research communications
Bis(mefloquinium) butanedioate ethanol monosolvate:
and Hirshfeld surface analysisaFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and cResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The 17H17F6N2O+· C4H4O42−·CH3CH2OH, (systematic name: 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl](hydroxy)methyl}piperidin-1-ium butanedioate ethanol monosolvate) comprises two independent cations, with almost superimposable conformations and each approximating the shape of the letter L, a butanedioate dianion with an all-trans conformation and an ethanol solvent molecule. In the crystal, supramolecular chains along the a-axis direction are sustained by charge-assisted hydroxy-O—H⋯O(carboxylate) and ammonium-N—H⋯O(carboxylate) hydrogen bonds. These are connected into a layer via C—F⋯π(pyridyl) contacts and π–π stacking interactions between quinolinyl-C6 and –NC5 rings of the independent cations of the [inter-centroid separations = 3.6784 (17) and 3.6866 (17) Å]. Layers stack along the c-axis direction with no directional interactions between them. The analysis of the calculated Hirshfeld surface reveals the significance of the fluorine atoms in surface contacts. Thus, by far the greatest contribution to the surface contacts, i.e. 41.2%, are of the type F⋯H/H⋯F and many of these occur in the inter-layer region. However, these contacts occur at separations beyond the sum of the van der Waals radii for these atoms. It is noted that H⋯H contacts contribute 29.8% to the overall surface, with smaller contributions from O⋯H/H⋯O (14.0%) and F⋯F (5.7%) contacts.
of the centrosymmetric title salt solvate, 2CKeywords: crystal structure; mefloquine; salt; hydrogen bonding; Hirshfeld surface analysis.
CCDC reference: 1938793
1. Chemical context
Malaria continues to be a major worldwide health issue and vast populations in tropical countries, including visitors to those regions, are susceptible to the disease, which is spread by parasites such as Plasmodium falciparum (Maguire et al., 2006). The problem is compounded by the parasites' abilities to develop resistance to drugs, such as to the once popular chloroquine (Grabias & Kumar, 2016). Mefloquine, [2,8-bis(trifluoromethyl)quinolin-4-yl]-piperidin-2-ylmethanol, is a drug used against malaria (Tickell-Painter et al., 2017). The molecule contains two adjacent chiral centres, i.e. one at the carbon atom carrying the hydroxy group and one at the link connecting the piperidinyl ring to the rest of the molecule. The drug is commonly marketed as Lariam, which is the hydrochloride salt, comprising (R*,S*)-(2-{[2,8-bis(trifluoromethyl)quinolin-4-yl](hydroxymethyl)piperidin-1-ium chloride and its (S*,R*) enantiomer. While the former is effective against malaria, the latter has an affinity for the adenosine acceptors in the brain, inducing serious psychiatric and neurologic side-effects (Nevin, 2017). Hence, experiments at resolving the enantiomers are of practical importance (Engwerda et al., 2019). Herein, as continuation of our anion-exchange experiments of the racemic salt and attendant structural studies (Wardell et al., 2016; Wardell, Wardell et al., 2018; Wardell, Jotani et al., 2018; Wardell & Tiekink, 2019), the crystal and molecular structures of the butanedioate salt, isolated as an ethanol monosolvate, are described along with an analysis of the calculated Hirshfeld surfaces.
2. Structural commentary
The , comprises two mefloquinium cations, a butanedioate dianion and a solvent ethanol molecule; the molecular structures of the ions are shown in Fig. 1. Evidence of proton transfer during crystallization is seen in the relatively small difference in the C O bond lengths of the dianion, i.e. C35—O3, O4 = 1.236 (4) and 1.285 (3) Å, and C38—O5, O6 = 1.255 (4) and 1.271 (4) Å. While normally these bond lengths might be expected to be closer to equivalent, as noted below, each of the O4 and O6 atoms participate in two strong charge-assisted hydrogen bonds, see Supramolecular features, which explains the slightly longer C O bond lengths formed by these atoms. Further support for proton transfer leading to the formation of piperidin-1-ium cations is supported by the pattern of hydrogen bonding involving the ammonium-N—H hydrogen atoms, as discussed below in Supramolecular features.
of the salt solvate, (I)The cations exhibit very similar molecular geometries, as highlighted in the overlay diagram of Fig. 2. There are two chiral centres in each cation and the illustrated cations are R at C12 and S at C13 for the N1-cation, and R at C29 and S at C30 for the N3-cation, i.e. each conforms to the [(+)-erythro-mefloquinium] isomer; space-group symmetry indicates that the contains equal numbers of both enantiomers. The r.m.s. deviation for the ten atoms comprising the N1-quinolinyl residue is 0.0254 Å [0.0256 Å for the N3-quinolinyl residue], with the hydroxy-O1 and ammonium-N2 atoms lying to either side of the plane, i.e. −0.323 (4) and 1.302 (6) Å, respectively [0.255 (4) Å for O2 and −1.348 (6) Å for N4]. The dihedral angle of 72.55 (9)° [71.48 (9)°] formed between the fused ring system and the least-squares plane through the piperinium ring indicates that, to a first approximation, the molecule has the shape of the letter L. Referring to Table 1, an intramolecular charge-assisted ammonium-N+—H⋯O(hydroxy) hydrogen-bond is formed as the hydroxyl-O1 and ammonium-N2 atoms lie to the same side of the cation with the O1—C12—C13—N2 torsion angle of −63.4 (3)° indicating a + syn-clinal relationship [O2—C29—C30—N4 = −68.4 (3)°].
In the butanedioate dianion, the C35—C36—C38—C39 torsion angle of 175.4 (3)° indicates an all-trans conformation (+ anti-periplanar). The dihedral angle formed between the terminal carboxylate residues is 51.0 (2)°, indicating that the dianion is considerably twisted.
3. Supramolecular features
The most prominent feature of the molecular packing is the formation of twisted supramolecular chains propagating parallel to the a-axis direction, Table 1 and Fig. 3a. Each of the cation-bound hydroxy groups forms a charge-assisted hydroxy-O—H⋯O(carboxylate) hydrogen bond to a carboxylate-O atom, at opposite ends of the butanedioate dianion. In addition, each of the four ammonium-N—H hydrogen atoms connects to a carboxylate-O atom, each derived from a different carboxylate residue, via a charge-assisted ammonium-N—H⋯O(carboxylate) hydrogen bond. Thus, each of the O4 and O6 atoms accept two charge-assisted hydrogen bonds. The carboxylate-O5 atom accepts a hydrogen bond from the solvent ethanol molecule, while ethanol-O7 participates in a methine-C—H⋯O interaction, Table 1. The carboxylate-O3 atom forms only one hydrogen bond. The number and strength of hydrogen bonds formed by the carboxylate-O atoms correlates with the magnitude of the C O bond lengths, e.g. the C35—O3 < C38—O5 < C38—O6 C35—O4 (see comment in Structural Commentary).
The connections between the chains leading to supramolecular layers that stack along the c-axis direction are of the type C—F⋯π(pyridyl), Table 1, occurring between N1-containing cations, and π–π stacking interactions between the independent molecules comprising the The latter occur between the C6 ring of the N1-quinolinyl residue (C4–C9) and each of the N3-quinolinyl-bound pyridyl (N3,C18–C21,C26) [inter-centroid separation = 3.6784 (17) Å, angle of inclination = 4.27 (14)°] and C6 (C21–C26) [3.6866 (17) Å, angle of inclination = 3.67 (14)°] rings. A view of the unit-cell contents is shown in Fig. 3b.
4. Hirshfeld surface analysis
The analysis of Hirshfeld surface calculations for (I) was performed in order to learn more about the supramolecular association, in particular, about the inter-layer connections, following established procedures (Tan et al., 2019) and employing Crystal Explorer 17 (Turner et al., 2017). Such analyses have proven useful for salts with multiple components comprising the (Jotani et al., 2019).
It is clearly evident from the numerous characteristic red spots on the Hirshfeld surfaces mapped over dnorm for the constituents of (I), shown in Fig. 4, that the butanedioate dianion plays a crucial role in forming significant interactions with each of the two independent mefloquinium cations as well as with the ethanol solvent molecule. The O—H⋯O and N—H⋯O hydrogen bonds summarized in Table 1 are characterized as bright-red spots on the Hirshfeld surface mapped over dnorm for the dianion, Fig. 4a and b, and near the respective donors on the Hirshfeld surfaces of the ethanol molecule, Fig. 4c, and mefloquinium cations in Fig. 4d and e. The effects of the short inter-atomic contacts on the packing of (I), summarized in Table 2, are also evident as the faint-red spots near the respective atoms, Fig. 4. The blue and red regions corresponding to positive and negative potentials, respectively, around the atoms of the dianion and solvent ethanol molecule, Fig. 5, and cations, Fig. 6, on the Hirshfeld surfaces mapped over electrostatic potential also represent donors and acceptors of the respective hydrogen bonds. The additional influence of the C—F⋯π contacts involving the F2 and F3 atoms interacting with the (C4–C9) and N1-pyridyl rings of the N1-quinolinyl residue are viewed as blue bumps and bright-orange concave regions, respectively, on the Hirshfeld surface mapped with the shape-index property in Fig. 7. The π–π contacts formed between the (C4–C9) ring of the O1-cation and each of the (C21–C26) and N3-pyridyl rings of the O2-cation are illustrated in Fig. 8.
|
The overall two-dimensional fingerprint plot for (I), Fig. 9a, and those delineated into specific H⋯H, O⋯H/H⋯O, F⋯H/H⋯F, C⋯F/⋯C and C⋯O/O⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 9b-e; the percentage contributions from the different inter-atomic contacts to the Hirshfeld surface are summarized in Table 3. The relatively small percentage contribution from H⋯H contacts to the Hirshfeld surface in the overall packing of (I) is due to the formation of a wide range of different intermolecular interactions between the constituent cations, dianions and solvent ethanol molecule. This is well-evidenced in the long list of contacts in Table 3. The presence of two trifluoromethyl groups in each of the independent cations results in a major contribution from fluorine atoms to the Hirshfeld surface of (I), as highlighted in Table 3. Indeed, the major contributor of contacts to the surface is of the type F⋯H/H⋯F, at 41.2%. Many of these occur in the inter-layer region at separations greater than the sum of the van der Waals radii.
|
The presence of a cone-shaped tip at de + di 2.2 Å in the fingerprint plot delineated into H⋯H contacts in Fig. 9b, is an indication of the short interatomic H⋯H contact between symmetry-related piperidinium-H34A and ethanol-H39A atoms, Table 2. The other short H⋯H contacts summarized in Table 2 occur between the hydrogen atoms of the cations and dianion within the In the fingerprint plot delineated into O⋯H/H⋯O contacts, Fig. 9c, the pair of long spikes with their tips at de + di ∼1.8 Å are due to the O—H⋯O and N—H⋯O hydrogen bonds involving the carboxylate-O4 atom of the dianion whereas the points corresponding to N—H⋯O hydrogen bonds involving the O3 and O5 atoms of the dianion and those involved in short interatomic O⋯H contacts, Table 2, are merged within the plot. The pair of conical tips at de + di ∼2.5 Å in the fingerprint plot delineated into F⋯H/H⋯F contacts, Fig. 9d, represent the presence of these short contacts. The effect of intermolecular C—F⋯π/π⋯F—C and short interatomic C⋯F/F⋯C contacts on the molecular packing, Table 3, results in a small but measurable contribution of 2.8% to the Hirshfeld surface of (I) and are viewed as the pair of forceps-like tips at de + di ∼3.1 Å in Fig. 9e. The presence of short interatomic C⋯O/O⋯C contacts involving the hydroxyl-O1 and -O2 atoms are characterized as a pair of leaf-like tips at de + di ∼3.0 Å in Fig. 9f. Finally, the presence of π–π stacking interactions between the (C4–C9) ring of the O1-cation and the (C21–C26) and N3-pyridyl rings of the O2-cation are reflected in the 3.4 and 3.3% contributions from C⋯C contacts to the Hirshfeld surfaces of the individual cations; although the contribution from these contacts to the surfaces in the overall structure of (I) is negligible as these are embedded within the asymmetric unit.
5. Database survey
As indicated in the Chemical context, the specific enantiomer of Lariam is important in terms of pharmacological activity. Hence, considerable investment has been made in attempting to resolve the enantiomers by salt formation. During such studies, a seemingly high propensity towards kryptoracemic behaviour has been revealed. Kryptoracemic behaviour is related to the rare phenomenon where enantiomeric molecules crystallize in one of the 65 Sohncke space groups, i.e. space groups which lack an inversion centre, a rotatory inversion axis, a glide plane or a mirror plane. In these circumstances, the enantiomeric molecules are related by e.g. a non-crystallographic centre of inversion. A review of this phenomenon has appeared for organic compounds (Fábián & Brock, 2010) where such behaviour is found in only 0.1% of structures. There are about 30 mefloquine/derivatives in the Cambridge Structural Database (Groom et al., 2016) and of these, there are two examples of kryptoracemates (Jotani et al., 2016; Wardell, Wardell et al., 2016). Further, in a very recent study, 34 new mefloquine salts were reported of which two were kryptoracemates (Engwerda et al., 2019). Such a high adoption of kryptoracemic behaviour by these species suggest that further, systematic structural studies are warranted.
6. Synthesis and crystallization
A solution of mefloquinium chloride (1 mmol) and sodium succinate (2 mmol) in ethanol (15 ml) was refluxed for 30 min. The reaction mixture was left at room temperature and after three days, colourless platy crystals of (I) were collected; m.p. 505–505 K. Yield of recrystallized product 65%.
1H NMR (DMSO-d6): δ: 1.15–1.27 (2H, m), 1.32–1.47 (6H, m), 1.48–1.57 (2H, br. d), 1.65–1.74 (2H, br. d), 2.33 (4H, s; succinate), 2.58–2.67 (2H, br. t), 3.00–3.11 (4H, m), 5.58 (2H, d, J = 8 Hz), 7.95 (2H, t, J = 8 Hz), 8.10 (2H, s), 8.37 (2H, t, J = 7.2 Hz), 8.75 (2H, d, J = 8 Hz), resonances due to OH and NH were not observed. Resonances due to ethanol solvate were also present: 3.45 (q, J = 7.0 Hz) and 1.07 (t, J = 7.0 Hz). 13C NMR (DMSO-d6): δ: 22.92, 24.28, 24.71, 31.76, 45.55, 60.57, 70.33, 115.58, 119.89 (JC,F = 273.8 Hz), 122.34, 122.64 (JC,F = 271.7 Hz), 127.77 (JC,F = 29.0 Hz), 127.76, 129.40, 129.9 (JC,F = 5.2Hz), 142.74, 146.56 (JC,F = 34.5 Hz), 153.13, 175.32). 19F NMR (DMSO-d6); δ: −58.83, −66.63. IR (cm−1) 3500–2100 (br), 1589 (br), 1514, 1454, 1430, 1371, 1312, 1267, 1217, 1182, 1111, 1053, 1018, 986, 941,910, 837, 777, 546, 445.
7. Refinement
Crystal data, data collection and structure . The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O- and N-bound H atoms were refined with distance restraints 0.84±0.01 and 0.88±0.01 Å, respectively, and refined with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N), respectively. Owing to poor agreement, the (02) reflection was omitted from the final cycles of refinement.
details are summarized in Table 4
|
Supporting information
CCDC reference: 1938793
https://doi.org/10.1107/S2056989019009654/hb7838sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019009654/hb7838Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019009654/hb7838Isup3.cml
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).2C17H17F6N2O+·C4H4O42−·C2H6O | Z = 2 |
Mr = 920.79 | F(000) = 952 |
Triclinic, P1 | Dx = 1.467 Mg m−3 |
a = 10.0405 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 14.6482 (4) Å | Cell parameters from 32862 reflections |
c = 14.6547 (4) Å | θ = 2.9–27.5° |
α = 100.745 (1)° | µ = 0.14 mm−1 |
β = 93.830 (2)° | T = 120 K |
γ = 98.497 (2)° | Plate, colourless |
V = 2084.41 (9) Å3 | 0.42 × 0.05 × 0.03 mm |
Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer | 9543 independent reflections |
Radiation source: Bruker–Nonius FR591 rotating anode | 6505 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.085 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 2.9° |
φ & ω scans | h = −12→13 |
Absorption correction: multi-scan (SADABS;Sheldrick, 2007) | k = −18→19 |
Tmin = 0.849, Tmax = 1.000 | l = −19→19 |
42885 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.074 | Hydrogen site location: mixed |
wR(F2) = 0.180 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0525P)2 + 4.9226P] where P = (Fo2 + 2Fc2)/3 |
9543 reflections | (Δ/σ)max < 0.001 |
590 parameters | Δρmax = 0.60 e Å−3 |
7 restraints | Δρmin = −0.58 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Owing to poor agreement, possibly to interference from the beam-stop, one reflection, i.e. (0 -1 2), was omitted from the final cycles of refinement. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.2808 (2) | 0.67260 (18) | 0.16134 (18) | 0.0504 (7) | |
F2 | 0.2712 (2) | 0.65790 (19) | 0.01402 (19) | 0.0506 (7) | |
F3 | 0.2412 (2) | 0.53596 (15) | 0.07419 (19) | 0.0430 (6) | |
F4 | −0.1087 (2) | 0.38548 (14) | 0.16771 (16) | 0.0344 (5) | |
F5 | −0.03229 (19) | 0.48942 (14) | 0.29119 (15) | 0.0319 (5) | |
F6 | −0.2296 (2) | 0.40671 (14) | 0.28320 (16) | 0.0364 (5) | |
O1 | −0.0896 (2) | 0.82971 (15) | −0.04003 (16) | 0.0212 (5) | |
H1O | −0.061 (4) | 0.869 (2) | 0.0096 (16) | 0.032* | |
N1 | −0.0028 (2) | 0.57189 (18) | 0.12924 (19) | 0.0207 (6) | |
N2 | −0.3489 (3) | 0.78367 (18) | −0.13680 (19) | 0.0190 (5) | |
H1N | −0.289 (3) | 0.8273 (18) | −0.152 (2) | 0.023* | |
H2N | −0.390 (3) | 0.811 (2) | −0.0906 (17) | 0.023* | |
C1 | 0.0642 (3) | 0.6271 (2) | 0.0803 (2) | 0.0198 (6) | |
C2 | 0.0089 (3) | 0.6897 (2) | 0.0331 (2) | 0.0190 (6) | |
H2 | 0.0631 | 0.7264 | −0.0019 | 0.023* | |
C3 | −0.1251 (3) | 0.6968 (2) | 0.0384 (2) | 0.0188 (6) | |
C4 | −0.2021 (3) | 0.6417 (2) | 0.0930 (2) | 0.0181 (6) | |
C5 | −0.3393 (3) | 0.6472 (2) | 0.1083 (2) | 0.0223 (7) | |
H5 | −0.3852 | 0.6885 | 0.0799 | 0.027* | |
C6 | −0.4056 (3) | 0.5940 (2) | 0.1630 (2) | 0.0237 (7) | |
H6 | −0.4971 | 0.5989 | 0.1728 | 0.028* | |
C7 | −0.3403 (3) | 0.5318 (2) | 0.2053 (3) | 0.0260 (7) | |
H7 | −0.3881 | 0.4952 | 0.2435 | 0.031* | |
C8 | −0.2090 (3) | 0.5233 (2) | 0.1922 (2) | 0.0217 (7) | |
C9 | −0.1351 (3) | 0.5793 (2) | 0.1366 (2) | 0.0195 (6) | |
C10 | 0.2142 (3) | 0.6225 (2) | 0.0822 (2) | 0.0244 (7) | |
C11 | −0.1435 (3) | 0.4521 (2) | 0.2331 (3) | 0.0259 (7) | |
C12 | −0.1883 (3) | 0.7644 (2) | −0.0125 (2) | 0.0184 (6) | |
H12 | −0.2441 | 0.8000 | 0.0309 | 0.022* | |
C13 | −0.2802 (3) | 0.7122 (2) | −0.1001 (2) | 0.0176 (6) | |
H13 | −0.3506 | 0.6652 | −0.0815 | 0.021* | |
C14 | −0.4440 (3) | 0.7429 (2) | −0.2226 (2) | 0.0263 (7) | |
H14A | −0.4816 | 0.7940 | −0.2457 | 0.032* | |
H14B | −0.5202 | 0.6991 | −0.2071 | 0.032* | |
C15 | −0.3715 (4) | 0.6904 (3) | −0.2983 (2) | 0.0295 (8) | |
H15A | −0.3033 | 0.7359 | −0.3196 | 0.035* | |
H15B | −0.4376 | 0.6596 | −0.3524 | 0.035* | |
C16 | −0.3015 (3) | 0.6160 (2) | −0.2630 (2) | 0.0262 (7) | |
H16A | −0.3704 | 0.5665 | −0.2484 | 0.031* | |
H16B | −0.2501 | 0.5861 | −0.3123 | 0.031* | |
C17 | −0.2054 (3) | 0.6606 (2) | −0.1756 (2) | 0.0201 (6) | |
H17A | −0.1649 | 0.6110 | −0.1517 | 0.024* | |
H17B | −0.1312 | 0.7056 | −0.1918 | 0.024* | |
F7 | −0.6032 (3) | 0.6297 (2) | 0.3672 (3) | 0.0874 (12) | |
F8 | −0.6420 (2) | 0.7695 (2) | 0.3979 (2) | 0.0572 (8) | |
F9 | −0.5432 (2) | 0.7145 (2) | 0.50201 (19) | 0.0670 (9) | |
F10 | −0.1334 (2) | 0.67918 (15) | 0.55849 (15) | 0.0343 (5) | |
F11 | −0.1959 (2) | 0.55632 (14) | 0.44945 (16) | 0.0371 (5) | |
F12 | 0.0147 (2) | 0.60063 (14) | 0.49868 (15) | 0.0332 (5) | |
O2 | −0.4008 (2) | 0.92583 (16) | 0.18909 (16) | 0.0236 (5) | |
H2O | −0.424 (4) | 0.897 (2) | 0.1338 (12) | 0.035* | |
N3 | −0.3160 (3) | 0.71100 (19) | 0.4089 (2) | 0.0229 (6) | |
N4 | −0.1656 (3) | 1.06682 (18) | 0.20532 (19) | 0.0186 (5) | |
H3N | −0.240 (2) | 1.071 (2) | 0.172 (2) | 0.022* | |
H4N | −0.114 (3) | 1.036 (2) | 0.168 (2) | 0.022* | |
C18 | −0.4157 (3) | 0.7498 (2) | 0.3795 (2) | 0.0239 (7) | |
C19 | −0.4077 (3) | 0.8153 (2) | 0.3206 (2) | 0.0221 (7) | |
H19 | −0.4848 | 0.8413 | 0.3036 | 0.027* | |
C20 | −0.2853 (3) | 0.8408 (2) | 0.2883 (2) | 0.0188 (6) | |
C21 | −0.1731 (3) | 0.7995 (2) | 0.3149 (2) | 0.0188 (6) | |
C22 | −0.0438 (3) | 0.8172 (2) | 0.2819 (2) | 0.0191 (6) | |
H22 | −0.0287 | 0.8594 | 0.2402 | 0.023* | |
C23 | 0.0591 (3) | 0.7740 (2) | 0.3097 (2) | 0.0229 (7) | |
H23 | 0.1448 | 0.7858 | 0.2864 | 0.027* | |
C24 | 0.0399 (3) | 0.7124 (2) | 0.3722 (2) | 0.0224 (7) | |
H24 | 0.1126 | 0.6831 | 0.3907 | 0.027* | |
C25 | −0.0821 (3) | 0.6942 (2) | 0.4067 (2) | 0.0223 (7) | |
C26 | −0.1939 (3) | 0.7360 (2) | 0.3771 (2) | 0.0191 (6) | |
C27 | −0.5505 (3) | 0.7155 (3) | 0.4130 (3) | 0.0339 (8) | |
C28 | −0.1002 (3) | 0.6326 (2) | 0.4778 (2) | 0.0259 (7) | |
C29 | −0.2730 (3) | 0.9119 (2) | 0.2244 (2) | 0.0182 (6) | |
H29 | −0.2221 | 0.8882 | 0.1710 | 0.022* | |
C30 | −0.1964 (3) | 1.0076 (2) | 0.2770 (2) | 0.0187 (6) | |
H30 | −0.1091 | 0.9978 | 0.3076 | 0.022* | |
C31 | −0.0944 (3) | 1.1651 (2) | 0.2457 (2) | 0.0243 (7) | |
H31A | −0.0841 | 1.2015 | 0.1953 | 0.029* | |
H31B | −0.0029 | 1.1628 | 0.2739 | 0.029* | |
C32 | −0.1729 (3) | 1.2135 (2) | 0.3186 (3) | 0.0291 (8) | |
H32A | −0.2611 | 1.2213 | 0.2891 | 0.035* | |
H32B | −0.1223 | 1.2768 | 0.3467 | 0.035* | |
C33 | −0.1966 (4) | 1.1559 (2) | 0.3949 (3) | 0.0309 (8) | |
H33A | −0.1087 | 1.1505 | 0.4265 | 0.037* | |
H33B | −0.2494 | 1.1880 | 0.4420 | 0.037* | |
C34 | −0.2739 (3) | 1.0578 (2) | 0.3511 (2) | 0.0253 (7) | |
H34A | −0.2880 | 1.0202 | 0.4002 | 0.030* | |
H34B | −0.3638 | 1.0634 | 0.3226 | 0.030* | |
O3 | 0.3721 (2) | 0.87780 (16) | −0.09688 (16) | 0.0245 (5) | |
O4 | 0.5232 (2) | 0.85378 (16) | 0.00986 (16) | 0.0246 (5) | |
O5 | 0.1931 (2) | 1.05633 (15) | 0.18195 (15) | 0.0217 (5) | |
O6 | 0.0086 (2) | 0.96016 (15) | 0.10987 (16) | 0.0215 (5) | |
C35 | 0.4142 (3) | 0.8829 (2) | −0.0146 (2) | 0.0194 (6) | |
C36 | 0.3374 (3) | 0.9243 (2) | 0.0649 (2) | 0.0212 (6) | |
H36A | 0.3096 | 0.8752 | 0.1011 | 0.025* | |
H36B | 0.3993 | 0.9762 | 0.1072 | 0.025* | |
C37 | 0.2127 (3) | 0.9620 (2) | 0.0338 (2) | 0.0188 (6) | |
H37A | 0.2407 | 1.0150 | 0.0024 | 0.023* | |
H37B | 0.1535 | 0.9118 | −0.0123 | 0.023* | |
C38 | 0.1328 (3) | 0.9955 (2) | 0.1142 (2) | 0.0176 (6) | |
O7 | 0.1253 (3) | 1.0539 (3) | 0.3588 (2) | 0.0587 (9) | |
H7O | 0.147 (6) | 1.052 (4) | 0.3036 (17) | 0.088* | |
C39 | 0.2349 (6) | 1.0663 (5) | 0.4209 (4) | 0.083 (2) | |
H39A | 0.2025 | 1.0473 | 0.4780 | 0.100* | |
H39B | 0.2682 | 1.1349 | 0.4375 | 0.100* | |
C40 | 0.3465 (6) | 1.0231 (7) | 0.4013 (4) | 0.105 (3) | |
H40A | 0.3264 | 0.9569 | 0.4070 | 0.158* | |
H40B | 0.4242 | 1.0552 | 0.4456 | 0.158* | |
H40C | 0.3679 | 1.0265 | 0.3377 | 0.158* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0210 (11) | 0.0686 (16) | 0.0492 (15) | 0.0145 (10) | −0.0092 (10) | −0.0207 (13) |
F2 | 0.0212 (11) | 0.0813 (18) | 0.0645 (17) | 0.0170 (11) | 0.0168 (10) | 0.0419 (15) |
F3 | 0.0250 (11) | 0.0294 (11) | 0.0778 (18) | 0.0147 (9) | 0.0100 (11) | 0.0087 (11) |
F4 | 0.0393 (12) | 0.0239 (10) | 0.0413 (13) | 0.0132 (8) | 0.0039 (9) | 0.0037 (9) |
F5 | 0.0298 (11) | 0.0327 (11) | 0.0343 (12) | 0.0066 (8) | −0.0040 (9) | 0.0112 (9) |
F6 | 0.0360 (11) | 0.0318 (11) | 0.0482 (14) | 0.0061 (9) | 0.0097 (10) | 0.0225 (10) |
O1 | 0.0189 (11) | 0.0214 (11) | 0.0216 (13) | 0.0002 (8) | −0.0014 (9) | 0.0033 (9) |
N1 | 0.0161 (12) | 0.0221 (13) | 0.0230 (15) | 0.0049 (10) | −0.0009 (10) | 0.0016 (11) |
N2 | 0.0162 (13) | 0.0197 (13) | 0.0201 (15) | 0.0033 (10) | −0.0002 (10) | 0.0017 (11) |
C1 | 0.0158 (14) | 0.0208 (15) | 0.0208 (17) | 0.0049 (11) | −0.0011 (12) | −0.0011 (13) |
C2 | 0.0147 (14) | 0.0213 (15) | 0.0200 (17) | 0.0024 (11) | 0.0014 (11) | 0.0027 (13) |
C3 | 0.0202 (15) | 0.0163 (14) | 0.0193 (17) | 0.0047 (11) | −0.0001 (12) | 0.0017 (12) |
C4 | 0.0139 (14) | 0.0192 (15) | 0.0195 (17) | 0.0027 (11) | −0.0001 (11) | 0.0002 (12) |
C5 | 0.0183 (15) | 0.0226 (16) | 0.0259 (18) | 0.0063 (12) | 0.0009 (12) | 0.0025 (14) |
C6 | 0.0125 (14) | 0.0267 (16) | 0.0312 (19) | 0.0030 (12) | 0.0026 (12) | 0.0043 (14) |
C7 | 0.0192 (16) | 0.0276 (17) | 0.032 (2) | 0.0017 (13) | 0.0030 (13) | 0.0078 (15) |
C8 | 0.0211 (15) | 0.0187 (15) | 0.0241 (18) | 0.0036 (12) | −0.0007 (12) | 0.0021 (13) |
C9 | 0.0189 (15) | 0.0173 (14) | 0.0216 (17) | 0.0049 (11) | 0.0002 (12) | 0.0010 (12) |
C10 | 0.0178 (15) | 0.0251 (16) | 0.0297 (19) | 0.0058 (12) | −0.0008 (13) | 0.0036 (14) |
C11 | 0.0230 (16) | 0.0239 (16) | 0.031 (2) | 0.0034 (13) | 0.0022 (14) | 0.0075 (15) |
C12 | 0.0127 (14) | 0.0198 (15) | 0.0229 (17) | 0.0040 (11) | 0.0000 (11) | 0.0047 (13) |
C13 | 0.0156 (14) | 0.0219 (15) | 0.0165 (16) | 0.0045 (11) | 0.0022 (11) | 0.0052 (12) |
C14 | 0.0243 (16) | 0.0326 (18) | 0.0203 (18) | 0.0088 (13) | −0.0045 (13) | 0.0002 (14) |
C15 | 0.0336 (19) | 0.0365 (19) | 0.0172 (18) | 0.0116 (15) | −0.0039 (14) | 0.0003 (15) |
C16 | 0.0264 (17) | 0.0268 (17) | 0.0230 (19) | 0.0041 (13) | 0.0033 (13) | −0.0013 (14) |
C17 | 0.0205 (15) | 0.0176 (15) | 0.0228 (18) | 0.0039 (11) | 0.0038 (12) | 0.0045 (13) |
F7 | 0.0547 (18) | 0.0618 (19) | 0.127 (3) | −0.0282 (14) | 0.0462 (19) | −0.0129 (19) |
F8 | 0.0204 (11) | 0.098 (2) | 0.0746 (19) | 0.0233 (12) | 0.0199 (11) | 0.0562 (17) |
F9 | 0.0271 (12) | 0.144 (3) | 0.0493 (17) | 0.0202 (14) | 0.0152 (11) | 0.0595 (19) |
F10 | 0.0382 (12) | 0.0429 (12) | 0.0272 (12) | 0.0135 (9) | 0.0061 (9) | 0.0139 (10) |
F11 | 0.0348 (12) | 0.0283 (11) | 0.0494 (14) | −0.0020 (9) | 0.0005 (10) | 0.0177 (10) |
F12 | 0.0325 (11) | 0.0342 (11) | 0.0385 (13) | 0.0146 (9) | −0.0008 (9) | 0.0159 (10) |
O2 | 0.0196 (11) | 0.0317 (13) | 0.0199 (13) | 0.0086 (9) | −0.0029 (9) | 0.0047 (10) |
N3 | 0.0180 (13) | 0.0271 (14) | 0.0257 (16) | 0.0047 (10) | 0.0039 (11) | 0.0090 (12) |
N4 | 0.0184 (13) | 0.0221 (13) | 0.0167 (14) | 0.0072 (10) | 0.0028 (10) | 0.0046 (11) |
C18 | 0.0174 (15) | 0.0301 (17) | 0.0241 (18) | 0.0027 (12) | 0.0015 (12) | 0.0058 (14) |
C19 | 0.0144 (14) | 0.0258 (16) | 0.0272 (19) | 0.0059 (12) | 0.0034 (12) | 0.0053 (14) |
C20 | 0.0171 (14) | 0.0190 (15) | 0.0186 (17) | 0.0019 (11) | −0.0005 (11) | 0.0006 (12) |
C21 | 0.0143 (14) | 0.0207 (15) | 0.0198 (17) | 0.0015 (11) | −0.0004 (11) | 0.0021 (13) |
C22 | 0.0184 (15) | 0.0215 (15) | 0.0172 (16) | 0.0033 (11) | 0.0008 (11) | 0.0034 (12) |
C23 | 0.0138 (14) | 0.0256 (16) | 0.0281 (19) | 0.0037 (12) | 0.0014 (12) | 0.0024 (14) |
C24 | 0.0211 (15) | 0.0201 (15) | 0.0252 (18) | 0.0057 (12) | −0.0020 (12) | 0.0023 (13) |
C25 | 0.0219 (15) | 0.0207 (15) | 0.0232 (18) | 0.0026 (12) | −0.0024 (12) | 0.0041 (13) |
C26 | 0.0187 (15) | 0.0184 (14) | 0.0185 (17) | 0.0024 (11) | −0.0009 (12) | 0.0007 (12) |
C27 | 0.0206 (17) | 0.044 (2) | 0.039 (2) | 0.0029 (15) | 0.0051 (15) | 0.0150 (18) |
C28 | 0.0248 (17) | 0.0272 (17) | 0.0271 (19) | 0.0069 (13) | 0.0003 (13) | 0.0079 (15) |
C29 | 0.0141 (14) | 0.0211 (15) | 0.0196 (17) | 0.0051 (11) | 0.0009 (11) | 0.0030 (13) |
C30 | 0.0179 (14) | 0.0226 (15) | 0.0160 (16) | 0.0057 (11) | 0.0026 (11) | 0.0026 (12) |
C31 | 0.0212 (16) | 0.0232 (16) | 0.0284 (19) | 0.0010 (12) | −0.0007 (13) | 0.0080 (14) |
C32 | 0.0265 (17) | 0.0225 (16) | 0.036 (2) | 0.0081 (13) | −0.0040 (14) | −0.0009 (15) |
C33 | 0.040 (2) | 0.0285 (18) | 0.0228 (19) | 0.0104 (15) | 0.0041 (15) | −0.0023 (15) |
C34 | 0.0284 (17) | 0.0270 (17) | 0.0219 (18) | 0.0071 (13) | 0.0099 (13) | 0.0041 (14) |
O3 | 0.0218 (11) | 0.0347 (13) | 0.0185 (13) | 0.0113 (9) | 0.0004 (9) | 0.0046 (10) |
O4 | 0.0181 (11) | 0.0343 (13) | 0.0224 (13) | 0.0115 (9) | −0.0002 (9) | 0.0033 (10) |
O5 | 0.0206 (11) | 0.0249 (11) | 0.0186 (12) | 0.0031 (9) | 0.0006 (9) | 0.0023 (9) |
O6 | 0.0150 (10) | 0.0225 (11) | 0.0261 (13) | 0.0024 (8) | 0.0035 (9) | 0.0027 (9) |
C35 | 0.0149 (14) | 0.0185 (15) | 0.0261 (18) | 0.0035 (11) | 0.0024 (12) | 0.0071 (13) |
C36 | 0.0194 (15) | 0.0266 (16) | 0.0194 (17) | 0.0082 (12) | 0.0030 (12) | 0.0056 (13) |
C37 | 0.0146 (14) | 0.0222 (15) | 0.0193 (17) | 0.0042 (11) | 0.0012 (11) | 0.0028 (13) |
C38 | 0.0170 (14) | 0.0190 (15) | 0.0189 (17) | 0.0068 (11) | 0.0015 (11) | 0.0061 (12) |
O7 | 0.0374 (16) | 0.111 (3) | 0.0352 (18) | 0.0244 (17) | 0.0060 (13) | 0.0237 (19) |
C39 | 0.074 (4) | 0.136 (6) | 0.040 (3) | 0.053 (4) | −0.015 (3) | −0.004 (3) |
C40 | 0.052 (3) | 0.220 (9) | 0.058 (4) | 0.060 (4) | 0.004 (3) | 0.036 (5) |
F1—C10 | 1.328 (4) | N4—C31 | 1.502 (4) |
F2—C10 | 1.333 (4) | N4—C30 | 1.502 (4) |
F3—C10 | 1.321 (4) | N4—H3N | 0.882 (10) |
F4—C11 | 1.338 (4) | N4—H4N | 0.882 (10) |
F5—C11 | 1.338 (4) | C18—C19 | 1.403 (5) |
F6—C11 | 1.352 (4) | C18—C27 | 1.518 (5) |
O1—C12 | 1.406 (4) | C19—C20 | 1.373 (4) |
O1—H1O | 0.840 (10) | C19—H19 | 0.9500 |
N1—C1 | 1.319 (4) | C20—C21 | 1.419 (4) |
N1—C9 | 1.358 (4) | C20—C29 | 1.522 (4) |
N2—C13 | 1.495 (4) | C21—C22 | 1.421 (4) |
N2—C14 | 1.497 (4) | C21—C26 | 1.423 (4) |
N2—H1N | 0.880 (10) | C22—C23 | 1.366 (4) |
N2—H2N | 0.883 (10) | C22—H22 | 0.9500 |
C1—C2 | 1.401 (4) | C23—C24 | 1.404 (5) |
C1—C10 | 1.517 (4) | C23—H23 | 0.9500 |
C2—C3 | 1.370 (4) | C24—C25 | 1.365 (5) |
C2—H2 | 0.9500 | C24—H24 | 0.9500 |
C3—C4 | 1.425 (4) | C25—C26 | 1.435 (4) |
C3—C12 | 1.530 (4) | C25—C28 | 1.504 (5) |
C4—C5 | 1.422 (4) | C29—C30 | 1.533 (4) |
C4—C9 | 1.428 (4) | C29—H29 | 1.0000 |
C5—C6 | 1.357 (5) | C30—C34 | 1.519 (4) |
C5—H5 | 0.9500 | C30—H30 | 1.0000 |
C6—C7 | 1.406 (5) | C31—C32 | 1.504 (5) |
C6—H6 | 0.9500 | C31—H31A | 0.9900 |
C7—C8 | 1.365 (4) | C31—H31B | 0.9900 |
C7—H7 | 0.9500 | C32—C33 | 1.532 (5) |
C8—C9 | 1.427 (4) | C32—H32A | 0.9900 |
C8—C11 | 1.503 (4) | C32—H32B | 0.9900 |
C12—C13 | 1.533 (4) | C33—C34 | 1.529 (5) |
C12—H12 | 1.0000 | C33—H33A | 0.9900 |
C13—C17 | 1.525 (4) | C33—H33B | 0.9900 |
C13—H13 | 1.0000 | C34—H34A | 0.9900 |
C14—C15 | 1.519 (5) | C34—H34B | 0.9900 |
C14—H14A | 0.9900 | O3—C35 | 1.236 (4) |
C14—H14B | 0.9900 | O4—C35 | 1.285 (4) |
C15—C16 | 1.529 (5) | O5—C38 | 1.255 (4) |
C15—H15A | 0.9900 | O6—C38 | 1.271 (4) |
C15—H15B | 0.9900 | C35—C36 | 1.522 (4) |
C16—C17 | 1.527 (5) | C36—C37 | 1.517 (4) |
C16—H16A | 0.9900 | C36—H36A | 0.9900 |
C16—H16B | 0.9900 | C36—H36B | 0.9900 |
C17—H17A | 0.9900 | C37—C38 | 1.517 (4) |
C17—H17B | 0.9900 | C37—H37A | 0.9900 |
F7—C27 | 1.323 (5) | C37—H37B | 0.9900 |
F8—C27 | 1.331 (4) | O7—C39 | 1.347 (6) |
F9—C27 | 1.304 (5) | O7—H7O | 0.847 (10) |
F10—C28 | 1.340 (4) | C39—C40 | 1.388 (8) |
F11—C28 | 1.341 (4) | C39—H39A | 0.9900 |
F12—C28 | 1.346 (4) | C39—H39B | 0.9900 |
O2—C29 | 1.409 (3) | C40—H40A | 0.9800 |
O2—H2O | 0.841 (10) | C40—H40B | 0.9800 |
N3—C18 | 1.309 (4) | C40—H40C | 0.9800 |
N3—C26 | 1.363 (4) | ||
C12—O1—H1O | 104 (3) | C21—C20—C29 | 121.6 (3) |
C1—N1—C9 | 116.7 (3) | C22—C21—C20 | 123.7 (3) |
C13—N2—C14 | 113.4 (2) | C22—C21—C26 | 119.0 (3) |
C13—N2—H1N | 111 (2) | C20—C21—C26 | 117.3 (3) |
C14—N2—H1N | 106 (2) | C23—C22—C21 | 120.4 (3) |
C13—N2—H2N | 106 (2) | C23—C22—H22 | 119.8 |
C14—N2—H2N | 112 (2) | C21—C22—H22 | 119.8 |
H1N—N2—H2N | 108 (3) | C22—C23—C24 | 120.8 (3) |
N1—C1—C2 | 125.4 (3) | C22—C23—H23 | 119.6 |
N1—C1—C10 | 114.3 (3) | C24—C23—H23 | 119.6 |
C2—C1—C10 | 120.2 (3) | C25—C24—C23 | 120.8 (3) |
C3—C2—C1 | 118.6 (3) | C25—C24—H24 | 119.6 |
C3—C2—H2 | 120.7 | C23—C24—H24 | 119.6 |
C1—C2—H2 | 120.7 | C24—C25—C26 | 120.1 (3) |
C2—C3—C4 | 118.9 (3) | C24—C25—C28 | 120.7 (3) |
C2—C3—C12 | 119.8 (3) | C26—C25—C28 | 119.2 (3) |
C4—C3—C12 | 121.3 (3) | N3—C26—C21 | 123.3 (3) |
C5—C4—C3 | 124.0 (3) | N3—C26—C25 | 117.9 (3) |
C5—C4—C9 | 118.7 (3) | C21—C26—C25 | 118.8 (3) |
C3—C4—C9 | 117.3 (3) | F9—C27—F7 | 107.9 (3) |
C6—C5—C4 | 120.8 (3) | F9—C27—F8 | 106.4 (3) |
C6—C5—H5 | 119.6 | F7—C27—F8 | 105.4 (3) |
C4—C5—H5 | 119.6 | F9—C27—C18 | 113.5 (3) |
C5—C6—C7 | 120.7 (3) | F7—C27—C18 | 111.5 (3) |
C5—C6—H6 | 119.7 | F8—C27—C18 | 111.6 (3) |
C7—C6—H6 | 119.7 | F10—C28—F11 | 107.0 (3) |
C8—C7—C6 | 120.8 (3) | F10—C28—F12 | 106.1 (3) |
C8—C7—H7 | 119.6 | F11—C28—F12 | 106.4 (3) |
C6—C7—H7 | 119.6 | F10—C28—C25 | 112.0 (3) |
C7—C8—C9 | 120.1 (3) | F11—C28—C25 | 113.4 (3) |
C7—C8—C11 | 120.1 (3) | F12—C28—C25 | 111.4 (3) |
C9—C8—C11 | 119.7 (3) | O2—C29—C20 | 111.7 (2) |
N1—C9—C8 | 118.1 (3) | O2—C29—C30 | 107.7 (2) |
N1—C9—C4 | 123.0 (3) | C20—C29—C30 | 110.8 (3) |
C8—C9—C4 | 118.8 (3) | O2—C29—H29 | 108.9 |
F3—C10—F1 | 107.1 (3) | C20—C29—H29 | 108.9 |
F3—C10—F2 | 106.5 (3) | C30—C29—H29 | 108.9 |
F1—C10—F2 | 105.9 (3) | N4—C30—C34 | 110.2 (2) |
F3—C10—C1 | 113.2 (3) | N4—C30—C29 | 106.9 (2) |
F1—C10—C1 | 111.1 (3) | C34—C30—C29 | 113.9 (3) |
F2—C10—C1 | 112.5 (3) | N4—C30—H30 | 108.6 |
F5—C11—F4 | 107.0 (3) | C34—C30—H30 | 108.6 |
F5—C11—F6 | 106.0 (3) | C29—C30—H30 | 108.6 |
F4—C11—F6 | 106.2 (3) | N4—C31—C32 | 110.6 (3) |
F5—C11—C8 | 114.0 (3) | N4—C31—H31A | 109.5 |
F4—C11—C8 | 112.6 (3) | C32—C31—H31A | 109.5 |
F6—C11—C8 | 110.6 (3) | N4—C31—H31B | 109.5 |
O1—C12—C3 | 112.0 (2) | C32—C31—H31B | 109.5 |
O1—C12—C13 | 107.7 (2) | H31A—C31—H31B | 108.1 |
C3—C12—C13 | 112.0 (2) | C31—C32—C33 | 110.5 (3) |
O1—C12—H12 | 108.4 | C31—C32—H32A | 109.5 |
C3—C12—H12 | 108.4 | C33—C32—H32A | 109.5 |
C13—C12—H12 | 108.4 | C31—C32—H32B | 109.5 |
N2—C13—C17 | 110.2 (2) | C33—C32—H32B | 109.5 |
N2—C13—C12 | 107.1 (2) | H32A—C32—H32B | 108.1 |
C17—C13—C12 | 113.9 (2) | C34—C33—C32 | 109.4 (3) |
N2—C13—H13 | 108.5 | C34—C33—H33A | 109.8 |
C17—C13—H13 | 108.5 | C32—C33—H33A | 109.8 |
C12—C13—H13 | 108.5 | C34—C33—H33B | 109.8 |
N2—C14—C15 | 110.6 (3) | C32—C33—H33B | 109.8 |
N2—C14—H14A | 109.5 | H33A—C33—H33B | 108.2 |
C15—C14—H14A | 109.5 | C30—C34—C33 | 110.9 (3) |
N2—C14—H14B | 109.5 | C30—C34—H34A | 109.5 |
C15—C14—H14B | 109.5 | C33—C34—H34A | 109.5 |
H14A—C14—H14B | 108.1 | C30—C34—H34B | 109.5 |
C14—C15—C16 | 111.4 (3) | C33—C34—H34B | 109.5 |
C14—C15—H15A | 109.4 | H34A—C34—H34B | 108.0 |
C16—C15—H15A | 109.4 | O3—C35—O4 | 123.2 (3) |
C14—C15—H15B | 109.4 | O3—C35—C36 | 121.1 (3) |
C16—C15—H15B | 109.4 | O4—C35—C36 | 115.7 (3) |
H15A—C15—H15B | 108.0 | C37—C36—C35 | 114.3 (3) |
C17—C16—C15 | 110.5 (3) | C37—C36—H36A | 108.7 |
C17—C16—H16A | 109.5 | C35—C36—H36A | 108.7 |
C15—C16—H16A | 109.5 | C37—C36—H36B | 108.7 |
C17—C16—H16B | 109.5 | C35—C36—H36B | 108.7 |
C15—C16—H16B | 109.5 | H36A—C36—H36B | 107.6 |
H16A—C16—H16B | 108.1 | C38—C37—C36 | 112.7 (3) |
C13—C17—C16 | 110.9 (2) | C38—C37—H37A | 109.1 |
C13—C17—H17A | 109.5 | C36—C37—H37A | 109.1 |
C16—C17—H17A | 109.5 | C38—C37—H37B | 109.1 |
C13—C17—H17B | 109.5 | C36—C37—H37B | 109.1 |
C16—C17—H17B | 109.5 | H37A—C37—H37B | 107.8 |
H17A—C17—H17B | 108.1 | O5—C38—O6 | 123.4 (3) |
C29—O2—H2O | 113 (3) | O5—C38—C37 | 118.3 (3) |
C18—N3—C26 | 116.1 (3) | O6—C38—C37 | 118.3 (3) |
C31—N4—C30 | 114.0 (2) | C39—O7—H7O | 112 (4) |
C31—N4—H3N | 108 (2) | O7—C39—C40 | 122.4 (5) |
C30—N4—H3N | 111 (2) | O7—C39—H39A | 106.7 |
C31—N4—H4N | 111 (2) | C40—C39—H39A | 106.7 |
C30—N4—H4N | 105 (2) | O7—C39—H39B | 106.7 |
H3N—N4—H4N | 108 (3) | C40—C39—H39B | 106.7 |
N3—C18—C19 | 126.2 (3) | H39A—C39—H39B | 106.6 |
N3—C18—C27 | 113.7 (3) | C39—C40—H40A | 109.5 |
C19—C18—C27 | 120.0 (3) | C39—C40—H40B | 109.5 |
C20—C19—C18 | 118.0 (3) | H40A—C40—H40B | 109.5 |
C20—C19—H19 | 121.0 | C39—C40—H40C | 109.5 |
C18—C19—H19 | 121.0 | H40A—C40—H40C | 109.5 |
C19—C20—C21 | 119.0 (3) | H40B—C40—H40C | 109.5 |
C19—C20—C29 | 119.4 (3) | ||
C9—N1—C1—C2 | −2.4 (5) | C27—C18—C19—C20 | −176.8 (3) |
C9—N1—C1—C10 | 174.4 (3) | C18—C19—C20—C21 | 0.5 (5) |
N1—C1—C2—C3 | 1.3 (5) | C18—C19—C20—C29 | −179.9 (3) |
C10—C1—C2—C3 | −175.4 (3) | C19—C20—C21—C22 | 176.8 (3) |
C1—C2—C3—C4 | 1.1 (4) | C29—C20—C21—C22 | −2.9 (5) |
C1—C2—C3—C12 | −179.9 (3) | C19—C20—C21—C26 | −2.2 (4) |
C2—C3—C4—C5 | 176.1 (3) | C29—C20—C21—C26 | 178.1 (3) |
C12—C3—C4—C5 | −2.8 (5) | C20—C21—C22—C23 | −179.1 (3) |
C2—C3—C4—C9 | −2.1 (4) | C26—C21—C22—C23 | −0.2 (5) |
C12—C3—C4—C9 | 178.9 (3) | C21—C22—C23—C24 | −0.9 (5) |
C3—C4—C5—C6 | −178.4 (3) | C22—C23—C24—C25 | 0.1 (5) |
C9—C4—C5—C6 | −0.2 (5) | C23—C24—C25—C26 | 1.8 (5) |
C4—C5—C6—C7 | −0.4 (5) | C23—C24—C25—C28 | −176.5 (3) |
C5—C6—C7—C8 | −0.1 (5) | C18—N3—C26—C21 | −0.7 (5) |
C6—C7—C8—C9 | 1.3 (5) | C18—N3—C26—C25 | −179.2 (3) |
C6—C7—C8—C11 | −176.2 (3) | C22—C21—C26—N3 | −176.6 (3) |
C1—N1—C9—C8 | −177.5 (3) | C20—C21—C26—N3 | 2.4 (5) |
C1—N1—C9—C4 | 1.2 (5) | C22—C21—C26—C25 | 1.9 (4) |
C7—C8—C9—N1 | 176.8 (3) | C20—C21—C26—C25 | −179.0 (3) |
C11—C8—C9—N1 | −5.6 (5) | C24—C25—C26—N3 | 175.9 (3) |
C7—C8—C9—C4 | −2.0 (5) | C28—C25—C26—N3 | −5.8 (4) |
C11—C8—C9—C4 | 175.6 (3) | C24—C25—C26—C21 | −2.7 (5) |
C5—C4—C9—N1 | −177.3 (3) | C28—C25—C26—C21 | 175.5 (3) |
C3—C4—C9—N1 | 1.0 (5) | N3—C18—C27—F9 | 47.0 (5) |
C5—C4—C9—C8 | 1.4 (4) | C19—C18—C27—F9 | −134.4 (4) |
C3—C4—C9—C8 | 179.7 (3) | N3—C18—C27—F7 | −75.0 (4) |
N1—C1—C10—F3 | 42.1 (4) | C19—C18—C27—F7 | 103.5 (4) |
C2—C1—C10—F3 | −140.9 (3) | N3—C18—C27—F8 | 167.3 (3) |
N1—C1—C10—F1 | −78.4 (4) | C19—C18—C27—F8 | −14.2 (5) |
C2—C1—C10—F1 | 98.6 (4) | C24—C25—C28—F10 | 118.1 (3) |
N1—C1—C10—F2 | 163.0 (3) | C26—C25—C28—F10 | −60.2 (4) |
C2—C1—C10—F2 | −20.0 (4) | C24—C25—C28—F11 | −120.7 (3) |
C7—C8—C11—F5 | −121.8 (3) | C26—C25—C28—F11 | 61.1 (4) |
C9—C8—C11—F5 | 60.6 (4) | C24—C25—C28—F12 | −0.6 (4) |
C7—C8—C11—F4 | 116.1 (3) | C26—C25—C28—F12 | −178.9 (3) |
C9—C8—C11—F4 | −61.5 (4) | C19—C20—C29—O2 | −14.1 (4) |
C7—C8—C11—F6 | −2.5 (5) | C21—C20—C29—O2 | 165.5 (3) |
C9—C8—C11—F6 | 179.9 (3) | C19—C20—C29—C30 | 105.9 (3) |
C2—C3—C12—O1 | −15.4 (4) | C21—C20—C29—C30 | −74.4 (4) |
C4—C3—C12—O1 | 163.5 (3) | C31—N4—C30—C34 | 53.7 (3) |
C2—C3—C12—C13 | 105.7 (3) | C31—N4—C30—C29 | 177.9 (2) |
C4—C3—C12—C13 | −75.4 (4) | O2—C29—C30—N4 | −68.4 (3) |
C14—N2—C13—C17 | 56.2 (3) | C20—C29—C30—N4 | 169.2 (2) |
C14—N2—C13—C12 | −179.4 (2) | O2—C29—C30—C34 | 53.6 (3) |
O1—C12—C13—N2 | −63.4 (3) | C20—C29—C30—C34 | −68.9 (3) |
C3—C12—C13—N2 | 173.1 (2) | C30—N4—C31—C32 | −54.6 (3) |
O1—C12—C13—C17 | 58.7 (3) | N4—C31—C32—C33 | 56.3 (4) |
C3—C12—C13—C17 | −64.8 (3) | C31—C32—C33—C34 | −58.7 (4) |
C13—N2—C14—C15 | −55.5 (4) | N4—C30—C34—C33 | −55.2 (4) |
N2—C14—C15—C16 | 54.4 (4) | C29—C30—C34—C33 | −175.3 (3) |
C14—C15—C16—C17 | −55.4 (4) | C32—C33—C34—C30 | 58.3 (4) |
N2—C13—C17—C16 | −55.8 (3) | O3—C35—C36—C37 | −3.0 (4) |
C12—C13—C17—C16 | −176.1 (3) | O4—C35—C36—C37 | 177.4 (3) |
C15—C16—C17—C13 | 56.0 (3) | C35—C36—C37—C38 | 175.4 (3) |
C26—N3—C18—C19 | −1.4 (5) | C36—C37—C38—O5 | 55.5 (4) |
C26—N3—C18—C27 | 177.0 (3) | C36—C37—C38—O6 | −124.1 (3) |
N3—C18—C19—C20 | 1.5 (5) |
Cg1 is the centroid of the (N1,C1–C4,C9) ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N···O1 | 0.88 (3) | 2.49 (3) | 2.806 (4) | 102 (2) |
N4—H3N···O2 | 0.88 (2) | 2.54 (3) | 2.863 (4) | 103 (2) |
O1—H1O···O6 | 0.84 (3) | 1.81 (3) | 2.653 (3) | 175 (2) |
O2—H2O···O4i | 0.84 (2) | 1.82 (2) | 2.656 (3) | 170 (3) |
N2—H1N···O5ii | 0.88 (3) | 1.97 (3) | 2.830 (4) | 165 (3) |
N2—H2N···O4i | 0.88 (3) | 1.82 (3) | 2.694 (4) | 173 (3) |
N4—H3N···O3ii | 0.88 (2) | 1.99 (3) | 2.832 (4) | 161 (3) |
N4—H4N···O6 | 0.89 (3) | 1.92 (3) | 2.789 (4) | 168 (3) |
O7—H7O···O5 | 0.85 (3) | 1.88 (3) | 2.729 (4) | 176 (7) |
C30—H30···O7 | 1.00 | 2.40 | 3.296 (4) | 149 |
C10—F3···Cg1iii | 1.32 (1) | 3.28 (1) | 4.101 (3) | 120 (1) |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y+2, −z; (iii) −x, −y+1, −z. |
Contact | Distance | Symmetry operation |
F1···H6 | 2.50 | 1 + x, y, z |
F6···C32 | 3.096 (4) | x, -1 + y, z |
O1···H37B | 2.45 | x, y, z |
O1···C38 | 3.038 (4) | -x, -y, -1 - z |
O2···H36B | 2.50 | -1 + x, y, z |
O2···C36 | 3.090 (4) | -1 + x, y, z |
O4···H12 | 2.53 | 1 + x, y, z |
O6···H22 | 2.50 | x, y, z |
O7···H31B | 2.55 | x, y, z |
H1O···H37B | 2.14 | x, y, z |
H12···H29 | 2.06 | x, y, z |
H34A···H39A | 2.22 | -x, 2 - y, -z |
Notes: (a) The interatomic distances are calculated in Crystal Explorer (Turner et al., 2017) whereby the X—H bond lengths are adjusted to their neutron values. |
Contact | Percentage contribution |
H···H | 29.8 |
O···H/H···O | 14.0 |
F···H/H···F | 41.2 |
F···F | 5.7 |
C···H/H···C | 4.1 |
C···F/F···C | 2.8 |
N···H/H···N | 1.0 |
C···N/N···C | 0.5 |
C···O/O···C | 0.3 |
O···O | 0.2 |
F···N/N···F | 0.2 |
C···C | 0.2 |
F···O/O···F | 0.1 |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CNPq (Brazil).
Funding information
Sunway University Sdn Bhd (grant. No. STR-RCTR-RCCM-001–2019) is thanked for financial support of this work.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Engwerda, A. H. J., Maassen, R., Tinnemans, P., Meekes, H., Rutjes, F. P. J. T. & Vlieg, E. (2019). Angew. Chem. Int. Ed. 58, 1670–1673. Web of Science CSD CrossRef CAS Google Scholar
Fábián, L. & Brock, C. P. (2010). Acta Cryst. B66, 94–103. Web of Science CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grabias, B. & Kumar, S. (2016). Expert Opin. Drug Saf. 15, 903–910. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 247–255. CAS Google Scholar
Jotani, M. M., Wardell, J. L. & Tiekink, E. R. T. (2019). Z. Kristallogr. Cryst. Mater. 234, 43–57. Web of Science CSD CrossRef CAS Google Scholar
Maguire, J. D., Krisin Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067–1072. Web of Science CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Nevin, R. L. (2017). Pharmacol. Res. pp. 5, article No. e00328. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tickell-Painter, M., Maayan, N., Saunders, R., Pace, C. & Sinclair, D. (2017). Cochrane Database Syst. Rev. 10 art. no. CD006491. Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. Google Scholar
Wardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1618–1627. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 1851–1856. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wardell, J. L. & Tiekink, E. R. T. (2019). Z. Kristallogr. New Cryst. Struct. 234, 687–689. Web of Science CSD CrossRef CAS Google Scholar
Wardell, J. L., Wardell, S. M. S. V., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 895–900. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.