research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two isomers of [1-benzyl-4-(pyridin-2-yl-κN)-1H-1,2,3-triazole-κN3]di­chlorido­bis­­(di­methyl sulfoxide-κS)ruthenium(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
*Correspondence e-mail: maverick@lsu.edu

Edited by J. Jasinski, Keene State College, USA (Received 8 May 2019; accepted 12 June 2019; online 4 July 2019)

The structures of two isomers of the title compound, [RuCl2(C14H12N4)(C2H6OS)2], 2 and 3, are reported. Isomers 2 and 3 are produced by reaction of the pyridyl­triazole ligand 1-benzyl-4-(pyridin-2-yl)-1H-1,2,3-triazole (bpt) (1) with fac-[RuCl2(DMSO-S)3(DMSO-O)]. Reaction in acetone produces ca 95% 2, which is the OC-6-14 isomer, with cis DMSO and trans chlorido ligands, and 5% 3 (the OC-6-32 isomer, with cis DMSO and cis chlorido ligands, and the pyridyl moiety of bpt trans to DMSO). Reaction in refluxing toluene initially forms 2, which slowly isomerizes to 3.

1. Chemical context

Many 1,2,3-triazole-based ligands have been prepared by copper(I) catalysis of reaction of alkynes with azides; see, for example, Crowley et al. (2010[Crowley, J. D., Bandeen, P. H. & Hanton, L. R. (2010). Polyhedron, 29, 70-83.]). Continuing our research concerning multifunctional chelating ligands in the construction of supra­molecular metal–organic frameworks, we used bis­(pyridyl­triazole) ligands to make macrocyclic CuII dimers that have found application in hosting small mol­ecules such as DABCO and oxalate (Pokharel et al., 2013[Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2013). Dalton Trans. 42, 14064-14067.], 2014[Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nat. Commun. 5, 5883.]). As an extension of this work, we were also inter­ested in RuII pyridyl­triazole complexes. RuII–polypyridine coordination compounds have been employed in dye-sensitized solar cells, optical sensors, and photoredox catalysts (Grätzel, 2009[Grätzel, M. (2009). Acc. Chem. Res. 42, 1788-1798.]; Orellana & García-Fresnadillo, 2004[Orellana, G. & García-Fresnadillo, D. (2004). Optical Sensors: Industrial Environmental and Diagnostic Applications, Vol. 1, edited by R. Narayanaswamy & O. S. Wolfbeis, pp 309-357. New York: Springer.]; Prier et al., 2013[Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. (2013). Chem. Rev. 113, 5322-5363.]). In contrast, only a small number of RuII–pyridyl­triazole complexes have been examined to ascertain whether incorporation of triazole could result in improvements compared to the polypyridine complexes. Triazole is a stronger π acceptor analog of pyridine, because of its three electronegative nitro­gen atoms, leading to Ru complexes with different photophysical and electrochemical properties (Schulze et al., 2009[Schulze, B., Friebe, C., Hager, D. M., Winter, A., Hoogenboom, R., Görls, H. & Schubert, U. S. (2009). Dalton Trans. pp. 787-794.]; Felici et al., 2009[Felici, M., Contreras-Carballada, P., Vida, Y., Smits, J. M. M., Nolte, R. J. M., De Cola, L., Williams, R. M. & Feiters, M. C. (2009). Chem. Eur. J. 15, 13124-13134.]; Elliott et al., 2016[Elliott, A. B. S., Lewis, J. E. M., van der Salm, H., McAdam, C. J., Crowley, J. D. & Gordon, K. C. (2016). Inorg. Chem. 55, 3440-3447.]). Kumar et al. (2016[Kumar, S. V., Scottwell, S. O., Waugh, E., McAdam, C. J., Hanton, L. R., Brooks, H. J. L. & Crowley, J. D. (2016). Inorg. Chem. 55, 9767-9777.]) used benzyl­pyridytriazole (bpt, 1) to synthesize the homoleptic RuII complex Ru(bpt)32+.

[Scheme 1]

Our intention was to make an RuII complex with one or two pyridyl­triazoles per metal atom along with weakly ligated coordination sites to facilitate other types of chemistry. In this paper, we report the synthesis of two isomers of Ru(bpt)(DMSO)2Cl2, 2 and 3 (see Fig. 1[link]). Compound 2 is the kinetic product of the reaction, and it slowly isomerizes to the thermodynamically more stable 3.

[Figure 1]
Figure 1
X-ray structures of 2 and 3. Displacement ellipsoids are drawn at the 50% probability level, and hydrogen atoms are omitted for clarity.

2. Structural commentary

Complexation of RuCl2(DMSO)4 and bpt in refluxing acetone gave compound 2 in good yield. Although enough bpt was present in the mixture to replace all DMSO mol­ecules, the product contains only one mol­ecule of bpt per Ru atom. The RuII cation in 2 adopts a distorted octa­hedral geometry and beside one bpt, two S-bonded DMSO mol­ecules occupy equatorial positions, and chlorides are coordinated in axial positions. This is the OC-6-14 isomer, according to Chemical Abstracts stereochemical notation (Brown et al., 1975[Brown, M. F., Cook, B. R. & Sloan, T. E. (1975). Inorg. Chem. 14, 1273-1278.]; Connelly & Damhus, 2005[Connelly, N. G. & Damhus, T. (2005). Nomenclature of Inorganic Chemistry: IUPAC Recommendations, edited by N. G. Connelly & T. Damhus, pp. 174-183. Cambridge: RSC Publishing.]). The lengths of important bonds, the distances of the Ru atoms from the mean planes of the bpt ligands, and the angles between the pyridyl­triazole and benzyl mean planes, are reported in Table 1[link]. We performed 2D NMR analysis to fully assign the peaks in the 1H and 1C NMR spectra. The HMBC spectrum shows cross coupling of H3, but not H2, with C5. This assignment, along with information from HSQC, NOESY, and COSY spectra (see supporting information), led to consistent assignments for the remaining atoms in 2. In this structure, the DMSO mol­ecules are bonded through S, with S1—Ru1—S2 = 91.27 (2)°, and they are in slightly different environments, in agreement with the NMR data.

Table 1
Selected bond distances for complexes 2 and 3, the distance between Ru and the mean plane of the pyridyl­triazole (Å), the N1—Ru—N2 angle, and the angle between the pyridyl­triazole and benzyl mean planes (°)

  complex 2 complex 3
Ru1—N1 (pyridine) 2.1714 (18) 2.126 (3)
Ru1—N2 (triazole) 2.0890 (19) 2.044 (3)
Ru1—Cl1 2.3835 (6) 2.4175 (9)
Ru1—Cl2 2.4157 (6) 2.4167 (9)
Ru1—S1 2.2814 (6) 2.2530 (9)
Ru1—S2 2.2440 (6) 2.2434 (9)
Ru1⋯mean plane of pyridyl­triazole 0.0728 (2) 0.048 (3)
N1—Ru—N2 77.10 (7) 78.32 (12)
pyridyl­triazole plane⋯benzyl plane 77.75 (7) 69.52 (10)

Compound 3, the thermodynamically stable product of complexation of RuCl2(DMSO)4 and bpt, forms under reflux in toluene. During the reaction we detected 2 by 1H NMR as an inter­mediate, and it gradually isomerizes to 3. The atoms trans to the two DMSO and chlorido ligands are similar or identical in 2, but different in 3 (which is the OC-6-32 isomer). However, bond lengths and angles in 2 and 3 are only slightly different (see Table 1[link]). The 1H NMR resonances for the two DMSO ligands differ by more in 3 (four singlet peaks) than they do in 2, as expected. Unlike in 2, the benzylic methyl­ene hydrogens in 3 are inequivalent, and they appear as a multiplet at 5.67 ppm.

Two other isomers of the title compound, with DMSO ligands trans and Cl ligands cis (the OC-6-43 isomer) or with cis DMSO and Cl ligands and pyridyl trans to Cl (OC-6-42), are possible. We did not observe any other materials in the NMR spectra or in the isolated products that were attributable to these isomers.

3. Supra­molecular features

The packing structure of 2 shows a non-classical hydrogen bond between Cl2 and H7 (see Table 2[link]). The methine hydrogen (H7) is relatively acidic, showing a downfield 1H NMR peak at 7.93 ppm. Li & Flood (2008[Li, Y. & Flood, A. H. (2008). Angew. Chem. Int. Ed. 47, 2649-2652.]) took advantage of this C—H(triazole)⋯Cl inter­action in preparing a neutral, macrocyclic receptor for chloride ions. Hydrogen bonds to triazole H atoms were also used by White & Beer (2012[White, N. G. & Beer, P. D. (2012). Chem. Commun. 48, 8499-8501.]) in creating a host system that can strongly bind halides. The packing structure of 3 also shows a close inter­action of H7, this time with O1 (see Table 3[link]).

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl2i 0.95 2.49 3.438 (2) 172
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Table 3
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.95 2.11 3.031 (4) 164
Symmetry code: (i) x+1, y, z.

4. Database survey

A survey of the Cambridge Structural Database (version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded 31 Ru complexes with pyridyl­triazole-based ligands. [Hits with bis­(triazol­yl)pyridine ligands were not included in the analysis.] All of the Ru centers in these structures have the +2 oxidation state and an approximately octa­hedral geometry. In these structures, the average N(pyridine)—Ru—N(triazole) angle, Ru—N(pyridine), and Ru—N(triazole) bond lengths are 78.4 (5)°, 2.088 (10) Å, and 2.040 (17) Å, respectively; the maximum deviation of Ru from the mean plane of the pyridyl­triazole ligand is 0.319 Å. The corresponding values for 2 and 3 are listed in Table 1[link], showing that their structural characteristics are similar to those of the reported structures in the literature.

5. Synthesis and crystallization

General. RuCl3·3H2O was purchased from Pressure Chemical; other reagents and solvents were purchased from Aldrich, Alfa Aesar, Acros Organics, or Combi-Blocks, and used without further purification. Bpt (1) was synthesized according to the procedure of Crowley et al. (2010[Crowley, J. D., Bandeen, P. H. & Hanton, L. R. (2010). Polyhedron, 29, 70-83.]) and purified by trituration with ether. The Ru starting material was fac-[RuCl2(DMSO-S)3(DMSO-O)], prepared following the literature procedure (Evans et al., 1973[Evans, I. P., Spencer, A. & Wilkinson, G. (1973). J. Chem. Soc. Dalton Trans. pp. 204-209.]) and characterized by comparison with the 1H NMR spectra of Bratsos & Alessio (2010[Bratsos, I. & Alessio, E. (2010). Inorganic Syntheses, Vol. 35, edited by T. B. Rauchfuss, pp 148-152. Hoboken, New Jersey: Wiley.]). Elsewhere in this manuscript, it is referred to as RuCl2(DMSO)4 for simplicity. NMR spectra were recorded on a Bruker AV-400 MHz spectrometer and are reported in ppm, with coupling constants in Hz. Electrospray ionization mass spectra (ESI-MS) were measured on an Agilent 6210 instrument.

Synthesis of (OC-6-14)-Ru(bpt)(DMSO)2Cl2, 2. RuCl2(DMSO)4 (101.5 mg, 0.2095 mmol) and bpt (98.3 mg, 0.416 mmol) were mixed with 20 mL acetone and the mixture refluxed for 12 h under nitro­gen. The bright-yellow solution was allowed to cool to room temperature and the acetone evaporated in vacuo. Excess bpt was removed from the product as follows: The solid was sonicated with 5 mL of ether, the suspension centrifuged, and the solvent deca­nted. This process was repeated twice more. The resulting yellow solid was dried in air; yield 110 mg (93%). This material contains ca 95% 2 and 5% 3 by NMR. Yellow single crystals of 2 were obtained by vapor diffusion of ether into a solution of the complex in ethanol–chloro­form (1:1 v/v). 1H NMR (400 MHz, CDCl3) δ 10.59 (d, J = 5.04, H1), 7.93 (s, H7), 7.81 (td, J1 = 7.68 Hz, J2 = 1.32 Hz, H3), 7.64 (d, J = 7.56, H4), 7.46–7.51 (m, H2, H11, H12, H13), 7.35–7.39 (m, H10, H14), 5.65 (s, H8), 3.60 (s, DMSO), 3.58 (s, DMSO). 13C NMR (100 MHz, CDCl3) δ 155.64 (C1), 148.92, 148.82 (C5, C6), 137.37(C3), 131. 94 (C9), 129.90, 129.70 (C11/C13, C12), 128.84 (C10/C14), 124.73 (C2), 122.39 (C7), 120.77 (C4), 56.20 (C8), 46.42 (DMSO), 44.53 (DMSO). ESI–MS: m/z [Ru(bpt)(DMSO)2Cl2+Na]+ 580.9665 (calculated: 580.9686).

Synthesis of (OC-6-32)-Ru(bpt)(DMSO)2Cl2, 3. RuCl2(DMSO)4 (513.5 mg, 1.059 mmol) and bpt (361.5 mg, 1.530 mmol) were mixed with 15 mL toluene and the mixture refluxed for 16 days under nitro­gen, then cooled to room temperature. The resulting yellow suspension was filtered and the solid washed with fresh toluene and ether, then dried in air. Yield 590 mg (98%) of yellow solid 3. For crystallization, a sample was mixed with aceto­nitrile, heated to boiling, allowed to cool, centrifuged, and the yellow deca­ntate used for ether vapor diffusion. After a day, yellow cube-shaped crystals were obtained. 1H NMR (400 MHz, CDCl3) δ 9.86 (d, J = 5.68, H1), 7.96 (s, H7), 7.87 (td, J1 = 7.68 Hz, J2 = 1.48 Hz, H3), 7.66 (d, J = 7.76 Hz, H4), 7.43–7.53 (m, H2, H12, H11, H13), 7.32–7.37 (m, H10, H14), 5.67 (m, H8), 3.69 (s, DMSO), 3.55 (s, DMSO), 3.12 (s, DMSO), 3.07 (s, DMSO). 13C NMR (100 MHz, DMSO-d6) δ 152.02, 149.91, 149.52, 138.72, 135.27, 129.45, 129.20, 128.77, 125.69, 124.53, 121.39, 55.45, 46.55, 45.20, 44.70, 43.91. ESI–MS: m/z [Ru(bpt)(DMSO)2Cl2+Na]+ 580.9670 (calculated: 580.9686).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 4[link]. In both structures, H atoms were placed in idealized positions and treated with a riding model, with C—H distances of 0.95 Å for Csp2, 0.99 Å for CH2, and 0.98 Å for methyl groups. Uiso(H) values were set to either 1.2 or 1.5 (CH3) times Ueq of the attached atom. The largest peaks in the final difference maps of 2 and 3 are located 0.914 and 0.887 Å, respectively, from Ru1.

Table 4
Experimental details

  2 3
Crystal data
Chemical formula [RuCl2(C14H12N4)(C2H6OS)2] [RuCl2(C14H12N4)(C2H6OS)2]
Mr 564.50 564.50
Crystal system, space group Orthorhombic, Pbca Triclinic, P[\overline{1}]
Temperature (K) 90 90
a, b, c (Å) 21.3094 (11), 9.4213 (5), 22.5267 (12) 9.3535 (14), 9.4900 (15), 13.904 (2)
α, β, γ (°) 90, 90, 90 98.893 (5), 106.772 (5), 106.276 (5)
V3) 4522.5 (4) 1096.4 (3)
Z 8 2
Radiation type Cu Kα Cu Kα
μ (mm−1) 9.70 10.01
Crystal size (mm) 0.71 × 0.16 × 0.04 0.67 × 0.63 × 0.45
 
Data collection
Diffractometer Bruker Kappa APEXII CCD DUO Bruker Kappa APEXII CCD DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.349, 0.715 0.062, 0.094
No. of measured, independent and observed [I > 2σ(I)] reflections 34572, 3970, 3628 9693, 3704, 3657
Rint 0.043 0.026
(sin θ/λ)max−1) 0.596 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.04 0.037, 0.103, 1.16
No. of reflections 3970 3704
No. of parameters 266 266
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.46 2.21, −0.63
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(OC-6-14)-[1-Benzyl-4-(pyridin-2-yl-κN)-1H-1,2,3-triazole-κN3]dichloridobis(dimethyl sulfoxide-κS)ruthenium(II) (2) top
Crystal data top
[RuCl2(C14H12N4)(C2H6OS)2]Dx = 1.658 Mg m3
Mr = 564.50Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 9998 reflections
a = 21.3094 (11) Åθ = 3.9–66.5°
b = 9.4213 (5) ŵ = 9.70 mm1
c = 22.5267 (12) ÅT = 90 K
V = 4522.5 (4) Å3Needle, yellow
Z = 80.71 × 0.16 × 0.04 mm
F(000) = 2288
Data collection top
Bruker Kappa APEXII CCD DUO
diffractometer
3970 independent reflections
Radiation source: IµS microfocus3628 reflections with I > 2σ(I)
QUAZAR multilayer optics monochromatorRint = 0.043
φ and ω scansθmax = 66.7°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2423
Tmin = 0.349, Tmax = 0.715k = 119
34572 measured reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0391P)2 + 3.2772P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3970 reflectionsΔρmax = 0.60 e Å3
266 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.09298 (2)0.17864 (2)0.37532 (2)0.02143 (8)
Cl10.08456 (3)0.01442 (6)0.45541 (2)0.02897 (14)
Cl20.11140 (3)0.34903 (6)0.29710 (2)0.02744 (13)
S10.04525 (3)0.34440 (6)0.43372 (2)0.02548 (13)
S20.00095 (3)0.11879 (7)0.33388 (3)0.02991 (14)
O20.05488 (9)0.2095 (2)0.34285 (9)0.0476 (5)
O10.08383 (8)0.4194 (2)0.47853 (8)0.0336 (4)
N10.18911 (8)0.2124 (2)0.40402 (8)0.0224 (4)
N20.14267 (8)0.0257 (2)0.32734 (8)0.0240 (4)
N30.12683 (9)0.0753 (2)0.28984 (8)0.0264 (4)
N40.18058 (9)0.1375 (2)0.27335 (8)0.0240 (4)
C10.21032 (11)0.3039 (2)0.44464 (10)0.0261 (5)
H10.1809860.3628420.4646540.031*
C20.27331 (12)0.3162 (3)0.45875 (11)0.0301 (5)
H20.2866090.3838220.4874050.036*
C30.31690 (11)0.2297 (3)0.43097 (11)0.0297 (5)
H30.3603090.2371490.4400430.036*
C40.29572 (11)0.1328 (3)0.38988 (10)0.0256 (5)
H40.3242920.0709380.3704130.031*
C50.23209 (11)0.1268 (3)0.37732 (9)0.0230 (5)
C60.20593 (10)0.0266 (2)0.33525 (9)0.0223 (5)
C70.23052 (10)0.0784 (2)0.30006 (9)0.0235 (4)
H70.2734110.1036610.2955680.028*
C80.18019 (11)0.2548 (3)0.23009 (10)0.0281 (5)
H8A0.1367270.2718370.2163020.034*
H8AB0.1955340.3425850.2493640.034*
C180.00697 (12)0.1011 (3)0.25524 (11)0.0365 (6)
H18A0.0334160.0697120.2391030.055*
H18B0.0393850.0310200.2456120.055*
H18C0.0182520.1929460.2378030.055*
C170.02254 (14)0.0564 (3)0.35314 (13)0.0459 (7)
H17A0.0586890.0842390.3288950.069*
H17B0.0341370.0593920.3952240.069*
H17C0.0122640.1221960.3459250.069*
C90.22158 (12)0.2194 (3)0.17743 (10)0.0317 (5)
C100.19814 (17)0.1376 (4)0.13231 (13)0.0518 (8)
H100.1557350.1065770.1334460.062*
C110.2363 (2)0.1000 (4)0.08503 (15)0.0686 (11)
H110.2199370.0433150.0537630.082*
C120.29860 (18)0.1453 (4)0.08322 (15)0.0614 (10)
H120.3254030.1155990.0518850.074*
C130.32091 (16)0.2331 (5)0.12711 (14)0.0592 (10)
H130.3624430.2692910.1247410.071*
C140.28276 (13)0.2694 (4)0.17521 (13)0.0476 (7)
H140.2985930.3277750.2061480.057*
C150.00646 (13)0.4811 (3)0.39304 (11)0.0349 (6)
H15A0.0377640.5418720.3738150.052*
H15B0.0191020.5382240.4201920.052*
H15C0.0206070.4383180.3627550.052*
C160.02029 (12)0.2740 (3)0.47367 (11)0.0336 (5)
H16A0.0503150.2325930.4456510.050*
H16B0.0407150.3503770.4960270.050*
H16C0.0057310.2005850.5012290.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01644 (12)0.02583 (12)0.02202 (11)0.00089 (6)0.00003 (6)0.00100 (6)
Cl10.0250 (3)0.0305 (3)0.0313 (3)0.0012 (2)0.0041 (2)0.0048 (2)
Cl20.0217 (3)0.0355 (3)0.0251 (3)0.0012 (2)0.0010 (2)0.0042 (2)
S10.0226 (3)0.0286 (3)0.0251 (3)0.0031 (2)0.0023 (2)0.0011 (2)
S20.0197 (3)0.0379 (3)0.0321 (3)0.0011 (2)0.0021 (2)0.0057 (2)
O20.0265 (9)0.0660 (13)0.0503 (12)0.0126 (9)0.0099 (8)0.0207 (10)
O10.0288 (9)0.0383 (10)0.0337 (9)0.0039 (7)0.0007 (7)0.0093 (8)
N10.0207 (9)0.0259 (10)0.0207 (9)0.0012 (7)0.0015 (7)0.0031 (7)
N20.0191 (9)0.0286 (10)0.0245 (9)0.0002 (7)0.0009 (7)0.0011 (8)
N30.0218 (10)0.0306 (11)0.0268 (9)0.0013 (8)0.0001 (7)0.0046 (8)
N40.0216 (9)0.0277 (10)0.0226 (9)0.0011 (8)0.0015 (7)0.0017 (8)
C10.0265 (12)0.0273 (12)0.0247 (11)0.0001 (9)0.0007 (9)0.0005 (9)
C20.0267 (13)0.0300 (13)0.0336 (13)0.0012 (9)0.0051 (10)0.0039 (10)
C30.0212 (11)0.0316 (13)0.0364 (12)0.0021 (10)0.0051 (9)0.0017 (10)
C40.0198 (11)0.0278 (12)0.0293 (11)0.0014 (9)0.0001 (9)0.0037 (10)
C50.0237 (12)0.0230 (11)0.0223 (11)0.0006 (9)0.0009 (8)0.0043 (8)
C60.0191 (11)0.0262 (12)0.0217 (10)0.0002 (9)0.0001 (8)0.0035 (9)
C70.0191 (11)0.0270 (12)0.0244 (10)0.0002 (9)0.0006 (8)0.0019 (9)
C80.0272 (12)0.0303 (13)0.0269 (11)0.0000 (10)0.0001 (9)0.0064 (10)
C180.0297 (13)0.0474 (15)0.0325 (13)0.0005 (11)0.0077 (10)0.0054 (11)
C170.0371 (15)0.0541 (18)0.0465 (16)0.0165 (13)0.0054 (13)0.0020 (14)
C90.0311 (13)0.0375 (13)0.0265 (12)0.0047 (11)0.0033 (10)0.0103 (10)
C100.055 (2)0.063 (2)0.0378 (15)0.0074 (16)0.0089 (13)0.0044 (14)
C110.090 (3)0.072 (3)0.0439 (18)0.000 (2)0.0190 (18)0.0109 (17)
C120.071 (2)0.069 (2)0.0434 (18)0.0280 (19)0.0284 (17)0.0162 (16)
C130.0360 (17)0.086 (3)0.055 (2)0.0121 (17)0.0139 (13)0.0219 (19)
C140.0331 (15)0.065 (2)0.0445 (15)0.0003 (14)0.0061 (12)0.0093 (15)
C150.0346 (14)0.0381 (15)0.0319 (12)0.0091 (11)0.0035 (11)0.0016 (11)
C160.0276 (12)0.0384 (14)0.0348 (12)0.0010 (11)0.0108 (10)0.0016 (11)
Geometric parameters (Å, º) top
Ru1—N22.0890 (19)C6—C71.371 (3)
Ru1—N12.1714 (18)C7—H70.9500
Ru1—S22.2440 (6)C8—C91.515 (3)
Ru1—S12.2814 (6)C8—H8A0.9900
Ru1—Cl12.3835 (6)C8—H8AB0.9900
Ru1—Cl22.4157 (6)C18—H18A0.9800
S1—O11.4814 (18)C18—H18B0.9800
S1—C151.784 (3)C18—H18C0.9800
S1—C161.789 (2)C17—H17A0.9800
S2—O21.4786 (19)C17—H17B0.9800
S2—C171.779 (3)C17—H17C0.9800
S2—C181.784 (3)C9—C101.370 (4)
N1—C11.336 (3)C9—C141.387 (4)
N1—C51.360 (3)C10—C111.386 (5)
N2—N31.317 (3)C10—H100.9500
N2—C61.360 (3)C11—C121.396 (6)
N3—N41.339 (3)C11—H110.9500
N4—C71.344 (3)C12—C131.374 (6)
N4—C81.473 (3)C12—H120.9500
C1—C21.384 (4)C13—C141.397 (4)
C1—H10.9500C13—H130.9500
C2—C31.385 (4)C14—H140.9500
C2—H20.9500C15—H15A0.9800
C3—C41.376 (4)C15—H15B0.9800
C3—H30.9500C15—H15C0.9800
C4—C51.386 (3)C16—H16A0.9800
C4—H40.9500C16—H16B0.9800
C5—C61.449 (3)C16—H16C0.9800
N2—Ru1—N177.10 (7)N2—C6—C5118.1 (2)
N2—Ru1—S293.13 (5)C7—C6—C5134.5 (2)
N1—Ru1—S2170.10 (5)N4—C7—C6104.79 (19)
N2—Ru1—S1175.11 (5)N4—C7—H7127.6
N1—Ru1—S198.55 (5)C6—C7—H7127.6
S2—Ru1—S191.27 (2)N4—C8—C9110.5 (2)
N2—Ru1—Cl188.98 (5)N4—C8—H8A109.6
N1—Ru1—Cl186.60 (5)C9—C8—H8A109.6
S2—Ru1—Cl194.93 (2)N4—C8—H8AB109.6
S1—Ru1—Cl188.52 (2)C9—C8—H8AB109.6
N2—Ru1—Cl289.92 (5)H8A—C8—H8AB108.1
N1—Ru1—Cl288.09 (5)S2—C18—H18A109.5
S2—Ru1—Cl290.32 (2)S2—C18—H18B109.5
S1—Ru1—Cl292.19 (2)H18A—C18—H18B109.5
Cl1—Ru1—Cl2174.69 (2)S2—C18—H18C109.5
O1—S1—C15105.23 (12)H18A—C18—H18C109.5
O1—S1—C16105.50 (11)H18B—C18—H18C109.5
C15—S1—C1699.46 (13)S2—C17—H17A109.5
O1—S1—Ru1118.17 (7)S2—C17—H17B109.5
C15—S1—Ru1113.87 (9)H17A—C17—H17B109.5
C16—S1—Ru1112.62 (9)S2—C17—H17C109.5
O2—S2—C17106.05 (14)H17A—C17—H17C109.5
O2—S2—C18104.33 (12)H17B—C17—H17C109.5
C17—S2—C18100.13 (14)C10—C9—C14120.5 (3)
O2—S2—Ru1120.08 (8)C10—C9—C8119.5 (2)
C17—S2—Ru1112.19 (10)C14—C9—C8120.1 (3)
C18—S2—Ru1111.94 (9)C9—C10—C11120.0 (3)
C1—N1—C5117.23 (19)C9—C10—H10120.0
C1—N1—Ru1128.13 (16)C11—C10—H10120.0
C5—N1—Ru1114.63 (15)C10—C11—C12120.2 (4)
N3—N2—C6110.02 (18)C10—C11—H11119.9
N3—N2—Ru1134.47 (14)C12—C11—H11119.9
C6—N2—Ru1115.51 (15)C13—C12—C11119.5 (3)
N2—N3—N4105.96 (17)C13—C12—H12120.3
N3—N4—C7111.83 (18)C11—C12—H12120.3
N3—N4—C8120.44 (18)C12—C13—C14120.3 (3)
C7—N4—C8127.72 (19)C12—C13—H13119.9
N1—C1—C2122.6 (2)C14—C13—H13119.9
N1—C1—H1118.7C9—C14—C13119.5 (3)
C2—C1—H1118.7C9—C14—H14120.3
C1—C2—C3119.8 (2)C13—C14—H14120.3
C1—C2—H2120.1S1—C15—H15A109.5
C3—C2—H2120.1S1—C15—H15B109.5
C4—C3—C2118.3 (2)H15A—C15—H15B109.5
C4—C3—H3120.8S1—C15—H15C109.5
C2—C3—H3120.8H15A—C15—H15C109.5
C3—C4—C5119.0 (2)H15B—C15—H15C109.5
C3—C4—H4120.5S1—C16—H16A109.5
C5—C4—H4120.5S1—C16—H16B109.5
N1—C5—C4123.0 (2)H16A—C16—H16B109.5
N1—C5—C6114.6 (2)S1—C16—H16C109.5
C4—C5—C6122.4 (2)H16A—C16—H16C109.5
N2—C6—C7107.39 (19)H16B—C16—H16C109.5
C6—N2—N3—N40.8 (2)C4—C5—C6—N2177.9 (2)
Ru1—N2—N3—N4179.26 (15)N1—C5—C6—C7178.5 (2)
N2—N3—N4—C70.4 (2)C4—C5—C6—C70.5 (4)
N2—N3—N4—C8178.75 (19)N3—N4—C7—C60.1 (2)
C5—N1—C1—C21.7 (3)C8—N4—C7—C6179.2 (2)
Ru1—N1—C1—C2179.42 (18)N2—C6—C7—N40.6 (2)
N1—C1—C2—C31.1 (4)C5—C6—C7—N4177.1 (2)
C1—C2—C3—C40.2 (4)N3—N4—C8—C9123.2 (2)
C2—C3—C4—C50.9 (4)C7—N4—C8—C955.9 (3)
C1—N1—C5—C41.0 (3)N4—C8—C9—C1082.9 (3)
Ru1—N1—C5—C4179.97 (17)N4—C8—C9—C1496.9 (3)
C1—N1—C5—C6177.95 (19)C14—C9—C10—C112.3 (5)
Ru1—N1—C5—C61.1 (2)C8—C9—C10—C11177.5 (3)
C3—C4—C5—N10.3 (3)C9—C10—C11—C120.0 (6)
C3—C4—C5—C6179.2 (2)C10—C11—C12—C133.2 (6)
N3—N2—C6—C70.9 (2)C11—C12—C13—C144.1 (5)
Ru1—N2—C6—C7179.16 (14)C10—C9—C14—C131.4 (5)
N3—N2—C6—C5177.21 (18)C8—C9—C14—C13178.4 (3)
Ru1—N2—C6—C52.7 (2)C12—C13—C14—C91.9 (5)
N1—C5—C6—N21.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl2i0.952.493.438 (2)172
Symmetry code: (i) x+1/2, y1/2, z.
(OC-6-32)-[1-Benzyl-4-(pyridin-2-yl-κN)-1H-1,2,3-triazole-κN3]dichloridobis(dimethyl sulfoxide-κS)ruthenium(II) (3) top
Crystal data top
[RuCl2(C14H12N4)(C2H6OS)2]Z = 2
Mr = 564.50F(000) = 572
Triclinic, P1Dx = 1.710 Mg m3
a = 9.3535 (14) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.4900 (15) ÅCell parameters from 7943 reflections
c = 13.904 (2) Åθ = 3.4–66.9°
α = 98.893 (5)°µ = 10.01 mm1
β = 106.772 (5)°T = 90 K
γ = 106.276 (5)°Cubic, yellow
V = 1096.4 (3) Å30.67 × 0.63 × 0.45 mm
Data collection top
Bruker Kappa APEXII CCD DUO
diffractometer
3704 independent reflections
Radiation source: IµS microfocus3657 reflections with I > 2σ(I)
QUAZAR multilayer optics monochromatorRint = 0.026
φ and ω scansθmax = 66.9°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1011
Tmin = 0.062, Tmax = 0.094k = 1011
9693 measured reflectionsl = 1611
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0546P)2 + 2.1529P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
3704 reflectionsΔρmax = 2.21 e Å3
266 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.34993 (3)0.83627 (3)0.70658 (2)0.01710 (13)
Cl10.47441 (11)0.82110 (10)0.88125 (7)0.0249 (2)
C10.4322 (5)0.5485 (4)0.6392 (3)0.0251 (8)
H10.3264540.4924170.6319640.030*
C30.6834 (5)0.5504 (4)0.6309 (3)0.0249 (8)
H30.7517930.4982960.6179200.030*
N30.6204 (4)1.1465 (4)0.7637 (3)0.0211 (6)
C50.6319 (4)0.7785 (4)0.6771 (3)0.0201 (7)
S10.22838 (10)0.98237 (10)0.76998 (7)0.0195 (2)
S20.25606 (10)0.85272 (10)0.54247 (7)0.0201 (2)
Cl20.11642 (10)0.61922 (10)0.67424 (7)0.0240 (2)
C20.5301 (5)0.4707 (4)0.6218 (3)0.0281 (8)
H20.4922960.3627960.6036450.034*
N20.5625 (4)0.9976 (3)0.7295 (2)0.0197 (6)
O10.0918 (3)1.0056 (3)0.6943 (2)0.0237 (6)
O20.3217 (3)0.7874 (3)0.4691 (2)0.0248 (6)
N10.4805 (4)0.7007 (3)0.6660 (2)0.0197 (6)
N40.7735 (4)1.1863 (3)0.7691 (2)0.0198 (6)
C40.7360 (5)0.7070 (4)0.6590 (3)0.0227 (8)
H40.8410050.7647020.6658530.027*
C60.6756 (4)0.9424 (4)0.7130 (3)0.0186 (7)
C70.8119 (4)1.0644 (4)0.7384 (3)0.0193 (7)
H70.9116181.0634220.7350850.023*
C80.8771 (4)1.3460 (4)0.8080 (3)0.0227 (8)
H8A0.8185481.4082130.8314160.027*
H8B0.9070111.3816650.7509050.027*
C91.0257 (4)1.3673 (4)0.8971 (3)0.0197 (7)
C101.1666 (5)1.4801 (4)0.9085 (3)0.0231 (8)
H101.1683181.5397920.8596580.028*
C131.1646 (5)1.3045 (5)1.0502 (3)0.0282 (9)
H131.1638611.2428581.0979110.034*
C111.3043 (5)1.5055 (4)0.9911 (3)0.0254 (8)
H111.3993251.5838290.9990960.030*
C121.3051 (5)1.4179 (5)1.0621 (3)0.0272 (8)
H121.4000031.4350621.1181640.033*
C150.1582 (5)0.9144 (5)0.8671 (3)0.0285 (8)
H15A0.1047860.9796690.8920220.043*
H15B0.2483830.9162450.9253220.043*
H15C0.0830770.8101370.8370400.043*
C141.0261 (5)1.2809 (4)0.9692 (3)0.0244 (8)
H140.9302781.2049610.9627910.029*
C160.3581 (5)1.1661 (4)0.8480 (3)0.0254 (8)
H16A0.4038591.2242470.8051030.038*
H16B0.4436701.1565190.9041750.038*
H16C0.2983501.2188010.8777880.038*
C170.0452 (5)0.7802 (4)0.4819 (3)0.0255 (8)
H17A0.0154950.8045490.4145080.038*
H17B0.0026640.8263460.5263190.038*
H17C0.0067680.6697360.4714090.038*
C180.2932 (5)1.0468 (4)0.5377 (3)0.0250 (8)
H18A0.2382661.0506970.4670300.037*
H18B0.4077231.0989360.5571260.037*
H18C0.2537711.0969430.5862290.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01527 (18)0.01563 (18)0.01954 (18)0.00614 (12)0.00501 (12)0.00265 (12)
Cl10.0253 (5)0.0278 (5)0.0212 (4)0.0119 (4)0.0045 (4)0.0065 (4)
C10.026 (2)0.0198 (19)0.0272 (19)0.0087 (16)0.0064 (16)0.0024 (15)
C30.030 (2)0.0251 (19)0.0220 (18)0.0183 (17)0.0048 (16)0.0033 (15)
N30.0177 (15)0.0198 (16)0.0245 (15)0.0066 (12)0.0062 (12)0.0042 (12)
C50.0216 (18)0.0227 (19)0.0171 (17)0.0106 (15)0.0055 (14)0.0055 (14)
S10.0180 (4)0.0210 (4)0.0202 (4)0.0082 (3)0.0070 (3)0.0037 (3)
S20.0211 (4)0.0185 (4)0.0203 (4)0.0076 (3)0.0063 (3)0.0036 (3)
Cl20.0215 (4)0.0200 (4)0.0269 (4)0.0035 (3)0.0074 (4)0.0050 (3)
C20.033 (2)0.0187 (18)0.029 (2)0.0088 (16)0.0065 (17)0.0027 (15)
N20.0198 (15)0.0174 (15)0.0207 (15)0.0066 (12)0.0061 (12)0.0028 (12)
O10.0199 (13)0.0305 (14)0.0233 (13)0.0134 (11)0.0072 (11)0.0055 (11)
O20.0282 (14)0.0210 (13)0.0255 (13)0.0094 (11)0.0106 (11)0.0030 (11)
N10.0196 (15)0.0180 (15)0.0192 (15)0.0071 (12)0.0041 (12)0.0025 (12)
N40.0139 (14)0.0192 (15)0.0237 (15)0.0044 (12)0.0052 (12)0.0034 (12)
C40.0232 (19)0.027 (2)0.0197 (17)0.0120 (16)0.0070 (15)0.0048 (15)
C60.0184 (17)0.0201 (18)0.0183 (16)0.0099 (14)0.0057 (14)0.0029 (14)
C70.0150 (17)0.0234 (18)0.0221 (17)0.0101 (14)0.0070 (14)0.0055 (14)
C80.0204 (18)0.0178 (18)0.0292 (19)0.0069 (15)0.0072 (16)0.0062 (15)
C90.0175 (17)0.0180 (17)0.0232 (18)0.0084 (14)0.0064 (15)0.0014 (14)
C100.0242 (19)0.0185 (18)0.0268 (19)0.0060 (15)0.0106 (16)0.0052 (15)
C130.035 (2)0.028 (2)0.0224 (19)0.0129 (18)0.0102 (17)0.0073 (16)
C110.0207 (19)0.0211 (19)0.029 (2)0.0053 (15)0.0064 (16)0.0007 (15)
C120.024 (2)0.028 (2)0.0235 (19)0.0101 (16)0.0021 (16)0.0026 (16)
C150.029 (2)0.033 (2)0.029 (2)0.0115 (18)0.0154 (17)0.0117 (17)
C140.0238 (19)0.0244 (19)0.0242 (19)0.0054 (16)0.0114 (16)0.0037 (15)
C160.025 (2)0.0235 (19)0.0262 (19)0.0094 (16)0.0094 (16)0.0014 (15)
C170.0237 (19)0.025 (2)0.0231 (18)0.0073 (16)0.0039 (15)0.0036 (15)
C180.029 (2)0.0223 (19)0.0256 (19)0.0100 (16)0.0104 (16)0.0071 (15)
Geometric parameters (Å, º) top
Ru1—N22.044 (3)C6—C71.370 (5)
Ru1—N12.126 (3)C7—H70.9500
Ru1—S22.2434 (9)C8—C91.509 (5)
Ru1—S12.2530 (9)C8—H8A0.9900
Ru1—Cl22.4167 (9)C8—H8B0.9900
Ru1—Cl12.4175 (9)C9—C141.390 (5)
C1—N11.341 (5)C9—C101.394 (5)
C1—C21.377 (6)C10—C111.387 (6)
C1—H10.9500C10—H100.9500
C3—C41.379 (6)C13—C141.384 (6)
C3—C21.380 (6)C13—C121.393 (6)
C3—H30.9500C13—H130.9500
N3—N21.315 (4)C11—C121.385 (6)
N3—N41.351 (4)C11—H110.9500
C5—N11.351 (5)C12—H120.9500
C5—C41.390 (5)C15—H15A0.9800
C5—C61.456 (5)C15—H15B0.9800
S1—O11.497 (3)C15—H15C0.9800
S1—C161.777 (4)C14—H140.9500
S1—C151.793 (4)C16—H16A0.9800
S2—O21.477 (3)C16—H16B0.9800
S2—C171.782 (4)C16—H16C0.9800
S2—C181.792 (4)C17—H17A0.9800
C2—H20.9500C17—H17B0.9800
N2—C61.364 (5)C17—H17C0.9800
N4—C71.348 (5)C18—H18A0.9800
N4—C81.466 (5)C18—H18B0.9800
C4—H40.9500C18—H18C0.9800
N2—Ru1—N178.32 (12)N2—C6—C5117.9 (3)
N2—Ru1—S290.28 (9)C7—C6—C5135.0 (3)
N1—Ru1—S291.60 (8)N4—C7—C6105.0 (3)
N2—Ru1—S1100.24 (9)N4—C7—H7127.5
N1—Ru1—S1173.01 (8)C6—C7—H7127.5
S2—Ru1—S195.26 (3)N4—C8—C9111.4 (3)
N2—Ru1—Cl2171.78 (9)N4—C8—H8A109.3
N1—Ru1—Cl293.49 (9)C9—C8—H8A109.3
S2—Ru1—Cl290.60 (3)N4—C8—H8B109.3
S1—Ru1—Cl287.81 (3)C9—C8—H8B109.3
N2—Ru1—Cl185.57 (9)H8A—C8—H8B108.0
N1—Ru1—Cl184.32 (8)C14—C9—C10119.0 (3)
S2—Ru1—Cl1174.69 (3)C14—C9—C8122.3 (3)
S1—Ru1—Cl188.75 (3)C10—C9—C8118.7 (3)
Cl2—Ru1—Cl193.04 (3)C11—C10—C9120.1 (4)
N1—C1—C2122.5 (4)C11—C10—H10119.9
N1—C1—H1118.8C9—C10—H10119.9
C2—C1—H1118.8C14—C13—C12120.4 (4)
C4—C3—C2119.0 (4)C14—C13—H13119.8
C4—C3—H3120.5C12—C13—H13119.8
C2—C3—H3120.5C12—C11—C10120.8 (4)
N2—N3—N4105.3 (3)C12—C11—H11119.6
N1—C5—C4122.5 (3)C10—C11—H11119.6
N1—C5—C6113.6 (3)C11—C12—C13119.0 (4)
C4—C5—C6123.8 (3)C11—C12—H12120.5
O1—S1—C16106.23 (18)C13—C12—H12120.5
O1—S1—C15106.64 (18)S1—C15—H15A109.5
C16—S1—C1597.9 (2)S1—C15—H15B109.5
O1—S1—Ru1117.75 (11)H15A—C15—H15B109.5
C16—S1—Ru1114.42 (13)S1—C15—H15C109.5
C15—S1—Ru1111.80 (14)H15A—C15—H15C109.5
O2—S2—C17107.02 (17)H15B—C15—H15C109.5
O2—S2—C18105.76 (17)C13—C14—C9120.6 (4)
C17—S2—C1899.59 (19)C13—C14—H14119.7
O2—S2—Ru1116.22 (12)C9—C14—H14119.7
C17—S2—Ru1115.64 (13)S1—C16—H16A109.5
C18—S2—Ru1110.93 (13)S1—C16—H16B109.5
C1—C2—C3119.5 (4)H16A—C16—H16B109.5
C1—C2—H2120.2S1—C16—H16C109.5
C3—C2—H2120.2H16A—C16—H16C109.5
N3—N2—C6110.8 (3)H16B—C16—H16C109.5
N3—N2—Ru1134.0 (2)S2—C17—H17A109.5
C6—N2—Ru1115.0 (2)S2—C17—H17B109.5
C1—N1—C5117.9 (3)H17A—C17—H17B109.5
C1—N1—Ru1126.7 (3)S2—C17—H17C109.5
C5—N1—Ru1115.1 (2)H17A—C17—H17C109.5
C7—N4—N3111.9 (3)H17B—C17—H17C109.5
C7—N4—C8127.9 (3)S2—C18—H18A109.5
N3—N4—C8120.2 (3)S2—C18—H18B109.5
C3—C4—C5118.5 (4)H18A—C18—H18B109.5
C3—C4—H4120.7S2—C18—H18C109.5
C5—C4—H4120.7H18A—C18—H18C109.5
N2—C6—C7107.1 (3)H18B—C18—H18C109.5
N1—C1—C2—C30.7 (6)C4—C5—C6—N2178.9 (3)
C4—C3—C2—C11.1 (6)N1—C5—C6—C7177.5 (4)
N4—N3—N2—C60.2 (4)C4—C5—C6—C70.5 (6)
N4—N3—N2—Ru1174.8 (2)N3—N4—C7—C60.3 (4)
C2—C1—N1—C50.8 (6)C8—N4—C7—C6177.8 (3)
C2—C1—N1—Ru1174.9 (3)N2—C6—C7—N40.2 (4)
C4—C5—N1—C11.9 (5)C5—C6—C7—N4178.2 (4)
C6—C5—N1—C1176.1 (3)C7—N4—C8—C953.0 (5)
C4—C5—N1—Ru1176.7 (3)N3—N4—C8—C9125.0 (3)
C6—C5—N1—Ru11.3 (4)N4—C8—C9—C1434.4 (5)
N2—N3—N4—C70.3 (4)N4—C8—C9—C10147.0 (3)
N2—N3—N4—C8178.0 (3)C14—C9—C10—C110.3 (5)
C2—C3—C4—C50.0 (5)C8—C9—C10—C11178.3 (3)
N1—C5—C4—C31.5 (5)C9—C10—C11—C121.2 (6)
C6—C5—C4—C3176.3 (3)C10—C11—C12—C130.7 (6)
N3—N2—C6—C70.0 (4)C14—C13—C12—C110.7 (6)
Ru1—N2—C6—C7176.1 (2)C12—C13—C14—C91.6 (6)
N3—N2—C6—C5178.7 (3)C10—C9—C14—C131.1 (5)
Ru1—N2—C6—C52.7 (4)C8—C9—C14—C13179.6 (4)
N1—C5—C6—N20.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.113.031 (4)164
Symmetry code: (i) x+1, y, z.
Selected bond distances for complexes 2 and 3, the distance between Ru and the mean plane of the pyridyltriazole (Å), the N1—Ru—N2 angle, and the angle between the pyridyltriazole and benzyl mean planes (°) top
complex 2complex 3
Ru1—N1 (pyridine)2.1714 (18)2.126 (3)
Ru1—N2 (triazole)2.0890 (19)2.044 (3)
Ru1—Cl12.3835 (6)2.4175 (9)
Ru1—Cl22.4157 (6)2.4167 (9)
Ru1—S12.2814 (6)2.2530 (9)
Ru1—S22.2440 (6)2.2434 (9)
Ru1···mean plane of pyridyltriazole0.0728 (2)0.048 (3)
N1—Ru—N277.10 (7)78.32 (12)
pyridyltriazole plane···benzyl plane77.75 (7)69.52 (10)
 

Acknowledgements

The authors are grateful to Dr Frank R. Fronczek for mentoring and helpful advice. FK acknowledges a studentship from the American Crystallographic Association Summer School for Chemical Crystallography.

Funding information

Funding for this research was provided by: the College of Science and West Professorship, Louisiana State University. The diffractometer purchase and upgrades were made possible by grants from the Louisiana Board of Regents.

References

First citationBratsos, I. & Alessio, E. (2010). Inorganic Syntheses, Vol. 35, edited by T. B. Rauchfuss, pp 148–152. Hoboken, New Jersey: Wiley.  Google Scholar
First citationBrown, M. F., Cook, B. R. & Sloan, T. E. (1975). Inorg. Chem. 14, 1273–1278.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConnelly, N. G. & Damhus, T. (2005). Nomenclature of Inorganic Chemistry: IUPAC Recommendations, edited by N. G. Connelly & T. Damhus, pp. 174–183. Cambridge: RSC Publishing.  Google Scholar
First citationCrowley, J. D., Bandeen, P. H. & Hanton, L. R. (2010). Polyhedron, 29, 70–83.  Web of Science CSD CrossRef CAS Google Scholar
First citationElliott, A. B. S., Lewis, J. E. M., van der Salm, H., McAdam, C. J., Crowley, J. D. & Gordon, K. C. (2016). Inorg. Chem. 55, 3440–3447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEvans, I. P., Spencer, A. & Wilkinson, G. (1973). J. Chem. Soc. Dalton Trans. pp. 204–209.  CrossRef Web of Science Google Scholar
First citationFelici, M., Contreras-Carballada, P., Vida, Y., Smits, J. M. M., Nolte, R. J. M., De Cola, L., Williams, R. M. & Feiters, M. C. (2009). Chem. Eur. J. 15, 13124–13134.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGrätzel, M. (2009). Acc. Chem. Res. 42, 1788–1798.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, S. V., Scottwell, S. O., Waugh, E., McAdam, C. J., Hanton, L. R., Brooks, H. J. L. & Crowley, J. D. (2016). Inorg. Chem. 55, 9767–9777.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLi, Y. & Flood, A. H. (2008). Angew. Chem. Int. Ed. 47, 2649–2652.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOrellana, G. & García-Fresnadillo, D. (2004). Optical Sensors: Industrial Environmental and Diagnostic Applications, Vol. 1, edited by R. Narayanaswamy & O. S. Wolfbeis, pp 309–357. New York: Springer.  Google Scholar
First citationPokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2013). Dalton Trans. 42, 14064–14067.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nat. Commun. 5, 5883.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPrier, C. K., Rankic, D. A. & MacMillan, D. W. C. (2013). Chem. Rev. 113, 5322–5363.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchulze, B., Friebe, C., Hager, D. M., Winter, A., Hoogenboom, R., Görls, H. & Schubert, U. S. (2009). Dalton Trans. pp. 787–794.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, N. G. & Beer, P. D. (2012). Chem. Commun. 48, 8499–8501.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds