research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two isomeric 2-aryl-3-phenyl-1,3-thia­zepan-4-ones

CROSSMARK_Color_square_no_text.svg

aPennsylvania State University, Department of Biochemistry and Molecular Biology, 108 Althouse Laboratory, University Park, PA, 16801, USA, and bPennsylvania State University Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA, 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 8 July 2019; accepted 22 July 2019; online 26 July 2019)

The crystal of 6-(3-nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (1), C19H18N2O3S, has monoclinic (P21/n) symmetry while that of its isomer 6-(4-nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (2), has ortho­rhom­bic (Pca21) symmetry: compound 1 has two mol­ecules, A and B, in the asymmetric unit while 2 has one. In all three mol­ecules, the seven-membered thia­zepan ring exhibits a chair conformation with Q2 and Q3 values (Å) of 0.521 (3), 0.735 (3) and 0.485 (3), 0.749 (3) in 1 and 0.517 (5), 0.699 (5) in 2. In each structure, the phenyl rings attached to adjacent atoms of the thia­zepan ring have inter­planar angles ranging between 41 and 47°. Except for the nitro groups, the three mol­ecules have similar conformations when overlayed in pairs. Both crystal structures are consolidated by C—H⋯O hydrogen bonds.

1. Chemical context

The seven-membered 1,3-thia­zepan-4-one ring system, like the similar six-membered 1,3-thia­zin-4-one and five-membered 1,3-thia­zolidin-4-one systems, is biologically active and of potential medicinal use. For example, the Bristol-Myers Squibb ACE/NEP inhibitor omapatrilat advanced to Phase II clinical trials (Graul et al., 1999[Graul, A., Leeson, P. & Castañer, J. (1999). Drugs Fut. 24, 269-277.]; Robl et al. 1997[Robl, J. A., Sun, C.-Q., Stevenson, J., Ryono, D. E., Simpkins, L. M., Cimarusti, M. P., Dejneka, T., Slusarchyk, W. A., Chao, S., Stratton, L., Misra, R. N., Bednarz, M. S., Asaad, M. M., Cheung, H. S., Abboa-Offei, B. E., Smith, P. L., Mathers, P. D., Fox, M., Schaeffer, T. R., Seymour, A. A. & Trippodo, N. C. (1997). J. Med. Chem. 40, 1570-1577.]; Tabrizchi, 2001[Tabrizchi, R. (2001). Curr. Opin. Investig. Drugs, 2, 1414-1422.]; Cozier et al. 2018[Cozier, G. E., Arendse, L. B., Schwager, S. L., Sturrock, E. D. & Acharya, K. R. (2018). J. Med. Chem. 61, 10141-10154.]). In fact, nearly all of the known compounds with this ring system are related in structure to omapatrilat.

[Scheme 1]

Previously we reported the synthesis and crystal structure of 6,7-diphenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (Yennawar & Silverberg, 2013[Yennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.]). Herein we report the T3P-promoted synthesis and crystal structures of two new analogs: 6-(4-nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (1) and 6-(3-nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (2), in which a nitro group substitutes at the para and meta positions, respectively, of the C-2 aromatic ring.

2. Structural commentary

Compound 1 crystallizes with two mol­ecules, A (containing S1) and B (containing S2), in the asymmetric unit (Fig. 1[link]) and 2 crystallizes with one mol­ecule (Fig. 2[link]). The configurations of the stereogenic centers in the arbitrarily chosen asymmetric mol­ecules are (S) at C1 and (R) at C20 for 1 and (S) at C1 for 2; in both structures, crystal symmetry generates a racemic mixture. These mol­ecules adopt similar conformations and overlay closely (Fig. 3[link]) apart from the nitro groups. The seven-membered thia­zepan rings in both structures adopt chair conformations. The puckering parameters [Q2 and Q3 (Å)] as calculated by PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) for mol­ecules A and B in 1 are 0.521 (3), 0.735 (3) and 0.485 (3), 0.749 (3), respectively, with equivalent values of 0.517 (5), 0.699 (5) for 2. The dihedral angles between the aromatic rings attached to the 2 and 3 positions of the thia­zepan rings are 46.93 (15) (mol­ecule 1A), 42.50 (15) (1B) and 42.0 (3)° (2).

[Figure 1]
Figure 1
The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level. C—H⋯O inter­actions are shown as dashed lines.
[Figure 2]
Figure 2
The mol­ecular structure of 2 with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
Overlay of the mol­ecule of 2 on the similarly handed mol­ecule of 1.

3. Supra­molecular features

The extended structure of 1 has more extensive hydrogen bonding compared to that of 2 (Tables 1[link] and 2[link]). In 1, the mol­ecules are arranged into layers propagating in the ab plane, with C—H⋯O hydrogen bonds in both the a- and b-axis directions, but not in the c-axis direction (Fig. 4[link]). In 2, the mol­ecules link up via C—H⋯O `head-to-tail' hydrogen bonds in the c-axis direction (Fig. 5[link]) and hydro­phobic inter­actions between adjacent chains consolidate the packing in the a- and b-axis directions.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O6 0.98 2.41 3.390 (3) 175
C3—H3B⋯O6 0.97 2.50 3.469 (3) 174
C10—H10⋯O6i 0.93 2.60 3.408 (3) 146
C17—H17⋯O2ii 0.93 2.46 3.216 (4) 138
C20—H20⋯O3iii 0.98 2.41 3.369 (3) 165
C28—H28⋯O3iii 0.93 2.56 3.384 (4) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.98 2.38 3.352 (6) 173
C3—H3B⋯O1i 0.97 2.48 3.444 (5) 171
Symmetry code: (i) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Packing diagram for 1 showing C—H⋯O hydrogen bonds between mol­ecules arranged in the ab planes.
[Figure 5]
Figure 5
Packing diagram for 2 viewed down the b-axis direction.

4. Database survey

A 1,3-thia­zepan-4-one with a 5,6-fused benzene and a 2,3-fused triazole has been reported, but only an ORTEP representation was given, without any other data (Bakavoli et al., 2002[Bakavoli, M., Davoodnia, A., Rahimizadeh, M., Heravi, M. M. & Ghasemzadeh, M. (2002). J. Chem. Res. pp. 178-179.]). The structures of omapatrilat bound to proteins have been published recently (Cozier, et al. 2018[Cozier, G. E., Arendse, L. B., Schwager, S. L., Sturrock, E. D. & Acharya, K. R. (2018). J. Med. Chem. 61, 10141-10154.]). The 2,3-diphenyl structure that we previously reported showed a chair-type conformation for the thia­zepan ring [CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode MIHVOQ; Yennawar & Silverberg, 2013[Yennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.]] like those reported here.

5. Synthesis and crystallization

A two-necked 25 ml round-bottom flask was oven-dried, cooled under N2, and charged with a stir bar. 3- or 4-Nitrobenzaldehyde (0.907 g, 6 mmol), aniline (0.571 g, 6 mmol), and [1-(sulfanylmethyl)cyclopropyl] acetic acid (0.877 g, 6 mmol) were added. Pyridine (1.95 ml, 24 mmol) was added. Finally, 2,4,6-tripropyl-1,3,5,2,4,6-trioxatri­phospho­rinane-2,4,6-tri­oxide (T3P) in 2-methyl­tetra­hydro­furan (50 weight %; 7.3 ml, 12 mmol) was added. The reaction was stirred at room temperature and followed by TLC. The mixture was poured into a separatory funnel with di­chloro­methane and distilled water. The layers were separated and the aqueous layer was then extracted twice with di­chloro­methane. The organic fractions were combined and washed with saturated sodium bicarbonate and saturated sodium chloride and then dried over sodium sulfate and concentrated under vacuum. Further purification was carried out as indicated below for each compound.

6-(3-Nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (1): Chromatography on 30 g flash silica gel with mixtures of ethyl acetate and hexa­nes gave a solid. Recrystallization from 2-propanol solution gave crystals (0.5192 g, 26%), m.p. 457–458 K. X-ray-quality crystals were grown by slow evaporation from a 2-propanol solution.

6-(4-Nitro­phen­yl)-7-phenyl-5-thia-7-aza­spiro­[2.6]nonan-8-one (2): Chromatography on 30 g flash silica gel with mixtures of ethyl acetate and hexa­nes gave a solid. Recrystallization from ethyl acetate solution gave colorless crystals (0.1804 g, 9%), m.p. 480–482 K (decomposition). X-ray-quality crystals were grown by slow evaporation from an ethyl acetate solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were placed geometrically (C—H = 0.93–0.98 Å) and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C19H18N2O3S C19H18N2O3S
Mr 354.41 354.41
Crystal system, space group Monoclinic, P21/n Orthorhombic, Pca21
Temperature (K) 298 298
a, b, c (Å) 16.993 (4), 9.955 (2), 21.243 (5) 17.478 (3), 10.4125 (19), 9.7129 (17)
α, β, γ (°) 90, 99.531 (4), 90 90, 90, 90
V3) 3543.9 (15) 1767.6 (5)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.20 0.20
Crystal size (mm) 0.24 × 0.12 × 0.09 0.27 × 0.1 × 0.04
 
Data collection
Diffractometer Bruker SMART CCD area detector Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.780, 0.9 0.769, 0.9
No. of measured, independent and observed [I > 2σ(I)] reflections 30602, 8495, 3560 15240, 4261, 2403
Rint 0.083 0.056
(sin θ/λ)max−1) 0.669 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.155, 0.94 0.081, 0.249, 1.01
No. of reflections 8495 4261
No. of parameters 451 226
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.26 0.55, −0.30
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.47 (19)
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

6-(3-Nitrophenyl)-7-phenyl-5-thia-7-azaspiro[2.6]nonan-8-one (1) top
Crystal data top
C19H18N2O3SF(000) = 1488
Mr = 354.41Dx = 1.329 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.993 (4) ÅCell parameters from 2681 reflections
b = 9.955 (2) Åθ = 2.4–28.3°
c = 21.243 (5) ŵ = 0.20 mm1
β = 99.531 (4)°T = 298 K
V = 3543.9 (15) Å3Block, colorless
Z = 80.24 × 0.12 × 0.09 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
8495 independent reflections
Radiation source: fine-focus sealed tube3560 reflections with I > 2σ(I)
Parallel-graphite monochromatorRint = 0.083
Detector resolution: 8.34 pixels mm-1θmax = 28.4°, θmin = 1.4°
phi and ω scansh = 2122
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1213
Tmin = 0.780, Tmax = 0.9l = 2628
30602 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0603P)2]
where P = (Fo2 + 2Fc2)/3
8495 reflections(Δ/σ)max < 0.001
451 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.86 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38777 (15)0.3850 (3)0.24330 (13)0.0472 (7)
H10.41110.47330.23740.057*
C20.52215 (16)0.2834 (3)0.24439 (13)0.0458 (7)
C30.53440 (16)0.3814 (3)0.19259 (13)0.0497 (7)
H3A0.59060.38310.18900.060*
H3B0.51970.47070.20480.060*
C40.48636 (17)0.3471 (3)0.12818 (13)0.0529 (7)
C50.40156 (18)0.3958 (3)0.11569 (14)0.0673 (9)
H5A0.37930.37480.07180.081*
H5B0.40210.49280.11980.081*
C60.5063 (2)0.2202 (3)0.09693 (16)0.0785 (10)
H6A0.46280.17110.07170.094*
H6B0.54850.16460.11970.094*
C70.5293 (2)0.3518 (3)0.07165 (15)0.0748 (10)
H7A0.49960.38260.03130.090*
H7B0.58530.37610.07930.090*
C80.32870 (15)0.4017 (3)0.28901 (13)0.0461 (7)
C90.26482 (16)0.3140 (3)0.28908 (14)0.0551 (8)
H90.25780.24310.26020.066*
C100.21165 (16)0.3302 (3)0.33116 (15)0.0598 (8)
H100.16910.27100.33010.072*
C110.22164 (17)0.4337 (3)0.37465 (15)0.0582 (8)
H110.18610.44580.40310.070*
C120.28542 (16)0.5189 (3)0.37502 (13)0.0496 (7)
C130.33890 (16)0.5053 (3)0.33310 (13)0.0484 (7)
H130.38130.56490.33450.058*
C140.43844 (15)0.1901 (3)0.31425 (14)0.0456 (7)
C150.45269 (18)0.2164 (3)0.37871 (15)0.0593 (8)
H150.47300.29950.39350.071*
C160.4370 (2)0.1200 (4)0.42134 (16)0.0750 (10)
H160.44670.13800.46490.090*
C170.4070 (2)0.0028 (3)0.39960 (18)0.0771 (10)
H170.39610.06790.42830.093*
C180.39337 (19)0.0286 (3)0.33550 (18)0.0715 (9)
H180.37330.11180.32090.086*
C190.40877 (17)0.0665 (3)0.29254 (15)0.0582 (8)
H190.39930.04790.24900.070*
N10.45322 (12)0.2936 (2)0.27006 (10)0.0443 (6)
N20.29752 (18)0.6265 (3)0.42288 (12)0.0603 (7)
O10.24710 (15)0.6440 (2)0.45664 (11)0.0846 (7)
O20.35847 (16)0.6932 (2)0.42706 (11)0.0858 (7)
O30.57139 (11)0.19619 (19)0.26254 (10)0.0632 (6)
S10.33553 (5)0.32922 (9)0.16613 (4)0.0704 (3)
C200.64468 (15)0.8845 (3)0.29410 (13)0.0484 (7)
H200.62230.97000.27660.058*
C210.52037 (16)0.7803 (3)0.23659 (13)0.0435 (7)
C220.52413 (16)0.8762 (3)0.18223 (13)0.0538 (8)
H22A0.53060.96680.19920.065*
H22B0.47380.87270.15310.065*
C230.59097 (18)0.8473 (3)0.14525 (14)0.0594 (8)
C240.67190 (18)0.9037 (4)0.17153 (14)0.0725 (10)
H24A0.66660.99990.17660.087*
H24B0.70660.88940.14020.087*
C250.5874 (2)0.7178 (4)0.10892 (16)0.0812 (10)
H25A0.63740.67310.10620.097*
H25B0.54290.65810.11140.097*
C260.5701 (2)0.8472 (4)0.07334 (16)0.0862 (11)
H26A0.51520.86560.05450.103*
H26B0.60970.88070.04920.103*
C270.68160 (15)0.9101 (3)0.36255 (13)0.0473 (7)
C280.66026 (17)1.0246 (3)0.39258 (15)0.0611 (8)
H280.62471.08540.37000.073*
C290.6914 (2)1.0492 (4)0.45580 (16)0.0747 (10)
H290.67701.12710.47520.090*
C300.74311 (19)0.9604 (4)0.49030 (15)0.0686 (9)
H300.76340.97610.53310.082*
C310.76402 (16)0.8479 (3)0.45990 (14)0.0525 (7)
C320.73499 (16)0.8210 (3)0.39678 (14)0.0514 (7)
H320.75100.74420.37740.062*
C330.58190 (15)0.6820 (3)0.33613 (13)0.0439 (7)
C340.55008 (18)0.7007 (3)0.39071 (15)0.0611 (8)
H340.52340.78010.39660.073*
C350.5576 (2)0.6016 (4)0.43721 (16)0.0797 (10)
H350.53690.61490.47460.096*
C360.5957 (2)0.4837 (4)0.42757 (18)0.0775 (11)
H360.60070.41690.45860.093*
C370.62626 (18)0.4640 (3)0.37303 (19)0.0719 (10)
H370.65140.38320.36670.086*
C380.62024 (16)0.5631 (3)0.32684 (14)0.0549 (8)
H380.64180.54970.28980.066*
N30.57806 (12)0.7883 (2)0.28935 (10)0.0425 (5)
N40.81967 (15)0.7509 (3)0.49575 (14)0.0637 (7)
O40.85870 (14)0.7871 (2)0.54671 (11)0.0852 (7)
O50.82594 (15)0.6398 (3)0.47322 (12)0.0904 (8)
O60.46794 (11)0.69436 (18)0.23280 (9)0.0551 (5)
S20.72025 (4)0.83452 (9)0.24715 (4)0.0681 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0411 (15)0.0448 (17)0.0557 (18)0.0023 (13)0.0080 (13)0.0011 (14)
C20.0440 (16)0.0494 (18)0.0444 (17)0.0019 (14)0.0080 (13)0.0006 (14)
C30.0465 (16)0.0500 (17)0.0548 (19)0.0047 (13)0.0146 (14)0.0025 (15)
C40.0653 (19)0.0506 (18)0.0436 (18)0.0059 (15)0.0115 (15)0.0017 (15)
C50.070 (2)0.077 (2)0.053 (2)0.0036 (18)0.0039 (16)0.0057 (17)
C60.110 (3)0.066 (2)0.060 (2)0.008 (2)0.016 (2)0.0039 (19)
C70.093 (2)0.079 (3)0.058 (2)0.010 (2)0.0283 (19)0.0086 (19)
C80.0420 (15)0.0431 (17)0.0531 (18)0.0012 (13)0.0072 (14)0.0008 (14)
C90.0480 (16)0.0530 (19)0.064 (2)0.0036 (14)0.0083 (15)0.0085 (15)
C100.0428 (16)0.065 (2)0.073 (2)0.0086 (15)0.0132 (16)0.0031 (18)
C110.0503 (18)0.067 (2)0.059 (2)0.0045 (16)0.0153 (15)0.0025 (18)
C120.0555 (18)0.0419 (17)0.0504 (19)0.0056 (14)0.0064 (15)0.0006 (15)
C130.0439 (15)0.0446 (17)0.0564 (19)0.0010 (13)0.0072 (14)0.0023 (15)
C140.0462 (15)0.0408 (17)0.0502 (19)0.0002 (13)0.0090 (13)0.0037 (15)
C150.074 (2)0.0500 (19)0.053 (2)0.0070 (16)0.0077 (16)0.0028 (16)
C160.112 (3)0.064 (2)0.052 (2)0.004 (2)0.020 (2)0.0035 (19)
C170.102 (3)0.059 (2)0.077 (3)0.001 (2)0.035 (2)0.013 (2)
C180.086 (2)0.046 (2)0.084 (3)0.0154 (17)0.020 (2)0.001 (2)
C190.067 (2)0.0486 (19)0.059 (2)0.0024 (16)0.0108 (16)0.0057 (17)
N10.0422 (13)0.0429 (13)0.0483 (14)0.0020 (10)0.0087 (11)0.0027 (11)
N20.0754 (19)0.0507 (17)0.0552 (18)0.0073 (15)0.0121 (15)0.0002 (14)
O10.1002 (18)0.0907 (18)0.0683 (16)0.0102 (15)0.0300 (14)0.0169 (14)
O20.1053 (19)0.0678 (16)0.0867 (18)0.0234 (14)0.0228 (15)0.0174 (13)
O30.0565 (12)0.0635 (14)0.0708 (14)0.0210 (11)0.0139 (11)0.0136 (11)
S10.0524 (5)0.0998 (7)0.0557 (5)0.0098 (4)0.0008 (4)0.0024 (5)
C200.0453 (15)0.0448 (17)0.0525 (18)0.0066 (13)0.0007 (14)0.0001 (14)
C210.0384 (15)0.0459 (17)0.0455 (17)0.0038 (13)0.0051 (13)0.0022 (14)
C220.0504 (17)0.0551 (19)0.0525 (19)0.0061 (14)0.0017 (14)0.0043 (15)
C230.0622 (19)0.070 (2)0.0460 (19)0.0133 (17)0.0093 (15)0.0019 (16)
C240.069 (2)0.099 (3)0.051 (2)0.0195 (19)0.0147 (17)0.0054 (19)
C250.086 (3)0.085 (3)0.076 (2)0.008 (2)0.024 (2)0.015 (2)
C260.092 (3)0.113 (3)0.054 (2)0.027 (2)0.0099 (19)0.003 (2)
C270.0440 (15)0.0468 (17)0.0491 (18)0.0076 (14)0.0019 (14)0.0021 (15)
C280.0618 (19)0.056 (2)0.063 (2)0.0039 (16)0.0020 (16)0.0065 (17)
C290.082 (2)0.071 (2)0.069 (2)0.0066 (19)0.006 (2)0.023 (2)
C300.066 (2)0.084 (3)0.053 (2)0.0101 (19)0.0008 (17)0.013 (2)
C310.0452 (16)0.059 (2)0.0519 (19)0.0063 (15)0.0033 (14)0.0022 (17)
C320.0483 (16)0.0521 (18)0.0513 (19)0.0059 (14)0.0013 (14)0.0077 (15)
C330.0386 (14)0.0460 (17)0.0453 (17)0.0038 (13)0.0017 (13)0.0016 (14)
C340.066 (2)0.062 (2)0.059 (2)0.0022 (16)0.0184 (17)0.0022 (18)
C350.092 (3)0.093 (3)0.056 (2)0.019 (2)0.017 (2)0.013 (2)
C360.075 (2)0.080 (3)0.070 (3)0.020 (2)0.012 (2)0.031 (2)
C370.058 (2)0.056 (2)0.096 (3)0.0022 (16)0.007 (2)0.016 (2)
C380.0510 (17)0.0523 (19)0.060 (2)0.0010 (15)0.0058 (15)0.0003 (17)
N30.0404 (12)0.0415 (13)0.0435 (14)0.0048 (10)0.0007 (11)0.0036 (11)
N40.0548 (16)0.080 (2)0.0546 (19)0.0085 (16)0.0048 (14)0.0122 (17)
O40.0749 (15)0.117 (2)0.0558 (15)0.0125 (14)0.0133 (13)0.0113 (14)
O50.1009 (19)0.0781 (18)0.0858 (19)0.0195 (15)0.0034 (15)0.0073 (15)
O60.0462 (11)0.0529 (12)0.0628 (13)0.0086 (10)0.0012 (10)0.0042 (10)
S20.0479 (4)0.0946 (7)0.0624 (6)0.0072 (4)0.0112 (4)0.0025 (5)
Geometric parameters (Å, º) top
C1—H10.9800C20—H200.9800
C1—C81.517 (4)C20—C271.507 (4)
C1—N11.476 (3)C20—N31.474 (3)
C1—S11.817 (3)C20—S21.821 (3)
C2—C31.510 (4)C21—C221.508 (4)
C2—N11.375 (3)C21—N31.364 (3)
C2—O31.223 (3)C21—O61.228 (3)
C3—H3A0.9700C22—H22A0.9700
C3—H3B0.9700C22—H22B0.9700
C3—C41.512 (4)C22—C231.512 (4)
C4—C51.502 (4)C23—C241.505 (4)
C4—C61.491 (4)C23—C251.499 (4)
C4—C71.505 (4)C23—C261.510 (4)
C5—H5A0.9700C24—H24A0.9700
C5—H5B0.9700C24—H24B0.9700
C5—S11.801 (3)C24—S21.814 (3)
C6—H6A0.9700C25—H25A0.9700
C6—H6B0.9700C25—H25B0.9700
C6—C71.492 (4)C25—C261.498 (5)
C7—H7A0.9700C26—H26A0.9700
C7—H7B0.9700C26—H26B0.9700
C8—C91.393 (4)C27—C281.384 (4)
C8—C131.384 (4)C27—C321.385 (4)
C9—H90.9300C28—H280.9300
C9—C101.382 (4)C28—C291.381 (4)
C10—H100.9300C29—H290.9300
C10—C111.376 (4)C29—C301.370 (4)
C11—H110.9300C30—H300.9300
C11—C121.375 (4)C30—C311.369 (4)
C12—C131.380 (4)C31—C321.376 (4)
C12—N21.468 (4)C31—N41.472 (4)
C13—H130.9300C32—H320.9300
C14—C151.376 (4)C33—C341.371 (4)
C14—C191.379 (4)C33—C381.381 (4)
C14—N11.444 (3)C33—N31.446 (3)
C15—H150.9300C34—H340.9300
C15—C161.375 (4)C34—C351.387 (4)
C16—H160.9300C35—H350.9300
C16—C171.374 (4)C35—C361.372 (5)
C17—H170.9300C36—H360.9300
C17—C181.367 (4)C36—C371.360 (5)
C18—H180.9300C37—H370.9300
C18—C191.370 (4)C37—C381.383 (4)
C19—H190.9300C38—H380.9300
N2—O11.217 (3)N4—O41.226 (3)
N2—O21.221 (3)N4—O51.216 (3)
C8—C1—H1107.9C27—C20—H20107.1
C8—C1—S1109.56 (18)C27—C20—S2110.86 (18)
N1—C1—H1107.9N3—C20—H20107.1
N1—C1—C8110.9 (2)N3—C20—C27111.6 (2)
N1—C1—S1112.55 (18)N3—C20—S2112.84 (18)
S1—C1—H1107.9S2—C20—H20107.1
N1—C2—C3118.1 (2)N3—C21—C22118.5 (2)
O3—C2—C3121.2 (3)O6—C21—C22120.9 (2)
O3—C2—N1120.7 (3)O6—C21—N3120.6 (2)
C2—C3—H3A108.9C21—C22—H22A108.7
C2—C3—H3B108.9C21—C22—H22B108.7
C2—C3—C4113.2 (2)C21—C22—C23114.1 (2)
H3A—C3—H3B107.7H22A—C22—H22B107.6
C4—C3—H3A108.9C23—C22—H22A108.7
C4—C3—H3B108.9C23—C22—H22B108.7
C5—C4—C3116.4 (2)C22—C23—C26117.1 (3)
C6—C4—C3117.8 (3)C24—C23—C22117.1 (3)
C6—C4—C5118.5 (3)C24—C23—C26115.0 (3)
C6—C4—C759.7 (2)C25—C23—C22117.5 (3)
C7—C4—C3117.0 (3)C25—C23—C24117.9 (3)
C7—C4—C5115.2 (3)C25—C23—C2659.7 (2)
C4—C5—H5A108.1C23—C24—H24A108.3
C4—C5—H5B108.1C23—C24—H24B108.3
C4—C5—S1116.8 (2)C23—C24—S2116.0 (2)
H5A—C5—H5B107.3H24A—C24—H24B107.4
S1—C5—H5A108.1S2—C24—H24A108.3
S1—C5—H5B108.1S2—C24—H24B108.3
C4—C6—H6A117.7C23—C25—H25A117.7
C4—C6—H6B117.7C23—C25—H25B117.7
C4—C6—C760.6 (2)H25A—C25—H25B114.8
H6A—C6—H6B114.8C26—C25—C2360.5 (2)
C7—C6—H6A117.7C26—C25—H25A117.7
C7—C6—H6B117.7C26—C25—H25B117.7
C4—C7—H7A117.8C23—C26—H26A117.8
C4—C7—H7B117.8C23—C26—H26B117.8
C6—C7—C459.7 (2)C25—C26—C2359.8 (2)
C6—C7—H7A117.8C25—C26—H26A117.8
C6—C7—H7B117.8C25—C26—H26B117.8
H7A—C7—H7B114.9H26A—C26—H26B114.9
C9—C8—C1122.0 (3)C28—C27—C20119.0 (3)
C13—C8—C1119.5 (2)C28—C27—C32119.0 (3)
C13—C8—C9118.4 (3)C32—C27—C20122.0 (3)
C8—C9—H9119.3C27—C28—H28119.8
C10—C9—C8121.4 (3)C29—C28—C27120.4 (3)
C10—C9—H9119.3C29—C28—H28119.8
C9—C10—H10120.0C28—C29—H29119.5
C11—C10—C9120.0 (3)C30—C29—C28121.0 (3)
C11—C10—H10120.0C30—C29—H29119.5
C10—C11—H11120.8C29—C30—H30121.0
C10—C11—C12118.4 (3)C29—C30—C31118.0 (3)
C12—C11—H11120.8C31—C30—H30121.0
C11—C12—C13122.6 (3)C30—C31—C32122.7 (3)
C11—C12—N2118.3 (3)C30—C31—N4119.2 (3)
C13—C12—N2119.1 (3)C32—C31—N4118.2 (3)
C8—C13—H13120.4C27—C32—H32120.5
C12—C13—C8119.2 (3)C31—C32—C27119.0 (3)
C12—C13—H13120.4C31—C32—H32120.5
C15—C14—C19119.8 (3)C34—C33—C38119.9 (3)
C15—C14—N1119.3 (2)C34—C33—N3120.2 (3)
C19—C14—N1120.8 (3)C38—C33—N3119.9 (3)
C14—C15—H15120.0C33—C34—H34119.9
C16—C15—C14120.1 (3)C33—C34—C35120.2 (3)
C16—C15—H15120.0C35—C34—H34119.9
C15—C16—H16120.0C34—C35—H35120.3
C17—C16—C15120.0 (3)C36—C35—C34119.5 (3)
C17—C16—H16120.0C36—C35—H35120.3
C16—C17—H17120.2C35—C36—H36119.8
C18—C17—C16119.6 (3)C37—C36—C35120.5 (3)
C18—C17—H17120.2C37—C36—H36119.8
C17—C18—H18119.5C36—C37—H37119.7
C17—C18—C19120.9 (3)C36—C37—C38120.5 (3)
C19—C18—H18119.5C38—C37—H37119.7
C14—C19—H19120.2C33—C38—C37119.4 (3)
C18—C19—C14119.5 (3)C33—C38—H38120.3
C18—C19—H19120.2C37—C38—H38120.3
C2—N1—C1122.0 (2)C21—N3—C20122.3 (2)
C2—N1—C14117.2 (2)C21—N3—C33117.8 (2)
C14—N1—C1119.3 (2)C33—N3—C20118.8 (2)
O1—N2—C12118.7 (3)O4—N4—C31118.1 (3)
O1—N2—O2123.4 (3)O5—N4—C31118.9 (3)
O2—N2—C12117.8 (3)O5—N4—O4123.0 (3)
C5—S1—C199.49 (14)C24—S2—C2097.13 (14)
C1—C8—C9—C10179.8 (3)C20—C27—C28—C29178.3 (3)
C1—C8—C13—C12179.3 (2)C20—C27—C32—C31177.4 (2)
C2—C3—C4—C584.2 (3)C21—C22—C23—C2484.2 (3)
C2—C3—C4—C665.5 (3)C21—C22—C23—C2565.0 (3)
C2—C3—C4—C7133.7 (3)C21—C22—C23—C26133.1 (3)
C3—C2—N1—C17.6 (4)C22—C21—N3—C201.7 (4)
C3—C2—N1—C14173.2 (2)C22—C21—N3—C33169.5 (2)
C3—C4—C5—S163.3 (3)C22—C23—C24—S266.5 (3)
C3—C4—C6—C7106.7 (3)C22—C23—C25—C26106.9 (3)
C3—C4—C7—C6107.9 (3)C22—C23—C26—C25107.6 (3)
C4—C5—S1—C159.6 (3)C23—C24—S2—C2060.9 (3)
C5—C4—C6—C7104.2 (3)C24—C23—C25—C26104.1 (3)
C5—C4—C7—C6109.6 (3)C24—C23—C26—C25109.0 (3)
C6—C4—C5—S186.2 (3)C25—C23—C24—S282.6 (3)
C7—C4—C5—S1154.0 (2)C26—C23—C24—S2150.1 (3)
C8—C1—N1—C2166.4 (2)C27—C20—N3—C21159.1 (2)
C8—C1—N1—C1428.2 (3)C27—C20—N3—C3333.2 (3)
C8—C1—S1—C5153.1 (2)C27—C20—S2—C24149.8 (2)
C8—C9—C10—C110.7 (4)C27—C28—C29—C300.8 (5)
C9—C8—C13—C120.6 (4)C28—C27—C32—C311.2 (4)
C9—C10—C11—C120.3 (4)C28—C29—C30—C311.1 (5)
C10—C11—C12—C130.8 (4)C29—C30—C31—C320.2 (5)
C10—C11—C12—N2178.0 (2)C29—C30—C31—N4179.9 (3)
C11—C12—C13—C80.4 (4)C30—C31—C32—C270.9 (4)
C11—C12—N2—O16.4 (4)C30—C31—N4—O415.7 (4)
C11—C12—N2—O2172.9 (3)C30—C31—N4—O5165.6 (3)
C13—C8—C9—C101.1 (4)C32—C27—C28—C290.4 (4)
C13—C12—N2—O1174.8 (3)C32—C31—N4—O4164.4 (3)
C13—C12—N2—O25.9 (4)C32—C31—N4—O514.4 (4)
C14—C15—C16—C170.0 (5)C33—C34—C35—C361.3 (5)
C15—C14—C19—C180.4 (4)C34—C33—C38—C370.2 (4)
C15—C14—N1—C191.8 (3)C34—C33—N3—C2091.3 (3)
C15—C14—N1—C2102.2 (3)C34—C33—N3—C21100.4 (3)
C15—C16—C17—C180.3 (5)C34—C35—C36—C370.2 (5)
C16—C17—C18—C190.3 (5)C35—C36—C37—C380.8 (5)
C17—C18—C19—C140.0 (5)C36—C37—C38—C330.9 (4)
C19—C14—C15—C160.3 (4)C38—C33—C34—C351.2 (4)
C19—C14—N1—C186.9 (3)C38—C33—N3—C2086.4 (3)
C19—C14—N1—C279.1 (3)C38—C33—N3—C2181.9 (3)
N1—C1—C8—C987.2 (3)N3—C20—C27—C2899.3 (3)
N1—C1—C8—C1391.4 (3)N3—C20—C27—C3279.3 (3)
N1—C1—S1—C583.0 (2)N3—C20—S2—C2484.2 (2)
N1—C2—C3—C477.3 (3)N3—C21—C22—C2371.4 (3)
N1—C14—C15—C16178.3 (3)N3—C33—C34—C35176.5 (3)
N1—C14—C19—C18178.3 (3)N3—C33—C38—C37177.5 (2)
N2—C12—C13—C8178.4 (2)N4—C31—C32—C27179.0 (2)
O3—C2—C3—C4101.7 (3)O6—C21—C22—C23106.5 (3)
O3—C2—N1—C1171.4 (2)O6—C21—N3—C20176.2 (2)
O3—C2—N1—C145.8 (4)O6—C21—N3—C338.4 (4)
S1—C1—C8—C937.6 (3)S2—C20—C27—C28134.0 (2)
S1—C1—C8—C13143.7 (2)S2—C20—C27—C3247.4 (3)
S1—C1—N1—C270.4 (3)S2—C20—N3—C2175.3 (3)
S1—C1—N1—C1494.9 (2)S2—C20—N3—C3392.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O60.982.413.390 (3)175
C3—H3B···O60.972.503.469 (3)174
C10—H10···O6i0.932.603.408 (3)146
C17—H17···O2ii0.932.463.216 (4)138
C20—H20···O3iii0.982.413.369 (3)165
C28—H28···O3iii0.932.563.384 (4)147
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+1, z.
6-(4-Nitrophenyl)-7-phenyl-5-thia-7-azaspiro[2.6]nonan-8-one (2) top
Crystal data top
C19H18N2O3SDx = 1.332 Mg m3
Mr = 354.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 3246 reflections
a = 17.478 (3) Åθ = 2.3–28.2°
b = 10.4125 (19) ŵ = 0.20 mm1
c = 9.7129 (17) ÅT = 298 K
V = 1767.6 (5) Å3Needle, colorless
Z = 40.27 × 0.1 × 0.04 mm
F(000) = 744
Data collection top
Bruker SMART CCD area detector
diffractometer
4261 independent reflections
Radiation source: fine-focus sealed tube2403 reflections with I > 2σ(I)
Parallel graphite monochromatorRint = 0.056
Detector resolution: 8.34 pixels mm-1θmax = 28.3°, θmin = 2.0°
phi and ω scansh = 2320
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1313
Tmin = 0.769, Tmax = 0.9l = 1212
15240 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.249 w = 1/[σ2(Fo2) + (0.1501P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4261 reflectionsΔρmax = 0.55 e Å3
226 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.47 (19)
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (20 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6266 (3)0.5630 (4)0.3841 (4)0.0635 (11)
H10.64810.58710.47360.076*
C20.7512 (2)0.6299 (3)0.2850 (5)0.0559 (9)
C30.7521 (3)0.7400 (4)0.3845 (4)0.0593 (9)
H3A0.80270.77850.38380.071*
H3B0.74290.70710.47640.071*
C40.6941 (3)0.8423 (4)0.3537 (5)0.0684 (12)
C50.6136 (3)0.8248 (5)0.4002 (8)0.0895 (16)
H5A0.58540.90200.37690.107*
H5B0.61380.81800.49980.107*
C60.5840 (3)0.4389 (4)0.4049 (5)0.0677 (11)
C70.6041 (3)0.3639 (5)0.5202 (6)0.0840 (15)
H70.64240.39200.57940.101*
C80.5672 (4)0.2488 (6)0.5459 (8)0.0912 (16)
H80.57940.19900.62230.109*
C90.5123 (3)0.2113 (5)0.4549 (7)0.0836 (15)
C100.4898 (3)0.2793 (6)0.3448 (8)0.0952 (18)
H100.45160.24910.28640.114*
C110.5263 (3)0.3988 (5)0.3204 (7)0.0794 (13)
H110.51090.44990.24690.095*
C120.6820 (2)0.4565 (4)0.1787 (4)0.0550 (9)
C130.7041 (3)0.3314 (4)0.1968 (6)0.0697 (11)
H130.72880.30670.27730.084*
C140.6893 (3)0.2408 (5)0.0934 (6)0.0780 (14)
H140.70370.15550.10500.094*
C150.6533 (3)0.2795 (5)0.0250 (6)0.0763 (13)
H150.64250.21960.09330.092*
C160.6336 (3)0.4032 (5)0.0435 (5)0.0734 (12)
H160.61050.42830.12540.088*
C170.6473 (3)0.4935 (5)0.0581 (5)0.0646 (10)
H170.63320.57870.04480.078*
C180.7205 (4)0.9800 (4)0.3554 (6)0.0846 (15)
H18A0.77350.99670.37890.102*
H18B0.68451.04460.38710.102*
C190.7041 (4)0.9149 (4)0.2180 (5)0.0822 (15)
H19A0.74740.89240.16030.099*
H19B0.65840.94040.16850.099*
N10.69179 (18)0.5453 (3)0.2889 (3)0.0568 (8)
N20.4715 (4)0.0877 (6)0.4819 (10)0.120 (2)
O10.80230 (16)0.6180 (3)0.1992 (3)0.0659 (7)
O20.4223 (4)0.0545 (6)0.3992 (11)0.169 (3)
O30.4905 (4)0.0269 (6)0.5872 (9)0.151 (3)
S10.56211 (7)0.69074 (13)0.3337 (2)0.0942 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (2)0.080 (3)0.053 (2)0.0090 (19)0.0124 (18)0.0078 (19)
C20.052 (2)0.061 (2)0.055 (2)0.0039 (17)0.0023 (19)0.0011 (18)
C30.064 (2)0.063 (2)0.050 (2)0.0029 (18)0.0001 (19)0.0036 (18)
C40.084 (3)0.055 (2)0.067 (3)0.0001 (18)0.003 (2)0.005 (2)
C50.075 (3)0.077 (3)0.116 (4)0.012 (2)0.023 (3)0.008 (3)
C60.052 (2)0.075 (3)0.076 (3)0.0025 (19)0.011 (2)0.002 (2)
C70.077 (3)0.094 (4)0.081 (4)0.002 (3)0.015 (3)0.005 (3)
C80.086 (4)0.091 (4)0.096 (4)0.007 (3)0.017 (3)0.010 (3)
C90.076 (3)0.077 (3)0.098 (4)0.000 (2)0.033 (3)0.005 (3)
C100.054 (3)0.110 (4)0.122 (5)0.014 (2)0.015 (3)0.017 (4)
C110.059 (3)0.088 (3)0.091 (3)0.012 (2)0.005 (3)0.000 (3)
C120.053 (2)0.064 (2)0.049 (2)0.0016 (15)0.0009 (17)0.0045 (18)
C130.076 (3)0.066 (2)0.068 (3)0.004 (2)0.007 (2)0.004 (2)
C140.100 (4)0.060 (3)0.074 (3)0.000 (2)0.001 (3)0.008 (2)
C150.079 (3)0.077 (3)0.073 (3)0.014 (2)0.004 (3)0.015 (2)
C160.071 (3)0.093 (3)0.055 (2)0.015 (2)0.006 (2)0.006 (2)
C170.068 (3)0.070 (3)0.057 (2)0.006 (2)0.009 (2)0.000 (2)
C180.099 (4)0.061 (3)0.095 (4)0.003 (2)0.014 (3)0.013 (3)
C190.112 (4)0.074 (3)0.060 (3)0.003 (3)0.020 (3)0.005 (2)
N10.0504 (18)0.072 (2)0.0480 (18)0.0073 (13)0.0019 (15)0.0070 (15)
N20.075 (3)0.086 (3)0.200 (7)0.002 (3)0.055 (4)0.010 (5)
O10.0552 (16)0.0804 (17)0.0621 (18)0.0054 (13)0.0086 (15)0.0031 (15)
O20.107 (4)0.113 (4)0.288 (10)0.043 (3)0.024 (5)0.013 (5)
O30.148 (5)0.105 (4)0.201 (7)0.004 (3)0.043 (5)0.037 (4)
S10.0546 (6)0.0848 (8)0.1432 (14)0.0082 (5)0.0026 (8)0.0113 (9)
Geometric parameters (Å, º) top
C1—H10.9800C9—N21.494 (8)
C1—C61.505 (6)C10—H100.9300
C1—N11.479 (5)C10—C111.418 (8)
C1—S11.811 (5)C11—H110.9300
C2—C31.500 (5)C12—C131.370 (6)
C2—N11.361 (5)C12—C171.373 (6)
C2—O11.228 (5)C12—N11.425 (5)
C3—H3A0.9700C13—H130.9300
C3—H3B0.9700C13—C141.402 (7)
C3—C41.501 (6)C14—H140.9300
C4—C51.488 (7)C14—C151.371 (8)
C4—C181.506 (7)C15—H150.9300
C4—C191.530 (7)C15—C161.345 (8)
C5—H5A0.9700C16—H160.9300
C5—H5B0.9700C16—C171.384 (7)
C5—S11.782 (6)C17—H170.9300
C6—C71.409 (8)C18—H18A0.9700
C6—C111.366 (7)C18—H18B0.9700
C7—H70.9300C18—C191.524 (7)
C7—C81.384 (8)C19—H19A0.9700
C8—H80.9300C19—H19B0.9700
C8—C91.362 (9)N2—O21.226 (11)
C9—C101.342 (9)N2—O31.248 (10)
C6—C1—H1106.9C11—C10—H10121.1
C6—C1—S1111.0 (3)C6—C11—C10120.0 (6)
N1—C1—H1106.9C6—C11—H11120.0
N1—C1—C6111.0 (3)C10—C11—H11120.0
N1—C1—S1113.7 (3)C13—C12—C17120.0 (4)
S1—C1—H1106.9C13—C12—N1119.1 (4)
N1—C2—C3119.0 (4)C17—C12—N1120.8 (4)
O1—C2—C3120.4 (4)C12—C13—H13120.1
O1—C2—N1120.6 (3)C12—C13—C14119.8 (5)
C2—C3—H3A108.8C14—C13—H13120.1
C2—C3—H3B108.8C13—C14—H14120.4
C2—C3—C4114.0 (4)C15—C14—C13119.1 (5)
H3A—C3—H3B107.6C15—C14—H14120.4
C4—C3—H3A108.8C14—C15—H15119.6
C4—C3—H3B108.8C16—C15—C14120.7 (5)
C3—C4—C18117.8 (4)C16—C15—H15119.6
C3—C4—C19116.4 (4)C15—C16—H16119.6
C5—C4—C3119.4 (4)C15—C16—C17120.7 (5)
C5—C4—C18113.8 (4)C17—C16—H16119.6
C5—C4—C19115.5 (5)C12—C17—C16119.6 (4)
C18—C4—C1960.2 (3)C12—C17—H17120.2
C4—C5—H5A107.9C16—C17—H17120.2
C4—C5—H5B107.9C4—C18—H18A117.7
C4—C5—S1117.6 (4)C4—C18—H18B117.7
H5A—C5—H5B107.2C4—C18—C1960.6 (3)
S1—C5—H5A107.9H18A—C18—H18B114.8
S1—C5—H5B107.9C19—C18—H18A117.7
C7—C6—C1117.3 (5)C19—C18—H18B117.7
C11—C6—C1123.2 (5)C4—C19—H19A117.9
C11—C6—C7119.5 (5)C4—C19—H19B117.9
C6—C7—H7119.8C18—C19—C459.1 (3)
C8—C7—C6120.5 (6)C18—C19—H19A117.9
C8—C7—H7119.8C18—C19—H19B117.9
C7—C8—H8121.3H19A—C19—H19B115.0
C9—C8—C7117.4 (6)C2—N1—C1121.6 (3)
C9—C8—H8121.3C2—N1—C12119.4 (3)
C8—C9—N2118.0 (7)C12—N1—C1117.3 (3)
C10—C9—C8124.9 (6)O2—N2—C9117.5 (8)
C10—C9—N2117.1 (7)O2—N2—O3125.6 (7)
C9—C10—H10121.1O3—N2—C9116.9 (8)
C9—C10—C11117.7 (6)C5—S1—C199.4 (2)
C1—C6—C7—C8179.8 (5)C12—C13—C14—C150.6 (8)
C1—C6—C11—C10178.7 (5)C13—C12—C17—C161.3 (7)
C2—C3—C4—C582.2 (6)C13—C12—N1—C192.4 (5)
C2—C3—C4—C18132.8 (4)C13—C12—N1—C2102.5 (5)
C2—C3—C4—C1964.1 (5)C13—C14—C15—C161.2 (9)
C3—C2—N1—C13.0 (6)C14—C15—C16—C171.7 (8)
C3—C2—N1—C12167.4 (4)C15—C16—C17—C120.5 (7)
C3—C4—C5—S161.4 (7)C17—C12—C13—C141.8 (7)
C3—C4—C18—C19106.1 (5)C17—C12—N1—C184.3 (5)
C3—C4—C19—C18108.4 (5)C17—C12—N1—C280.7 (5)
C4—C5—S1—C155.8 (5)C18—C4—C5—S1152.2 (4)
C5—C4—C18—C19106.9 (5)C19—C4—C5—S185.2 (5)
C5—C4—C19—C18104.0 (5)N1—C1—C6—C795.0 (5)
C6—C1—N1—C2160.3 (4)N1—C1—C6—C1187.0 (6)
C6—C1—N1—C1235.0 (5)N1—C1—S1—C581.7 (4)
C6—C1—S1—C5152.3 (4)N1—C2—C3—C471.9 (5)
C6—C7—C8—C90.9 (8)N1—C12—C13—C14175.0 (4)
C7—C6—C11—C103.3 (8)N1—C12—C17—C16175.4 (4)
C7—C8—C9—C102.1 (9)N2—C9—C10—C11178.0 (5)
C7—C8—C9—N2179.5 (5)O1—C2—C3—C4106.4 (5)
C8—C9—C10—C110.5 (8)O1—C2—N1—C1175.3 (4)
C8—C9—N2—O2179.8 (6)O1—C2—N1—C1210.9 (6)
C8—C9—N2—O30.2 (8)S1—C1—C6—C7137.6 (4)
C9—C10—C11—C62.3 (8)S1—C1—C6—C1140.5 (6)
C10—C9—N2—O22.5 (8)S1—C1—N1—C273.7 (4)
C10—C9—N2—O3177.4 (6)S1—C1—N1—C1291.0 (4)
C11—C6—C7—C81.7 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.982.383.352 (6)173
C3—H3B···O1i0.972.483.444 (5)171
Symmetry code: (i) x+3/2, y, z+1/2.
 

Acknowledgements

We thank Euticals (AMRI) for the gift of T3P in 2-methyl­tetra­hydro­furan, Oakwood Chemicals for [1-(sulfanylmeth­yl)cyclo­prop­yl] acetic acid, and Penn State Schuylkill for financial support.

References

First citationBakavoli, M., Davoodnia, A., Rahimizadeh, M., Heravi, M. M. & Ghasemzadeh, M. (2002). J. Chem. Res. pp. 178–179.  CrossRef Google Scholar
First citationBruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCozier, G. E., Arendse, L. B., Schwager, S. L., Sturrock, E. D. & Acharya, K. R. (2018). J. Med. Chem. 61, 10141–10154.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGraul, A., Leeson, P. & Castañer, J. (1999). Drugs Fut. 24, 269–277.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRobl, J. A., Sun, C.-Q., Stevenson, J., Ryono, D. E., Simpkins, L. M., Cimarusti, M. P., Dejneka, T., Slusarchyk, W. A., Chao, S., Stratton, L., Misra, R. N., Bednarz, M. S., Asaad, M. M., Cheung, H. S., Abboa-Offei, B. E., Smith, P. L., Mathers, P. D., Fox, M., Schaeffer, T. R., Seymour, A. A. & Trippodo, N. C. (1997). J. Med. Chem. 40, 1570–1577.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabrizchi, R. (2001). Curr. Opin. Investig. Drugs, 2, 1414–1422.  PubMed CAS Google Scholar
First citationYennawar, H. P. & Silverberg, L. J. (2013). Acta Cryst. E69, o1659.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds