research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-6,6′-(Diazene-1,2-di­yl)bis­­(1,10-phenanthrolin-5-ol) tri­chloro­methane disolvate: a superconjugated ligand

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Maynooth University, Co. Kildare, Ireland, bThe Centre for Biomimetic & Therapeutic Research, Focas Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, Ireland, cDepartment of Physics, Chemistry and Pharmacy, University of Southern Denmark, Canpusvej 55, 5230 Odense M, Denmark, and dSchool of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
*Correspondence e-mail: denise.rooney@mu.ie

Edited by J. Jasinski, Keene State College, USA (Received 7 June 2019; accepted 2 July 2019; online 23 July 2019)

Phenanthroline ligands are important metal-binding mol­ecules which have been extensively researched for applications in both material science and medicinal chemistry. Azo­benzene and its derivatives have received significant attention because of their ability to be reversibly switched between the E and Z forms and so could have applications in optical memory and logic devices or as mol­ecular machines. Herein we report the formation and crystal structure of a highly unusual novel diazo-diphenanthroline compound, C24H14N6O2·2CHCl3.

1. Chemical context

The chemical versatility of 1,10-phenanthroline (phen), its substituted derivatives and corresponding metal complexes (Bencini & Lippolis, 2010[Bencini, A. & Lippolis, V. (2010). Coord. Chem. Rev. 254, 2096-2180.]) is exemplified by their uses as organic light-emitting diodes (OLED)/electroluminescent display and solid-state lighting materials (Li et al., 2009[Li, Y.-J., Sasabe, H., Su, S.-J., Tanaka, D., Takeda, T., Pu, Y.-J. & Kido, J. (2009). Chem. Lett. 38, 712-713.]), fluorescence mol­ecular probes and imaging agents (Haraga et al., 2018[Haraga, T., Ouchi, K., Sato, Y., Hoshino, H., Tanaka, R., Fujihara, T., Kurokawa, H., Shibukawa, M., Ishimori, K. I., Kameo, Y. & Saito, S. (2018). Anal. Chim. Acta, 1032, 188-196.]), ion sensors (Zheng et al., 2012[Zheng, Y., Tan, C., Drummen, G. P. & Wang, Q. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 387-394.]), solar energy converters (Freitag et al., 2016[Freitag, M., Giordano, F., Yang, W., Pazoki, M., Hao, Y., Zietz, B., Grätzel, M., Hagfeldt, A. & Boschloo, G. (2016). J. Phys. Chem. C, 120, 9595-9603.]), anti-cancer and anti­microbial cytotoxins (McCann et al., 2012[McCann, M., Santos, A., da Silva, B., Romanos, M., Pyrrho, A., Devereux, M., Kavanagh, K., Fichtner, I. & Kellett, A. (2012). Toxicol. Res. 1, 47-54.]), DNA/RNA binding/cleavage (Kellett et al., 2011[Kellett, A., O'Connor, M., McCann, M., McNamara, M., Lynch, P., Rosair, G., McKee, V., Creaven, B., Walsh, M., McClean, S., Foltyn, A., O'Shea, D., Howe, O. & Devereux, M. (2011). Dalton Trans. 40, 1024-1027.]), enzyme inhibitors (Zhu et al., 2015[Zhu, Y., Liao, Y., Zhang, L. & Bai, X. (2015). PCT Int. Appl. WO 2015154716 A1.]), biomimetics (Casey et al., 1994[Casey, M. T., McCann, M., Devereux, M., Curran, M., Cardin, C., Convery, M., Quillet, V. & Harding, C. (1994). J. Chem. Soc. Chem. Commun. pp. 2643-2645.]) and catalysts (Lu et al., 2015[Lu, Y., Wang, X., Wang, M., Kong, L. & Zhao, J. (2015). Electrochim. Acta, 180, 86-95.]). Given the resourcefulness of phenanthrolines, there is a continuing demand for new mol­ecules containing this structural motif.

[Scheme 1]

Herein, we detail the preparation and structural characterization of the purple diazo-diphenanthroline compound, (E)-6,6′-(diazene-1,2-di­yl)bis­(1,10-phenanthrolin-5-ol) (1), which was isolated in low yield from the reaction between 1,10-phenanthroline-5,6-dione (phendione) and isonicotinic acid hydrazide (isoniazid). Compound 1 crystallizes with two tri­chloro­methane solvate mol­ecules (1·2CHCl3). The fully conjugated bis-phenanthroline mol­ecule 1 is expected to offer exciting new physical and chemical properties as a stand-alone organic mol­ecule, and it will also birth a plethora of inter­esting metal coordination complexes as a consequence of the dual N,N′-1,10-phenanthroline chelating moieties situated on the opposite ends of the mol­ecule.

2. Structural commentary

Compound 1·2CHCl3 crystallizes with two mol­ecules of tri­chloro­methane solvate per diazo-diphenanthroline (Fig. 1[link]). The mol­ecule lies on a centre of symmetry and is essentially planar, the r.m.s. deviation from the plane of the atoms in the ring system is 0.259 Å. The mol­ecules lie parallel to the (5 7 15) or (5 [\overline{7}] 14) planes. There is a hydrogen bond between the alcohol and the diazo linker [O1⋯N2 = 2.540 (3) Å under symmetry operationx + 2, −y + 1, −z + 1, Table 1[link]] and the tri­chloro­methane mol­ecule is oriented by a bifurcated C—H⋯·N inter­action with the phenanthroline moiety [3.219 (3) and 3.136 (4) Å to N1 and N3, respectively]. The carbon atom of the tri­chloro­methane mol­ecule (C21) is 1.045 (3) Å from the mean plane of 1·2CHCl3. There are 40 examples in the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showing similar inter­actions between tri­chloro­methane and 1,10-phenanthroline derivatives and the geometry for 1·2CHCl3 is typical of the group [mean Cl3CH⋯·N = 3.18 (5) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2i 0.88 (3) 1.74 (3) 2.540 (3) 149 (3)
C21—H21⋯N1 1.00 2.36 3.219 (3) 143
C21—H21⋯N3 1.00 2.33 3.136 (4) 137
Symmetry code: (i) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
Perspective view of 1·2CHCl3 showing the labelling scheme for the asymmetric unit with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius and C—H⋯N hydrogen bonds are indicated by dashed red lines.

The bond lengths indicate some delocalization through the central part of the mol­ecule. The C6—O1and C5—N2 bonds are short [1.318 (3) and 1.376 (3) Å, respectively] and the N=N bond, at 1.316 (4) Å, is significantly longer than in most free diazo mol­ecules [mean of 1.24 (4) Å for 2730 CSD entries].

3. Supra­molecular features

Fig. 2[link] shows the unit-cell packing, the mol­ecules lie parallel to the (5 7 15) or (5 [\overline{7}] 14) planes with a mean inter­planar distance of 3.228 (2) Å (under 1 − x, 1 − y, 1 − z) and the axis of the stack runs parallel to the a axis. The shortest ring centroid–centroid distance is 3.5154 (15) Å between the C6 rings; however, there is a more direct overlap between the diazo group and an imine group in the next layer (ca 3.246 Å between the mid-point of the N=N bond and the mid-point of the C11=N3 bond under symmetry operation 1 − x, 1 − y, 1 − z) (Fig. 3[link]). The most notable inter­actions between stacks are type 1 R—Cl⋯·Cl—R packing inter­actions (Mukherjee et al., 2014[Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514-2524.]; Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]), the shortest Cl⋯Cl distance being 3.5353 (11) Å for Cl1⋯·Cl3 under symmetry operation −1 + x, y, z.

[Figure 2]
Figure 2
Unit-cell packing diagram viewed parallel to the plane of 1·2CHCl3. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
Principal inter­molecular inter­actions in 1·2CHCl3. Purple spheres represent ring centroids and orange spheres show bond mid-points; distances in Å.

4. Database survey

There are three published examples of mol­ecules containing the 2,2′-di­hydroxy­azo­benzene core (Bougueria et al., 2014[Bougueria, H., Mili, A., Benosmane, A., Bouchoul, A. el kader & Bouaoud, S. (2014). Acta Cryst. E70, o225.]; Evangelio et al., 2008[Evangelio, E., Saiz-Poseu, J., Maspoch, D., Wurst, K., Busque, F. & Ruiz-Molina, D. (2008). Eur. J. Inorg. Chem. 14, 2278-2285.]; Schilde et al., 1994[Schilde, U., Hefele, H., Ludwig, E. & Uhlemann, E. (1994). Cryst. Res. Technol. 29, 393-396.]) and all of these are significantly less delocalized than 1·2CHCl3.

5. Spectroscopy studies of 1 in solution

Compound 1 has a very low solubility in all organic solvents investigated (CH3Cl, CH2Cl2, DMSO, CH3CN and alcohols). UV/vis spectra of 1·2CHCl3 recorded in ethanol, methanol, CHCl3 and CH2Cl2 are given in Fig. 4[link]. Compound 1 exhibits significant solvatochromism showing a broad band in CHCl3 and CH2Cl2 with λmax at 543 nm. This band undergoes a bathochromic shift and separates into two bands in the alcohols with λmax values at 643 nm and 600 nm in ethanol and at 636 nm and 591 nm in methanol. No accurate measurement of the extinction coefficient could be made as 1 was not fully soluble in the solvents and precipitation from the solvent occurred upon standing. The solubility of 1 was so low that only a very poorly resolved 1H NMR of the compound was obtained in d4-methanol showing a series of peaks in the region expected for the phenanthroline H-atom signals and no definitive assignments of the peaks could be made. Inter­estingly, 1 was more soluble in strongly acidic solutions due to the protonation of one or more of the N atoms. Compound 1 dissolved in CF3COOD to form a bright-red solution. Six signals are observed in the 1H NMR spectrum in the region associated with the phenanthroline peaks. This finding is consistent with a compound which has a centre of symmetry, as found for the crystal structure, and suggests that at room temperature 1 remains in the E form in this solvent.

[Figure 4]
Figure 4
UV/vis spectra of 1·2CHCl3 in (____) CHCl3, (- - - -) ethanol, (____) CH2Cl2, and (⋯⋯) methanol. The absorbance axis is ×10 for the CHCl3 and CH2Cl2 solutions.

6. Synthesis and crystallization

The mechanism to form 1 from the reaction mixture is unclear; however, the formation of isonicotinic acid N′-(pyridine-4-carbon­yl)-hydrazide (2) from the mixture is an indication that radical chemistry is occurring. Isoniazid is well known to react to form radical species and these radicals are important in its role as an anti-tuberculosis drug (Timmins et al. 2006[Timmins, G. S. & Deretic, V. (2006). Mol. Microbiol. 62, 1220-1227.]). Significantly one LC–MS study has shown that isoniazid will photo-degrade to form 2 (Fig. 5[link]) and radical inter­mediates are proposed in its formation (Bhutani, 2007[Bhutani, H., Singh, S., Vir, S., Bhutani, K. K., Kumar, R., Chakraborti, A. K. & Jindal, K. C. (2007). J. Pharm. Biomed. Anal. 43, 1213-1220.]). Attempts were made to try to favour the formation of 1 using UV irradiation and the radical initiators azobisisobutyro­nitrile and 2,2′-azobis(2-amidino­propane) di­hydro­chloride but these were unsuccessful. However, although the reaction to form 1 was low yielding, attempts to make 1 by reaction of 6-amino-1,10-phenanthrolin-5-ol and 6-nitroso-1,10-phenananthrolin-5-ol using known conditions to form diazo compounds (Zhao et al. 2011[Zhao, R., Tan, C., Xie, Y., Gao, C., Liu, H. & Jiang, Y. (2011). Tetrahedron Lett. 52, 3805-3809.]) did not form the desired product. Studies are ongoing to improve the yield of the reaction to form 1.

[Figure 5]
Figure 5
Chemical structure of 2

Phendione (0.210 g, 1.000 mmol) was added to solution of isoniazid (0.137 g, 1.000 mmol) in EtOH (25 cm3). p-Tolouene­sulfonic acid (10%, 0.02 g) was added and the solution refluxed for 6 h. The resulting suspension was filtered whilst hot and the filtrate allowed to stand in the dark overnight. Precipitated yellow (Z)-N′-(6-oxo-1,10-phenanthrolin-5(6H) yl­idene)isonicotinohydrazide (0.263 g, 0.799 mmol, 80%) was filtered off and the bright-orange filtrate was concentrated to ca 10 cm3 using rotary evaporation and then allowed to stand in the dark. Over a period of four weeks, the bright-orange filtrate changed to a dark-green suspension. This mixture was heated to reflux and filtered whilst hot to give a green filtrate (see below) and a dark-purple powder. The powder was dissolved in CHCl3 and allowed to crystallize over several days to produce dark-purple crystals of (E)-6,6′-(diazene-1,2-di­yl)bis­(1,10-phenanthrolin-5-ol) tri­chloro­meth­ane disolvate (1·2CHCl3) (0.026 g, 0.039 mmol, 6.2% based on isoniazid starting material). Upon leaving the above green filtrate to evaporate further white isonicotinic acid N′-(pyridine-4-carbon­yl)-hydrazide (compound 2) precipitated. The supernatent was deca­nted off and the solid dissolved in hot acetone. This colourless solution was evaporated to dryness on a rotary evaporator to give 2 (0.015 g, 0.062 mmol, 12.4% based on isoniazid starting material).

Compound 1: IR (ATR, cm−1) (1.2CHCl3): 3065, 2108, 1583, 1568, 1500, 1472, 1415, 1338, 1284, 1227, 1162, 1027, 795, 739, 717. 1H NMR (protonated-1) (CF3COOD, 500 MHz): δ 9.60 (d, J = 8.5 Hz, 2H), PhenH 9.56 (d, J = 8.5 Hz, 2H, PhenH), 9.47 (d, J = 5.0 Hz, 2H, PhenH), 9.37 (d, J = 5.0 Hz, 2H, PhenH), 8.57 (dd, J = 8.5, 5.0 Hz, 2H, PhenH), 8.38 (dd, J = 8.5, 5.0 Hz, 2H, PhenH), 4.12 (s, 2H, OH). Elemental analysis calculated for 1·2CHCl3 (C26H16Cl6N6O2, 657.15 g mol−1): C 47.52, H 2.45, N 12.79%; found: C 47.73, H 2.52, N 12.77%.

Compound 2 has been previously reported (Quiroga et al., 2008[Quiroga, J., Portilla, J., Abonía, R., Insuasty, B., Nogueras, M. & Cobo, J. (2008). Tetrahedron Lett. 49, 5943-5945.]; Bhutani et al., 2007[Bhutani, H., Singh, S., Vir, S., Bhutani, K. K., Kumar, R., Chakraborti, A. K. & Jindal, K. C. (2007). J. Pharm. Biomed. Anal. 43, 1213-1220.]) and the characterization data given are consistent with the data recorded in the present study.

Compound 2: IR (KBr, cm−1) 3435, 3210, 3045, 1682, 1642, 1546, 1489, 1406, 1299, 838, 751. 1H NMR (CD3OD, 500 MHz): δ 8.80 (d, J = 5 Hz, 2H), 7.42 (d, J = 5 Hz, 2H). 13C NMR (CD3OD, 125 MHz): δ 165.6 (C=O), 150.0 (PyrC), 140.5 (PyrC), 121.8 (PyrC). MS: Calculated m/z for C12H10N4O2: (M + H)+ 243.0877; found: (M + H)+ 243.0882; difference (ppm): 2.15.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. The H atom (H1A) bonded to oxygen was located in a difference-Fourier map and its coord­inates were refined with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C24H14N6O2·2CHCl3
Mr 657.15
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 5.9406 (7), 18.856 (2), 12.2375 (16)
β (°) 96.863 (4)
V3) 1361.0 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.67
Crystal size (mm) 0.43 × 0.05 × 0.04
 
Data collection
Diffractometer Bruker–Nonius X8 APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2012[Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.657, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18529, 2732, 2068
Rint 0.045
(sin θ/λ)max−1) 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.03
No. of reflections 2732
No. of parameters 184
H-atom treatment Heteroxyz
Δρmax, Δρmin (e Å−3) 0.87, −0.59
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-6,6'-(Diazene-1,2-diyl)bis(1,10-phenanthrolin-5-ol) trichloromethane disolvate top
Crystal data top
C24H14N6O2·2CHCl3F(000) = 664
Mr = 657.15Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.9406 (7) ÅCell parameters from 5155 reflections
b = 18.856 (2) Åθ = 2.7–26.1°
c = 12.2375 (16) ŵ = 0.67 mm1
β = 96.863 (4)°T = 150 K
V = 1361.0 (3) Å3Lath, purple
Z = 20.43 × 0.05 × 0.04 mm
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
2732 independent reflections
Radiation source: fine-focus sealed-tube2068 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.045
thin–slice ω and φ scansθmax = 26.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
h = 57
Tmin = 0.657, Tmax = 0.745k = 2323
18529 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.111Heteroxyz
S = 1.02 w = 1/[σ2(Fo2) + (0.0444P)2 + 1.8407P]
where P = (Fo2 + 2Fc2)/3
2732 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3174 (4)0.63628 (11)0.66898 (18)0.0216 (5)
C10.3648 (5)0.69741 (14)0.6234 (2)0.0240 (6)
H10.2699040.7369190.6329100.029*
C20.5456 (5)0.70706 (14)0.5623 (2)0.0255 (6)
H20.5726450.7520540.5314500.031*
C30.6846 (4)0.65044 (14)0.5473 (2)0.0219 (6)
H30.8105160.6560510.5070470.026*
C40.6383 (4)0.58421 (13)0.5923 (2)0.0174 (5)
C50.7702 (4)0.52078 (13)0.5757 (2)0.0177 (5)
N20.9396 (3)0.52817 (11)0.50912 (17)0.0195 (5)
C60.7175 (4)0.45623 (14)0.6231 (2)0.0195 (5)
O10.8303 (3)0.39726 (10)0.61010 (16)0.0246 (4)
H1A0.937 (6)0.4088 (17)0.569 (3)0.037*
C70.5313 (4)0.45226 (13)0.6889 (2)0.0191 (5)
C80.4726 (5)0.38783 (14)0.7366 (2)0.0239 (6)
H80.5547380.3456440.7260500.029*
C90.2948 (5)0.38714 (15)0.7985 (2)0.0274 (6)
H90.2518330.3444740.8317100.033*
C100.1781 (5)0.45015 (15)0.8118 (2)0.0253 (6)
H100.0574330.4491910.8561780.030*
N30.2257 (4)0.51143 (12)0.76615 (18)0.0224 (5)
C110.4006 (4)0.51294 (13)0.7050 (2)0.0182 (5)
C120.4522 (4)0.58002 (13)0.6541 (2)0.0185 (5)
C210.0382 (5)0.64497 (15)0.8784 (2)0.0271 (6)
H210.0875920.6215470.8119210.032*
Cl10.23375 (13)0.61485 (6)0.89683 (7)0.0493 (3)
Cl20.03861 (18)0.73803 (4)0.85952 (7)0.0508 (3)
Cl30.23081 (12)0.62261 (4)0.99506 (6)0.0333 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0234 (11)0.0211 (12)0.0208 (12)0.0047 (9)0.0050 (9)0.0007 (9)
C10.0290 (14)0.0208 (15)0.0229 (14)0.0070 (11)0.0065 (11)0.0003 (11)
C20.0330 (15)0.0159 (13)0.0279 (15)0.0000 (11)0.0054 (12)0.0012 (11)
C30.0231 (13)0.0216 (14)0.0219 (14)0.0011 (11)0.0064 (11)0.0016 (11)
C40.0192 (13)0.0169 (13)0.0160 (12)0.0001 (10)0.0008 (10)0.0016 (10)
C50.0158 (12)0.0196 (13)0.0169 (13)0.0011 (10)0.0011 (10)0.0021 (10)
N20.0180 (11)0.0213 (11)0.0193 (11)0.0023 (8)0.0020 (9)0.0036 (9)
C60.0192 (13)0.0203 (14)0.0180 (13)0.0023 (10)0.0011 (10)0.0020 (10)
O10.0258 (10)0.0197 (10)0.0293 (11)0.0053 (8)0.0072 (8)0.0007 (8)
C70.0212 (13)0.0203 (13)0.0151 (13)0.0003 (10)0.0007 (10)0.0007 (10)
C80.0277 (14)0.0199 (14)0.0236 (14)0.0023 (11)0.0004 (11)0.0027 (11)
C90.0319 (15)0.0274 (15)0.0230 (14)0.0046 (12)0.0036 (12)0.0063 (12)
C100.0244 (14)0.0290 (15)0.0236 (14)0.0027 (11)0.0077 (11)0.0032 (12)
N30.0235 (11)0.0250 (12)0.0190 (11)0.0009 (9)0.0039 (9)0.0005 (9)
C110.0207 (13)0.0198 (13)0.0141 (12)0.0010 (10)0.0016 (10)0.0020 (10)
C120.0199 (13)0.0196 (13)0.0156 (13)0.0008 (10)0.0008 (10)0.0015 (10)
C210.0290 (15)0.0290 (16)0.0242 (15)0.0014 (12)0.0077 (12)0.0021 (12)
Cl10.0258 (4)0.0875 (7)0.0346 (5)0.0121 (4)0.0037 (3)0.0095 (4)
Cl20.0818 (7)0.0295 (4)0.0438 (5)0.0156 (4)0.0196 (5)0.0009 (4)
Cl30.0273 (4)0.0379 (4)0.0339 (4)0.0051 (3)0.0008 (3)0.0002 (3)
Geometric parameters (Å, º) top
N1—C11.326 (3)O1—H1A0.88 (3)
N1—C121.355 (3)C7—C111.409 (4)
C1—C21.392 (4)C7—C81.409 (4)
C1—H10.9500C8—C91.371 (4)
C2—C31.375 (4)C8—H80.9500
C2—H20.9500C9—C101.395 (4)
C3—C41.405 (4)C9—H90.9500
C3—H30.9500C10—N31.328 (3)
C4—C121.414 (3)C10—H100.9500
C4—C51.457 (3)N3—C111.352 (3)
C5—N21.376 (3)C11—C121.459 (4)
C5—C61.400 (4)C21—Cl11.752 (3)
N2—N2i1.316 (4)C21—Cl21.770 (3)
C6—O11.318 (3)C21—Cl31.771 (3)
C6—C71.446 (4)C21—H211.0000
C1—N1—C12117.7 (2)C8—C7—C6121.2 (2)
N1—C1—C2123.8 (2)C9—C8—C7118.8 (2)
N1—C1—H1118.1C9—C8—H8120.6
C2—C1—H1118.1C7—C8—H8120.6
C3—C2—C1118.9 (3)C8—C9—C10118.9 (3)
C3—C2—H2120.5C8—C9—H9120.6
C1—C2—H2120.5C10—C9—H9120.6
C2—C3—C4119.3 (2)N3—C10—C9123.9 (2)
C2—C3—H3120.3N3—C10—H10118.0
C4—C3—H3120.3C9—C10—H10118.0
C3—C4—C12117.4 (2)C10—N3—C11117.9 (2)
C3—C4—C5122.8 (2)N3—C11—C7122.2 (2)
C12—C4—C5119.8 (2)N3—C11—C12118.0 (2)
N2—C5—C6123.3 (2)C7—C11—C12119.8 (2)
N2—C5—C4116.3 (2)N1—C12—C4122.7 (2)
C6—C5—C4120.4 (2)N1—C12—C11117.6 (2)
N2i—N2—C5118.1 (3)C4—C12—C11119.6 (2)
O1—C6—C5122.8 (2)Cl1—C21—Cl2110.73 (16)
O1—C6—C7117.2 (2)Cl1—C21—Cl3109.64 (15)
C5—C6—C7120.0 (2)Cl2—C21—Cl3109.29 (16)
C6—O1—H1A106 (2)Cl1—C21—H21109.1
C11—C7—C8118.3 (2)Cl2—C21—H21109.1
C11—C7—C6120.4 (2)Cl3—C21—H21109.1
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2i0.88 (3)1.74 (3)2.540 (3)149 (3)
C21—H21···N11.002.363.219 (3)143
C21—H21···N31.002.333.136 (4)137
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

We gratefully acknowledge Maynooth University for a John and Pat Hume Scholarship for MA.

Funding information

Funding for this research was provided by: National University of Ireland, Maynooth Hume Scholarship (scholarship to Muhib Ahmed).

References

First citationBencini, A. & Lippolis, V. (2010). Coord. Chem. Rev. 254, 2096–2180.  CrossRef CAS Google Scholar
First citationBhutani, H., Singh, S., Vir, S., Bhutani, K. K., Kumar, R., Chakraborti, A. K. & Jindal, K. C. (2007). J. Pharm. Biomed. Anal. 43, 1213–1220.  CrossRef PubMed CAS Google Scholar
First citationBougueria, H., Mili, A., Benosmane, A., Bouchoul, A. el kader & Bouaoud, S. (2014). Acta Cryst. E70, o225.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasey, M. T., McCann, M., Devereux, M., Curran, M., Cardin, C., Convery, M., Quillet, V. & Harding, C. (1994). J. Chem. Soc. Chem. Commun. pp. 2643–2645.  CrossRef Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEvangelio, E., Saiz-Poseu, J., Maspoch, D., Wurst, K., Busque, F. & Ruiz-Molina, D. (2008). Eur. J. Inorg. Chem. 14, 2278–2285.  CSD CrossRef Google Scholar
First citationFreitag, M., Giordano, F., Yang, W., Pazoki, M., Hao, Y., Zietz, B., Grätzel, M., Hagfeldt, A. & Boschloo, G. (2016). J. Phys. Chem. C, 120, 9595–9603.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaraga, T., Ouchi, K., Sato, Y., Hoshino, H., Tanaka, R., Fujihara, T., Kurokawa, H., Shibukawa, M., Ishimori, K. I., Kameo, Y. & Saito, S. (2018). Anal. Chim. Acta, 1032, 188–196.  CrossRef CAS PubMed Google Scholar
First citationKellett, A., O'Connor, M., McCann, M., McNamara, M., Lynch, P., Rosair, G., McKee, V., Creaven, B., Walsh, M., McClean, S., Foltyn, A., O'Shea, D., Howe, O. & Devereux, M. (2011). Dalton Trans. 40, 1024–1027.  CSD CrossRef CAS PubMed Google Scholar
First citationLi, Y.-J., Sasabe, H., Su, S.-J., Tanaka, D., Takeda, T., Pu, Y.-J. & Kido, J. (2009). Chem. Lett. 38, 712–713.  CrossRef CAS Google Scholar
First citationLu, Y., Wang, X., Wang, M., Kong, L. & Zhao, J. (2015). Electrochim. Acta, 180, 86–95.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcCann, M., Santos, A., da Silva, B., Romanos, M., Pyrrho, A., Devereux, M., Kavanagh, K., Fichtner, I. & Kellett, A. (2012). Toxicol. Res. 1, 47–54.  CrossRef CAS Google Scholar
First citationMukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514–2524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationQuiroga, J., Portilla, J., Abonía, R., Insuasty, B., Nogueras, M. & Cobo, J. (2008). Tetrahedron Lett. 49, 5943–5945.  Web of Science CrossRef CAS Google Scholar
First citationSchilde, U., Hefele, H., Ludwig, E. & Uhlemann, E. (1994). Cryst. Res. Technol. 29, 393–396.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTimmins, G. S. & Deretic, V. (2006). Mol. Microbiol. 62, 1220–1227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, R., Tan, C., Xie, Y., Gao, C., Liu, H. & Jiang, Y. (2011). Tetrahedron Lett. 52, 3805–3809.  CrossRef CAS Google Scholar
First citationZheng, Y., Tan, C., Drummen, G. P. & Wang, Q. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 387–394.  CrossRef CAS PubMed Google Scholar
First citationZhu, Y., Liao, Y., Zhang, L. & Bai, X. (2015). PCT Int. Appl. WO 2015154716 A1.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds