −x + 2, y − [{1\over 2}], −z + [{1\over 2}]; (ii) 2 − x, [{1\over 2}] + x, [{1\over 2}] − z.

Table 2
Contact geometry (Å, °) for II

Cg1 and Cg2 are the centroids of the N1/C1–C4 and C6–C11 rings, respectively.

X—Y⋯A X—Y Y⋯A X⋯A X—Y⋯A
C10—H10⋯F3i 0.95 2.39 3.2214 (19) 145.9
C11—H11⋯Cg2i 0.95 2.90 3.668 (2) 139
C1—F1⋯Cg1ii 1.3395 (19) 3.1531 (14) 4.068 (2) 124.76 (10)
C5—F4⋯Cg1iii 1.3401 (19) 3.1094 (13) 3.6241 (18) 101.55 (9)
C9—Br1⋯N1iv 1.8952 (17) 3.2639 (16) 5.104 (3) 162.65 (7)
Symmetry codes: (i) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ii) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (iii) −x + 1, −y + 1, −z + 2; (iv) [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z.

Table 3
Contact geometry (Å, °) for III

Cg1 and Cg2 are the centroids of the N1/C1–C5 and C6–C15 rings, respectively.

X—Y⋯A X—Y Y⋯A X⋯A X—Y⋯A
C7—H7⋯F3i 0.95 2.50 3.4366 (19) 169.6
C15—H15⋯N1ii 0.95 2.59 3.455 (2) 152.1
C1—F1⋯Cg2iii 1.334 (2) 3.2922 (15) 3.5581 (19) 90.28 (10)
C5—F4⋯Cg1iv 1.343 (2) 3.2790 (14) 4.2804 (18) 130.88 (11)
Symmetry codes: (i) x + 1, y, z; (ii) −x, y + [{1\over 2}], −z + [{1\over 2}]; (iii) 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; (iv) − x, −[{1\over 2}] + y, [{1\over 2}] − z.

Table 4
Contact geometry (Å, °) for IV

Cg1, Cg2, and Cg3 are the centroids of the N1/C1–C5, C6–C15, and C8–C13 rings, respectively.

X—Y⋯A X—Y Y⋯A X⋯A X—Y⋯A
C15—H15⋯F3ii 0.95 2.43 3.105 (5) 127.5
C9—H9⋯Cg3i 0.95 2.83 3.519 (5) 130
C11—Br1⋯Cg1iii 1.901 (4) 3.6283 (19) 4.923 (5) 122.74 (13)
C11—Br1⋯Cg2iv 1.901 (4) 3.735 (2) 5.037 (4) 123.34 (12)
C4—F3⋯Cg1v 1.344 (6) 3.082 (3) 3.936 (5) 120.3 (3)
Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + 1; (ii) x + 1, y, z; (iii) −x + 1, y − [{1\over 2}], −z + 1; (iv) −x + 2, y − [{1\over 2}], −z + 1; (v) −x, y − [{1\over 2}], −z.

Table 5
Contact geometry (Å, °) for V

Cg1 is the centroid of the N1/C1–C5 ring.

X—Y⋯A X—Y Y⋯A X⋯A X—Y⋯A
C11—H11⋯F3i 0.95 2.63 3.2361 (13) 121.8
C11—H11⋯F3ii 0.95 2.60 3.2711 (12) 127.8
C11—H11⋯O1i 0.95 2.61 3.3446 (13) 134.3
C5—F4⋯Cg1iii 1.3382 (12) 3.4138 (9) 4.3778 (12) 128.77 (6)
Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, −y + 1, z − [{1\over 2}]; (iii) x, 1 − y, [{1\over 2}] + z.

Hirshfeld surface analysis was used to further investigate the inter­molecular inter­actions in the crystal structures. The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was generated by CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.]), and was comprised of dnorm surface plots. The plots of the Hirshfeld surface are mapped over dnorm using standard surface resolution with a fixed colour scale of −0.1300 (red) to 1.2500 (blue). The characteristic bright-red spots near F1 and H11 in the Hirshfeld surface of I (Fig. 2[link]a) confirm the previously mentioned C11—H11⋯F1 (symmetry code: −x + 2, y − [{1\over 2}], −z + [{1\over 2}]) inter-atomic contacts. As expected, the same bright-red spots are observed for the C10—H10⋯F3 (symmetry code: −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]) in II (Fig. 2[link]b), C7—H7⋯F3 (symmetry code: x + 1, y, z) in III (Fig. 2[link]c), C15—H15⋯F3 (symmetry code: −x + 1, y + [{1\over 2}], −z + 1) in IV (Fig. 2[link]d), and both C11—H11⋯F3i and C11—H11⋯F3ii [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, −y + 1, z − [{1\over 2}]] inter-atomic contacts in V (Fig. 2[link]e). The contributions of the various inter­molecular inter­actions in each of the title compounds are shown in Tables 6[link]–10[link][link][link][link]. With the exception of IV, the packing is dominated by ⋯H/H⋯F inter­actions, accounting for as high as 36.9% of the packing forces in I. In IV, the largest contribution is made by C⋯H/H⋯C inter­actions (19.1%), followed closely by F⋯H/H⋯F (18.8%).

Table 6
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for I

Contact Percentage contribution
F⋯H/H⋯F 36.9
C⋯H/H⋯C 14.8
F⋯F 12.1
H⋯H 9.6
N⋯H/H⋯N 4.8
F⋯C/C⋯F 4.7
F⋯O/O⋯F 4.2
C⋯C 4.1
N⋯C/C⋯N 3.2
O⋯C/C⋯O 2.2
O⋯N/N⋯O 2.0
F⋯N/N⋯F 1.3
O⋯H/H⋯O 0.1

Table 7
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for II

Contact Percentage contribution
F⋯H/H⋯F 18.7
F⋯C/C⋯F 11.8
C⋯H/H⋯C 11.7
F⋯F 10.8
Br⋯F/F⋯Br 8.3
Br⋯H/H⋯Br 7.7
H⋯H 6.9
F⋯N/N⋯F 6.1
O⋯H/H⋯O 4.6
Br⋯N/N⋯Br 3.5
C⋯C 3.4
Br⋯C/C⋯Br 2.2
Br⋯O/O⋯Br 1.8
N⋯C/C⋯N 0.9
F⋯O/O⋯F 0.8
O⋯C/C⋯O 0.6
N⋯H/H⋯N 0.2

Table 8
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for III

Contact Percentage contribution
F⋯H/H⋯F 30.4
C⋯H/H⋯C 22.8
H⋯H 14.0
F⋯C/C⋯F 10.0
F⋯F 6.6
N⋯H/H⋯N 4.2
O⋯C/C⋯O 2.9
F⋯O/O⋯F 2.3
F⋯N/N⋯F 2.0
O⋯H/H⋯O 0.3
O⋯N/N⋯O 1.6
C⋯C 1.5
N⋯C/C⋯N 1.4

Table 9
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for IV

Contact Percentage contribution
C⋯H/H⋯C 19.1
F⋯H/H⋯F 18.8
F⋯C/C⋯F 9.4
H⋯H 9.1
Br⋯H/H⋯Br 8.7
F⋯F 7.7
Br⋯C/C⋯Br 7.2
F⋯O/O⋯F 4.5
Br⋯F/F⋯Br 3.9
F⋯N/N⋯F 3.7
N⋯H/H⋯N 2.6
C⋯C 1.5
N⋯C/C⋯N 1.1
O⋯N/N⋯O 0.9
Br⋯N/N⋯Br 0.8
O⋯C/C⋯O 0.6
O⋯H/H⋯O 0.3

Table 10
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for V

Contact Percentage contribution
F⋯H/H⋯F 32.3
F⋯C/C⋯F 19.0
H⋯H 11.6
F⋯F 11.3
N⋯H/H⋯N 7.1
F⋯N/N⋯F 6.3
C⋯H/H⋯C 4.8
O⋯H/H⋯O 4.5
F⋯O/O⋯F 1.8
C⋯C 1.3
[Figure 2]
Figure 2
Hirshfeld surface of (a) I, (b) II, (c) III, (d) IV, and (e) V mapped with dnorm.

Owing to the presence of nitro­gen, oxygen and bromine atoms in the various structures, several other contact types are confirmed by the Hirshfeld surface maps. In II, the C9—Br1⋯N1 (symmetry code: [{1\over 2}] − x, [{1\over 2}] − y, −[{1\over 2}] + z) halogen bond is clearly visible. The analogous halogen bond is not observed in IV. Only in III does a C—H⋯N inter­action significantly contribute to the packing, with the C15—H15⋯N1 (symmetry code: −x, y + [{1\over 2}], −z + [{1\over 2}]] visible in the dnorm surface plot.

4. Database survey

A search of the November 2019 release of the Cambridge Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), with updates through May 2019, was performed using the program ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). The search was limited to organic structures with R ≤ 0.1. A search for perfluoro­pyridines bearing a ether-linked substituents in the 4-position returned six results: 2,3,5,6-tetra­fluoro­pyridin-4-ol (UDUXEY; Sen et al., 2009[Sen, S., Slebodnick, C. & Deck, P. A. (2009). CSD Communication (refcode UDUXEY). CCDC, Cambridge, England.]); benzo­phenone O-(2,3,5,6-tetra­fluoro-4-pyrid­yl)oxime (HICBAW; Banks et al., 1995[Banks, R. E., Jondi, W. J., Pritchard, R. G. & Tipping, A. E. (1995). Acta Cryst. C51, 291-293.]); methyl N,O-bis­(2,3,5,6-tetra­fluoro­pyridin-4-yl)threoninate (GOFCIP; Webster et al., 2014[Webster, A. M., Coxon, C. R., Kenwright, A. M., Sandford, G. & Cobb, S. L. (2014). Tetrahedron, 70, 4661-4667.]); 2,3,5,6-tetra­fluoro-4-(4-nitro­phen­oxy)pyridine and 4,4′-[(1,1′-bi­naphthalene)-2,2′diylbis(­oxy)]bis­(tetra­fluoro­pyridine) (FISJUP and FISJOJ; Brittain & Cobb, 2019[Brittain, W. D. G. & Cobb, S. L. (2019). Org. Biomol. Chem. 17, 2110-2115.]). In the bi­naphthalene-derived compound (FISJOJ), analogous to V, the naphthalene ring systems are rotated by 38.91 (5)° from each other.

5. Synthesis and crystallization

2,3,5,6-Tetra­fluoro-4-phen­oxy­pyridine (I)[link]: To a stirred solution of potassium carbonate (1 M, 147.5 ml), phenol (5.58 g, 59.0 mmol), penta­fluoro­pyridine (6.5 ml, 59 mmol), and DMF (150 ml) were added. The resulting solution was allowed to stir at room temperature for 24 h. Di­chloro­methane (75 ml) and saturated aqueous ammonium chloride (100 ml) were added and the biphasic solution stirred vigorously for an additional 24 h. The organic layer was separated, washed with water (5 × 200 ml), dried over MgSO4, and solvent removed via rotary evaporation. The resulting pale-brown solid was dissolved in refluxing EtOH (75 ml) and cooled to 278 K for 12 h. Vacuum filtration, washing with cold EtOH (20 ml) and vacuum drying afforded the target compound as a white, crystalline solid (14.3 g, 99%). Colourless needles were obtained from a saturated EtOH solution by cooling to 298 K. 1H NMR (400 MHz, CDCl3): 6.92 (d, 2H, J = 8.0 Hz), 7.08 (d, 1H, J = 8.4 Hz), 7.24 (t, 2H, J = 8.0 Hz). 19F NMR (376 MHz, CDCl3): −88.9, −154.4.

4-(4-Bromo­phen­oxy)-2,3,5,6-tetra­fluoro­pyridine (II)[link]: To a stirred solution of potassium carbonate (1 M, 22.8 ml), 4-bromo­phenol (1.58 g, 9.11 mmol), penta­fluoro­pyridine (1.00 ml, 9.11 mmol), and DMF (25 ml) were added. The resulting solution was allowed to stir at room temperature for 24 h. Diethyl ether (50 ml) and saturated aqueous ammonium chloride (50 ml) were added and the biphasic solution stirred vigorously for an additional 24 h. The organic layer was separated, washed with water (5 × 100 ml), dried over MgSO4, and solvent removed via rotary evaporation. The resulting pale brown solid was dissolved in refluxing EtOH (15 ml) and cooled to 278 K for 12 h. Vacuum filtration, washing with cold EtOH (20 ml) and vacuum drying afforded the target compound as a white, crystalline solid (2.12 g, 73%). Colourless rectangular prisms were obtained from a saturated EtOH solution by cooling to 298 K. 1H NMR (400 MHz, CDCl3): 7.50 (d, 2H, J = 7.5 Hz), 6.96 (d, 2H, J = 7.5 Hz). 19F NMR (376 MHz, CDCl3): −87.9, −154.0.

2,3,5,6-Tetra­fluoro-4-[(naphthalen-2-yl)­oxy]pyridine (III)[link]: To a stirred solution of potassium carbonate (1 M, 90 ml), naphthalen-2-ol (4.98 g, 34.5 mmol), penta­fluoro­pyridine (3.8 ml, 34.5 mmol), and DMF (100 ml) were added. The resulting solution was allowed to stir at room temperature for 24 h. Di­chloro­methane (50 ml) and saturated aqueous ammonium chloride (100 ml) were added and the biphasic solution stirred vigorously for an additional 24 h. The organic layer was separated, washed with water (5 × 200 ml), dried over MgSO4, and solvent removed via rotary evaporation. The resulting pale brown solid was dissolved in refluxing EtOH (50 ml) and cooled to 298 K for 12 h. Vacuum filtration, washing with cold EtOH (20 ml) and vacuum drying afforded the target compound as a white, crystalline solid (5.90 g, 58%). Colourless rectangular prisms were obtained from a saturated EtOH solution by cooling to 298 K. 1H NMR (500 MHz, CDCl3): 7.90-7.86 (m, 2H), 7.76 (d, 1H, J = 8 Hz), 7.54-7.47 (m, 2H), 7.35–7.31 (m, 2H). 19F NMR (471 MHz, CDCl3): −88.3, −154.0.

2,3,5,6-Tetra­fluoro-4-[(6-bromo­naphthalen-2-yl)­oxy]pyri­dine (IV)[link]: To a stirred solution of potassium carbon­ate (1 M, 60 ml), 6-bromo-2-naphthol (5.00 g, 22.4 mmol), penta­fluoro­pyridine (2.45 ml, 22.4 mmol), and DMF (60 ml) were added. The resulting solution was allowed to stir at room temperature for 24 h. Diethyl ether (50 ml) and saturated aqueous ammonium chloride (100 ml) were added and the biphasic solution stirred vigorously for an additional 2 h. The organic layer was separated, washed with water (5 × 200 ml), dried over MgSO4, and solvent removed via rotary evaporation. The resulting off-white solid was dissolved in refluxing EtOH (40 ml) and cooled to 298 K for 12 h. Vacuum filtration, washing with cold EtOH (20 ml) and vacuum drying afforded the target compound as a white, crystalline solid (6.46 g, 78%). Colourless plates were obtained from a saturated EtOH solution by cooling to 298 K. 1H NMR (500 MHz, CDCl3): 8.00 (s, 1H), 7.81–7.75 (m, 1H), 7.63–7.55 (m, 2H), 7.35–7.27 (m, 2H). 19F NMR (471 MHz, CDCl3): −87.9, −153.8.

2,2′-Bis[(2,3,5,6-tetra­fluoro­pyridin-4-yl)­oxy]-1,1′-biphenyl (V)[link]: To a stirred solution of potassium carbonate (1 M, 30 ml), 2,2′-biphenol (1.02 g, 5.37 mmol), penta­fluoro­pyridine (1.2 ml, 11 mmol), and DMF (30 ml) were added. The resulting solution was allowed to stir at room temperature for 24 h. Diethyl ether (50 ml) and saturated aqueous ammonium chloride (100 ml) were added and the biphasic solution stirred vigorously for an additional 2 h. The organic layer was separated, washed with water (5 × 200 ml), dried over MgSO4, and solvent removed via rotary evaporation. The resulting off-white solid was dissolved in refluxing EtOH (10 ml) and cooled to 298 K for 12 h. Vacuum filtration, washing with cold EtOH (20 ml) and vacuum drying afforded the target compound as a white solid (2.57 g, 97%). Colourless rectangular prisms were obtained from a saturated EtOH solution by cooling to 298 K. 1H NMR (500 MHz, CDCl3): 7.45–7.24 (m, 6H), 6.99 (t, 2H, J = 7.5 Hz). 19F NMR (471 MHz, CDCl3): −88.9, −155.0.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 11[link]. H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The absolute structures of I and III were inter­mediate in the present refinement. Compound IV was refined as an inversion twin.

Table 11
Experimental details

  I II III IV V
Crystal data
Chemical formula C11H5F4NO C11H4BrF4NO C15H7F4NO C15H6BrF4NO C22H8F8N2O2
Mr 243.16 322.06 293.22 372.12 484.30
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21/n Orthorhombic, P212121 Monoclinic, P21 Orthorhombic, Pbcn
Temperature (K) 100 100 100 100 100
a, b, c (Å) 5.4199 (5), 10.3293 (9), 17.4076 (15) 13.3530 (5), 5.8584 (2), 14.8863 (6) 5.4703 (5), 9.2548 (9), 24.109 (2) 6.0135 (3), 7.4994 (4), 14.6318 (7) 18.8516 (6), 10.6512 (3), 9.2196 (3)
α, β, γ (°) 90, 90, 90 90, 113.585 (2), 90 90, 90, 90 90, 101.401 (2), 90 90, 90, 90
V3) 974.54 (15) 1067.24 (7) 1220.6 (2) 646.84 (6) 1851.22 (10)
Z 4 4 4 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.16 3.89 0.14 3.23 0.17
Crystal size (mm) 0.25 × 0.11 × 0.09 0.15 × 0.10 × 0.09 0.54 × 0.36 × 0.29 0.30 × 0.14 × 0.04 0.33 × 0.27 × 0.26
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMART APEX CCD Bruker SMART APEX CCD Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.93, 0.99 0.21, 0.72 0.83, 0.96 0.63, 0.89 0.87, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 13236, 2603, 2520 19174, 3544, 3013 26820, 3296, 3149 12954, 2775, 2566 36854, 2830, 2554
Rint 0.021 0.040 0.025 0.040 0.028
(sin θ/λ)max−1) 0.684 0.735 0.684 0.641 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.05 0.031, 0.083, 1.06 0.031, 0.078, 1.07 0.031, 0.058, 1.14 0.036, 0.098, 1.06
No. of reflections 2603 3544 3296 2775 2830
No. of parameters 154 163 190 200 154
No. of restraints 0 0 0 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.15 0.84, −0.77 0.27, −0.15 0.70, −0.47 0.54, −0.24
Absolute structure Flack x determined using 1019 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 1255 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Refined as an inversion twin
Absolute structure parameter −0.20 (13) −0.08 (14) 0.171 (12)
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), Olex2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008). Software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010) for (I); publCIF (Westrip, 2010) for (II), (III), (IV), (V).

2,3,5,6-Tetrafluoro-4-phenoxypyridine (I) top
Crystal data top
C11H5F4NODx = 1.657 Mg m3
Mr = 243.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7895 reflections
a = 5.4199 (5) Åθ = 2.3–29.5°
b = 10.3293 (9) ŵ = 0.16 mm1
c = 17.4076 (15) ÅT = 100 K
V = 974.54 (15) Å3Needle, colourless
Z = 40.25 × 0.11 × 0.09 mm
F(000) = 488
Data collection top
Bruker SMART APEX CCD
diffractometer
2603 independent reflections
Radiation source: fine focus sealed tube2520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 2.3°
ω Scans scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1414
Tmin = 0.93, Tmax = 0.99l = 2323
13236 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.2471P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.26 e Å3
2603 reflectionsΔρmin = 0.15 e Å3
154 parametersAbsolute structure: Flack x determined using 1019 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.20 (13)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.0458 (2)0.96948 (10)0.27358 (6)0.0304 (2)
F20.64334 (19)0.87849 (9)0.34737 (5)0.0247 (2)
F30.4522 (2)0.64159 (11)0.12257 (6)0.0339 (3)
F40.8628 (2)0.74537 (11)0.05818 (6)0.0354 (3)
O10.3304 (2)0.70337 (11)0.27133 (6)0.0220 (2)
N10.9535 (3)0.85667 (14)0.16598 (8)0.0232 (3)
C10.8951 (3)0.88735 (15)0.23682 (9)0.0214 (3)
C20.6915 (3)0.84050 (14)0.27546 (8)0.0185 (3)
C30.5371 (3)0.75320 (15)0.23844 (9)0.0182 (3)
C40.5954 (3)0.72270 (15)0.16263 (9)0.0223 (3)
C50.8047 (3)0.77713 (16)0.13038 (9)0.0240 (3)
C60.3557 (3)0.65167 (14)0.34628 (8)0.0179 (3)
C70.1718 (3)0.68151 (16)0.39875 (9)0.0212 (3)
H70.0415040.7388160.3854770.025*
C80.1829 (3)0.62530 (16)0.47149 (9)0.0227 (3)
H80.0586550.6442610.5083090.027*
C90.3749 (3)0.54150 (15)0.49061 (9)0.0214 (3)
H90.3807410.5031690.5401810.026*
C100.5583 (3)0.51402 (15)0.43697 (9)0.0210 (3)
H100.6898590.45750.4501890.025*
C110.5492 (3)0.56943 (15)0.36367 (9)0.0194 (3)
H110.6731320.5509790.3266760.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0275 (5)0.0317 (5)0.0320 (5)0.0123 (4)0.0031 (4)0.0032 (4)
F20.0311 (5)0.0254 (5)0.0177 (4)0.0052 (4)0.0026 (4)0.0038 (4)
F30.0478 (7)0.0312 (5)0.0228 (5)0.0132 (5)0.0036 (5)0.0051 (4)
F40.0497 (7)0.0354 (6)0.0210 (5)0.0030 (5)0.0127 (5)0.0014 (4)
O10.0185 (5)0.0281 (6)0.0193 (5)0.0037 (5)0.0018 (4)0.0049 (4)
N10.0218 (6)0.0234 (6)0.0242 (6)0.0035 (5)0.0047 (5)0.0067 (5)
C10.0201 (7)0.0196 (7)0.0245 (7)0.0010 (6)0.0025 (6)0.0044 (6)
C20.0208 (7)0.0184 (6)0.0163 (6)0.0007 (6)0.0006 (5)0.0013 (5)
C30.0178 (6)0.0177 (6)0.0191 (6)0.0008 (5)0.0012 (5)0.0029 (5)
C40.0295 (8)0.0184 (7)0.0190 (7)0.0002 (6)0.0018 (6)0.0005 (5)
C50.0316 (8)0.0222 (7)0.0182 (7)0.0061 (7)0.0058 (6)0.0029 (6)
C60.0178 (6)0.0185 (6)0.0175 (6)0.0035 (5)0.0013 (5)0.0009 (5)
C70.0160 (6)0.0235 (7)0.0240 (7)0.0018 (6)0.0000 (6)0.0006 (6)
C80.0199 (7)0.0270 (7)0.0214 (7)0.0002 (6)0.0041 (6)0.0017 (6)
C90.0238 (7)0.0216 (7)0.0188 (7)0.0013 (6)0.0010 (6)0.0019 (5)
C100.0199 (7)0.0186 (7)0.0245 (7)0.0013 (6)0.0005 (6)0.0022 (6)
C110.0183 (6)0.0186 (7)0.0212 (7)0.0002 (5)0.0035 (6)0.0000 (5)
Geometric parameters (Å, º) top
F1—C11.3404 (18)C6—C111.383 (2)
F2—C21.3375 (17)C6—C71.387 (2)
F3—C41.3382 (19)C7—C81.394 (2)
F4—C51.3366 (18)C7—H70.9500
O1—C31.3594 (18)C8—C91.394 (2)
O1—C61.4164 (18)C8—H80.9500
N1—C51.307 (2)C9—C101.393 (2)
N1—C11.312 (2)C9—H90.9500
C1—C21.380 (2)C10—C111.399 (2)
C2—C31.389 (2)C10—H100.9500
C3—C41.393 (2)C11—H110.9500
C4—C51.385 (2)
C3—O1—C6116.81 (12)C11—C6—O1120.43 (13)
C5—N1—C1116.66 (14)C7—C6—O1116.98 (13)
N1—C1—F1117.05 (14)C6—C7—C8118.34 (15)
N1—C1—C2124.49 (15)C6—C7—H7120.8
F1—C1—C2118.46 (14)C8—C7—H7120.8
F2—C2—C1120.62 (14)C9—C8—C7120.50 (15)
F2—C2—C3120.48 (14)C9—C8—H8119.8
C1—C2—C3118.90 (14)C7—C8—H8119.8
O1—C3—C2123.16 (13)C10—C9—C8119.95 (14)
O1—C3—C4120.02 (14)C10—C9—H9120.0
C2—C3—C4116.73 (14)C8—C9—H9120.0
F3—C4—C5121.20 (15)C9—C10—C11120.18 (15)
F3—C4—C3120.24 (15)C9—C10—H10119.9
C5—C4—C3118.56 (15)C11—C10—H10119.9
N1—C5—F4117.04 (15)C6—C11—C10118.52 (14)
N1—C5—C4124.62 (15)C6—C11—H11120.7
F4—C5—C4118.33 (16)C10—C11—H11120.7
C11—C6—C7122.50 (14)
C5—N1—C1—F1179.60 (14)C1—N1—C5—F4180.00 (14)
C5—N1—C1—C20.7 (2)C1—N1—C5—C41.1 (2)
N1—C1—C2—F2178.92 (14)F3—C4—C5—N1179.80 (15)
F1—C1—C2—F21.4 (2)C3—C4—C5—N10.4 (2)
N1—C1—C2—C31.1 (2)F3—C4—C5—F40.9 (2)
F1—C1—C2—C3178.63 (13)C3—C4—C5—F4178.56 (14)
C6—O1—C3—C249.3 (2)C3—O1—C6—C1146.61 (19)
C6—O1—C3—C4134.31 (15)C3—O1—C6—C7136.93 (15)
F2—C2—C3—O11.0 (2)C11—C6—C7—C80.5 (2)
C1—C2—C3—O1178.94 (14)O1—C6—C7—C8175.90 (14)
F2—C2—C3—C4177.58 (14)C6—C7—C8—C90.1 (2)
C1—C2—C3—C42.4 (2)C7—C8—C9—C100.4 (2)
O1—C3—C4—F31.8 (2)C8—C9—C10—C110.6 (2)
C2—C3—C4—F3178.48 (14)C7—C6—C11—C100.3 (2)
O1—C3—C4—C5178.73 (14)O1—C6—C11—C10175.95 (14)
C2—C3—C4—C52.1 (2)C9—C10—C11—C60.2 (2)
4-(4-Bromophenoxy)-2,3,5,6-tetrafluoropyridine (II) top
Crystal data top
C11H4BrF4NOF(000) = 624
Mr = 322.06Dx = 2.004 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.3530 (5) ÅCell parameters from 7652 reflections
b = 5.8584 (2) Åθ = 2.6–31.9°
c = 14.8863 (6) ŵ = 3.89 mm1
β = 113.585 (2)°T = 100 K
V = 1067.24 (7) Å3Rectangular prism, colourless
Z = 40.15 × 0.10 × 0.09 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3544 independent reflections
Radiation source: fine focus sealed tube3013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.3333 pixels mm-1θmax = 31.5°, θmin = 1.7°
ω Scans scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 88
Tmin = 0.21, Tmax = 0.72l = 2121
19174 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3544 reflectionsΔρmax = 0.84 e Å3
163 parametersΔρmin = 0.77 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.69708 (2)0.16236 (3)0.49318 (2)0.01909 (7)
F10.26006 (9)0.89335 (18)0.84433 (9)0.0217 (2)
F20.38676 (8)1.02091 (16)0.74927 (8)0.0180 (2)
F30.57954 (9)0.32539 (15)0.85557 (9)0.0198 (2)
F40.44206 (9)0.22697 (18)0.94178 (8)0.0204 (2)
O10.55019 (9)0.75025 (19)0.75137 (9)0.0171 (3)
N10.35097 (12)0.5592 (2)0.89200 (11)0.0165 (3)
C10.33969 (13)0.7540 (3)0.84459 (13)0.0158 (3)
C20.40295 (14)0.8195 (2)0.79609 (13)0.0138 (3)
C30.48559 (14)0.6752 (3)0.79564 (13)0.0139 (3)
C40.49951 (13)0.4716 (3)0.84799 (12)0.0146 (3)
C50.42904 (14)0.4238 (3)0.89247 (12)0.0151 (3)
C60.57942 (13)0.6035 (3)0.69117 (12)0.0140 (3)
C70.52283 (14)0.4050 (3)0.65069 (13)0.0161 (3)
H70.4609990.3608610.6629450.019*
C80.55832 (14)0.2716 (3)0.59177 (13)0.0167 (3)
H80.5221460.132510.5649960.02*
C90.64660 (14)0.3426 (3)0.57230 (13)0.0147 (3)
C100.70034 (14)0.5462 (3)0.61029 (13)0.0162 (3)
H100.7594980.5951760.5949640.019*
C110.66669 (14)0.6774 (3)0.67088 (13)0.0153 (3)
H110.7030980.8160210.6980560.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02336 (11)0.01936 (10)0.01944 (11)0.00095 (6)0.01371 (8)0.00288 (6)
F10.0176 (5)0.0205 (5)0.0311 (7)0.0047 (4)0.0139 (5)0.0027 (4)
F20.0211 (5)0.0126 (4)0.0200 (5)0.0021 (4)0.0079 (4)0.0014 (4)
F30.0176 (5)0.0176 (5)0.0239 (6)0.0066 (4)0.0081 (4)0.0008 (4)
F40.0280 (6)0.0157 (5)0.0170 (5)0.0011 (4)0.0082 (4)0.0035 (4)
O10.0209 (6)0.0151 (6)0.0210 (7)0.0036 (5)0.0145 (5)0.0047 (5)
N10.0169 (7)0.0177 (6)0.0166 (7)0.0019 (5)0.0086 (6)0.0027 (5)
C10.0138 (7)0.0155 (7)0.0182 (9)0.0004 (6)0.0065 (6)0.0041 (6)
C20.0158 (7)0.0110 (7)0.0134 (8)0.0011 (5)0.0047 (6)0.0020 (5)
C30.0136 (7)0.0155 (7)0.0137 (8)0.0031 (5)0.0064 (6)0.0037 (5)
C40.0132 (7)0.0149 (7)0.0143 (8)0.0018 (6)0.0040 (6)0.0020 (5)
C50.0196 (8)0.0136 (7)0.0107 (8)0.0006 (6)0.0047 (6)0.0006 (5)
C60.0147 (7)0.0142 (7)0.0142 (8)0.0006 (6)0.0068 (6)0.0016 (6)
C70.0151 (7)0.0176 (7)0.0181 (8)0.0044 (6)0.0094 (6)0.0042 (6)
C80.0189 (8)0.0156 (7)0.0172 (9)0.0040 (6)0.0091 (7)0.0045 (6)
C90.0153 (7)0.0167 (7)0.0132 (8)0.0016 (6)0.0068 (6)0.0003 (5)
C100.0143 (7)0.0186 (7)0.0174 (8)0.0022 (6)0.0080 (6)0.0009 (6)
C110.0151 (7)0.0166 (7)0.0155 (8)0.0041 (6)0.0076 (7)0.0014 (6)
Geometric parameters (Å, º) top
Br1—C91.8952 (17)C4—C51.379 (2)
F1—C11.3395 (19)C6—C111.385 (2)
F2—C21.3430 (18)C6—C71.386 (2)
F3—C41.3386 (18)C7—C81.392 (2)
F4—C51.3401 (19)C7—H70.95
O1—C31.352 (2)C8—C91.385 (2)
O1—C61.4050 (19)C8—H80.95
N1—C51.308 (2)C9—C101.390 (2)
N1—C11.318 (2)C10—C111.389 (2)
C1—C21.368 (2)C10—H100.95
C2—C31.392 (2)C11—H110.95
C3—C41.396 (2)
C3—O1—C6120.41 (13)C11—C6—O1114.89 (14)
C5—N1—C1116.63 (15)C7—C6—O1123.25 (15)
N1—C1—F1116.72 (15)C6—C7—C8118.76 (16)
N1—C1—C2124.29 (15)C6—C7—H7120.6
F1—C1—C2118.99 (16)C8—C7—H7120.6
F2—C2—C1121.02 (15)C9—C8—C7119.74 (16)
F2—C2—C3119.63 (15)C9—C8—H8120.1
C1—C2—C3119.34 (15)C7—C8—H8120.1
O1—C3—C2117.79 (14)C8—C9—C10121.07 (16)
O1—C3—C4125.59 (15)C8—C9—Br1120.46 (12)
C2—C3—C4116.43 (15)C10—C9—Br1118.47 (13)
F3—C4—C5120.31 (15)C11—C10—C9119.35 (16)
F3—C4—C3121.15 (15)C11—C10—H10120.3
C5—C4—C3118.54 (15)C9—C10—H10120.3
N1—C5—F4116.96 (15)C6—C11—C10119.20 (15)
N1—C5—C4124.73 (16)C6—C11—H11120.4
F4—C5—C4118.29 (15)C10—C11—H11120.4
C11—C6—C7121.80 (16)
C5—N1—C1—F1179.75 (15)C1—N1—C5—C40.5 (3)
C5—N1—C1—C20.7 (3)F3—C4—C5—N1177.56 (15)
N1—C1—C2—F2179.99 (15)C3—C4—C5—N12.2 (3)
F1—C1—C2—F20.5 (2)F3—C4—C5—F40.9 (2)
N1—C1—C2—C30.2 (3)C3—C4—C5—F4179.31 (14)
F1—C1—C2—C3179.71 (15)C3—O1—C6—C11163.96 (15)
C6—O1—C3—C2137.39 (15)C3—O1—C6—C719.0 (2)
C6—O1—C3—C447.9 (2)C11—C6—C7—C83.0 (3)
F2—C2—C3—O13.2 (2)O1—C6—C7—C8179.83 (16)
C1—C2—C3—O1176.63 (15)C6—C7—C8—C92.0 (3)
F2—C2—C3—C4178.33 (14)C7—C8—C9—C100.4 (3)
C1—C2—C3—C41.5 (2)C7—C8—C9—Br1179.46 (13)
O1—C3—C4—F32.5 (3)C8—C9—C10—C111.7 (3)
C2—C3—C4—F3177.21 (15)Br1—C9—C10—C11178.07 (13)
O1—C3—C4—C5177.29 (16)C7—C6—C11—C101.7 (3)
C2—C3—C4—C52.5 (2)O1—C6—C11—C10178.70 (15)
C1—N1—C5—F4179.03 (14)C9—C10—C11—C60.8 (3)
2,3,5,6-Tetrafluoro-4-[(naphthalen-2-yl)oxy]pyridine (III) top
Crystal data top
C15H7F4NODx = 1.596 Mg m3
Mr = 293.22Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9963 reflections
a = 5.4703 (5) Åθ = 2.4–29.2°
b = 9.2548 (9) ŵ = 0.14 mm1
c = 24.109 (2) ÅT = 100 K
V = 1220.6 (2) Å3Rectangular prism, colourless
Z = 40.54 × 0.36 × 0.29 mm
F(000) = 592
Data collection top
Bruker SMART APEX CCD
diffractometer
3296 independent reflections
Radiation source: fine focus sealed tube3149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 2.4°
ω Scans scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1212
Tmin = 0.83, Tmax = 0.96l = 3233
26820 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.2387P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.27 e Å3
3296 reflectionsΔρmin = 0.15 e Å3
190 parametersAbsolute structure: Flack x determined using 1255 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.08 (14)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.1901 (3)0.27940 (14)0.13034 (5)0.0479 (3)
F20.5809 (2)0.39295 (12)0.18393 (4)0.0389 (3)
F30.2850 (2)0.16943 (11)0.34729 (4)0.0312 (2)
F40.0860 (2)0.06445 (13)0.28603 (6)0.0493 (3)
O10.6420 (2)0.34634 (14)0.29382 (5)0.0277 (3)
N10.0540 (3)0.17233 (17)0.20838 (7)0.0356 (3)
C10.2194 (4)0.25229 (19)0.18427 (7)0.0320 (4)
C20.4193 (3)0.31157 (17)0.21119 (6)0.0265 (3)
C30.4454 (3)0.28847 (16)0.26793 (6)0.0222 (3)
C40.2711 (3)0.20160 (17)0.29324 (6)0.0246 (3)
C50.0823 (3)0.14819 (18)0.26127 (8)0.0320 (4)
C60.6094 (3)0.40005 (17)0.34853 (6)0.0228 (3)
C70.7792 (3)0.36372 (17)0.38711 (6)0.0241 (3)
H70.9082060.2992320.3779940.029*
C80.7619 (3)0.42322 (17)0.44129 (6)0.0226 (3)
C90.9344 (3)0.3885 (2)0.48337 (7)0.0285 (3)
H91.0645420.3236830.4755570.034*
C100.9133 (3)0.4482 (2)0.53513 (7)0.0320 (4)
H101.0302110.4251430.5628920.038*
C110.7196 (4)0.5437 (2)0.54765 (7)0.0326 (4)
H110.7071250.5841290.5837660.039*
C120.5492 (4)0.57864 (19)0.50802 (7)0.0294 (3)
H120.4194150.6428630.5168650.035*
C130.5662 (3)0.51895 (17)0.45372 (6)0.0233 (3)
C140.3926 (3)0.55230 (17)0.41174 (7)0.0250 (3)
H140.2606360.6155150.4199060.03*
C150.4135 (3)0.49422 (17)0.35952 (6)0.0242 (3)
H150.2980370.517160.3314260.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0678 (8)0.0484 (7)0.0276 (5)0.0196 (6)0.0202 (6)0.0095 (5)
F20.0582 (7)0.0356 (5)0.0229 (4)0.0087 (5)0.0076 (5)0.0027 (4)
F30.0379 (6)0.0285 (5)0.0271 (5)0.0018 (4)0.0053 (4)0.0050 (4)
F40.0365 (6)0.0367 (6)0.0748 (9)0.0157 (5)0.0055 (6)0.0067 (6)
O10.0237 (5)0.0394 (6)0.0199 (5)0.0060 (5)0.0015 (4)0.0052 (5)
N10.0318 (7)0.0300 (7)0.0449 (8)0.0049 (6)0.0128 (7)0.0146 (6)
C10.0416 (10)0.0272 (8)0.0271 (8)0.0118 (7)0.0106 (7)0.0084 (6)
C20.0358 (8)0.0221 (7)0.0216 (7)0.0024 (7)0.0004 (6)0.0010 (5)
C30.0234 (7)0.0210 (6)0.0221 (7)0.0008 (6)0.0015 (6)0.0011 (5)
C40.0267 (7)0.0212 (6)0.0260 (7)0.0015 (6)0.0005 (6)0.0001 (6)
C50.0261 (8)0.0224 (7)0.0474 (10)0.0016 (6)0.0013 (7)0.0064 (7)
C60.0228 (7)0.0273 (7)0.0182 (6)0.0047 (6)0.0010 (5)0.0003 (6)
C70.0192 (6)0.0293 (7)0.0237 (6)0.0001 (6)0.0012 (5)0.0001 (6)
C80.0200 (7)0.0264 (7)0.0215 (6)0.0026 (6)0.0010 (6)0.0033 (5)
C90.0230 (7)0.0378 (9)0.0248 (7)0.0001 (7)0.0019 (6)0.0061 (6)
C100.0306 (8)0.0429 (10)0.0227 (7)0.0051 (8)0.0055 (7)0.0062 (7)
C110.0396 (9)0.0379 (9)0.0204 (7)0.0058 (8)0.0011 (7)0.0016 (6)
C120.0333 (8)0.0298 (8)0.0251 (7)0.0003 (7)0.0009 (7)0.0028 (6)
C130.0246 (7)0.0231 (7)0.0222 (7)0.0034 (6)0.0001 (6)0.0015 (5)
C140.0250 (7)0.0234 (7)0.0264 (7)0.0018 (6)0.0010 (6)0.0003 (6)
C150.0237 (7)0.0259 (7)0.0231 (7)0.0016 (6)0.0041 (6)0.0025 (5)
Geometric parameters (Å, º) top
F1—C11.334 (2)C7—H70.95
F2—C21.334 (2)C8—C131.421 (2)
F3—C41.3389 (18)C8—C91.422 (2)
F4—C51.343 (2)C9—C101.369 (2)
O1—C31.3538 (19)C9—H90.95
O1—C61.4209 (18)C10—C111.413 (3)
N1—C51.304 (3)C10—H100.95
N1—C11.305 (3)C11—C121.374 (2)
C1—C21.385 (3)C11—H110.95
C2—C31.392 (2)C12—C131.424 (2)
C3—C41.389 (2)C12—H120.95
C4—C51.380 (2)C13—C141.421 (2)
C6—C71.357 (2)C14—C151.374 (2)
C6—C151.407 (2)C14—H140.95
C7—C81.421 (2)C15—H150.95
C3—O1—C6117.82 (12)C7—C8—C9121.61 (15)
C5—N1—C1116.78 (16)C13—C8—C9119.34 (14)
N1—C1—F1117.23 (17)C10—C9—C8120.20 (16)
N1—C1—C2124.26 (16)C10—C9—H9119.9
F1—C1—C2118.50 (18)C8—C9—H9119.9
F2—C2—C1121.05 (15)C9—C10—C11120.68 (15)
F2—C2—C3120.19 (16)C9—C10—H10119.7
C1—C2—C3118.73 (16)C11—C10—H10119.7
O1—C3—C4124.90 (14)C12—C11—C10120.51 (15)
O1—C3—C2118.27 (15)C12—C11—H11119.7
C4—C3—C2116.76 (15)C10—C11—H11119.7
F3—C4—C5120.43 (15)C11—C12—C13120.26 (16)
F3—C4—C3121.15 (14)C11—C12—H12119.9
C5—C4—C3118.42 (15)C13—C12—H12119.9
N1—C5—F4116.90 (17)C14—C13—C8119.22 (13)
N1—C5—C4125.00 (17)C14—C13—C12121.77 (15)
F4—C5—C4118.11 (17)C8—C13—C12119.00 (14)
C7—C6—C15123.10 (14)C15—C14—C13120.81 (15)
C7—C6—O1117.64 (14)C15—C14—H14119.6
C15—C6—O1119.15 (13)C13—C14—H14119.6
C6—C7—C8119.25 (14)C14—C15—C6118.57 (14)
C6—C7—H7120.4C14—C15—H15120.7
C8—C7—H7120.4C6—C15—H15120.7
C7—C8—C13119.05 (13)
C5—N1—C1—F1179.02 (15)C3—O1—C6—C7134.10 (15)
C5—N1—C1—C20.1 (3)C3—O1—C6—C1549.6 (2)
N1—C1—C2—F2179.70 (15)C15—C6—C7—C80.4 (2)
F1—C1—C2—F20.6 (2)O1—C6—C7—C8175.80 (13)
N1—C1—C2—C31.6 (3)C6—C7—C8—C130.3 (2)
F1—C1—C2—C3177.43 (14)C6—C7—C8—C9179.80 (15)
C6—O1—C3—C439.6 (2)C7—C8—C9—C10179.68 (15)
C6—O1—C3—C2143.33 (15)C13—C8—C9—C100.8 (2)
F2—C2—C3—O12.2 (2)C8—C9—C10—C110.6 (3)
C1—C2—C3—O1179.72 (14)C9—C10—C11—C120.2 (3)
F2—C2—C3—C4179.48 (15)C10—C11—C12—C130.1 (3)
C1—C2—C3—C42.4 (2)C7—C8—C13—C140.2 (2)
O1—C3—C4—F30.8 (2)C9—C8—C13—C14179.35 (15)
C2—C3—C4—F3177.89 (14)C7—C8—C13—C12179.93 (15)
O1—C3—C4—C5178.91 (15)C9—C8—C13—C120.5 (2)
C2—C3—C4—C51.8 (2)C11—C12—C13—C14179.78 (16)
C1—N1—C5—F4179.19 (15)C11—C12—C13—C80.1 (2)
C1—N1—C5—C40.6 (3)C8—C13—C14—C150.6 (2)
F3—C4—C5—N1179.41 (16)C12—C13—C14—C15179.57 (16)
C3—C4—C5—N10.3 (3)C13—C14—C15—C60.5 (2)
F3—C4—C5—F40.4 (2)C7—C6—C15—C140.0 (2)
C3—C4—C5—F4179.88 (14)O1—C6—C15—C14176.10 (14)
4-[(6-Bromonaphthalen-2-yl)oxy]-2,3,5,6-tetrafluoropyridine (IV) top
Crystal data top
C15H6BrF4NOF(000) = 364
Mr = 372.12Dx = 1.911 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.0135 (3) ÅCell parameters from 7392 reflections
b = 7.4994 (4) Åθ = 3.1–27.4°
c = 14.6318 (7) ŵ = 3.23 mm1
β = 101.401 (2)°T = 100 K
V = 646.84 (6) Å3Plate, colourless
Z = 20.30 × 0.14 × 0.04 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2775 independent reflections
Radiation source: fine focus sealed tube2566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.3333 pixels mm-1θmax = 27.1°, θmin = 1.4°
ω Scans scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 99
Tmin = 0.63, Tmax = 0.89l = 1818
12954 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0174P)2 + 0.147P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.70 e Å3
2775 reflectionsΔρmin = 0.46 e Å3
200 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.171 (12)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.11387 (6)0.12723 (7)0.65331 (3)0.02027 (12)
F10.1437 (5)0.8959 (4)0.1693 (2)0.0341 (8)
F20.4300 (3)0.6186 (6)0.20499 (14)0.0245 (5)
F30.1671 (5)0.2537 (4)0.04981 (19)0.0325 (7)
F40.4284 (4)0.5505 (4)0.0217 (2)0.0430 (9)
O10.2637 (6)0.2724 (4)0.1423 (2)0.0258 (8)
N10.1424 (7)0.7231 (7)0.0963 (3)0.0276 (11)
C10.0692 (8)0.7344 (7)0.1415 (3)0.0242 (11)
C20.2157 (7)0.5921 (6)0.1599 (3)0.0163 (12)
C30.1384 (8)0.4227 (8)0.1316 (3)0.0187 (11)
C40.0837 (8)0.4126 (7)0.0826 (3)0.0227 (11)
C50.2127 (9)0.5642 (8)0.0680 (4)0.0277 (15)
C60.4160 (7)0.2377 (6)0.2262 (3)0.0196 (10)
C70.3753 (7)0.2843 (6)0.3113 (3)0.0186 (10)
H70.2389460.3436790.316620.022*
C80.5417 (7)0.2423 (5)0.3922 (3)0.0148 (9)
C90.5119 (7)0.2886 (6)0.4829 (3)0.0164 (9)
H90.3751580.3445840.4907120.02*
C100.6783 (7)0.2534 (6)0.5599 (3)0.0165 (9)
H100.6573220.2848780.6204690.02*
C110.8803 (7)0.1702 (5)0.5475 (3)0.0157 (11)
C120.9146 (6)0.1211 (10)0.4619 (2)0.0165 (7)
H121.0520230.0641840.455750.02*
C130.7438 (6)0.1551 (7)0.3814 (3)0.0150 (11)
C140.7724 (7)0.1040 (8)0.2918 (3)0.0199 (11)
H140.906380.0428660.2848410.024*
C150.6108 (6)0.1412 (10)0.2154 (3)0.0208 (9)
H150.6285270.102730.1553470.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01749 (18)0.0207 (2)0.0211 (2)0.0017 (3)0.00019 (13)0.0006 (3)
F10.047 (2)0.021 (2)0.036 (2)0.0032 (15)0.0129 (16)0.0016 (15)
F20.0190 (10)0.0269 (13)0.0241 (12)0.0047 (19)0.0044 (9)0.003 (2)
F30.0324 (15)0.0414 (19)0.0232 (15)0.0209 (14)0.0041 (12)0.0085 (13)
F40.0148 (13)0.082 (3)0.0296 (16)0.0036 (13)0.0019 (12)0.0034 (15)
O10.037 (2)0.0213 (19)0.0158 (17)0.0043 (15)0.0035 (14)0.0020 (14)
N10.022 (3)0.039 (3)0.022 (3)0.010 (2)0.005 (2)0.007 (2)
C10.036 (3)0.020 (3)0.019 (3)0.004 (2)0.011 (2)0.001 (2)
C20.0181 (19)0.018 (4)0.0127 (19)0.0040 (19)0.0015 (15)0.0025 (18)
C30.022 (3)0.023 (3)0.011 (2)0.001 (2)0.0038 (19)0.004 (2)
C40.022 (2)0.035 (3)0.012 (2)0.010 (2)0.0045 (18)0.002 (2)
C50.015 (3)0.051 (4)0.017 (3)0.001 (2)0.001 (2)0.004 (2)
C60.026 (2)0.014 (2)0.017 (2)0.0022 (19)0.0007 (18)0.0005 (19)
C70.018 (2)0.016 (2)0.021 (2)0.0012 (17)0.0039 (18)0.0000 (19)
C80.018 (2)0.008 (2)0.019 (2)0.0034 (16)0.0052 (17)0.0006 (17)
C90.016 (2)0.013 (2)0.021 (2)0.0029 (17)0.0047 (18)0.0009 (18)
C100.019 (2)0.014 (2)0.017 (2)0.0024 (18)0.0045 (18)0.0025 (18)
C110.0161 (19)0.009 (3)0.021 (2)0.0012 (15)0.0009 (16)0.0038 (16)
C120.0174 (17)0.0099 (18)0.0233 (19)0.000 (3)0.0069 (14)0.000 (3)
C130.0178 (18)0.009 (3)0.020 (2)0.0012 (17)0.0077 (15)0.0013 (19)
C140.0220 (19)0.016 (3)0.024 (2)0.000 (2)0.0118 (16)0.004 (2)
C150.028 (2)0.020 (3)0.0167 (19)0.003 (3)0.0091 (15)0.001 (3)
Geometric parameters (Å, º) top
Br1—C111.901 (4)C7—C81.427 (6)
F1—C11.328 (6)C7—H70.95
F2—C21.342 (4)C8—C131.416 (6)
F3—C41.344 (6)C8—C91.417 (6)
F4—C51.344 (6)C9—C101.376 (6)
O1—C31.348 (6)C9—H90.95
O1—C61.403 (5)C10—C111.408 (6)
N1—C51.304 (7)C10—H100.95
N1—C11.316 (6)C11—C121.360 (6)
C1—C21.376 (6)C12—C131.424 (5)
C2—C31.387 (7)C12—H120.95
C3—C41.388 (6)C13—C141.408 (6)
C4—C51.369 (7)C14—C151.358 (6)
C6—C71.361 (6)C14—H140.95
C6—C151.412 (7)C15—H150.95
C3—O1—C6120.7 (4)C13—C8—C7119.1 (4)
C5—N1—C1116.0 (5)C9—C8—C7121.7 (4)
N1—C1—F1116.6 (5)C10—C9—C8120.9 (4)
N1—C1—C2124.5 (5)C10—C9—H9119.6
F1—C1—C2118.9 (4)C8—C9—H9119.6
F2—C2—C1119.8 (4)C9—C10—C11119.1 (4)
F2—C2—C3121.0 (4)C9—C10—H10120.5
C1—C2—C3119.2 (5)C11—C10—H10120.5
O1—C3—C2125.8 (4)C12—C11—C10122.0 (4)
O1—C3—C4118.2 (5)C12—C11—Br1118.8 (3)
C2—C3—C4115.8 (5)C10—C11—Br1119.2 (3)
F3—C4—C5121.4 (4)C11—C12—C13119.8 (4)
F3—C4—C3119.1 (5)C11—C12—H12120.1
C5—C4—C3119.5 (5)C13—C12—H12120.1
N1—C5—F4116.7 (4)C14—C13—C8119.7 (4)
N1—C5—C4124.8 (5)C14—C13—C12121.3 (4)
F4—C5—C4118.4 (5)C8—C13—C12119.0 (4)
C7—C6—O1123.3 (4)C15—C14—C13120.8 (4)
C7—C6—C15122.5 (4)C15—C14—H14119.6
O1—C6—C15114.2 (4)C13—C14—H14119.6
C6—C7—C8118.7 (4)C14—C15—C6119.2 (4)
C6—C7—H7120.7C14—C15—H15120.4
C8—C7—H7120.7C6—C15—H15120.4
C13—C8—C9119.2 (4)
C5—N1—C1—F1179.0 (5)C3—O1—C6—C15147.8 (5)
C5—N1—C1—C20.0 (8)O1—C6—C7—C8179.9 (4)
N1—C1—C2—F2178.6 (4)C15—C6—C7—C83.4 (7)
F1—C1—C2—F20.3 (6)C6—C7—C8—C130.5 (6)
N1—C1—C2—C31.5 (7)C6—C7—C8—C9179.3 (4)
F1—C1—C2—C3179.5 (4)C13—C8—C9—C101.5 (6)
C6—O1—C3—C242.9 (7)C7—C8—C9—C10177.3 (4)
C6—O1—C3—C4141.8 (4)C8—C9—C10—C110.0 (6)
F2—C2—C3—O12.3 (7)C9—C10—C11—C121.0 (7)
C1—C2—C3—O1177.8 (4)C9—C10—C11—Br1178.3 (3)
F2—C2—C3—C4177.7 (4)C10—C11—C12—C130.6 (8)
C1—C2—C3—C42.4 (7)Br1—C11—C12—C13178.8 (4)
O1—C3—C4—F31.6 (7)C9—C8—C13—C14178.2 (5)
C2—C3—C4—F3177.4 (4)C7—C8—C13—C143.0 (7)
O1—C3—C4—C5177.8 (4)C9—C8—C13—C121.9 (7)
C2—C3—C4—C52.0 (7)C7—C8—C13—C12176.9 (4)
C1—N1—C5—F4180.0 (4)C11—C12—C13—C14179.2 (5)
C1—N1—C5—C40.5 (9)C11—C12—C13—C80.9 (8)
F3—C4—C5—N1178.8 (5)C8—C13—C14—C151.6 (8)
C3—C4—C5—N10.6 (9)C12—C13—C14—C15178.3 (6)
F3—C4—C5—F41.7 (7)C13—C14—C15—C62.2 (9)
C3—C4—C5—F4178.9 (4)C7—C6—C15—C144.9 (9)
C3—O1—C6—C735.4 (6)O1—C6—C15—C14178.4 (5)
2,2'-Bis[(2,3,5,6-tetrafluoropyridin-4-yl)oxy]-1,1'-biphenyl (V) top
Crystal data top
C22H8F8N2O2Dx = 1.738 Mg m3
Mr = 484.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 9894 reflections
a = 18.8516 (6) Åθ = 3.1–31.0°
b = 10.6512 (3) ŵ = 0.17 mm1
c = 9.2196 (3) ÅT = 100 K
V = 1851.22 (10) Å3Rectangular prism, colourless
Z = 40.33 × 0.27 × 0.26 mm
F(000) = 968
Data collection top
Bruker SMART APEX CCD
diffractometer
2830 independent reflections
Radiation source: fine focus sealed tube2554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 2.2°
ω Scans scansh = 2626
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
k = 1515
Tmin = 0.87, Tmax = 0.96l = 1313
36854 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.0353P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2830 reflectionsΔρmax = 0.54 e Å3
154 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.23289 (4)0.82100 (7)0.58850 (9)0.02742 (18)
F20.36863 (4)0.80572 (6)0.50165 (8)0.02166 (16)
F30.39175 (4)0.45355 (6)0.81381 (8)0.02052 (15)
F40.25208 (4)0.47778 (7)0.87330 (8)0.02652 (17)
O10.45506 (4)0.60742 (7)0.62192 (8)0.01451 (15)
N10.24272 (5)0.64972 (10)0.73110 (11)0.0206 (2)
C10.27334 (6)0.72890 (11)0.64163 (12)0.0190 (2)
C20.34353 (5)0.72303 (10)0.59814 (11)0.01551 (19)
C30.38644 (5)0.62907 (9)0.65624 (11)0.01334 (18)
C40.35408 (5)0.54608 (9)0.75268 (11)0.01526 (19)
C50.28294 (6)0.56017 (11)0.78372 (12)0.0184 (2)
C60.49905 (5)0.70787 (9)0.57843 (11)0.01314 (18)
C70.51479 (5)0.80445 (9)0.67541 (11)0.01353 (19)
C80.56072 (6)0.89900 (10)0.62696 (11)0.0168 (2)
H80.5715950.9675380.6890430.02*
C90.59065 (6)0.89380 (10)0.48901 (12)0.0184 (2)
H90.6218930.9584040.4579270.022*
C100.57499 (6)0.79449 (11)0.39657 (12)0.0176 (2)
H100.596080.7907230.303090.021*
C110.52840 (5)0.70047 (10)0.44090 (11)0.01560 (19)
H110.5169810.6326840.3781250.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0200 (3)0.0288 (4)0.0334 (4)0.0094 (3)0.0009 (3)0.0074 (3)
F20.0203 (3)0.0201 (3)0.0246 (3)0.0002 (2)0.0006 (3)0.0094 (3)
F30.0197 (3)0.0198 (3)0.0220 (3)0.0033 (2)0.0021 (2)0.0073 (3)
F40.0211 (3)0.0304 (4)0.0280 (4)0.0027 (3)0.0089 (3)0.0090 (3)
O10.0122 (3)0.0132 (3)0.0181 (3)0.0012 (2)0.0020 (3)0.0001 (3)
N10.0146 (4)0.0256 (5)0.0217 (4)0.0017 (3)0.0019 (3)0.0007 (4)
C10.0160 (4)0.0206 (5)0.0203 (5)0.0038 (4)0.0018 (4)0.0006 (4)
C20.0156 (4)0.0152 (4)0.0157 (4)0.0001 (3)0.0008 (3)0.0016 (3)
C30.0129 (4)0.0141 (4)0.0130 (4)0.0007 (3)0.0000 (3)0.0016 (3)
C40.0151 (4)0.0155 (4)0.0152 (4)0.0006 (3)0.0003 (3)0.0012 (4)
C50.0160 (4)0.0217 (5)0.0174 (5)0.0025 (4)0.0030 (4)0.0018 (4)
C60.0120 (4)0.0126 (4)0.0148 (4)0.0011 (3)0.0001 (3)0.0010 (3)
C70.0141 (4)0.0135 (4)0.0130 (4)0.0008 (3)0.0003 (3)0.0008 (3)
C80.0188 (5)0.0145 (4)0.0170 (5)0.0029 (4)0.0011 (4)0.0002 (3)
C90.0185 (5)0.0173 (5)0.0196 (5)0.0037 (4)0.0009 (4)0.0030 (4)
C100.0163 (4)0.0210 (5)0.0153 (4)0.0015 (4)0.0020 (3)0.0018 (4)
C110.0153 (4)0.0172 (4)0.0143 (4)0.0008 (3)0.0001 (3)0.0014 (3)
Geometric parameters (Å, º) top
F1—C11.3356 (13)C6—C111.3856 (14)
F2—C21.3383 (12)C6—C71.3949 (14)
F3—C41.3390 (12)C7—C81.4012 (14)
F4—C51.3382 (12)C7—C7i1.4842 (19)
O1—C31.3517 (12)C8—C91.3925 (15)
O1—C61.4118 (12)C8—H80.95
N1—C51.3114 (14)C9—C101.3900 (15)
N1—C11.3134 (15)C9—H90.95
C1—C21.3840 (15)C10—C111.3934 (14)
C2—C31.3938 (14)C10—H100.95
C3—C41.3942 (14)C11—H110.95
C4—C51.3795 (14)
C3—O1—C6119.96 (8)C11—C6—O1116.82 (9)
C5—N1—C1116.44 (10)C7—C6—O1120.12 (9)
N1—C1—F1116.81 (10)C6—C7—C8117.20 (9)
N1—C1—C2124.97 (10)C6—C7—C7i120.93 (7)
F1—C1—C2118.22 (10)C8—C7—C7i121.85 (8)
F2—C2—C1120.06 (9)C9—C8—C7120.86 (10)
F2—C2—C3121.52 (9)C9—C8—H8119.6
C1—C2—C3118.42 (10)C7—C8—H8119.6
O1—C3—C2126.01 (9)C10—C9—C8120.28 (10)
O1—C3—C4117.37 (9)C10—C9—H9119.9
C2—C3—C4116.52 (9)C8—C9—H9119.9
F3—C4—C5120.55 (9)C9—C10—C11120.06 (10)
F3—C4—C3120.20 (9)C9—C10—H10120.0
C5—C4—C3119.25 (10)C11—C10—H10120.0
N1—C5—F4117.00 (9)C6—C11—C10118.63 (10)
N1—C5—C4124.36 (10)C6—C11—H11120.7
F4—C5—C4118.64 (10)C10—C11—H11120.7
C11—C6—C7122.93 (9)
C5—N1—C1—F1179.46 (10)F3—C4—C5—N1178.43 (10)
C5—N1—C1—C21.11 (17)C3—C4—C5—N11.84 (17)
N1—C1—C2—F2177.24 (10)F3—C4—C5—F41.58 (16)
F1—C1—C2—F22.18 (16)C3—C4—C5—F4178.15 (9)
N1—C1—C2—C32.24 (17)C3—O1—C6—C11119.50 (10)
F1—C1—C2—C3178.34 (10)C3—O1—C6—C764.48 (12)
C6—O1—C3—C230.14 (14)C11—C6—C7—C82.07 (15)
C6—O1—C3—C4153.56 (9)O1—C6—C7—C8177.84 (9)
F2—C2—C3—O11.91 (16)C11—C6—C7—C7i176.48 (10)
C1—C2—C3—O1177.56 (10)O1—C6—C7—C7i0.71 (15)
F2—C2—C3—C4178.24 (9)C6—C7—C8—C91.77 (15)
C1—C2—C3—C41.24 (15)C7i—C7—C8—C9176.77 (10)
O1—C3—C4—F33.69 (14)C7—C8—C9—C100.33 (16)
C2—C3—C4—F3179.66 (9)C8—C9—C10—C110.92 (17)
O1—C3—C4—C5176.05 (9)C7—C6—C11—C100.88 (16)
C2—C3—C4—C50.61 (15)O1—C6—C11—C10176.78 (9)
C1—N1—C5—F4179.01 (10)C9—C10—C11—C60.66 (16)
C1—N1—C5—C40.98 (17)
Symmetry code: (i) x+1, y, z+3/2.
Contact geometry (Å ,°) for I top
Cg1 is the centroid of the N1/C1–C5 ring.
X—Y···AX—YY···AX···AX—Y···A
C11—H11···F1i0.952.463.4049 (19)170.3
C1—F1···Cg1ii1.3404 (18)3.6822 (13)4.8632 (17)147.20 (9)
Symmetry codes: (i) -x + 2, y - 1/2, -z + 1/2; (ii) 2 - x, 1/2 + x, 1/2 - z.
Contact geometry (Å, °) for II top
Cg1 and Cg2 are the centroids of the N1/C1–C4 and C6–C11 rings, respectively.
X—Y···AX—YY···AX···AX—Y···A
C10—H10···F3i0.952.393.2214 (19)145.9
C11—H11···Cg2i0.952.903.668 (2)139
C1—F1···Cg1ii1.3395 (19)3.1531 (14)4.068 (2)124.76 (10)
C5—F4···Cg1iii1.3401 (19)3.1094 (13)3.6241 (18)101.55 (9)
C9—Br1···N1iv1.8952 (17)3.2639 (16)5.104 (3)162.65 (7)
Symmetry codes: (i) -x + 3/2, y + 1/2, -z + 3/2; (ii) -x + 1/2, y + 1/2, -z + 3/2; (iii) -x + 1, -y + 1, -z + 2; (iv) 1/2 + x, 1/2 - y, -1/2 + z.
Contact geometry (Å, °) for III top
Cg1 and Cg2 are the centroids of the N1/C1–C5 and C6–C15 rings respectively.
X—Y···AX—YY···AX···AX—Y···A
C7—H7···F3i0.952.503.4366 (19)169.6
C15—H15···N1ii0.952.593.455 (2)152.1
C1—F1···Cg2iii1.334 (2)3.2922 (15)3.5581 (19)90.28 (10)
C5—F4···Cg1iv1.343 (2)3.2790 (14)4.2804 (18)130.88 (11)
Symmetry codes: (i) x + 1, y, z; (ii) -x, y + 1/2, -z + 1/2; (iii) 1 - x, -1/2 + y, 1/2 - z; (iv) - x, -1/2 + y, 1/2 - z.
Contact geometry (Å, °) for IV top
Cg1, Cg2, and Cg3 are the centroids of the N1/C1–C5, C6–C15, and C8–C13 rings, respectively.
X—Y···AX—YY···AX···AX—Y···A
C15—H15···F3ii0.952.433.105 (5)127.5
C9—H9···Cg3i0.952.833.519 (5)130
C11—Br1···Cg1iii1.901 (4)3.6283 (19)4.923 (5)122.74 (13)
C11—Br1···Cg2iv1.901 (4)3.735 (2)5.037 (4)123.34 (12)
C4—F3···Cg1v1.344 (6)3.082 (3)3.936 (5)120.3 (3)
Symmetry codes: (i) -x + 1, y + 1/2, -z + 1; (ii) x + 1, y, z; (iii) -x + 1, y - 1/2, -z + 1; (iv) -x + 2, y - 1/2, -z + 1; (v) -x, y - 1/2, -z.
Contact geometry (Å, °) for V top
Cg1 is the centroid of the N1/C1–C5 ring.
X—Y···AX—YY···AX···AX—Y···A
C11—H11···F3i0.952.633.2361 (13)121.8
C11—H11···F3ii0.952.603.2711 (12)127.8
C11—H11···O1i0.952.613.3446 (13)134.3
C5—F4···Cg1iii1.3382 (12)3.4138 (9)4.3778 (12)128.77 (6)
Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, -y + 1, z - 1/2; (iii) x, 1 - y, 1/2 + z.
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for I top
ContactPercentage contribution
F···H/H···F36.9
C···H/H···C14.8
F···F12.1
H···H9.6
N···H/H···N4.8
F···C/C···F4.7
F···O/O···F4.2
C···C4.1
N···C/C···N3.2
O···C/C···O2.2
O···N/N···O2.0
F···N/N···F1.3
O···H/H···O0.1
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for II top
ContactPercentage contribution
F···H/H···F18.7
F···C/C···F11.8
C···H/H···C11.7
F···F10.8
Br···F/F···Br8.3
Br···H/H···Br7.7
H···H6.9
F···N/N···F6.1
O···H/H···O4.6
Br···N/N···Br3.5
C···C3.4
Br···C/C···Br2.2
Br···O/O···Br1.8
N···C/C···N0.9
F···O/O···F0.8
O···C/C···O0.6
N···H/H···N0.2
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for III top
ContactPercentage contribution
F···H/H···F30.4
C···H/H···C22.8
H···H14.0
F···C/C···F10.0
F···F6.6
N···H/H···N4.2
O···C/C···O2.9
F···O/O···F2.3
F···N/N···F2.0
O···H/H···O0.3
O···N/N···O1.6
C···C1.5
N···C/C···N1.4
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for IV top
ContactPercentage contribution
C···H/H···C19.1
F···H/H···F18.8
F···C/C···F9.4
H···H9.1
Br···H/H···Br8.7
F···F7.7
Br···C/C···Br7.2
F···O/O···F4.5
Br···F/F···Br3.9
F···N/N···F3.7
N···H/H···N2.6
C···C1.5
N···C/C···N1.1
O···N/N···O0.9
Br···N/N···Br0.8
O···C/C···O0.6
O···H/H···O0.3
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for V top
ContactPercentage contribution
F···H/H···F32.3
F···C/C···F19.0
H···H11.6
F···F11.3
N···H/H···N7.1
F···N/N···F6.3
C···H/H···C4.8
O···H/H···O4.5
F···O/O···F1.8
C···C1.3
 

Funding information

Funding for this research was provided by: Air Force Office of Scientific Research.

References

First citationBaker, J. & Muir, M. (2010). Can. J. Chem. 88, 588–597.  Web of Science CrossRef CAS Google Scholar
First citationBanks, R. E., Jondi, W. J., Pritchard, R. G. & Tipping, A. E. (1995). Acta Cryst. C51, 291–293.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBhambra, A. S., Edgar, M., Elsegood, M. R. J., Horsburgh, L., Kryštof, V., Lucas, P. D., Mojally, M., Teat, S. J., Warwick, T. G., Weaver, G. W. & Zeinali, F. (2016). J. Fluor. Chem. 188, 99–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrittain, W. D. G. & Cobb, S. L. (2019). Org. Biomol. Chem. 17, 2110–2115.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChambers, R. D., Seabury, M. J., Williams, D. L. N. & Hughes, N. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 255–257.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGimenez, D., Mooney, C. A., Dose, A., Sandford, G., Coxon, C. R. & Cobb, S. L. (2017). Org. Biomol. Chem. 15, 4086–4095.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSen, S., Slebodnick, C. & Deck, P. A. (2009). CSD Communication (refcode UDUXEY). CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWebster, A. M., Coxon, C. R., Kenwright, A. M., Sandford, G. & Cobb, S. L. (2014). Tetrahedron, 70, 4661–4667.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds