research communications
μ4-3-(1,2,4-triazol-4-yl)adamantane-1-carboxylato-κ5N1:N2:O1:O1,O1′]silver(I)] dihydrate]
of poly[[[aInorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64, Kyiv 01033, Ukraine, and bInstitut für Anorganische Chemie, Universitat Leipzig, Johannisallee 29, D-04103, Leipzig, Germany
*Correspondence e-mail: senchyk.ganna@gmail.com
The heterobifunctional organic ligand, 3-(1,2,4-triazol-4-yl)adamantane-1-carboxylate (tr-ad-COO−), was employed for the synthesis of the title silver(I) coordination polymer, {[Ag(C13H16N3O2)]·2H2O}n, crystallizing in the rare orthorhombic C2221 Alternation of the double μ2-1,2,4-triazole and μ2-η2:η1-COO− (chelating, bridging mode) bridges between AgI cations supports the formation of sinusoidal coordination chains. The AgI centers possess a distorted {N2O3} square-pyramidal arrangement with τ5 = 0.30. The angular organic linkers connect the chains into a tetragonal framework with small channels along the c-axis direction occupied by water molecules of crystallization, which are interlinked via O—H⋯O hydrogen bonds with carboxylate groups, leading to right- and left-handed helical dispositions.
Keywords: 1,2,4-triazolyl carboxylate; silver(I) metal-organic framework; hydrogen bonding; crystal structure.
CCDC reference: 1939097
1. Chemical context
Organic ligands, which contain two different functional groups, such as azole and carboxylic groups, attract attention in the context of the construction of unusual metal–organic frameworks (MOFs) including heterometallic architectures (Guillerm et al. 2014). Each ligand function is intended to introduce its coordination ability towards a metal center forming secondary building units (SBUs) based on its peculiarities. For instance, 1,2,4-triazoles (tr) typically serve as short N,N-bridges between two metal ions resulting in polynuclear units and chains (Wang et al. 2007, Murdock & Jenkins 2014). In contrast, carboxylate groups offer a much broader variety of coordination modes: mono-, chelate-, bridging- and their combinations; and the number of connected metal ions may differ from one to four (Sun et al. 2004; Lu et al. 2014). As shown by Lincke et al. (2011, 2012), 1,2,4-triazolecarboxylate ligands are good candidates for the construction of microporous MOFs suitable for gas sorption and separation. Considering the heterofunctional tr/COO ligands, there are two possible roles for them to play. First, the `separate' role, where tr is responsible for di-, tri- or tetranuclear cluster formation, whereas the COO− group only occupies terminal (non-bridging) positions (Handke et al. 2014) or it can be involved in the separate coordination to metal centers. In this context, Chen et al. (2011) used 1,2,4-triazolyl isophthalate as a ligand in the synthesis of a series of AgI–LnIII heterometallic coordination polymers. Second, in the `cooperative' role, tr/COO serves as a heteroleptic bridge between the metal centers (Vasylevs'kyy et al. 2015).
In present paper, we report the tr-ad-COO)]n·2H2O (I) based on the 1-(1,2,4-triazol-4-yl)-3-carboxyadamantane (C13H16N3O2; tr-ad-COOH) ligand.
of a new silver(I) coordination polymer [Ag(2. Structural commentary
The title compound I crystallizes in the orthorhombic system with the uncommon C2221. The contains one AgI cation, one organic ligand and three distinct water molecules of crystallization, one of which (O5) is disordered over two adjacent sites (Fig. 1). The O3 water molecule is situated on a crystallographic twofold axis passing through the O atom, while the O4 water molecule is statistically disordered over two positions, both possessing an occupancy factor of 0.5. Thus, in the the total atom content sums up to two water molecules. The 1,2,4-triazole is coordinated by two AgI centers as a μ2-N,N bridge and the carboxylate group connects two AgI centers in a chelating, bridging mode (μ2-η2:η1), supporting the formation of sinusoidal chains with a periodicity of 13 Å.
In the case of compound I an unusual situation with alternation of double triazoles and double carboxylate bridges within the chain is observed. Thus, the tr-ad-COO− ligands act in a deprotonated form adopting a μ4-coordination modes (Fig. 2) that yields a three-dimensional tetragonal pattern with open channels along the c-axis direction (Fig. 3).
The coordination environment of the AgI cation is a very distorted {N2O3} polyhedron with two Ag—N(triazole) [2.291 (3) Å, 2.442 (3) Å] and three elongated Ag—O(carboxylate) [2.437 (3)–2.703 (4) Å] bonds (Table 1). The geometry of the five-coordinate center can be described by the geometric parameter τ5, which represents the degree of trigonality between two ideal structures – trigonal bipyramid (τ5 = 1) and square pyramid (τ5 = 0) (Addison et al., 1984). In compound I, the Ag1 center has τ5 = 0.30, indicating a significantly distorted square-pyramidal geometry.
3. Supramolecular features
The water guest molecules inside the [001] channels are responsible for the extended hydrogen-bonding network (Table 2). Together with the –COO− groups, they are organized into two types of helices along the c axis – smaller right-handed (A in Fig. 4) and bigger left-handed (B in Fig. 4). In addition, weak C—H(triazole)⋯O1(COO) and C—H(triazole)⋯O4(water) contacts are observed. The packig is shown in Fig. 5.
4. Synthesis and crystallization
1-(1,2,4-Triazol-4-yl)-3-carboxyadamantane (tr-ad-COOH) was synthesized by refluxing 3-amino-adamantane-1-carboxylic acid (Wanka et al., 2007) (3.00 g, 15.4 mmol) and dimethylformamide azine (5.46 g, 38.5 mmol) in the presence of toluenesulfonic acid monohydrate (0.44 g, 2.3 mmol) as catalyst in DMF (30 ml). Yield = 63%.
The synthesis of I was carried out under hydrothermal conditions as follows. A mixture of AgNO3 (17.0 mg, 0.100 mmol), tr-ad-COOH (12.4 mg, 0.050 mmol) and 5 ml of water was added into a Teflon vessel, which was sealed and heated at 413 K for 24 h and slowly cooled to room temperature over 48 h, yielding colourless needles of I (yield 13.3 mg, 68%).
5. Refinement
Crystal data, data collection and structure . O4 lies adjacent to a crystallographic twofold axis and is statistically disordered over two positions (O4⋯O4 = 0.60 Å) and O5 is statistically disordered over adjacent locations (O5A⋯O5B = 0.77 Å). CH hydrogen atoms were positioned geometrically and refined as riding, with C—H = 0.94 Å (triazole); C—H = 0.98 Å (adamantane CH2); C—H = 0.99 Å (adamantane CH) and with Uiso(H) = 1.2Ueq(C). OH hydrogen atoms were located and then refined with O—H = 0.85 Å (H2O) and with Uiso(H) = 1.5Ueq(O). For one of the disordered water molecules, the H atoms were not located.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1939097
https://doi.org/10.1107/S2056989019009708/hb7837sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019009708/hb7837Isup2.hkl
Data collection: IPDS Software (Stoe & Cie, 2000); cell
IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).[Ag(C13H16N3O2)]·2H2O | Dx = 1.726 Mg m−3 |
Mr = 390.19 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, C2221 | Cell parameters from 13596 reflections |
a = 12.9321 (9) Å | θ = 2.8–28.0° |
b = 17.9056 (10) Å | µ = 1.36 mm−1 |
c = 12.9695 (9) Å | T = 213 K |
V = 3003.2 (3) Å3 | Needle, colourless |
Z = 8 | 0.22 × 0.18 × 0.16 mm |
F(000) = 1584 |
Stoe Image plate diffraction system diffractometer | 3135 reflections with I > 2σ(I) |
φ oscillation scans | Rint = 0.028 |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | θmax = 28.0°, θmin = 2.8° |
Tmin = 0.649, Tmax = 0.689 | h = −17→17 |
13596 measured reflections | k = −22→23 |
3617 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.037P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.058 | (Δ/σ)max = 0.001 |
S = 0.97 | Δρmax = 0.89 e Å−3 |
3617 reflections | Δρmin = −0.94 e Å−3 |
204 parameters | Absolute structure: Flack x determined using 1289 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.060 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.39032 (3) | 0.01581 (2) | 0.35981 (2) | 0.04198 (10) | |
O1 | 0.4141 (3) | 0.14822 (17) | 0.3962 (2) | 0.0474 (8) | |
O2 | 0.3185 (3) | 0.09152 (19) | 0.5123 (3) | 0.0581 (9) | |
N1 | 0.0616 (2) | 0.45845 (17) | 0.3648 (3) | 0.0318 (6) | |
N2 | 0.1451 (2) | 0.46474 (17) | 0.2982 (2) | 0.0316 (7) | |
N3 | 0.1946 (2) | 0.39903 (16) | 0.4325 (2) | 0.0231 (6) | |
C1 | 0.0930 (3) | 0.4190 (2) | 0.4435 (3) | 0.0282 (8) | |
H1 | 0.0514 | 0.4060 | 0.5001 | 0.034* | |
C2 | 0.2230 (3) | 0.4290 (2) | 0.3398 (2) | 0.0276 (7) | |
H2 | 0.2890 | 0.4245 | 0.3102 | 0.033* | |
C3 | 0.3583 (3) | 0.1495 (2) | 0.4758 (3) | 0.0339 (9) | |
C4 | 0.2574 (2) | 0.3521 (2) | 0.5055 (3) | 0.0219 (7) | |
C5 | 0.2762 (3) | 0.27539 (19) | 0.4550 (3) | 0.0234 (7) | |
H5A | 0.3139 | 0.2819 | 0.3900 | 0.028* | |
H5B | 0.2098 | 0.2515 | 0.4396 | 0.028* | |
C6 | 0.3398 (3) | 0.2253 (2) | 0.5293 (3) | 0.0260 (7) | |
C7 | 0.2807 (3) | 0.2174 (2) | 0.6319 (3) | 0.0333 (8) | |
H7A | 0.2140 | 0.1929 | 0.6196 | 0.040* | |
H7B | 0.3206 | 0.1862 | 0.6796 | 0.040* | |
C8 | 0.2626 (3) | 0.2948 (2) | 0.6802 (3) | 0.0333 (9) | |
H8 | 0.2247 | 0.2887 | 0.7460 | 0.040* | |
C9 | 0.1977 (3) | 0.3427 (2) | 0.6064 (3) | 0.0278 (8) | |
H9A | 0.1311 | 0.3184 | 0.5931 | 0.033* | |
H9B | 0.1843 | 0.3917 | 0.6374 | 0.033* | |
C10 | 0.3616 (3) | 0.3907 (2) | 0.5253 (3) | 0.0287 (8) | |
H10A | 0.3502 | 0.4401 | 0.5556 | 0.034* | |
H10B | 0.3990 | 0.3970 | 0.4601 | 0.034* | |
C11 | 0.4256 (3) | 0.3416 (2) | 0.5999 (3) | 0.0326 (8) | |
H11 | 0.4930 | 0.3659 | 0.6135 | 0.039* | |
C12 | 0.4439 (3) | 0.2646 (2) | 0.5505 (3) | 0.0294 (8) | |
H12A | 0.4859 | 0.2338 | 0.5968 | 0.035* | |
H12B | 0.4819 | 0.2707 | 0.4857 | 0.035* | |
C13 | 0.3663 (3) | 0.3327 (2) | 0.7016 (3) | 0.0384 (10) | |
H13A | 0.4069 | 0.3025 | 0.7499 | 0.046* | |
H13B | 0.3547 | 0.3818 | 0.7328 | 0.046* | |
O3 | 0.5000 | 0.2468 (3) | 0.2500 | 0.0630 (13) | |
H1W | 0.4787 | 0.2190 | 0.2988 | 0.094* | |
O4 | 0.5231 (6) | 0.3992 (4) | 0.2479 (18) | 0.068 (3) | 0.5 |
H2W | 0.5153 | 0.3530 | 0.2348 | 0.102* | 0.5 |
H3W | 0.5724 | 0.4038 | 0.2909 | 0.102* | 0.5 |
O5A | 0.1318 (13) | 0.0398 (10) | 0.6097 (11) | 0.096 (4) | 0.5 |
O5B | 0.1073 (12) | 0.0560 (11) | 0.5604 (12) | 0.100 (5) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.04963 (17) | 0.03609 (16) | 0.04023 (15) | 0.01122 (15) | −0.00959 (15) | −0.01749 (13) |
O1 | 0.063 (2) | 0.0348 (16) | 0.0446 (17) | 0.0145 (14) | −0.0012 (14) | −0.0141 (12) |
O2 | 0.064 (2) | 0.0231 (18) | 0.087 (3) | 0.0013 (17) | 0.005 (2) | −0.0047 (15) |
N1 | 0.0325 (15) | 0.0318 (15) | 0.0311 (14) | 0.0098 (12) | −0.0019 (15) | −0.0012 (14) |
N2 | 0.0379 (17) | 0.0292 (17) | 0.0275 (14) | 0.0059 (13) | −0.0028 (12) | 0.0018 (12) |
N3 | 0.0255 (15) | 0.0201 (15) | 0.0239 (14) | 0.0042 (12) | −0.0023 (11) | 0.0004 (11) |
C1 | 0.0258 (19) | 0.0321 (19) | 0.0266 (17) | 0.0057 (15) | 0.0039 (14) | 0.0016 (13) |
C2 | 0.0290 (17) | 0.0307 (19) | 0.0231 (17) | 0.0050 (15) | 0.0002 (13) | 0.0037 (13) |
C3 | 0.037 (2) | 0.019 (2) | 0.045 (2) | 0.0076 (16) | −0.0134 (16) | −0.0061 (17) |
C4 | 0.0260 (15) | 0.022 (2) | 0.0176 (13) | 0.0035 (15) | −0.0030 (14) | 0.0009 (11) |
C5 | 0.0261 (16) | 0.0211 (17) | 0.0229 (15) | 0.0034 (14) | −0.0023 (13) | −0.0028 (13) |
C6 | 0.0317 (18) | 0.0184 (17) | 0.0280 (17) | 0.0040 (15) | −0.0026 (13) | −0.0024 (13) |
C7 | 0.0394 (18) | 0.0290 (19) | 0.0315 (18) | 0.0046 (15) | 0.0011 (17) | 0.0080 (16) |
C8 | 0.042 (2) | 0.039 (2) | 0.0196 (15) | 0.0089 (17) | 0.0015 (15) | 0.0045 (14) |
C9 | 0.0321 (19) | 0.0278 (19) | 0.0235 (16) | 0.0076 (15) | 0.0039 (13) | 0.0010 (13) |
C10 | 0.0305 (19) | 0.0208 (19) | 0.0349 (19) | −0.0023 (14) | −0.0063 (13) | −0.0024 (15) |
C11 | 0.0323 (19) | 0.0275 (19) | 0.0380 (19) | 0.0011 (15) | −0.0147 (15) | −0.0050 (15) |
C12 | 0.0272 (18) | 0.029 (2) | 0.0321 (19) | 0.0056 (16) | −0.0059 (14) | −0.0003 (15) |
C13 | 0.052 (3) | 0.037 (2) | 0.0266 (17) | 0.0087 (18) | −0.0121 (16) | −0.0052 (15) |
O3 | 0.067 (3) | 0.060 (3) | 0.062 (3) | 0.000 | 0.001 (3) | 0.000 |
O4 | 0.051 (9) | 0.068 (4) | 0.085 (5) | −0.008 (4) | −0.018 (10) | 0.000 (6) |
O5A | 0.089 (10) | 0.109 (9) | 0.091 (10) | −0.005 (7) | 0.009 (7) | −0.018 (8) |
O5B | 0.060 (7) | 0.128 (12) | 0.110 (11) | 0.003 (8) | −0.005 (8) | −0.045 (10) |
Ag1—N2i | 2.291 (3) | C6—C12 | 1.544 (5) |
Ag1—O1 | 2.437 (3) | C7—C8 | 1.538 (5) |
Ag1—N1ii | 2.442 (3) | C7—H7A | 0.9800 |
Ag1—O2 | 2.571 (4) | C7—H7B | 0.9800 |
Ag1—O2iii | 2.703 (4) | C8—C13 | 1.529 (6) |
O1—C3 | 1.259 (5) | C8—C9 | 1.536 (5) |
O2—C3 | 1.251 (5) | C8—H8 | 0.9900 |
N1—C1 | 1.305 (5) | C9—H9A | 0.9800 |
N1—N2 | 1.387 (4) | C9—H9B | 0.9800 |
N1—Ag1iv | 2.442 (3) | C10—C11 | 1.548 (5) |
N2—C2 | 1.310 (5) | C10—H10A | 0.9800 |
N2—Ag1v | 2.291 (3) | C10—H10B | 0.9800 |
N3—C2 | 1.366 (4) | C11—C13 | 1.533 (6) |
N3—C1 | 1.369 (5) | C11—C12 | 1.538 (5) |
N3—C4 | 1.505 (4) | C11—H11 | 0.9900 |
C1—H1 | 0.9400 | C12—H12A | 0.9800 |
C2—H2 | 0.9400 | C12—H12B | 0.9800 |
C3—C6 | 1.544 (5) | C13—H13A | 0.9800 |
C4—C9 | 1.530 (5) | C13—H13B | 0.9800 |
C4—C10 | 1.535 (5) | O3—H1W | 0.8500 |
C4—C5 | 1.541 (5) | O4—O4vi | 0.601 (16) |
C5—C6 | 1.552 (5) | O4—H2W | 0.8500 |
C5—H5A | 0.9800 | O4—H3W | 0.8500 |
C5—H5B | 0.9800 | O5A—O5B | 0.770 (16) |
C6—C7 | 1.542 (5) | ||
N2i—Ag1—O1 | 125.93 (11) | C3—C6—C5 | 108.1 (3) |
N2i—Ag1—N1ii | 92.12 (11) | C8—C7—C6 | 110.1 (3) |
O1—Ag1—N1ii | 106.84 (11) | C8—C7—H7A | 109.6 |
N2i—Ag1—O2 | 145.74 (12) | C6—C7—H7A | 109.6 |
O1—Ag1—O2 | 51.95 (11) | C8—C7—H7B | 109.6 |
N1ii—Ag1—O2 | 121.93 (12) | C6—C7—H7B | 109.6 |
N2i—Ag1—O2iii | 101.35 (11) | H7A—C7—H7B | 108.2 |
O1—Ag1—O2iii | 128.04 (11) | C13—C8—C9 | 110.1 (3) |
N1ii—Ag1—O2iii | 89.79 (11) | C13—C8—C7 | 110.0 (3) |
O2—Ag1—O2iii | 77.22 (13) | C9—C8—C7 | 109.5 (3) |
C3—O1—Ag1 | 96.0 (3) | C13—C8—H8 | 109.1 |
C3—O2—Ag1 | 89.9 (3) | C9—C8—H8 | 109.1 |
C1—N1—N2 | 106.7 (3) | C7—C8—H8 | 109.1 |
C1—N1—Ag1iv | 122.0 (2) | C4—C9—C8 | 108.5 (3) |
N2—N1—Ag1iv | 130.9 (2) | C4—C9—H9A | 110.0 |
C2—N2—N1 | 107.6 (3) | C8—C9—H9A | 110.0 |
C2—N2—Ag1v | 135.8 (2) | C4—C9—H9B | 110.0 |
N1—N2—Ag1v | 115.7 (2) | C8—C9—H9B | 110.0 |
C2—N3—C1 | 104.3 (3) | H9A—C9—H9B | 108.4 |
C2—N3—C4 | 128.9 (3) | C4—C10—C11 | 108.6 (3) |
C1—N3—C4 | 126.8 (3) | C4—C10—H10A | 110.0 |
N1—C1—N3 | 111.0 (3) | C11—C10—H10A | 110.0 |
N1—C1—H1 | 124.5 | C4—C10—H10B | 110.0 |
N3—C1—H1 | 124.5 | C11—C10—H10B | 110.0 |
N2—C2—N3 | 110.3 (3) | H10A—C10—H10B | 108.4 |
N2—C2—H2 | 124.8 | C13—C11—C12 | 110.0 (3) |
N3—C2—H2 | 124.8 | C13—C11—C10 | 109.2 (3) |
O2—C3—O1 | 122.1 (4) | C12—C11—C10 | 109.3 (3) |
O2—C3—C6 | 119.7 (4) | C13—C11—H11 | 109.4 |
O1—C3—C6 | 118.2 (4) | C12—C11—H11 | 109.4 |
N3—C4—C9 | 109.1 (3) | C10—C11—H11 | 109.4 |
N3—C4—C10 | 109.1 (3) | C11—C12—C6 | 110.4 (3) |
C9—C4—C10 | 110.5 (3) | C11—C12—H12A | 109.6 |
N3—C4—C5 | 108.4 (3) | C6—C12—H12A | 109.6 |
C9—C4—C5 | 110.2 (3) | C11—C12—H12B | 109.6 |
C10—C4—C5 | 109.5 (3) | C6—C12—H12B | 109.6 |
C4—C5—C6 | 109.5 (3) | H12A—C12—H12B | 108.1 |
C4—C5—H5A | 109.8 | C8—C13—C11 | 109.2 (3) |
C6—C5—H5A | 109.8 | C8—C13—H13A | 109.8 |
C4—C5—H5B | 109.8 | C11—C13—H13A | 109.8 |
C6—C5—H5B | 109.8 | C8—C13—H13B | 109.8 |
H5A—C5—H5B | 108.2 | C11—C13—H13B | 109.8 |
C7—C6—C12 | 108.7 (3) | H13A—C13—H13B | 108.3 |
C7—C6—C3 | 112.6 (3) | O4vi—O4—H2W | 84.2 |
C12—C6—C3 | 110.2 (3) | O4vi—O4—H3W | 133.4 |
C7—C6—C5 | 109.1 (3) | H2W—O4—H3W | 108.4 |
C12—C6—C5 | 108.1 (3) | ||
C1—N1—N2—C2 | −0.1 (4) | O2—C3—C6—C5 | −114.4 (4) |
Ag1iv—N1—N2—C2 | 173.7 (3) | O1—C3—C6—C5 | 65.8 (4) |
C1—N1—N2—Ag1v | 171.1 (2) | C4—C5—C6—C7 | 58.0 (4) |
Ag1iv—N1—N2—Ag1v | −15.1 (4) | C4—C5—C6—C12 | −60.0 (4) |
N2—N1—C1—N3 | 0.4 (4) | C4—C5—C6—C3 | −179.3 (3) |
Ag1iv—N1—C1—N3 | −174.1 (2) | C12—C6—C7—C8 | 58.8 (4) |
C2—N3—C1—N1 | −0.5 (4) | C3—C6—C7—C8 | −178.8 (3) |
C4—N3—C1—N1 | −178.4 (3) | C5—C6—C7—C8 | −58.8 (4) |
N1—N2—C2—N3 | −0.2 (4) | C6—C7—C8—C13 | −60.3 (4) |
Ag1v—N2—C2—N3 | −168.8 (3) | C6—C7—C8—C9 | 60.7 (4) |
C1—N3—C2—N2 | 0.4 (4) | N3—C4—C9—C8 | 180.0 (3) |
C4—N3—C2—N2 | 178.3 (3) | C10—C4—C9—C8 | −60.1 (4) |
Ag1—O2—C3—O1 | −4.0 (4) | C5—C4—C9—C8 | 61.1 (4) |
Ag1—O2—C3—C6 | 176.3 (3) | C13—C8—C9—C4 | 59.9 (4) |
Ag1—O1—C3—O2 | 4.2 (4) | C7—C8—C9—C4 | −61.1 (4) |
Ag1—O1—C3—C6 | −176.0 (3) | N3—C4—C10—C11 | −179.7 (3) |
C2—N3—C4—C9 | 170.9 (3) | C9—C4—C10—C11 | 60.4 (4) |
C1—N3—C4—C9 | −11.7 (5) | C5—C4—C10—C11 | −61.2 (4) |
C2—N3—C4—C10 | 50.1 (5) | C4—C10—C11—C13 | −60.1 (4) |
C1—N3—C4—C10 | −132.5 (3) | C4—C10—C11—C12 | 60.4 (4) |
C2—N3—C4—C5 | −69.0 (4) | C13—C11—C12—C6 | 59.3 (4) |
C1—N3—C4—C5 | 108.3 (4) | C10—C11—C12—C6 | −60.6 (4) |
N3—C4—C5—C6 | −179.3 (3) | C7—C6—C12—C11 | −58.4 (4) |
C9—C4—C5—C6 | −60.0 (3) | C3—C6—C12—C11 | 177.8 (3) |
C10—C4—C5—C6 | 61.8 (4) | C5—C6—C12—C11 | 59.8 (4) |
O2—C3—C6—C7 | 6.2 (5) | C9—C8—C13—C11 | −60.8 (4) |
O1—C3—C6—C7 | −173.6 (3) | C7—C8—C13—C11 | 59.9 (4) |
O2—C3—C6—C12 | 127.7 (4) | C12—C11—C13—C8 | −59.4 (4) |
O1—C3—C6—C12 | −52.1 (4) | C10—C11—C13—C8 | 60.5 (4) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x+1/2, y−1/2, z; (iii) x, −y, −z+1; (iv) x−1/2, y+1/2, z; (v) −x+1/2, y+1/2, −z+1/2; (vi) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1W···O1 | 0.85 | 1.97 | 2.818 (5) | 171 |
O4—H2W···O3 | 0.85 | 1.92 | 2.746 (10) | 163 |
O4—H3W···O5Avii | 0.85 | 1.81 | 2.56 (2) | 147 |
O4—H3W···O5Bvii | 0.85 | 2.11 | 2.83 (3) | 143 |
C1—H1···O1viii | 0.94 | 2.43 | 3.336 (5) | 162 |
C2—H2···O4vi | 0.94 | 2.58 | 3.516 (12) | 171 |
Symmetry codes: (vi) −x+1, y, −z+1/2; (vii) x+1/2, −y+1/2, −z+1; (viii) x−1/2, −y+1/2, −z+1. |
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 19BF037-05).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chen, M., Chen, M.-S., Okamura, T., Lv, M.-F., Sun, W.-Y. & Ueyama, N. (2011). CrystEngComm, 13, 3801–3810. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Guillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X., Adil, K., Lah, M. S. & Eddaoudi, M. (2014). Chem. Soc. Rev. 43, 6141–6172. Web of Science CrossRef CAS PubMed Google Scholar
Handke, M., Weber, H., Lange, M., Möllmer, J., Lincke, J., Gläser, R., Staudt, R. & Krautscheid, H. (2014). Inorg. Chem. 53, 7599–7607. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lincke, J., Lässig, D., Kobalz, M., Bergmann, J., Handke, M., Möllmer, J., Lange, M., Roth, C., Möller, A., Staudt, R. & Krautscheid, H. (2012). Inorg. Chem. 51, 7579–7586. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lincke, J., Lässig, D., Moellmer, J., Reichenbach, C., Puls, A., Moeller, A., Gläser, R., Kalies, G., Staudt, R. & Krautscheid, H. (2011). Microporous Mesoporous Mater. 142, 62–69. Web of Science CSD CrossRef CAS Google Scholar
Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle, T. III, Bosch, M. & Zhou, H.-C. (2014). Chem. Soc. Rev. 43, 5561–5593. Web of Science CrossRef CAS PubMed Google Scholar
Murdock, C. R. & Jenkins, D. M. (2014). J. Am. Chem. Soc. 136, 10983–10988. Web of Science CSD CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Sun, D., Cao, R., Bi, W., Weng, J., Hong, M. & Liang, Y. (2004). Inorg. Chim. Acta, 357, 991–1001. Web of Science CSD CrossRef CAS Google Scholar
Vasylevs'kyy, S. I., Lysenko, A. B., Krautscheid, H., Karbowiak, M., Rusanov, E. B. & Domasevitch, K. V. (2015). Inorg. Chem. Commun. 62, 51–54. CAS Google Scholar
Wang, Y., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 2002–2010. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wanka, L., Cabrele, C., Vanejews, M. & Schreiner, P. R. (2007) Eur. J. Org. Chem. pp. 1474–1490. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.