research communications
Two isomers of [1-benzyl-4-(pyridin-2-yl-κN)-1H-1,2,3-triazole-κN3]dichloridobis(dimethyl sulfoxide-κS)ruthenium(II)
aDepartment of Chemistry, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
*Correspondence e-mail: maverick@lsu.edu
The structures of two isomers of the title compound, [RuCl2(C14H12N4)(C2H6OS)2], 2 and 3, are reported. Isomers 2 and 3 are produced by reaction of the pyridyltriazole ligand 1-benzyl-4-(pyridin-2-yl)-1H-1,2,3-triazole (bpt) (1) with fac-[RuCl2(DMSO-S)3(DMSO-O)]. Reaction in acetone produces ca 95% 2, which is the OC-6-14 isomer, with cis DMSO and trans chlorido ligands, and 5% 3 (the OC-6-32 isomer, with cis DMSO and cis chlorido ligands, and the pyridyl moiety of bpt trans to DMSO). Reaction in refluxing toluene initially forms 2, which slowly isomerizes to 3.
Keywords: crystal structure; ruthenium(II) complex; pyridyltriazole.
1. Chemical context
Many 1,2,3-triazole-based ligands have been prepared by copper(I) catalysis of reaction of et al. (2010). Continuing our research concerning multifunctional chelating ligands in the construction of supramolecular metal–organic frameworks, we used bis(pyridyltriazole) ligands to make macrocyclic CuII dimers that have found application in hosting small molecules such as DABCO and oxalate (Pokharel et al., 2013, 2014). As an extension of this work, we were also interested in RuII pyridyltriazole complexes. RuII–polypyridine coordination compounds have been employed in dye-sensitized solar cells, optical sensors, and photoredox catalysts (Grätzel, 2009; Orellana & García-Fresnadillo, 2004; Prier et al., 2013). In contrast, only a small number of RuII–pyridyltriazole complexes have been examined to ascertain whether incorporation of triazole could result in improvements compared to the polypyridine complexes. Triazole is a stronger π acceptor analog of pyridine, because of its three electronegative nitrogen atoms, leading to Ru complexes with different photophysical and electrochemical properties (Schulze et al., 2009; Felici et al., 2009; Elliott et al., 2016). Kumar et al. (2016) used benzylpyridytriazole (bpt, 1) to synthesize the homoleptic RuII complex Ru(bpt)32+.
with see, for example, CrowleyOur intention was to make an RuII complex with one or two pyridyltriazoles per metal atom along with weakly ligated coordination sites to facilitate other types of chemistry. In this paper, we report the synthesis of two isomers of Ru(bpt)(DMSO)2Cl2, 2 and 3 (see Fig. 1). Compound 2 is the kinetic product of the reaction, and it slowly isomerizes to the thermodynamically more stable 3.
2. Structural commentary
Complexation of RuCl2(DMSO)4 and bpt in refluxing acetone gave compound 2 in good yield. Although enough bpt was present in the mixture to replace all DMSO molecules, the product contains only one molecule of bpt per Ru atom. The RuII cation in 2 adopts a distorted octahedral geometry and beside one bpt, two S-bonded DMSO molecules occupy equatorial positions, and chlorides are coordinated in axial positions. This is the OC-6-14 isomer, according to Chemical Abstracts stereochemical notation (Brown et al., 1975; Connelly & Damhus, 2005). The lengths of important bonds, the distances of the Ru atoms from the mean planes of the bpt ligands, and the angles between the pyridyltriazole and benzyl mean planes, are reported in Table 1. We performed 2D NMR analysis to fully assign the peaks in the 1H and 1C NMR spectra. The HMBC spectrum shows cross coupling of H3, but not H2, with C5. This assignment, along with information from HSQC, NOESY, and COSY spectra (see supporting information), led to consistent assignments for the remaining atoms in 2. In this structure, the DMSO molecules are bonded through S, with S1—Ru1—S2 = 91.27 (2)°, and they are in slightly different environments, in agreement with the NMR data.
|
Compound 3, the thermodynamically stable product of complexation of RuCl2(DMSO)4 and bpt, forms under reflux in toluene. During the reaction we detected 2 by 1H NMR as an intermediate, and it gradually isomerizes to 3. The atoms trans to the two DMSO and chlorido ligands are similar or identical in 2, but different in 3 (which is the OC-6-32 isomer). However, bond lengths and angles in 2 and 3 are only slightly different (see Table 1). The 1H NMR resonances for the two DMSO ligands differ by more in 3 (four singlet peaks) than they do in 2, as expected. Unlike in 2, the benzylic methylene hydrogens in 3 are inequivalent, and they appear as a multiplet at 5.67 ppm.
Two other isomers of the title compound, with DMSO ligands trans and Cl ligands cis (the OC-6-43 isomer) or with cis DMSO and Cl ligands and pyridyl trans to Cl (OC-6-42), are possible. We did not observe any other materials in the NMR spectra or in the isolated products that were attributable to these isomers.
3. Supramolecular features
The packing structure of 2 shows a non-classical hydrogen bond between Cl2 and H7 (see Table 2). The methine hydrogen (H7) is relatively acidic, showing a downfield 1H NMR peak at 7.93 ppm. Li & Flood (2008) took advantage of this C—H(triazole)⋯Cl interaction in preparing a neutral, macrocyclic receptor for chloride ions. Hydrogen bonds to triazole H atoms were also used by White & Beer (2012) in creating a host system that can strongly bind halides. The packing structure of 3 also shows a close interaction of H7, this time with O1 (see Table 3).
4. Database survey
A survey of the Cambridge Structural Database (version 5.40; Groom et al., 2016) yielded 31 Ru complexes with pyridyltriazole-based ligands. [Hits with bis(triazolyl)pyridine ligands were not included in the analysis.] All of the Ru centers in these structures have the +2 and an approximately octahedral geometry. In these structures, the average N(pyridine)—Ru—N(triazole) angle, Ru—N(pyridine), and Ru—N(triazole) bond lengths are 78.4 (5)°, 2.088 (10) Å, and 2.040 (17) Å, respectively; the maximum deviation of Ru from the mean plane of the pyridyltriazole ligand is 0.319 Å. The corresponding values for 2 and 3 are listed in Table 1, showing that their structural characteristics are similar to those of the reported structures in the literature.
5. Synthesis and crystallization
General. RuCl3·3H2O was purchased from Pressure Chemical; other reagents and solvents were purchased from Aldrich, Alfa Aesar, Acros Organics, or Combi-Blocks, and used without further purification. Bpt (1) was synthesized according to the procedure of Crowley et al. (2010) and purified by trituration with ether. The Ru starting material was fac-[RuCl2(DMSO-S)3(DMSO-O)], prepared following the literature procedure (Evans et al., 1973) and characterized by comparison with the 1H NMR spectra of Bratsos & Alessio (2010). Elsewhere in this manuscript, it is referred to as RuCl2(DMSO)4 for simplicity. NMR spectra were recorded on a Bruker AV-400 MHz spectrometer and are reported in ppm, with coupling constants in Hz. Electrospray ionization mass spectra (ESI-MS) were measured on an Agilent 6210 instrument.
Synthesis of (OC-6-14)-Ru(bpt)(DMSO)2Cl2, 2. RuCl2(DMSO)4 (101.5 mg, 0.2095 mmol) and bpt (98.3 mg, 0.416 mmol) were mixed with 20 mL acetone and the mixture refluxed for 12 h under nitrogen. The bright-yellow solution was allowed to cool to room temperature and the acetone evaporated in vacuo. Excess bpt was removed from the product as follows: The solid was sonicated with 5 mL of ether, the suspension centrifuged, and the solvent decanted. This process was repeated twice more. The resulting yellow solid was dried in air; yield 110 mg (93%). This material contains ca 95% 2 and 5% 3 by NMR. Yellow single crystals of 2 were obtained by vapor diffusion of ether into a solution of the complex in ethanol–chloroform (1:1 v/v). 1H NMR (400 MHz, CDCl3) δ 10.59 (d, J = 5.04, H1), 7.93 (s, H7), 7.81 (td, J1 = 7.68 Hz, J2 = 1.32 Hz, H3), 7.64 (d, J = 7.56, H4), 7.46–7.51 (m, H2, H11, H12, H13), 7.35–7.39 (m, H10, H14), 5.65 (s, H8), 3.60 (s, DMSO), 3.58 (s, DMSO). 13C NMR (100 MHz, CDCl3) δ 155.64 (C1), 148.92, 148.82 (C5, C6), 137.37(C3), 131. 94 (C9), 129.90, 129.70 (C11/C13, C12), 128.84 (C10/C14), 124.73 (C2), 122.39 (C7), 120.77 (C4), 56.20 (C8), 46.42 (DMSO), 44.53 (DMSO). ESI–MS: m/z [Ru(bpt)(DMSO)2Cl2+Na]+ 580.9665 (calculated: 580.9686).
Synthesis of (OC-6-32)-Ru(bpt)(DMSO)2Cl2, 3. RuCl2(DMSO)4 (513.5 mg, 1.059 mmol) and bpt (361.5 mg, 1.530 mmol) were mixed with 15 mL toluene and the mixture refluxed for 16 days under nitrogen, then cooled to room temperature. The resulting yellow suspension was filtered and the solid washed with fresh toluene and ether, then dried in air. Yield 590 mg (98%) of yellow solid 3. For crystallization, a sample was mixed with acetonitrile, heated to boiling, allowed to cool, centrifuged, and the yellow decantate used for ether vapor diffusion. After a day, yellow cube-shaped crystals were obtained. 1H NMR (400 MHz, CDCl3) δ 9.86 (d, J = 5.68, H1), 7.96 (s, H7), 7.87 (td, J1 = 7.68 Hz, J2 = 1.48 Hz, H3), 7.66 (d, J = 7.76 Hz, H4), 7.43–7.53 (m, H2, H12, H11, H13), 7.32–7.37 (m, H10, H14), 5.67 (m, H8), 3.69 (s, DMSO), 3.55 (s, DMSO), 3.12 (s, DMSO), 3.07 (s, DMSO). 13C NMR (100 MHz, DMSO-d6) δ 152.02, 149.91, 149.52, 138.72, 135.27, 129.45, 129.20, 128.77, 125.69, 124.53, 121.39, 55.45, 46.55, 45.20, 44.70, 43.91. ESI–MS: m/z [Ru(bpt)(DMSO)2Cl2+Na]+ 580.9670 (calculated: 580.9686).
6. Refinement
Crystal data, data collection, and structure . In both structures, H atoms were placed in idealized positions and treated with a riding model, with C—H distances of 0.95 Å for Csp2, 0.99 Å for CH2, and 0.98 Å for methyl groups. Uiso(H) values were set to either 1.2 or 1.5 (CH3) times Ueq of the attached atom. The largest peaks in the final difference maps of 2 and 3 are located 0.914 and 0.887 Å, respectively, from Ru1.
details are summarized in Table 4Supporting information
https://doi.org/10.1107/S2056989019008375/jj2212sup1.cif
contains datablocks 2, 3. DOI:Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989019008375/jj22122sup2.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989019008375/jj22123sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019008375/jj22122sup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019008375/jj22123sup5.cdx
1H NMR spectrum of complex 2. DOI: https://doi.org/10.1107/S2056989019008375/jj2212sup6.tif
13C NMR spectrum of complex 2. DOI: https://doi.org/10.1107/S2056989019008375/jj2212sup7.tif
HMBC spectrum of complex 2. DOI: https://doi.org/10.1107/S2056989019008375/jj2212sup8.tif
HSQC spectrum of complex 2. DOI: https://doi.org/10.1107/S2056989019008375/jj2212sup9.tif
NOESY spectrum of complex 2. DOI: https://doi.org/10.1107/S2056989019008375/jj2212sup10.tif
1H NMR spectrum of complex 2. DOI: https://doi.org/10.1107/S2056989019008375/jj2212sup11.tif
1H NMR spectrum of complex 3. DOI: https://doi.org/10.1107/S2056989019008375/jj2212sup12.tif
13C NMR spectrum of complex 3. DOI: https://doi.org/10.1107/S2056989019008375/jj2212sup13.tif
For both structures, data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[RuCl2(C14H12N4)(C2H6OS)2] | Dx = 1.658 Mg m−3 |
Mr = 564.50 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbca | Cell parameters from 9998 reflections |
a = 21.3094 (11) Å | θ = 3.9–66.5° |
b = 9.4213 (5) Å | µ = 9.70 mm−1 |
c = 22.5267 (12) Å | T = 90 K |
V = 4522.5 (4) Å3 | Needle, yellow |
Z = 8 | 0.71 × 0.16 × 0.04 mm |
F(000) = 2288 |
Bruker Kappa APEXII CCD DUO diffractometer | 3970 independent reflections |
Radiation source: IµS microfocus | 3628 reflections with I > 2σ(I) |
QUAZAR multilayer optics monochromator | Rint = 0.043 |
φ and ω scans | θmax = 66.7°, θmin = 3.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −24→23 |
Tmin = 0.349, Tmax = 0.715 | k = −11→9 |
34572 measured reflections | l = −26→26 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0391P)2 + 3.2772P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
3970 reflections | Δρmax = 0.60 e Å−3 |
266 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.09298 (2) | 0.17864 (2) | 0.37532 (2) | 0.02143 (8) | |
Cl1 | 0.08456 (3) | 0.01442 (6) | 0.45541 (2) | 0.02897 (14) | |
Cl2 | 0.11140 (3) | 0.34903 (6) | 0.29710 (2) | 0.02744 (13) | |
S1 | 0.04525 (3) | 0.34440 (6) | 0.43372 (2) | 0.02548 (13) | |
S2 | 0.00095 (3) | 0.11879 (7) | 0.33388 (3) | 0.02991 (14) | |
O2 | −0.05488 (9) | 0.2095 (2) | 0.34285 (9) | 0.0476 (5) | |
O1 | 0.08383 (8) | 0.4194 (2) | 0.47853 (8) | 0.0336 (4) | |
N1 | 0.18911 (8) | 0.2124 (2) | 0.40402 (8) | 0.0224 (4) | |
N2 | 0.14267 (8) | 0.0257 (2) | 0.32734 (8) | 0.0240 (4) | |
N3 | 0.12683 (9) | −0.0753 (2) | 0.28984 (8) | 0.0264 (4) | |
N4 | 0.18058 (9) | −0.1375 (2) | 0.27335 (8) | 0.0240 (4) | |
C1 | 0.21032 (11) | 0.3039 (2) | 0.44464 (10) | 0.0261 (5) | |
H1 | 0.180986 | 0.362842 | 0.464654 | 0.031* | |
C2 | 0.27331 (12) | 0.3162 (3) | 0.45875 (11) | 0.0301 (5) | |
H2 | 0.286609 | 0.383822 | 0.487405 | 0.036* | |
C3 | 0.31690 (11) | 0.2297 (3) | 0.43097 (11) | 0.0297 (5) | |
H3 | 0.360309 | 0.237149 | 0.440043 | 0.036* | |
C4 | 0.29572 (11) | 0.1328 (3) | 0.38988 (10) | 0.0256 (5) | |
H4 | 0.324292 | 0.070938 | 0.370413 | 0.031* | |
C5 | 0.23209 (11) | 0.1268 (3) | 0.37732 (9) | 0.0230 (5) | |
C6 | 0.20593 (10) | 0.0266 (2) | 0.33525 (9) | 0.0223 (5) | |
C7 | 0.23052 (10) | −0.0784 (2) | 0.30006 (9) | 0.0235 (4) | |
H7 | 0.273411 | −0.103661 | 0.295568 | 0.028* | |
C8 | 0.18019 (11) | −0.2548 (3) | 0.23009 (10) | 0.0281 (5) | |
H8A | 0.136727 | −0.271837 | 0.216302 | 0.034* | |
H8AB | 0.195534 | −0.342585 | 0.249364 | 0.034* | |
C18 | 0.00697 (12) | 0.1011 (3) | 0.25524 (11) | 0.0365 (6) | |
H18A | −0.033416 | 0.069712 | 0.239103 | 0.055* | |
H18B | 0.039385 | 0.031020 | 0.245612 | 0.055* | |
H18C | 0.018252 | 0.192946 | 0.237803 | 0.055* | |
C17 | −0.02254 (14) | −0.0564 (3) | 0.35314 (13) | 0.0459 (7) | |
H17A | −0.058689 | −0.084239 | 0.328895 | 0.069* | |
H17B | −0.034137 | −0.059392 | 0.395224 | 0.069* | |
H17C | 0.012264 | −0.122196 | 0.345925 | 0.069* | |
C9 | 0.22158 (12) | −0.2194 (3) | 0.17743 (10) | 0.0317 (5) | |
C10 | 0.19814 (17) | −0.1376 (4) | 0.13231 (13) | 0.0518 (8) | |
H10 | 0.155735 | −0.106577 | 0.133446 | 0.062* | |
C11 | 0.2363 (2) | −0.1000 (4) | 0.08503 (15) | 0.0686 (11) | |
H11 | 0.219937 | −0.043315 | 0.053763 | 0.082* | |
C12 | 0.29860 (18) | −0.1453 (4) | 0.08322 (15) | 0.0614 (10) | |
H12 | 0.325403 | −0.115599 | 0.051885 | 0.074* | |
C13 | 0.32091 (16) | −0.2331 (5) | 0.12711 (14) | 0.0592 (10) | |
H13 | 0.362443 | −0.269291 | 0.124741 | 0.071* | |
C14 | 0.28276 (13) | −0.2694 (4) | 0.17521 (13) | 0.0476 (7) | |
H14 | 0.298593 | −0.327775 | 0.206148 | 0.057* | |
C15 | 0.00646 (13) | 0.4811 (3) | 0.39304 (11) | 0.0349 (6) | |
H15A | 0.037764 | 0.541872 | 0.373815 | 0.052* | |
H15B | −0.019102 | 0.538224 | 0.420192 | 0.052* | |
H15C | −0.020607 | 0.438318 | 0.362755 | 0.052* | |
C16 | −0.02029 (12) | 0.2740 (3) | 0.47367 (11) | 0.0336 (5) | |
H16A | −0.050315 | 0.232593 | 0.445651 | 0.050* | |
H16B | −0.040715 | 0.350377 | 0.496027 | 0.050* | |
H16C | −0.005731 | 0.200585 | 0.501229 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01644 (12) | 0.02583 (12) | 0.02202 (11) | 0.00089 (6) | 0.00003 (6) | −0.00100 (6) |
Cl1 | 0.0250 (3) | 0.0305 (3) | 0.0313 (3) | 0.0012 (2) | 0.0041 (2) | 0.0048 (2) |
Cl2 | 0.0217 (3) | 0.0355 (3) | 0.0251 (3) | 0.0012 (2) | −0.0010 (2) | 0.0042 (2) |
S1 | 0.0226 (3) | 0.0286 (3) | 0.0251 (3) | 0.0031 (2) | 0.0023 (2) | −0.0011 (2) |
S2 | 0.0197 (3) | 0.0379 (3) | 0.0321 (3) | 0.0011 (2) | −0.0021 (2) | −0.0057 (2) |
O2 | 0.0265 (9) | 0.0660 (13) | 0.0503 (12) | 0.0126 (9) | −0.0099 (8) | −0.0207 (10) |
O1 | 0.0288 (9) | 0.0383 (10) | 0.0337 (9) | 0.0039 (7) | 0.0007 (7) | −0.0093 (8) |
N1 | 0.0207 (9) | 0.0259 (10) | 0.0207 (9) | −0.0012 (7) | 0.0015 (7) | 0.0031 (7) |
N2 | 0.0191 (9) | 0.0286 (10) | 0.0245 (9) | 0.0002 (7) | −0.0009 (7) | −0.0011 (8) |
N3 | 0.0218 (10) | 0.0306 (11) | 0.0268 (9) | 0.0013 (8) | −0.0001 (7) | −0.0046 (8) |
N4 | 0.0216 (9) | 0.0277 (10) | 0.0226 (9) | 0.0011 (8) | 0.0015 (7) | −0.0017 (8) |
C1 | 0.0265 (12) | 0.0273 (12) | 0.0247 (11) | −0.0001 (9) | −0.0007 (9) | −0.0005 (9) |
C2 | 0.0267 (13) | 0.0300 (13) | 0.0336 (13) | −0.0012 (9) | −0.0051 (10) | −0.0039 (10) |
C3 | 0.0212 (11) | 0.0316 (13) | 0.0364 (12) | −0.0021 (10) | −0.0051 (9) | 0.0017 (10) |
C4 | 0.0198 (11) | 0.0278 (12) | 0.0293 (11) | 0.0014 (9) | 0.0001 (9) | 0.0037 (10) |
C5 | 0.0237 (12) | 0.0230 (11) | 0.0223 (11) | 0.0006 (9) | 0.0009 (8) | 0.0043 (8) |
C6 | 0.0191 (11) | 0.0262 (12) | 0.0217 (10) | −0.0002 (9) | −0.0001 (8) | 0.0035 (9) |
C7 | 0.0191 (11) | 0.0270 (12) | 0.0244 (10) | 0.0002 (9) | 0.0006 (8) | 0.0019 (9) |
C8 | 0.0272 (12) | 0.0303 (13) | 0.0269 (11) | 0.0000 (10) | 0.0001 (9) | −0.0064 (10) |
C18 | 0.0297 (13) | 0.0474 (15) | 0.0325 (13) | −0.0005 (11) | −0.0077 (10) | −0.0054 (11) |
C17 | 0.0371 (15) | 0.0541 (18) | 0.0465 (16) | −0.0165 (13) | −0.0054 (13) | 0.0020 (14) |
C9 | 0.0311 (13) | 0.0375 (13) | 0.0265 (12) | −0.0047 (11) | 0.0033 (10) | −0.0103 (10) |
C10 | 0.055 (2) | 0.063 (2) | 0.0378 (15) | 0.0074 (16) | 0.0089 (13) | 0.0044 (14) |
C11 | 0.090 (3) | 0.072 (3) | 0.0439 (18) | 0.000 (2) | 0.0190 (18) | 0.0109 (17) |
C12 | 0.071 (2) | 0.069 (2) | 0.0434 (18) | −0.0280 (19) | 0.0284 (17) | −0.0162 (16) |
C13 | 0.0360 (17) | 0.086 (3) | 0.055 (2) | −0.0121 (17) | 0.0139 (13) | −0.0219 (19) |
C14 | 0.0331 (15) | 0.065 (2) | 0.0445 (15) | 0.0003 (14) | 0.0061 (12) | −0.0093 (15) |
C15 | 0.0346 (14) | 0.0381 (15) | 0.0319 (12) | 0.0091 (11) | 0.0035 (11) | 0.0016 (11) |
C16 | 0.0276 (12) | 0.0384 (14) | 0.0348 (12) | 0.0010 (11) | 0.0108 (10) | −0.0016 (11) |
Ru1—N2 | 2.0890 (19) | C6—C7 | 1.371 (3) |
Ru1—N1 | 2.1714 (18) | C7—H7 | 0.9500 |
Ru1—S2 | 2.2440 (6) | C8—C9 | 1.515 (3) |
Ru1—S1 | 2.2814 (6) | C8—H8A | 0.9900 |
Ru1—Cl1 | 2.3835 (6) | C8—H8AB | 0.9900 |
Ru1—Cl2 | 2.4157 (6) | C18—H18A | 0.9800 |
S1—O1 | 1.4814 (18) | C18—H18B | 0.9800 |
S1—C15 | 1.784 (3) | C18—H18C | 0.9800 |
S1—C16 | 1.789 (2) | C17—H17A | 0.9800 |
S2—O2 | 1.4786 (19) | C17—H17B | 0.9800 |
S2—C17 | 1.779 (3) | C17—H17C | 0.9800 |
S2—C18 | 1.784 (3) | C9—C10 | 1.370 (4) |
N1—C1 | 1.336 (3) | C9—C14 | 1.387 (4) |
N1—C5 | 1.360 (3) | C10—C11 | 1.386 (5) |
N2—N3 | 1.317 (3) | C10—H10 | 0.9500 |
N2—C6 | 1.360 (3) | C11—C12 | 1.396 (6) |
N3—N4 | 1.339 (3) | C11—H11 | 0.9500 |
N4—C7 | 1.344 (3) | C12—C13 | 1.374 (6) |
N4—C8 | 1.473 (3) | C12—H12 | 0.9500 |
C1—C2 | 1.384 (4) | C13—C14 | 1.397 (4) |
C1—H1 | 0.9500 | C13—H13 | 0.9500 |
C2—C3 | 1.385 (4) | C14—H14 | 0.9500 |
C2—H2 | 0.9500 | C15—H15A | 0.9800 |
C3—C4 | 1.376 (4) | C15—H15B | 0.9800 |
C3—H3 | 0.9500 | C15—H15C | 0.9800 |
C4—C5 | 1.386 (3) | C16—H16A | 0.9800 |
C4—H4 | 0.9500 | C16—H16B | 0.9800 |
C5—C6 | 1.449 (3) | C16—H16C | 0.9800 |
N2—Ru1—N1 | 77.10 (7) | N2—C6—C5 | 118.1 (2) |
N2—Ru1—S2 | 93.13 (5) | C7—C6—C5 | 134.5 (2) |
N1—Ru1—S2 | 170.10 (5) | N4—C7—C6 | 104.79 (19) |
N2—Ru1—S1 | 175.11 (5) | N4—C7—H7 | 127.6 |
N1—Ru1—S1 | 98.55 (5) | C6—C7—H7 | 127.6 |
S2—Ru1—S1 | 91.27 (2) | N4—C8—C9 | 110.5 (2) |
N2—Ru1—Cl1 | 88.98 (5) | N4—C8—H8A | 109.6 |
N1—Ru1—Cl1 | 86.60 (5) | C9—C8—H8A | 109.6 |
S2—Ru1—Cl1 | 94.93 (2) | N4—C8—H8AB | 109.6 |
S1—Ru1—Cl1 | 88.52 (2) | C9—C8—H8AB | 109.6 |
N2—Ru1—Cl2 | 89.92 (5) | H8A—C8—H8AB | 108.1 |
N1—Ru1—Cl2 | 88.09 (5) | S2—C18—H18A | 109.5 |
S2—Ru1—Cl2 | 90.32 (2) | S2—C18—H18B | 109.5 |
S1—Ru1—Cl2 | 92.19 (2) | H18A—C18—H18B | 109.5 |
Cl1—Ru1—Cl2 | 174.69 (2) | S2—C18—H18C | 109.5 |
O1—S1—C15 | 105.23 (12) | H18A—C18—H18C | 109.5 |
O1—S1—C16 | 105.50 (11) | H18B—C18—H18C | 109.5 |
C15—S1—C16 | 99.46 (13) | S2—C17—H17A | 109.5 |
O1—S1—Ru1 | 118.17 (7) | S2—C17—H17B | 109.5 |
C15—S1—Ru1 | 113.87 (9) | H17A—C17—H17B | 109.5 |
C16—S1—Ru1 | 112.62 (9) | S2—C17—H17C | 109.5 |
O2—S2—C17 | 106.05 (14) | H17A—C17—H17C | 109.5 |
O2—S2—C18 | 104.33 (12) | H17B—C17—H17C | 109.5 |
C17—S2—C18 | 100.13 (14) | C10—C9—C14 | 120.5 (3) |
O2—S2—Ru1 | 120.08 (8) | C10—C9—C8 | 119.5 (2) |
C17—S2—Ru1 | 112.19 (10) | C14—C9—C8 | 120.1 (3) |
C18—S2—Ru1 | 111.94 (9) | C9—C10—C11 | 120.0 (3) |
C1—N1—C5 | 117.23 (19) | C9—C10—H10 | 120.0 |
C1—N1—Ru1 | 128.13 (16) | C11—C10—H10 | 120.0 |
C5—N1—Ru1 | 114.63 (15) | C10—C11—C12 | 120.2 (4) |
N3—N2—C6 | 110.02 (18) | C10—C11—H11 | 119.9 |
N3—N2—Ru1 | 134.47 (14) | C12—C11—H11 | 119.9 |
C6—N2—Ru1 | 115.51 (15) | C13—C12—C11 | 119.5 (3) |
N2—N3—N4 | 105.96 (17) | C13—C12—H12 | 120.3 |
N3—N4—C7 | 111.83 (18) | C11—C12—H12 | 120.3 |
N3—N4—C8 | 120.44 (18) | C12—C13—C14 | 120.3 (3) |
C7—N4—C8 | 127.72 (19) | C12—C13—H13 | 119.9 |
N1—C1—C2 | 122.6 (2) | C14—C13—H13 | 119.9 |
N1—C1—H1 | 118.7 | C9—C14—C13 | 119.5 (3) |
C2—C1—H1 | 118.7 | C9—C14—H14 | 120.3 |
C1—C2—C3 | 119.8 (2) | C13—C14—H14 | 120.3 |
C1—C2—H2 | 120.1 | S1—C15—H15A | 109.5 |
C3—C2—H2 | 120.1 | S1—C15—H15B | 109.5 |
C4—C3—C2 | 118.3 (2) | H15A—C15—H15B | 109.5 |
C4—C3—H3 | 120.8 | S1—C15—H15C | 109.5 |
C2—C3—H3 | 120.8 | H15A—C15—H15C | 109.5 |
C3—C4—C5 | 119.0 (2) | H15B—C15—H15C | 109.5 |
C3—C4—H4 | 120.5 | S1—C16—H16A | 109.5 |
C5—C4—H4 | 120.5 | S1—C16—H16B | 109.5 |
N1—C5—C4 | 123.0 (2) | H16A—C16—H16B | 109.5 |
N1—C5—C6 | 114.6 (2) | S1—C16—H16C | 109.5 |
C4—C5—C6 | 122.4 (2) | H16A—C16—H16C | 109.5 |
N2—C6—C7 | 107.39 (19) | H16B—C16—H16C | 109.5 |
C6—N2—N3—N4 | −0.8 (2) | C4—C5—C6—N2 | 177.9 (2) |
Ru1—N2—N3—N4 | 179.26 (15) | N1—C5—C6—C7 | −178.5 (2) |
N2—N3—N4—C7 | 0.4 (2) | C4—C5—C6—C7 | 0.5 (4) |
N2—N3—N4—C8 | −178.75 (19) | N3—N4—C7—C6 | 0.1 (2) |
C5—N1—C1—C2 | 1.7 (3) | C8—N4—C7—C6 | 179.2 (2) |
Ru1—N1—C1—C2 | −179.42 (18) | N2—C6—C7—N4 | −0.6 (2) |
N1—C1—C2—C3 | −1.1 (4) | C5—C6—C7—N4 | 177.1 (2) |
C1—C2—C3—C4 | −0.2 (4) | N3—N4—C8—C9 | 123.2 (2) |
C2—C3—C4—C5 | 0.9 (4) | C7—N4—C8—C9 | −55.9 (3) |
C1—N1—C5—C4 | −1.0 (3) | N4—C8—C9—C10 | −82.9 (3) |
Ru1—N1—C5—C4 | 179.97 (17) | N4—C8—C9—C14 | 96.9 (3) |
C1—N1—C5—C6 | 177.95 (19) | C14—C9—C10—C11 | −2.3 (5) |
Ru1—N1—C5—C6 | −1.1 (2) | C8—C9—C10—C11 | 177.5 (3) |
C3—C4—C5—N1 | −0.3 (3) | C9—C10—C11—C12 | 0.0 (6) |
C3—C4—C5—C6 | −179.2 (2) | C10—C11—C12—C13 | 3.2 (6) |
N3—N2—C6—C7 | 0.9 (2) | C11—C12—C13—C14 | −4.1 (5) |
Ru1—N2—C6—C7 | −179.16 (14) | C10—C9—C14—C13 | 1.4 (5) |
N3—N2—C6—C5 | −177.21 (18) | C8—C9—C14—C13 | −178.4 (3) |
Ru1—N2—C6—C5 | 2.7 (2) | C12—C13—C14—C9 | 1.9 (5) |
N1—C5—C6—N2 | −1.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···Cl2i | 0.95 | 2.49 | 3.438 (2) | 172 |
Symmetry code: (i) −x+1/2, y−1/2, z. |
[RuCl2(C14H12N4)(C2H6OS)2] | Z = 2 |
Mr = 564.50 | F(000) = 572 |
Triclinic, P1 | Dx = 1.710 Mg m−3 |
a = 9.3535 (14) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 9.4900 (15) Å | Cell parameters from 7943 reflections |
c = 13.904 (2) Å | θ = 3.4–66.9° |
α = 98.893 (5)° | µ = 10.01 mm−1 |
β = 106.772 (5)° | T = 90 K |
γ = 106.276 (5)° | Cubic, yellow |
V = 1096.4 (3) Å3 | 0.67 × 0.63 × 0.45 mm |
Bruker Kappa APEXII CCD DUO diffractometer | 3704 independent reflections |
Radiation source: IµS microfocus | 3657 reflections with I > 2σ(I) |
QUAZAR multilayer optics monochromator | Rint = 0.026 |
φ and ω scans | θmax = 66.9°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→11 |
Tmin = 0.062, Tmax = 0.094 | k = −10→11 |
9693 measured reflections | l = −16→11 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.0546P)2 + 2.1529P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max = 0.001 |
3704 reflections | Δρmax = 2.21 e Å−3 |
266 parameters | Δρmin = −0.63 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.34993 (3) | 0.83627 (3) | 0.70658 (2) | 0.01710 (13) | |
Cl1 | 0.47441 (11) | 0.82110 (10) | 0.88125 (7) | 0.0249 (2) | |
C1 | 0.4322 (5) | 0.5485 (4) | 0.6392 (3) | 0.0251 (8) | |
H1 | 0.326454 | 0.492417 | 0.631964 | 0.030* | |
C3 | 0.6834 (5) | 0.5504 (4) | 0.6309 (3) | 0.0249 (8) | |
H3 | 0.751793 | 0.498296 | 0.617920 | 0.030* | |
N3 | 0.6204 (4) | 1.1465 (4) | 0.7637 (3) | 0.0211 (6) | |
C5 | 0.6319 (4) | 0.7785 (4) | 0.6771 (3) | 0.0201 (7) | |
S1 | 0.22838 (10) | 0.98237 (10) | 0.76998 (7) | 0.0195 (2) | |
S2 | 0.25606 (10) | 0.85272 (10) | 0.54247 (7) | 0.0201 (2) | |
Cl2 | 0.11642 (10) | 0.61922 (10) | 0.67424 (7) | 0.0240 (2) | |
C2 | 0.5301 (5) | 0.4707 (4) | 0.6218 (3) | 0.0281 (8) | |
H2 | 0.492296 | 0.362796 | 0.603645 | 0.034* | |
N2 | 0.5625 (4) | 0.9976 (3) | 0.7295 (2) | 0.0197 (6) | |
O1 | 0.0918 (3) | 1.0056 (3) | 0.6943 (2) | 0.0237 (6) | |
O2 | 0.3217 (3) | 0.7874 (3) | 0.4691 (2) | 0.0248 (6) | |
N1 | 0.4805 (4) | 0.7007 (3) | 0.6660 (2) | 0.0197 (6) | |
N4 | 0.7735 (4) | 1.1863 (3) | 0.7691 (2) | 0.0198 (6) | |
C4 | 0.7360 (5) | 0.7070 (4) | 0.6590 (3) | 0.0227 (8) | |
H4 | 0.841005 | 0.764702 | 0.665853 | 0.027* | |
C6 | 0.6756 (4) | 0.9424 (4) | 0.7130 (3) | 0.0186 (7) | |
C7 | 0.8119 (4) | 1.0644 (4) | 0.7384 (3) | 0.0193 (7) | |
H7 | 0.911618 | 1.063422 | 0.735085 | 0.023* | |
C8 | 0.8771 (4) | 1.3460 (4) | 0.8080 (3) | 0.0227 (8) | |
H8A | 0.818548 | 1.408213 | 0.831416 | 0.027* | |
H8B | 0.907011 | 1.381665 | 0.750905 | 0.027* | |
C9 | 1.0257 (4) | 1.3673 (4) | 0.8971 (3) | 0.0197 (7) | |
C10 | 1.1666 (5) | 1.4801 (4) | 0.9085 (3) | 0.0231 (8) | |
H10 | 1.168318 | 1.539792 | 0.859658 | 0.028* | |
C13 | 1.1646 (5) | 1.3045 (5) | 1.0502 (3) | 0.0282 (9) | |
H13 | 1.163861 | 1.242858 | 1.097911 | 0.034* | |
C11 | 1.3043 (5) | 1.5055 (4) | 0.9911 (3) | 0.0254 (8) | |
H11 | 1.399325 | 1.583829 | 0.999096 | 0.030* | |
C12 | 1.3051 (5) | 1.4179 (5) | 1.0621 (3) | 0.0272 (8) | |
H12 | 1.400003 | 1.435062 | 1.118164 | 0.033* | |
C15 | 0.1582 (5) | 0.9144 (5) | 0.8671 (3) | 0.0285 (8) | |
H15A | 0.104786 | 0.979669 | 0.892022 | 0.043* | |
H15B | 0.248383 | 0.916245 | 0.925322 | 0.043* | |
H15C | 0.083077 | 0.810137 | 0.837040 | 0.043* | |
C14 | 1.0261 (5) | 1.2809 (4) | 0.9692 (3) | 0.0244 (8) | |
H14 | 0.930278 | 1.204961 | 0.962791 | 0.029* | |
C16 | 0.3581 (5) | 1.1661 (4) | 0.8480 (3) | 0.0254 (8) | |
H16A | 0.403859 | 1.224247 | 0.805103 | 0.038* | |
H16B | 0.443670 | 1.156519 | 0.904175 | 0.038* | |
H16C | 0.298350 | 1.218801 | 0.877788 | 0.038* | |
C17 | 0.0452 (5) | 0.7802 (4) | 0.4819 (3) | 0.0255 (8) | |
H17A | 0.015495 | 0.804549 | 0.414508 | 0.038* | |
H17B | −0.002664 | 0.826346 | 0.526319 | 0.038* | |
H17C | 0.006768 | 0.669736 | 0.471409 | 0.038* | |
C18 | 0.2932 (5) | 1.0468 (4) | 0.5377 (3) | 0.0250 (8) | |
H18A | 0.238266 | 1.050697 | 0.467030 | 0.037* | |
H18B | 0.407723 | 1.098936 | 0.557126 | 0.037* | |
H18C | 0.253771 | 1.096943 | 0.586229 | 0.037* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01527 (18) | 0.01563 (18) | 0.01954 (18) | 0.00614 (12) | 0.00501 (12) | 0.00265 (12) |
Cl1 | 0.0253 (5) | 0.0278 (5) | 0.0212 (4) | 0.0119 (4) | 0.0045 (4) | 0.0065 (4) |
C1 | 0.026 (2) | 0.0198 (19) | 0.0272 (19) | 0.0087 (16) | 0.0064 (16) | 0.0024 (15) |
C3 | 0.030 (2) | 0.0251 (19) | 0.0220 (18) | 0.0183 (17) | 0.0048 (16) | 0.0033 (15) |
N3 | 0.0177 (15) | 0.0198 (16) | 0.0245 (15) | 0.0066 (12) | 0.0062 (12) | 0.0042 (12) |
C5 | 0.0216 (18) | 0.0227 (19) | 0.0171 (17) | 0.0106 (15) | 0.0055 (14) | 0.0055 (14) |
S1 | 0.0180 (4) | 0.0210 (4) | 0.0202 (4) | 0.0082 (3) | 0.0070 (3) | 0.0037 (3) |
S2 | 0.0211 (4) | 0.0185 (4) | 0.0203 (4) | 0.0076 (3) | 0.0063 (3) | 0.0036 (3) |
Cl2 | 0.0215 (4) | 0.0200 (4) | 0.0269 (4) | 0.0035 (3) | 0.0074 (4) | 0.0050 (3) |
C2 | 0.033 (2) | 0.0187 (18) | 0.029 (2) | 0.0088 (16) | 0.0065 (17) | 0.0027 (15) |
N2 | 0.0198 (15) | 0.0174 (15) | 0.0207 (15) | 0.0066 (12) | 0.0061 (12) | 0.0028 (12) |
O1 | 0.0199 (13) | 0.0305 (14) | 0.0233 (13) | 0.0134 (11) | 0.0072 (11) | 0.0055 (11) |
O2 | 0.0282 (14) | 0.0210 (13) | 0.0255 (13) | 0.0094 (11) | 0.0106 (11) | 0.0030 (11) |
N1 | 0.0196 (15) | 0.0180 (15) | 0.0192 (15) | 0.0071 (12) | 0.0041 (12) | 0.0025 (12) |
N4 | 0.0139 (14) | 0.0192 (15) | 0.0237 (15) | 0.0044 (12) | 0.0052 (12) | 0.0034 (12) |
C4 | 0.0232 (19) | 0.027 (2) | 0.0197 (17) | 0.0120 (16) | 0.0070 (15) | 0.0048 (15) |
C6 | 0.0184 (17) | 0.0201 (18) | 0.0183 (16) | 0.0099 (14) | 0.0057 (14) | 0.0029 (14) |
C7 | 0.0150 (17) | 0.0234 (18) | 0.0221 (17) | 0.0101 (14) | 0.0070 (14) | 0.0055 (14) |
C8 | 0.0204 (18) | 0.0178 (18) | 0.0292 (19) | 0.0069 (15) | 0.0072 (16) | 0.0062 (15) |
C9 | 0.0175 (17) | 0.0180 (17) | 0.0232 (18) | 0.0084 (14) | 0.0064 (15) | 0.0014 (14) |
C10 | 0.0242 (19) | 0.0185 (18) | 0.0268 (19) | 0.0060 (15) | 0.0106 (16) | 0.0052 (15) |
C13 | 0.035 (2) | 0.028 (2) | 0.0224 (19) | 0.0129 (18) | 0.0102 (17) | 0.0073 (16) |
C11 | 0.0207 (19) | 0.0211 (19) | 0.029 (2) | 0.0053 (15) | 0.0064 (16) | −0.0007 (15) |
C12 | 0.024 (2) | 0.028 (2) | 0.0235 (19) | 0.0101 (16) | 0.0021 (16) | −0.0026 (16) |
C15 | 0.029 (2) | 0.033 (2) | 0.029 (2) | 0.0115 (18) | 0.0154 (17) | 0.0117 (17) |
C14 | 0.0238 (19) | 0.0244 (19) | 0.0242 (19) | 0.0054 (16) | 0.0114 (16) | 0.0037 (15) |
C16 | 0.025 (2) | 0.0235 (19) | 0.0262 (19) | 0.0094 (16) | 0.0094 (16) | −0.0014 (15) |
C17 | 0.0237 (19) | 0.025 (2) | 0.0231 (18) | 0.0073 (16) | 0.0039 (15) | 0.0036 (15) |
C18 | 0.029 (2) | 0.0223 (19) | 0.0256 (19) | 0.0100 (16) | 0.0104 (16) | 0.0071 (15) |
Ru1—N2 | 2.044 (3) | C6—C7 | 1.370 (5) |
Ru1—N1 | 2.126 (3) | C7—H7 | 0.9500 |
Ru1—S2 | 2.2434 (9) | C8—C9 | 1.509 (5) |
Ru1—S1 | 2.2530 (9) | C8—H8A | 0.9900 |
Ru1—Cl2 | 2.4167 (9) | C8—H8B | 0.9900 |
Ru1—Cl1 | 2.4175 (9) | C9—C14 | 1.390 (5) |
C1—N1 | 1.341 (5) | C9—C10 | 1.394 (5) |
C1—C2 | 1.377 (6) | C10—C11 | 1.387 (6) |
C1—H1 | 0.9500 | C10—H10 | 0.9500 |
C3—C4 | 1.379 (6) | C13—C14 | 1.384 (6) |
C3—C2 | 1.380 (6) | C13—C12 | 1.393 (6) |
C3—H3 | 0.9500 | C13—H13 | 0.9500 |
N3—N2 | 1.315 (4) | C11—C12 | 1.385 (6) |
N3—N4 | 1.351 (4) | C11—H11 | 0.9500 |
C5—N1 | 1.351 (5) | C12—H12 | 0.9500 |
C5—C4 | 1.390 (5) | C15—H15A | 0.9800 |
C5—C6 | 1.456 (5) | C15—H15B | 0.9800 |
S1—O1 | 1.497 (3) | C15—H15C | 0.9800 |
S1—C16 | 1.777 (4) | C14—H14 | 0.9500 |
S1—C15 | 1.793 (4) | C16—H16A | 0.9800 |
S2—O2 | 1.477 (3) | C16—H16B | 0.9800 |
S2—C17 | 1.782 (4) | C16—H16C | 0.9800 |
S2—C18 | 1.792 (4) | C17—H17A | 0.9800 |
C2—H2 | 0.9500 | C17—H17B | 0.9800 |
N2—C6 | 1.364 (5) | C17—H17C | 0.9800 |
N4—C7 | 1.348 (5) | C18—H18A | 0.9800 |
N4—C8 | 1.466 (5) | C18—H18B | 0.9800 |
C4—H4 | 0.9500 | C18—H18C | 0.9800 |
N2—Ru1—N1 | 78.32 (12) | N2—C6—C5 | 117.9 (3) |
N2—Ru1—S2 | 90.28 (9) | C7—C6—C5 | 135.0 (3) |
N1—Ru1—S2 | 91.60 (8) | N4—C7—C6 | 105.0 (3) |
N2—Ru1—S1 | 100.24 (9) | N4—C7—H7 | 127.5 |
N1—Ru1—S1 | 173.01 (8) | C6—C7—H7 | 127.5 |
S2—Ru1—S1 | 95.26 (3) | N4—C8—C9 | 111.4 (3) |
N2—Ru1—Cl2 | 171.78 (9) | N4—C8—H8A | 109.3 |
N1—Ru1—Cl2 | 93.49 (9) | C9—C8—H8A | 109.3 |
S2—Ru1—Cl2 | 90.60 (3) | N4—C8—H8B | 109.3 |
S1—Ru1—Cl2 | 87.81 (3) | C9—C8—H8B | 109.3 |
N2—Ru1—Cl1 | 85.57 (9) | H8A—C8—H8B | 108.0 |
N1—Ru1—Cl1 | 84.32 (8) | C14—C9—C10 | 119.0 (3) |
S2—Ru1—Cl1 | 174.69 (3) | C14—C9—C8 | 122.3 (3) |
S1—Ru1—Cl1 | 88.75 (3) | C10—C9—C8 | 118.7 (3) |
Cl2—Ru1—Cl1 | 93.04 (3) | C11—C10—C9 | 120.1 (4) |
N1—C1—C2 | 122.5 (4) | C11—C10—H10 | 119.9 |
N1—C1—H1 | 118.8 | C9—C10—H10 | 119.9 |
C2—C1—H1 | 118.8 | C14—C13—C12 | 120.4 (4) |
C4—C3—C2 | 119.0 (4) | C14—C13—H13 | 119.8 |
C4—C3—H3 | 120.5 | C12—C13—H13 | 119.8 |
C2—C3—H3 | 120.5 | C12—C11—C10 | 120.8 (4) |
N2—N3—N4 | 105.3 (3) | C12—C11—H11 | 119.6 |
N1—C5—C4 | 122.5 (3) | C10—C11—H11 | 119.6 |
N1—C5—C6 | 113.6 (3) | C11—C12—C13 | 119.0 (4) |
C4—C5—C6 | 123.8 (3) | C11—C12—H12 | 120.5 |
O1—S1—C16 | 106.23 (18) | C13—C12—H12 | 120.5 |
O1—S1—C15 | 106.64 (18) | S1—C15—H15A | 109.5 |
C16—S1—C15 | 97.9 (2) | S1—C15—H15B | 109.5 |
O1—S1—Ru1 | 117.75 (11) | H15A—C15—H15B | 109.5 |
C16—S1—Ru1 | 114.42 (13) | S1—C15—H15C | 109.5 |
C15—S1—Ru1 | 111.80 (14) | H15A—C15—H15C | 109.5 |
O2—S2—C17 | 107.02 (17) | H15B—C15—H15C | 109.5 |
O2—S2—C18 | 105.76 (17) | C13—C14—C9 | 120.6 (4) |
C17—S2—C18 | 99.59 (19) | C13—C14—H14 | 119.7 |
O2—S2—Ru1 | 116.22 (12) | C9—C14—H14 | 119.7 |
C17—S2—Ru1 | 115.64 (13) | S1—C16—H16A | 109.5 |
C18—S2—Ru1 | 110.93 (13) | S1—C16—H16B | 109.5 |
C1—C2—C3 | 119.5 (4) | H16A—C16—H16B | 109.5 |
C1—C2—H2 | 120.2 | S1—C16—H16C | 109.5 |
C3—C2—H2 | 120.2 | H16A—C16—H16C | 109.5 |
N3—N2—C6 | 110.8 (3) | H16B—C16—H16C | 109.5 |
N3—N2—Ru1 | 134.0 (2) | S2—C17—H17A | 109.5 |
C6—N2—Ru1 | 115.0 (2) | S2—C17—H17B | 109.5 |
C1—N1—C5 | 117.9 (3) | H17A—C17—H17B | 109.5 |
C1—N1—Ru1 | 126.7 (3) | S2—C17—H17C | 109.5 |
C5—N1—Ru1 | 115.1 (2) | H17A—C17—H17C | 109.5 |
C7—N4—N3 | 111.9 (3) | H17B—C17—H17C | 109.5 |
C7—N4—C8 | 127.9 (3) | S2—C18—H18A | 109.5 |
N3—N4—C8 | 120.2 (3) | S2—C18—H18B | 109.5 |
C3—C4—C5 | 118.5 (4) | H18A—C18—H18B | 109.5 |
C3—C4—H4 | 120.7 | S2—C18—H18C | 109.5 |
C5—C4—H4 | 120.7 | H18A—C18—H18C | 109.5 |
N2—C6—C7 | 107.1 (3) | H18B—C18—H18C | 109.5 |
N1—C1—C2—C3 | −0.7 (6) | C4—C5—C6—N2 | −178.9 (3) |
C4—C3—C2—C1 | 1.1 (6) | N1—C5—C6—C7 | 177.5 (4) |
N4—N3—N2—C6 | −0.2 (4) | C4—C5—C6—C7 | −0.5 (6) |
N4—N3—N2—Ru1 | 174.8 (2) | N3—N4—C7—C6 | −0.3 (4) |
C2—C1—N1—C5 | −0.8 (6) | C8—N4—C7—C6 | 177.8 (3) |
C2—C1—N1—Ru1 | −174.9 (3) | N2—C6—C7—N4 | 0.2 (4) |
C4—C5—N1—C1 | 1.9 (5) | C5—C6—C7—N4 | −178.2 (4) |
C6—C5—N1—C1 | −176.1 (3) | C7—N4—C8—C9 | −53.0 (5) |
C4—C5—N1—Ru1 | 176.7 (3) | N3—N4—C8—C9 | 125.0 (3) |
C6—C5—N1—Ru1 | −1.3 (4) | N4—C8—C9—C14 | −34.4 (5) |
N2—N3—N4—C7 | 0.3 (4) | N4—C8—C9—C10 | 147.0 (3) |
N2—N3—N4—C8 | −178.0 (3) | C14—C9—C10—C11 | −0.3 (5) |
C2—C3—C4—C5 | 0.0 (5) | C8—C9—C10—C11 | 178.3 (3) |
N1—C5—C4—C3 | −1.5 (5) | C9—C10—C11—C12 | 1.2 (6) |
C6—C5—C4—C3 | 176.3 (3) | C10—C11—C12—C13 | −0.7 (6) |
N3—N2—C6—C7 | 0.0 (4) | C14—C13—C12—C11 | −0.7 (6) |
Ru1—N2—C6—C7 | −176.1 (2) | C12—C13—C14—C9 | 1.6 (6) |
N3—N2—C6—C5 | 178.7 (3) | C10—C9—C14—C13 | −1.1 (5) |
Ru1—N2—C6—C5 | 2.7 (4) | C8—C9—C14—C13 | −179.6 (4) |
N1—C5—C6—N2 | −0.9 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1i | 0.95 | 2.11 | 3.031 (4) | 164 |
Symmetry code: (i) x+1, y, z. |
complex 2 | complex 3 | |
Ru1—N1 (pyridine) | 2.1714 (18) | 2.126 (3) |
Ru1—N2 (triazole) | 2.0890 (19) | 2.044 (3) |
Ru1—Cl1 | 2.3835 (6) | 2.4175 (9) |
Ru1—Cl2 | 2.4157 (6) | 2.4167 (9) |
Ru1—S1 | 2.2814 (6) | 2.2530 (9) |
Ru1—S2 | 2.2440 (6) | 2.2434 (9) |
Ru1···mean plane of pyridyltriazole | 0.0728 (2) | 0.048 (3) |
N1—Ru—N2 | 77.10 (7) | 78.32 (12) |
pyridyltriazole plane···benzyl plane | 77.75 (7) | 69.52 (10) |
Acknowledgements
The authors are grateful to Dr Frank R. Fronczek for mentoring and helpful advice. FK acknowledges a studentship from the American Crystallographic Association Summer School for Chemical Crystallography.
Funding information
Funding for this research was provided by: the College of Science and West Professorship, Louisiana State University. The diffractometer purchase and upgrades were made possible by grants from the Louisiana Board of Regents.
References
Bratsos, I. & Alessio, E. (2010). Inorganic Syntheses, Vol. 35, edited by T. B. Rauchfuss, pp 148–152. Hoboken, New Jersey: Wiley. Google Scholar
Brown, M. F., Cook, B. R. & Sloan, T. E. (1975). Inorg. Chem. 14, 1273–1278. CrossRef CAS Web of Science Google Scholar
Bruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Connelly, N. G. & Damhus, T. (2005). Nomenclature of Inorganic Chemistry: IUPAC Recommendations, edited by N. G. Connelly & T. Damhus, pp. 174–183. Cambridge: RSC Publishing. Google Scholar
Crowley, J. D., Bandeen, P. H. & Hanton, L. R. (2010). Polyhedron, 29, 70–83. Web of Science CSD CrossRef CAS Google Scholar
Elliott, A. B. S., Lewis, J. E. M., van der Salm, H., McAdam, C. J., Crowley, J. D. & Gordon, K. C. (2016). Inorg. Chem. 55, 3440–3447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Evans, I. P., Spencer, A. & Wilkinson, G. (1973). J. Chem. Soc. Dalton Trans. pp. 204–209. CrossRef Web of Science Google Scholar
Felici, M., Contreras-Carballada, P., Vida, Y., Smits, J. M. M., Nolte, R. J. M., De Cola, L., Williams, R. M. & Feiters, M. C. (2009). Chem. Eur. J. 15, 13124–13134. Web of Science CSD CrossRef PubMed CAS Google Scholar
Grätzel, M. (2009). Acc. Chem. Res. 42, 1788–1798. Web of Science PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kumar, S. V., Scottwell, S. O., Waugh, E., McAdam, C. J., Hanton, L. R., Brooks, H. J. L. & Crowley, J. D. (2016). Inorg. Chem. 55, 9767–9777. Web of Science CSD CrossRef CAS PubMed Google Scholar
Li, Y. & Flood, A. H. (2008). Angew. Chem. Int. Ed. 47, 2649–2652. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Orellana, G. & García-Fresnadillo, D. (2004). Optical Sensors: Industrial Environmental and Diagnostic Applications, Vol. 1, edited by R. Narayanaswamy & O. S. Wolfbeis, pp 309–357. New York: Springer. Google Scholar
Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2013). Dalton Trans. 42, 14064–14067. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nat. Commun. 5, 5883. Web of Science CSD CrossRef PubMed Google Scholar
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. (2013). Chem. Rev. 113, 5322–5363. Web of Science CrossRef CAS PubMed Google Scholar
Schulze, B., Friebe, C., Hager, D. M., Winter, A., Hoogenboom, R., Görls, H. & Schubert, U. S. (2009). Dalton Trans. pp. 787–794. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
White, N. G. & Beer, P. D. (2012). Chem. Commun. 48, 8499–8501. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.