research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (15,20-bis­­(2,3,4,5,6-penta­fluoro­phen­yl)-5,10-{(pyridine-3,5-di­yl)bis­­[(sulfane­diyl­methyl­ene)[1,1′-biphen­yl]-4′,2-di­yl]}porph­yrin­ato)nickel(II) di­chloro­methane x-solvate (x > 1/2) showing a rare CN5 coordination

CROSSMARK_Color_square_no_text.svg

aOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: rherges@oc.uni-kiel.de

Edited by A. J. Lough, University of Toronto, Canada (Received 29 April 2019; accepted 9 July 2019; online 12 July 2019)

The crystal structure of the title compound, [Ni(C63H31F10N5S2)]·xCH2Cl2 (x > 1/2), consists of Ni–porphyrin complexes that are located in general positions and di­chloro­methane solvent mol­ecules that are disordered around centers of inversion. The NiII ions are in a square-pyramidal (CN5) coordination, with four porphyrin N atoms in the equatorial and a pyridine N atom in the apical position and are shifted out of the porphyrine N4 plane towards the coordinating pyridine N atom. The pyridine substituent is not exactly perpendicular to the N4 plane with an angle of inter­section between the planes planes of 80.48 (6)°. The di­chloro­methane solvent mol­ecules are hydrogen bonded to one of the four porphyrine N atoms. Two complexes are linked into dimers by two symmetry-equivalent C—H⋯S hydrogen bonds. These dimers are closely packed, leading to cavities in which additional di­chloro­methane solvent mol­ecules are embedded. These solvent mol­ecules are disordered and because no reasonable split model was found, the data were corrected for disordered solvent using the PLATON SQUEEZE routine [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18].

1. Chemical context

Nickelporphyrins and their axial coordination have been studied from a number of different viewpoints over the last six decades. Their rich coordination behaviour (Caughey et al., 1962[Caughey, W. S., Deal, R. M., McLees, B. D. & Alben, J. O. (1962). J. Am. Chem. Soc. 84, 1735-1736.]; McLees & Caughey, 1968[McLees, B. D. & Caughey, W. S. (1968). Biochemistry, 7, 642-652.]; Walker et al. 1975[Walker, F. A., Hui, E. & Walker, J. M. (1975). J. Am. Chem. Soc. 97, 2390-2397.]), conformations (Jia et al., 1998[Jia, S.-L., Jentzen, W., Shang, M., Song, X.-Z., Ma, J.-G., Scheidt, W. R. & Shelnutt, J. A. (1998). Inorg. Chem. 37, 4402-4412.]) and photophysics (Kim et al., 1983[Kim, D., Kirmaier, C. & Holten, D. (1983). Chem. Phys. 75, 305-322.]; Kim & Holten, 1983[Kim, D. & Holten, D. (1983). Chem. Phys. Lett. 98, 584-589.]) has attracted inter­est in different fields, including as model compounds for the F430 cofactor (Renner et al., 1991[Renner, M. W., Furenlid, L. R., Barkigia, K. M., Forman, A., Shim, H. K., Simpson, D. J., Smith, K. M. & Fajer, J. (1991). J. Am. Chem. Soc. 113, 6891-6898.]) or heme (Jentzen et al., 1995[Jentzen, W., Simpson, M. C., Hobbs, J. D., Song, X., Ema, T., Nelson, N. Y., Medforth, C. J., Smith, K. M., Veyrat, M., Mazzanti, M., Ramasseul, R., Marchon, J., Takeuchi, T., Goddard, W. A. III & Shelnutt, J. A. (1995). J. Am. Chem. Soc. 117, 11085-11097.]), for applications in solar energy conversion (Shelby et al., 2014[Shelby, M. L., Mara, M. W. & Chen, L. X. (2014). Coord. Chem. Rev. 277-278, 291-299.]), in hydrogen-evolution (Han et al., 2016[Han, Y., Fang, H., Jing, H., Sun, H., Lei, H., Lai, W. & Cao, R. (2016). Angew. Chem. Int. Ed. 55, 5457-5462.]) or redox catalysis (Eom et al., 1997[Eom, H. S., Jeoung, S. C., Kim, D., Ha, J.-H. & Kim, Y.-R. (1997). J. Phys. Chem. A, 101, 3661-3669.]) and as responsive MRI contrast agents (Venkataramani et al., 2011[Venkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. (2011). Science, 331, 445-448.]; Dommaschk et al., 2014a[Dommaschk, M., Gutzeit, F., Boretius, S., Haag, R. & Herges, R. (2014a). Chem. Commun. 50, 12476-12478.],b[Dommaschk, M., Schütt, C., Venkataramani, S., Jana, U., Näther, C., Sönnichsen, F. D. & Herges, R. (2014b). Dalton Trans. 43, 17395-17405.], 2015a[Dommaschk, M., Näther, C. & Herges, R. (2015a). J. Org. Chem. 80, 8496-8500.],b[Dommaschk, M., Thoms, V., Schütt, C., Näther, C., Puttreddy, R., Rissanen, K. & Herges, R. (2015b). Inorg. Chem. 54, 9390-9392.]). Square-planar [coordination number (CN) 4] nickelporphyrins are diamagnetic, (S = 0), low-spin (LS) complexes. Upon coordination of one (CN5) or two (CN6) axial ligands such as pyridine or piperidine, the nickel cation undergoes spin transition to the high-spin (HS) state. This coordination-induced spin-state switch (CISSS) leads to a drastic change in the spectra and properties of the HS complexes. The coordination and decoordination of the axial ligands in solution is a fast dynamic equilibrium (Kadish et al., 2000[Kadish, K. M., Smith, K. M. & Guilard, R. (2000). The Porphyrin Handbook - Inorganic, Organometallic and Coordination Chemistry, vol. 3. San Diego, California, London: Academic Press.]). Thus, the observed properties are dependent on the speciation in the equilibrium defined by the association constants (K1S, K2; Thies et al., 2010[Thies, S., Bornholdt, C., Köhler, F., Sönnichsen, F. D., Näther, C., Tuczek, F. & Herges, R. (2010). Chem. Eur. J. 16, 10074-10083.]). In these equilibria, the dominating species are the CN4 and CN6 complexes, with the CN5 species only formed by up to 10% of porphyrins in solution (Kruglik et al., 2003[Kruglik, S. G., Ermolenkov, V. V., Orlovich, V. A. & Turpin, P.-Y. (2003). Chem. Phys. 286, 97-108.]). Thus, the characterization of CN5 nickelporphyrins was restricted to transient UV–vis (Kim et al., 1983[Kim, D., Kirmaier, C. & Holten, D. (1983). Chem. Phys. 75, 305-322.]) and resonance Raman measurements (Findsen et al., 1986[Findsen, E., Shelnutt, J., Friedman, J. & Ondrias, M. (1986). Chem. Phys. Lett. 126, 465-471.]; Kim et al., 1986[Kim, D., Su, Y. O. & Spiro, T. G. (1986). Inorg. Chem. 25, 3988-3993.]) so far. Recently, the first exclusively five-coordinate (CN5) nickel porphyrin in solution, including its structure in the crystal phase, were presented (Gutzeit et al., 2019[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019). Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.9b00348.]), offering a new approach towards afore-mentioned applications. The axial ligand of the CN5 porphyrin is held in the coordination position by a rigid strap, inducing conformation-dependent spin-state switching. Similar strapped nickelporphyrins showed incomplete axial coordination in solution (Köbke et al., 2019[Köbke, A., Gutzeit, F., Röhricht, F., Schlimm, A., Grunwald, J., Tuczek, F., Studniarek, M., Choueikani, F., Otero, E., Ohresser, P., Rohlf, S., Johannsen, S., Diekmann, F., Rossnagel, K., Jasper-Toennies, T., Näther, C., Herges, R., Berndt, R. & Gruber, M. (2019). Nature Nanotechnology. Submitted.]). The title compound (Fig. 1[link]) was obtained as a byproduct in the synthesis of a CN5 porphyrin with a similar structure (Gutzeit et al., 2019[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019). Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.9b00348.]) and was metallated under standard conditions. Preorientation of the ligand by the ligand-holding strap should favour Ni coordination. However, 1H NMR spectropscopy (500 MHz, CDCl3, 298 K) indicates incomplete intra­molecular coordination (82% CN5 HS, 18% CN4 LS) of the title compound. One application is pH measurements in non-aqueous solutions because coordination and NMR signals are dependent on the protonation state of the pyridine moiety. The NMR spectra revealed an unexpected behaviour of the title compound, because the geminal coupling of the CH2-protons indicates confined movement of the pyridine moiety and hindered ring inversion of the strap (see Figure S1 in the supporting information).

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. The H atoms and the solvent mol­ecules are omitted for clarity.

2. Structural commentary

In the crystal structure of the title compound, [Ni(C63H31F10N5S2)]·xCH2Cl2 (x > 1/2), the NiII ions are coordinated by the four N atoms of the porphyrine moiety within a square-planar ligand field and the Ni coordination is completed by a pyridine N atom in the apical position, leading to a square-pyramidal coordination environment (CN5) (Figs. 1[link]–3[link][link]). The porphyrine ring plane is not fully planar with maximum deviations of the C atoms from the mean plane of 0.137 (3) Å. The Ni cation is shifted by 0.250 (3) Å out of the N4 plane towards the coordinating pyridine N atom (Fig. 4[link]). The Ni—N bond lengths (Table 1[link]) to the porphyrine N atoms ranges from 2.0350 (17) to 2.0434 (17) Å and are in agreement with values retrieved from literature, indicating that the NiII ion is in the high-spin state (Thies et al., 2010[Thies, S., Bornholdt, C., Köhler, F., Sönnichsen, F. D., Näther, C., Tuczek, F. & Herges, R. (2010). Chem. Eur. J. 16, 10074-10083.]). The Ni—N bond length to the pyridine N atom of 2.1122 (17) Å is significantly longer and agrees well with the 2.11 Å that are observed in the CN5 porphyrin (Gutzeit et al., 2019[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019). Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.9b00348.]). Compared to octa­hedral (CN6) nickelporphyrins with two axial pyridine ligands, the Ni—N distance is shortened by ∼0.10 Å (Thies et al., 2010[Thies, S., Bornholdt, C., Köhler, F., Sönnichsen, F. D., Näther, C., Tuczek, F. & Herges, R. (2010). Chem. Eur. J. 16, 10074-10083.]). The pyridine ring is not exactly perpendicular to the N4 plane (Fig. 4[link]), the angle of inter­section between them amounting to 80.48 (6)°, in good agreement with similar complexes (Thies et al., 2010[Thies, S., Bornholdt, C., Köhler, F., Sönnichsen, F. D., Näther, C., Tuczek, F. & Herges, R. (2010). Chem. Eur. J. 16, 10074-10083.]). The tetra­fluoro­phenyl rings are rotated out of the N4 plane by 67.43 (5) and 68.74 (6)°, and the phenyl rings (C39–C44 and C58–C63) by 58.82 (6) and 72.59 (5)°, respectively. The dihedral angles between the biphenyl units amount to 63.02 (9) and 53.45 (8)°.

Table 1
Selected geometric parameters (Å, °)

Ni1—N4 2.0350 (17) Ni1—N2 2.0434 (17)
Ni1—N3 2.0402 (17) Ni1—N5 2.1122 (17)
Ni1—N1 2.0407 (17)    
       
N4—Ni1—N3 89.66 (7) N1—Ni1—N2 89.29 (7)
N4—Ni1—N1 89.03 (7) N4—Ni1—N5 96.84 (7)
N3—Ni1—N1 166.05 (7) N3—Ni1—N5 100.53 (7)
N4—Ni1—N2 165.76 (7) N1—Ni1—N5 93.42 (7)
N3—Ni1—N2 88.58 (7) N2—Ni1—N5 97.37 (7)
[Figure 2]
Figure 2
Mol­ecular structure of the title compound in a view onto the porphyrin plane.
[Figure 3]
Figure 3
Mol­ecular structure of the title compound with view of the Ni coordination.
[Figure 4]
Figure 4
Side view of the complex showing the orientation of the pyridine ring relative to the N4 plane. The inter­molecular hydrogen bond is shown as dashed line and the disorder of the di­chloro­methane mol­ecule is omitted for clarity.

3. Supra­molecular features

In the crystal structure of the title compound, the discrete Ni porphyrine complexes are linked into dimers via centrosymmetric pairs of inter­molecular C—H⋯S hydrogen bonds between the porphyrine H atoms and the sulfur atoms (Fig. 5[link] and Table 2[link]). Between the dimers, cavities are formed that are occupied by the di­chloro­methane solvent mol­ecules, which are disordered about centers of inversion. These solvent mol­ecules are linked by inter­molecular C—H⋯Cl hydrogen bonding to the nitro­gen atom N1 of the porphyrine unit that is not shielded by the strap (Fig. 5[link]). The C—H⋯S angle is close to linearity, indicating that this is a relatively strong inter­action (Table 2[link]). The dimeric units are packed in such a way that cavities are formed in which additional, completely disordered dichlormethane solvent mol­ecules are embedded, for which no reasonable structure model was found.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯S2i 0.95 3.02 3.886 (2) 153
C71—H71B⋯N1i 0.96 2.61 3.555 (8) 169
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 5]
Figure 5
Crystal packing of the title compound with a view of a centrosymmetric dimer with inter­molecular hydrogen bonding shown as dashed lines. The two orientations of the disordered di­chloro­methane mol­ecule are shown with black and grey bonds.

4. Database survey

According to a search of the Cambridge Structural Database (CSD, Version 5.40, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), axial coordination of metal porphyrins is highly metal dependent. Two examples of CN5 nickelporphyrins are known that have been characterized by single-crystal structure analysis (Kumar & Sankar, 2014[Kumar, R. & Sankar, M. (2014). Inorg. Chem. 53, 12706-12719.]; Gutzeit et al., 2019[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019). Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.9b00348.]), while zinc porphyrins almost exclusively form CN5 complexes (Paul et al., 2003[Paul, D., Melin, F., Hirtz, C., Wytko, J., Ochsenbein, P., Bonin, M., Schenk, K., Maltese, P. & Weiss, J. (2003). Inorg. Chem. 42, 3779-3787.]; Deutman et al., 2014[Deutman, A. B. C., Smits, J. M. M., de Gelder, R., Elemans, J. A. A. W., Nolte, R. J. M. & Rowan, A. E. (2014). Chem. Eur. J. 20, 11574-11583.]). The application of strapped porphyrins for controlling axial coordination is an established approach (Richard et al., 1998[Richard, P., Rose, E. & Boitrel, B. (1998). Inorg. Chem. 37, 6532-6534.]) for mimicking heme complexes (Hijazi et al., 2010[Hijazi, I., Roisnel, T., Even-Hernandez, P., Furet, E., Halet, J.-F., Cador, O. & Boitrel, B. (2010). J. Am. Chem. Soc. 132, 10652-10653.]; Melin et al., 2012[Melin, F., Trivella, A., Lo, M., Ruzié, C., Hijazi, I., Oueslati, N., Wytko, J. A., Boitrel, B., Boudon, C., Hellwig, P. & Weiss, J. (2012). J. Inorg. Biochem. 108, 196-202.]; Zhou et al., 2012[Zhou, Z., Shen, M., Cao, C., Liu, Q. & Yan, Z. (2012). Chem. Eur. J. 18, 7675-7679.]). With nickel(II) porphyrins with nitro­gen-containing ligands almost exclusively form CN4 (Nurco et al., 2002[Nurco, D. J., Smith, K. M. & Fajer, J. (2002). Chem. Commun. pp. 2982-2983.]; Halime et al., 2007[Halime, Z., Lachkar, M., Roisnel, T., Richard, P. & Boitrel, B. (2007). Inorg. Chem. 46, 6338-6346.]; Bediako et al., 2014[Bediako, D. K., Solis, B. H., Dogutan, D. K., Roubelakis, M. M., Maher, A. G., Lee, C. H., Chambers, M. B., Hammes-Schiffer, S. & Nocera, D. G. (2014). Proc. Natl Acad. Sci. USA, 111, 15001-15006.]) or CN6 (Thies et al., 2010[Thies, S., Bornholdt, C., Köhler, F., Sönnichsen, F. D., Näther, C., Tuczek, F. & Herges, R. (2010). Chem. Eur. J. 16, 10074-10083.]; Dommaschk et al., 2014b[Dommaschk, M., Schütt, C., Venkataramani, S., Jana, U., Näther, C., Sönnichsen, F. D. & Herges, R. (2014b). Dalton Trans. 43, 17395-17405.]) complexes, in rare cases a CN6 complex is formed with oxygen-containing ligands (Ozette et al., 1997[Ozette, K., Leduc, P., Palacio, M., Bartoli, J.-F., Barkigia, K. M., Fajer, J., Battioni, P. & Mansuy, D. (1997). J. Am. Chem. Soc. 119, 6442-6443.]).

5. Synthesis and crystallization

The freebase porphyrin of the title compound was obtained as a byproduct of a variant of the published procedure (Gutzeit et al., 2019[Gutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019). Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.9b00348.]). The compound is synthesized from a linked di­aldehyde under acidic conditions through macrocycle condensation with penta­fluoro­phenyl­dipyrro­methane. The reaction was performed under reflux for 17 h before the addition of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). At elevated temperatures, the scrambling mechanism, acidic cleavage and rearrangement of oligopyrrols dominates the product formation, leading to the 5,10-bridged scrambling porphyrin of the title compound. The freebase porphyrins were separated by column chromatography (silica gel, di­chloro­methane and silica gel, toluene) and precipitated from di­chloro­methane by diffusion of methanol (89 mg, 4.3%).

1H NMR (600 MHz, CDCl3, 298 K, TMS): δ = 8.95 (s, 2 H, Hβ), 8.65 (d, 3J = 4.5 Hz, 2 H, Hβ), 8.63 (s, 2 H, Hβ), 8.54 (d, 3J = 4.5 Hz, 2 H, Hβ), 8.28 (dd, 3J = 7.4 Hz, 4J = 1.0 Hz, 2 H, H-6′), 7.90 (td, 3J = 7.8 Hz, 4J = 1.3 Hz, 2 H, H-4′), 7.80 (dd, 3J = 7.9 Hz, 4J = 1.0 Hz, 2 H, H-3′), 7.75 (td, 3J = 7.5 Hz, 4J = 1.3 Hz, 2 H, H-5′), 7.29 (s, 1 H, H-4′′′), 6.68 (d, 3J = 8.2 Hz, 4 H, H-2′′), 5.81 (d, 3J = 8.2 Hz, 4 H, H-3′′), 3.18 (d, 2J = 14.6 Hz, 2 H, CH2,a), 3.05 (d, 2J = 14.6 Hz, 2 H, CH2,b), −2.80 (s, 2 H, NH) ppm. Unobserved signals: H-2′′′. 13C NMR (151 MHz, CDCl3, 298 K, TMS): δ = 151.8 (C3′′′), 145.1 (C4′′′), 144.7 (C2′), 140.4 (C1′′), 139.9 (C1′), 135.7 (C4′′), 134.7 (C6′), 129.4 (C2′′), 129.3 (C3′), 129.2 (C4′), 127.3 (C3′′), 125.9 (C5′), 121.4 (C5, C10), 101.1 (C15, C20), 40.5 (CH2) ppm. Unobserved signals: C2′′′, Cα, Cβ, C6F5. 19F NMR (471 MHz, CDCl3, 298 K): δ = −136.96 (dd, 3J = 24.4 Hz, 4J = 7.8 Hz, F-ortho), −137.27 (dd, 3J = 24.0 Hz, 4J = 7.8 Hz, F-ortho), −153.03 (t, 3J = 21.0 Hz, F-para), −(162.35–162.62) (m, F-meta) ppm. FT–IR (ATR): ν = 3310.3 (w), 3026.7 (w), 1650.5 (w), 1519.6 (s), 1496.0 (vs), 1474.9 (s), 1440.4 (m), 1393.7 (m), 1349.2 (m), 1266.0 (w), 1126.8 (w), 1042.1 (m), 975.3 (vs), 971.2 (s), 917.3 (vs), 882.7 (m), 837.3 (m), 800.1 (vs), 762.9 (vs), 746.9 (vs), 713.0 (s), 701.2 (vs), 664.7 (s), 650.2 (s), 638.3 (m), 598.1 (m), 553.9 (m), 529.6 (m), 505.2 (m), 460.0 (w), 430.2 (w), 407.2 (m) cm−1. MS (EI): m/z (%) = 1113.20 (100) [M]+, 556.59 (13) [M]2+ u. HRMS (EI) calculated for C63H33F10N5S2: 1113.2018 u, found: 1113.2023 u, dif.: 0.5 ppm.

The nickel cation was introduced under standard conditions (20 mg porphyrin, 80 mg Ni(acac)2, 15 mL toluene, reflux, 23 h) followed by filtration through a silica plug (di­chloro­methane) (21 mg, 99%). Single crystals were obtained by dissolving the compound in di­chloro­methane and gas phase diffusion of methanol.

M.p. > 673 K. Decomposition starting from 600 K. 1H NMR (600 MHz, CDCl3, 300 K, TFA): δ = 8.68 (s, 6 H, Hβ), 8.54 (s, 2 H, Hβ), 8.05 (d, 3J = 7.4 Hz, 2 H, H-6′), 7.90–7.84 (m, 3 H, H-4′, H-4′′′), 7.79 (d, 3J = 7.9 Hz, 2 H, H-3′), 7.72 (t, 3J = 7.5 Hz, 2 H, H-5′), 7.52 (d, 4J = 1.3 Hz, 2 H, H-2′′′), 6.73 (d, 3J = 8.3 Hz, 4 H, H-2′′), 6.39 (d, 3J = 8.3 Hz, 4 H, H-3′′), 3.61 (d, 2J = 14.9 Hz, 2 H, CH2,a), 3.56 (d, 2J = 14.9 Hz, 2 H, CH2,b) ppm. 13C NMR (151 MHz, CDCl3, 300 K, TFA): δ = 145.8 (C4′′′), 143.1 (C2′), 141.6 (C1′′), 140.7 (C3′′′), 138.5 (C1′), 137.5 (C2′′′), 135.0 (C6′), 134.2 (Cβ), 133.3 (Cβ), 132.9 (C4′′), 131.6 (Cβ), 130.6 (Cβ), 129.8 (C2′′), 129.6 (C3′), 129.6 (C4′), 128.0 (C3′′), 126.6 (C5′), 38.4 (CH2) ppm. Unobserved signals: Cmeso, Cα, C6F5. 19F NMR (471 MHz, CDCl3, 300 K, TFA): δ = −137.04 (dd, 3J = 23.6 Hz, 4J = 7.4 Hz, F-ortho), −138.11 (dd, 3J = 23.6 Hz, 4J = 6.3 Hz, F-ortho), −152.14 (t, 3J = 20.6 Hz, F-para), −161.67 (td, 3J = 22.0 Hz, 4J = 8.3 Hz, F-meta), −162.01 (td, 3J = 22.2 Hz, 4J = 8.3 Hz, F-meta) ppm. FT–IR (ATR): ν = 3023.7 (w), 2920.4 (w), 2843.3 (w), 2748.1 (w), 1685.6 (s), 1595.8 (m), 1517.3 (m), 1477.2 (s), 1440.8 (m), 1390.9 (m), 1339.2 (m), 1297.2 (m), 1254.9 (m), 1177.5 (m), 1072.9 (m), 984.0 (vs), 949.2 (s), 930.4 (m), 832.6 (s), 815.7 (m), 798.9 (m), 752.5 (vs), 729.9 (s), 700.8 (vs), 655.2 (m), 535.4 (m), 464.7 (m), 441.2 (m), 416.9 (m) cm−1. MS (EI): m/z (%) = 1169.16 (100) [M]+, 1027.11 (5) [M - C5H4NS2]+, 584.54 (12) [M]2+ u. HRMS (EI) calculated for C63H31F10N5NiS2: 1169.1215 u, found: 1169.1159 u, dif.: 4.7 ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The C—H hydrogen atoms were located in difference-Fourier maps but were positioned with idealized geometry and refined with isotropic with Uiso(H) = 1.2Ueq(C) using a riding model. After structure refinement using a model with one Ni porphyrine complex and a half di­chloro­methane solvent mol­ecule disordered about a center of inversion, there was significant residual electron density that definitely corresponded to an additional di­chloro­methane mol­ecule that was disordered over several orientations. A number of different split models were tried, using restraints for the geometry and for the components of the anisotropic displacement parameters, but no reasonable structure model was found and very large anisotropic displacement parameters were obtained. Therefore, the contribution of this solvent to the electron density was removed with the SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) routine in PLATON, which leads to a reasonable structure model and very good reliability factors. Their formula mass and unit-cell characteristics were not taken into account during refinement. By this procedure, the amount of di­chloro­methane cannot be determined accurately and there is indication that this position is not fully occupied, which is highly likely because this solvent is very unstable and starts to decompose during the sample preparation.

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C63H31F10N5S2)]·0.5CH2Cl2
Mr 1213.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 170
a, b, c (Å) 14.0919 (3), 22.0127 (4), 17.9648 (3)
β (°) 93.950 (1)
V3) 5559.46 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.55
Crystal size (mm) 0.12 × 0.10 × 0.07
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.855, 0.932
No. of measured, independent and observed [I > 2σ(I)] reflections 55497, 12087, 10733
Rint 0.041
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.05
No. of reflections 12087
No. of parameters 758
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −1.08
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

(15,20-Bis(2,3,4,5,6-pentafluorophenyl)-5,10-{(pyridine-3,5-diyl)bis[(sulfanediylmethylene)[1,1'-biphenyl]-4',2-diyl]}porphyrinato)nickel(II) dichloromethane hemisolvate top
Crystal data top
[Ni(C63H31F10N5S2)]·0.5CH2Cl2F(000) = 2460
Mr = 1213.22Dx = 1.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.0919 (3) ÅCell parameters from 55528 reflections
b = 22.0127 (4) Åθ = 1.5–27.0°
c = 17.9648 (3) ŵ = 0.55 mm1
β = 93.950 (1)°T = 170 K
V = 5559.46 (18) Å3Block, red
Z = 40.12 × 0.10 × 0.07 mm
Data collection top
Stoe IPDS-2
diffractometer
10733 reflections with I > 2σ(I)
ω scansRint = 0.041
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2008)
θmax = 27.0°, θmin = 1.5°
Tmin = 0.855, Tmax = 0.932h = 1818
55497 measured reflectionsk = 2528
12087 independent reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0758P)2 + 3.7723P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
12087 reflectionsΔρmax = 0.66 e Å3
758 parametersΔρmin = 1.07 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.58798 (2)0.71647 (2)0.57642 (2)0.02141 (8)
N10.59348 (12)0.63329 (8)0.62668 (9)0.0245 (3)
N20.46308 (12)0.73353 (8)0.62395 (9)0.0230 (3)
N30.59565 (12)0.80659 (8)0.55101 (9)0.0233 (3)
N40.72676 (12)0.70653 (8)0.55409 (10)0.0239 (3)
C10.66429 (15)0.59083 (9)0.62313 (12)0.0269 (4)
C20.63488 (17)0.53424 (10)0.65507 (13)0.0334 (5)
H20.67080.49770.65920.040*
C30.54726 (17)0.54296 (10)0.67780 (13)0.0337 (5)
H30.50920.51370.70080.040*
C40.52167 (15)0.60528 (9)0.66069 (11)0.0266 (4)
C50.43626 (15)0.63265 (9)0.67759 (11)0.0267 (4)
C60.41063 (14)0.69294 (9)0.66208 (11)0.0249 (4)
C70.32499 (16)0.72149 (10)0.68415 (12)0.0306 (4)
H70.27700.70310.71120.037*
C80.32589 (15)0.77925 (10)0.65907 (12)0.0301 (4)
H80.27860.80930.66510.036*
C90.41223 (14)0.78671 (9)0.62136 (11)0.0244 (4)
C100.43930 (14)0.84098 (9)0.58821 (11)0.0244 (4)
C110.52614 (14)0.84960 (9)0.55633 (11)0.0246 (4)
C120.55625 (16)0.90652 (10)0.52642 (13)0.0306 (4)
H120.52030.94300.52230.037*
C130.64549 (16)0.89808 (10)0.50525 (13)0.0311 (4)
H130.68460.92770.48420.037*
C140.66991 (14)0.83565 (9)0.52072 (11)0.0255 (4)
C150.75732 (14)0.80948 (9)0.50740 (12)0.0264 (4)
C160.78312 (14)0.74944 (9)0.52339 (12)0.0257 (4)
C170.87512 (16)0.72371 (10)0.51174 (14)0.0327 (5)
H170.92700.74400.49140.039*
C180.87370 (16)0.66555 (10)0.53515 (14)0.0322 (5)
H180.92410.63700.53410.039*
C190.78106 (14)0.65502 (9)0.56210 (12)0.0265 (4)
C200.75174 (15)0.60063 (9)0.59340 (12)0.0266 (4)
C210.36750 (16)0.59433 (10)0.71663 (12)0.0303 (4)
C220.2819 (2)0.57573 (13)0.68182 (15)0.0436 (6)
C230.2180 (2)0.53996 (16)0.71763 (19)0.0602 (8)
C240.2399 (3)0.52226 (14)0.79003 (19)0.0587 (8)
C250.3250 (2)0.53948 (12)0.82664 (15)0.0459 (6)
C260.38710 (17)0.57540 (10)0.78984 (13)0.0341 (5)
F10.25770 (12)0.59288 (9)0.61162 (9)0.0581 (5)
F20.13568 (17)0.52346 (14)0.68200 (14)0.0979 (9)
F30.17864 (18)0.48761 (11)0.82540 (15)0.0909 (8)
F40.34636 (15)0.52264 (8)0.89743 (10)0.0620 (5)
F50.46837 (11)0.59194 (7)0.82692 (8)0.0439 (3)
C270.82125 (15)0.54910 (10)0.59874 (13)0.0305 (4)
C280.86257 (17)0.53054 (11)0.66689 (15)0.0385 (5)
C290.92457 (19)0.48197 (13)0.67457 (18)0.0495 (7)
C300.94680 (18)0.45035 (12)0.6117 (2)0.0512 (7)
C310.90800 (18)0.46779 (11)0.54311 (18)0.0445 (6)
C320.84641 (17)0.51655 (10)0.53690 (15)0.0358 (5)
F60.84195 (12)0.56018 (8)0.72897 (9)0.0525 (4)
F70.96200 (14)0.46548 (11)0.74156 (13)0.0752 (6)
F81.00598 (13)0.40282 (8)0.61798 (15)0.0765 (7)
F90.92962 (13)0.43661 (8)0.48228 (12)0.0625 (5)
F100.81040 (12)0.53211 (7)0.46861 (9)0.0469 (4)
C330.83157 (14)0.84931 (9)0.47646 (13)0.0281 (4)
C340.88260 (16)0.88914 (10)0.52414 (14)0.0329 (5)
H340.86620.89310.57430.040*
C350.95687 (16)0.92312 (10)0.49967 (15)0.0362 (5)
H350.99110.95020.53280.043*
C360.98110 (16)0.91751 (11)0.42641 (15)0.0375 (5)
H361.03260.94030.40940.045*
C370.93014 (16)0.87869 (11)0.37827 (14)0.0358 (5)
H370.94680.87530.32810.043*
C380.85461 (15)0.84444 (10)0.40201 (13)0.0309 (4)
C390.80068 (16)0.80206 (11)0.35035 (13)0.0326 (5)
C400.84598 (18)0.75224 (13)0.32051 (16)0.0447 (6)
H400.91310.74830.32830.054*
C410.79485 (19)0.70860 (14)0.27980 (17)0.0473 (6)
H410.82680.67440.26110.057*
C420.69674 (18)0.71422 (12)0.26586 (13)0.0360 (5)
C430.65239 (18)0.76588 (12)0.29106 (14)0.0384 (5)
H430.58620.77170.27940.046*
C440.70348 (18)0.80909 (11)0.33306 (14)0.0381 (5)
H440.67180.84400.35030.046*
C450.64009 (18)0.66380 (12)0.22885 (13)0.0389 (5)
H45A0.67300.64900.18540.047*
H45B0.57710.67960.21030.047*
S10.62357 (4)0.60005 (3)0.29283 (3)0.03453 (13)
C460.54694 (16)0.63273 (10)0.35631 (12)0.0292 (4)
C470.58379 (15)0.66201 (9)0.42082 (11)0.0273 (4)
H470.65050.66840.42740.033*
N50.52841 (12)0.68159 (8)0.47408 (9)0.0257 (3)
C480.43431 (15)0.67159 (10)0.46450 (12)0.0278 (4)
H480.39500.68480.50220.033*
C490.39175 (15)0.64277 (10)0.40170 (13)0.0302 (4)
C500.44935 (16)0.62400 (10)0.34651 (12)0.0307 (4)
H500.42220.60530.30240.037*
S20.26911 (4)0.62465 (3)0.39663 (3)0.03449 (13)
C510.21774 (18)0.69105 (12)0.34671 (14)0.0378 (5)
H51A0.24890.69640.29940.045*
H51B0.14910.68400.33420.045*
C520.23014 (16)0.74738 (11)0.39249 (13)0.0338 (5)
C530.16432 (17)0.76351 (12)0.44322 (15)0.0396 (5)
H530.10730.74070.44510.047*
C540.18041 (17)0.81234 (12)0.49108 (14)0.0376 (5)
H540.13390.82310.52460.045*
C550.26431 (15)0.84586 (10)0.49051 (12)0.0293 (4)
C560.32876 (16)0.83131 (10)0.43773 (12)0.0309 (4)
H560.38510.85470.43520.037*
C570.31159 (17)0.78307 (11)0.38893 (13)0.0328 (5)
H570.35570.77420.35270.039*
C580.28648 (15)0.89443 (10)0.54606 (12)0.0281 (4)
C590.22139 (16)0.94130 (11)0.55572 (13)0.0335 (5)
H590.16270.94170.52640.040*
C600.24100 (17)0.98704 (11)0.60726 (14)0.0355 (5)
H600.19571.01820.61350.043*
C610.32663 (18)0.98732 (10)0.64973 (13)0.0343 (5)
H610.34091.01920.68440.041*
C620.39173 (16)0.94075 (10)0.64144 (12)0.0307 (4)
H620.45050.94100.67070.037*
C630.37196 (14)0.89351 (9)0.59075 (11)0.0253 (4)
C710.4950 (5)0.4754 (3)0.5071 (4)0.0610 (16)0.5
H71A0.51800.45930.55470.073*0.5
H71B0.47340.44200.47600.073*0.5
Cl10.58828 (19)0.51258 (13)0.46611 (14)0.0832 (6)0.5
Cl20.39844 (19)0.52500 (13)0.51963 (14)0.0821 (6)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02354 (13)0.01875 (13)0.02204 (13)0.00082 (9)0.00226 (9)0.00049 (9)
N10.0272 (8)0.0212 (8)0.0254 (8)0.0005 (6)0.0035 (6)0.0012 (6)
N20.0256 (8)0.0204 (8)0.0232 (8)0.0005 (6)0.0024 (6)0.0016 (6)
N30.0242 (8)0.0214 (8)0.0244 (8)0.0011 (6)0.0026 (6)0.0001 (6)
N40.0253 (8)0.0198 (8)0.0267 (8)0.0011 (6)0.0025 (6)0.0002 (6)
C10.0308 (10)0.0211 (9)0.0287 (10)0.0019 (8)0.0013 (8)0.0016 (8)
C20.0385 (12)0.0221 (10)0.0401 (12)0.0029 (9)0.0082 (9)0.0054 (9)
C30.0389 (12)0.0229 (10)0.0402 (12)0.0004 (9)0.0101 (9)0.0057 (9)
C40.0314 (10)0.0228 (10)0.0259 (10)0.0017 (8)0.0036 (8)0.0024 (7)
C50.0302 (10)0.0252 (10)0.0250 (10)0.0024 (8)0.0042 (8)0.0029 (8)
C60.0258 (9)0.0255 (10)0.0237 (9)0.0016 (8)0.0029 (7)0.0005 (7)
C70.0302 (10)0.0319 (11)0.0306 (11)0.0008 (8)0.0076 (8)0.0043 (8)
C80.0299 (10)0.0300 (11)0.0309 (11)0.0039 (8)0.0062 (8)0.0041 (8)
C90.0249 (9)0.0250 (10)0.0232 (9)0.0019 (7)0.0018 (7)0.0008 (7)
C100.0260 (9)0.0232 (9)0.0234 (9)0.0020 (7)0.0013 (7)0.0001 (7)
C110.0278 (9)0.0220 (9)0.0237 (9)0.0001 (7)0.0004 (7)0.0013 (7)
C120.0329 (11)0.0225 (10)0.0366 (11)0.0011 (8)0.0040 (9)0.0042 (8)
C130.0317 (11)0.0234 (10)0.0388 (12)0.0007 (8)0.0067 (9)0.0049 (8)
C140.0282 (10)0.0219 (9)0.0266 (9)0.0024 (8)0.0025 (8)0.0010 (7)
C150.0261 (10)0.0239 (10)0.0293 (10)0.0028 (8)0.0031 (8)0.0004 (8)
C160.0246 (9)0.0229 (10)0.0297 (10)0.0017 (7)0.0021 (8)0.0008 (8)
C170.0267 (10)0.0275 (11)0.0448 (13)0.0012 (8)0.0090 (9)0.0010 (9)
C180.0274 (10)0.0262 (10)0.0436 (12)0.0014 (8)0.0059 (9)0.0008 (9)
C190.0263 (9)0.0238 (10)0.0294 (10)0.0010 (8)0.0020 (8)0.0014 (8)
C200.0290 (10)0.0219 (9)0.0289 (10)0.0007 (8)0.0013 (8)0.0007 (8)
C210.0357 (11)0.0236 (10)0.0328 (11)0.0006 (8)0.0111 (9)0.0038 (8)
C220.0456 (14)0.0458 (14)0.0400 (13)0.0156 (11)0.0078 (11)0.0025 (11)
C230.0547 (17)0.063 (2)0.0640 (19)0.0312 (15)0.0126 (15)0.0021 (15)
C240.070 (2)0.0452 (16)0.0652 (19)0.0203 (14)0.0326 (16)0.0093 (14)
C250.0678 (18)0.0311 (12)0.0417 (14)0.0056 (12)0.0245 (13)0.0116 (10)
C260.0410 (12)0.0271 (11)0.0355 (12)0.0046 (9)0.0120 (9)0.0037 (9)
F10.0503 (9)0.0797 (13)0.0433 (9)0.0257 (9)0.0047 (7)0.0082 (8)
F20.0737 (14)0.133 (2)0.0875 (16)0.0721 (15)0.0073 (12)0.0028 (15)
F30.1011 (17)0.0806 (15)0.0967 (17)0.0436 (13)0.0481 (14)0.0186 (13)
F40.0930 (14)0.0503 (10)0.0458 (9)0.0125 (9)0.0287 (9)0.0241 (8)
F50.0466 (8)0.0528 (9)0.0323 (7)0.0078 (7)0.0042 (6)0.0086 (6)
C270.0279 (10)0.0218 (10)0.0420 (12)0.0003 (8)0.0034 (8)0.0029 (8)
C280.0343 (12)0.0336 (12)0.0467 (14)0.0003 (9)0.0029 (10)0.0032 (10)
C290.0332 (12)0.0443 (15)0.0697 (19)0.0029 (11)0.0063 (12)0.0194 (13)
C300.0291 (12)0.0299 (12)0.096 (2)0.0081 (10)0.0115 (13)0.0120 (14)
C310.0328 (12)0.0269 (11)0.0760 (19)0.0002 (9)0.0191 (12)0.0059 (12)
C320.0323 (11)0.0262 (11)0.0497 (14)0.0013 (9)0.0091 (10)0.0000 (9)
F60.0595 (10)0.0560 (10)0.0401 (8)0.0052 (8)0.0100 (7)0.0004 (7)
F70.0563 (11)0.0808 (14)0.0855 (14)0.0171 (10)0.0172 (10)0.0336 (12)
F80.0470 (10)0.0427 (10)0.141 (2)0.0237 (8)0.0167 (11)0.0210 (11)
F90.0545 (10)0.0402 (9)0.0965 (14)0.0060 (7)0.0322 (10)0.0182 (9)
F100.0563 (9)0.0444 (8)0.0410 (8)0.0055 (7)0.0109 (7)0.0054 (7)
C330.0249 (9)0.0218 (9)0.0380 (11)0.0002 (7)0.0043 (8)0.0032 (8)
C340.0315 (11)0.0262 (10)0.0413 (12)0.0014 (8)0.0043 (9)0.0009 (9)
C350.0298 (11)0.0248 (10)0.0539 (14)0.0047 (8)0.0008 (10)0.0013 (9)
C360.0289 (11)0.0293 (11)0.0547 (15)0.0047 (9)0.0060 (10)0.0089 (10)
C370.0322 (11)0.0337 (12)0.0422 (13)0.0013 (9)0.0075 (9)0.0097 (10)
C380.0274 (10)0.0260 (10)0.0395 (12)0.0004 (8)0.0042 (8)0.0048 (9)
C390.0337 (11)0.0320 (11)0.0329 (11)0.0054 (9)0.0070 (9)0.0045 (9)
C400.0305 (12)0.0497 (15)0.0546 (16)0.0042 (11)0.0073 (11)0.0104 (12)
C410.0384 (13)0.0499 (16)0.0546 (16)0.0033 (11)0.0101 (11)0.0168 (13)
C420.0382 (12)0.0426 (13)0.0275 (11)0.0058 (10)0.0040 (9)0.0019 (9)
C430.0364 (12)0.0442 (13)0.0337 (12)0.0003 (10)0.0032 (9)0.0056 (10)
C440.0394 (12)0.0348 (12)0.0395 (13)0.0014 (10)0.0009 (10)0.0041 (10)
C450.0421 (13)0.0482 (14)0.0265 (11)0.0076 (11)0.0026 (9)0.0026 (10)
S10.0375 (3)0.0351 (3)0.0315 (3)0.0020 (2)0.0062 (2)0.0083 (2)
C460.0346 (11)0.0272 (10)0.0259 (10)0.0033 (8)0.0040 (8)0.0022 (8)
C470.0290 (10)0.0267 (10)0.0262 (10)0.0021 (8)0.0016 (8)0.0006 (8)
N50.0298 (9)0.0238 (8)0.0235 (8)0.0022 (7)0.0013 (6)0.0004 (6)
C480.0298 (10)0.0263 (10)0.0272 (10)0.0021 (8)0.0025 (8)0.0012 (8)
C490.0295 (10)0.0279 (10)0.0330 (11)0.0050 (8)0.0007 (8)0.0005 (8)
C500.0353 (11)0.0290 (10)0.0274 (10)0.0042 (9)0.0011 (8)0.0036 (8)
S20.0295 (3)0.0330 (3)0.0409 (3)0.0078 (2)0.0016 (2)0.0044 (2)
C510.0364 (12)0.0400 (13)0.0359 (12)0.0034 (10)0.0050 (9)0.0057 (10)
C520.0337 (11)0.0348 (12)0.0319 (11)0.0006 (9)0.0038 (9)0.0012 (9)
C530.0292 (11)0.0410 (13)0.0483 (14)0.0059 (10)0.0012 (10)0.0056 (11)
C540.0293 (11)0.0401 (13)0.0437 (13)0.0009 (9)0.0044 (9)0.0044 (10)
C550.0292 (10)0.0269 (10)0.0314 (11)0.0030 (8)0.0021 (8)0.0034 (8)
C560.0316 (10)0.0309 (11)0.0298 (10)0.0011 (8)0.0000 (8)0.0042 (8)
C570.0360 (11)0.0348 (12)0.0275 (10)0.0019 (9)0.0013 (8)0.0008 (9)
C580.0292 (10)0.0248 (10)0.0306 (10)0.0023 (8)0.0042 (8)0.0034 (8)
C590.0282 (10)0.0329 (11)0.0391 (12)0.0056 (9)0.0002 (9)0.0028 (9)
C600.0371 (12)0.0277 (11)0.0426 (13)0.0094 (9)0.0086 (10)0.0027 (9)
C610.0437 (13)0.0261 (10)0.0333 (11)0.0045 (9)0.0038 (9)0.0016 (9)
C620.0341 (11)0.0274 (10)0.0304 (11)0.0034 (8)0.0002 (8)0.0009 (8)
C630.0271 (9)0.0234 (9)0.0259 (10)0.0016 (7)0.0044 (7)0.0029 (7)
C710.067 (4)0.053 (3)0.063 (4)0.004 (3)0.004 (3)0.005 (3)
Cl10.0902 (15)0.0825 (15)0.0762 (13)0.0186 (13)0.0003 (11)0.0025 (12)
Cl20.0951 (16)0.0745 (14)0.0752 (13)0.0037 (12)0.0048 (11)0.0074 (11)
Geometric parameters (Å, º) top
Ni1—N42.0350 (17)C34—H340.9500
Ni1—N32.0402 (17)C35—C361.388 (4)
Ni1—N12.0407 (17)C35—H350.9500
Ni1—N22.0434 (17)C36—C371.381 (4)
Ni1—N52.1122 (17)C36—H360.9500
N1—C41.365 (3)C37—C381.395 (3)
N1—C11.372 (3)C37—H370.9500
N2—C91.372 (3)C38—C391.487 (3)
N2—C61.372 (3)C39—C441.392 (3)
N3—C111.370 (3)C39—C401.395 (4)
N3—C141.371 (3)C40—C411.380 (4)
N4—C191.370 (3)C40—H400.9500
N4—C161.374 (3)C41—C421.393 (4)
C1—C201.393 (3)C41—H410.9500
C1—C21.444 (3)C42—C431.388 (4)
C2—C31.341 (3)C42—C451.496 (3)
C2—H20.9500C43—C441.385 (4)
C3—C41.446 (3)C43—H430.9500
C3—H30.9500C44—H440.9500
C4—C51.398 (3)C45—S11.839 (3)
C5—C61.398 (3)C45—H45A0.9900
C5—C211.495 (3)C45—H45B0.9900
C6—C71.440 (3)S1—C461.776 (2)
C7—C81.349 (3)C46—C501.388 (3)
C7—H70.9500C46—C471.395 (3)
C8—C91.442 (3)C47—N51.347 (3)
C8—H80.9500C47—H470.9500
C9—C101.399 (3)N5—C481.343 (3)
C10—C111.399 (3)C48—C491.394 (3)
C10—C631.498 (3)C48—H480.9500
C11—C121.439 (3)C49—C501.387 (3)
C12—C131.351 (3)C49—S21.770 (2)
C12—H120.9500C50—H500.9500
C13—C141.439 (3)S2—C511.837 (3)
C13—H130.9500C51—C521.492 (3)
C14—C151.395 (3)C51—H51A0.9900
C15—C161.395 (3)C51—H51B0.9900
C15—C331.501 (3)C52—C531.390 (3)
C16—C171.443 (3)C52—C571.396 (3)
C17—C181.348 (3)C53—C541.386 (4)
C17—H170.9500C53—H530.9500
C18—C191.442 (3)C54—C551.394 (3)
C18—H180.9500C54—H540.9500
C19—C201.397 (3)C55—C561.395 (3)
C20—C271.497 (3)C55—C581.481 (3)
C21—C221.382 (4)C56—C571.388 (3)
C21—C261.389 (3)C56—H560.9500
C22—F11.338 (3)C57—H570.9500
C22—C231.387 (4)C58—C591.399 (3)
C23—F21.336 (4)C58—C631.401 (3)
C23—C241.372 (5)C59—C601.383 (3)
C24—F31.344 (3)C59—H590.9500
C24—C251.380 (5)C60—C611.383 (4)
C25—F41.339 (3)C60—H600.9500
C25—C261.382 (3)C61—C621.390 (3)
C26—F51.335 (3)C61—H610.9500
C27—C281.381 (3)C62—C631.398 (3)
C27—C321.388 (3)C62—H620.9500
C28—F61.341 (3)C71—C71i1.126 (13)
C28—C291.382 (4)C71—Cl1i1.326 (8)
C29—F71.331 (3)C71—Cl2i1.607 (8)
C29—C301.381 (5)C71—Cl11.753 (7)
C30—F81.338 (3)C71—Cl21.772 (8)
C30—C311.368 (5)C71—H71A0.9600
C31—F91.343 (3)C71—H71B0.9599
C31—C321.380 (3)Cl1—Cl2i0.882 (3)
C32—F101.339 (3)Cl1—C71i1.326 (8)
C33—C341.391 (3)Cl2—Cl1i0.882 (3)
C33—C381.402 (3)Cl2—C71i1.607 (8)
C34—C351.383 (3)
N4—Ni1—N389.66 (7)C34—C35—H35120.2
N4—Ni1—N189.03 (7)C36—C35—H35120.2
N3—Ni1—N1166.05 (7)C37—C36—C35119.8 (2)
N4—Ni1—N2165.76 (7)C37—C36—H36120.1
N3—Ni1—N288.58 (7)C35—C36—H36120.1
N1—Ni1—N289.29 (7)C36—C37—C38121.2 (2)
N4—Ni1—N596.84 (7)C36—C37—H37119.4
N3—Ni1—N5100.53 (7)C38—C37—H37119.4
N1—Ni1—N593.42 (7)C37—C38—C33118.8 (2)
N2—Ni1—N597.37 (7)C37—C38—C39121.1 (2)
C4—N1—C1106.09 (17)C33—C38—C39120.09 (19)
C4—N1—Ni1126.63 (14)C44—C39—C40118.1 (2)
C1—N1—Ni1126.60 (14)C44—C39—C38121.5 (2)
C9—N2—C6105.94 (16)C40—C39—C38120.4 (2)
C9—N2—Ni1127.28 (13)C41—C40—C39121.0 (2)
C6—N2—Ni1126.72 (14)C41—C40—H40119.5
C11—N3—C14105.91 (16)C39—C40—H40119.5
C11—N3—Ni1127.38 (13)C40—C41—C42120.6 (3)
C14—N3—Ni1126.60 (14)C40—C41—H41119.7
C19—N4—C16106.08 (16)C42—C41—H41119.7
C19—N4—Ni1127.29 (14)C43—C42—C41118.5 (2)
C16—N4—Ni1126.52 (14)C43—C42—C45120.9 (2)
N1—C1—C20125.30 (19)C41—C42—C45120.4 (2)
N1—C1—C2109.85 (18)C44—C43—C42120.8 (2)
C20—C1—C2124.85 (19)C44—C43—H43119.6
C3—C2—C1107.04 (19)C42—C43—H43119.6
C3—C2—H2126.5C43—C44—C39120.8 (2)
C1—C2—H2126.5C43—C44—H44119.6
C2—C3—C4107.00 (19)C39—C44—H44119.6
C2—C3—H3126.5C42—C45—S1112.03 (17)
C4—C3—H3126.5C42—C45—H45A109.2
N1—C4—C5125.35 (19)S1—C45—H45A109.2
N1—C4—C3110.00 (18)C42—C45—H45B109.2
C5—C4—C3124.64 (19)S1—C45—H45B109.2
C4—C5—C6125.46 (19)H45A—C45—H45B107.9
C4—C5—C21117.01 (18)C46—S1—C45101.61 (11)
C6—C5—C21117.52 (19)C50—C46—C47118.6 (2)
N2—C6—C5125.22 (18)C50—C46—S1120.23 (17)
N2—C6—C7110.09 (18)C47—C46—S1120.85 (17)
C5—C6—C7124.68 (19)N5—C47—C46122.5 (2)
C8—C7—C6106.97 (19)N5—C47—H47118.7
C8—C7—H7126.5C46—C47—H47118.7
C6—C7—H7126.5C48—N5—C47118.15 (18)
C7—C8—C9106.97 (19)C48—N5—Ni1120.05 (14)
C7—C8—H8126.5C47—N5—Ni1121.32 (14)
C9—C8—H8126.5N5—C48—C49123.0 (2)
N2—C9—C10125.87 (18)N5—C48—H48118.5
N2—C9—C8110.03 (17)C49—C48—H48118.5
C10—C9—C8124.10 (19)C50—C49—C48118.3 (2)
C11—C10—C9124.16 (18)C50—C49—S2120.91 (17)
C11—C10—C63118.77 (18)C48—C49—S2120.56 (17)
C9—C10—C63117.00 (18)C49—C50—C46119.5 (2)
N3—C11—C10125.76 (18)C49—C50—H50120.3
N3—C11—C12110.18 (18)C46—C50—H50120.3
C10—C11—C12124.03 (19)C49—S2—C51101.32 (11)
C13—C12—C11106.82 (19)C52—C51—S2111.40 (17)
C13—C12—H12126.6C52—C51—H51A109.3
C11—C12—H12126.6S2—C51—H51A109.3
C12—C13—C14106.96 (19)C52—C51—H51B109.3
C12—C13—H13126.5S2—C51—H51B109.3
C14—C13—H13126.5H51A—C51—H51B108.0
N3—C14—C15125.62 (19)C53—C52—C57118.3 (2)
N3—C14—C13110.08 (18)C53—C52—C51121.0 (2)
C15—C14—C13124.29 (19)C57—C52—C51120.5 (2)
C16—C15—C14125.19 (19)C54—C53—C52121.1 (2)
C16—C15—C33116.82 (18)C54—C53—H53119.4
C14—C15—C33117.93 (18)C52—C53—H53119.4
N4—C16—C15125.76 (18)C53—C54—C55120.6 (2)
N4—C16—C17109.77 (18)C53—C54—H54119.7
C15—C16—C17124.46 (19)C55—C54—H54119.7
C18—C17—C16107.14 (19)C54—C55—C56118.4 (2)
C18—C17—H17126.4C54—C55—C58121.1 (2)
C16—C17—H17126.4C56—C55—C58120.4 (2)
C17—C18—C19106.90 (19)C57—C56—C55120.8 (2)
C17—C18—H18126.6C57—C56—H56119.6
C19—C18—H18126.6C55—C56—H56119.6
N4—C19—C20124.95 (19)C56—C57—C52120.6 (2)
N4—C19—C18110.11 (18)C56—C57—H57119.7
C20—C19—C18124.92 (19)C52—C57—H57119.7
C1—C20—C19125.50 (19)C59—C58—C63119.0 (2)
C1—C20—C27116.76 (18)C59—C58—C55120.4 (2)
C19—C20—C27117.69 (18)C63—C58—C55120.58 (19)
C22—C21—C26116.7 (2)C60—C59—C58121.2 (2)
C22—C21—C5121.9 (2)C60—C59—H59119.4
C26—C21—C5121.3 (2)C58—C59—H59119.4
F1—C22—C21120.0 (2)C61—C60—C59120.0 (2)
F1—C22—C23117.8 (3)C61—C60—H60120.0
C21—C22—C23122.2 (3)C59—C60—H60120.0
F2—C23—C24120.5 (3)C60—C61—C62119.6 (2)
F2—C23—C22120.1 (3)C60—C61—H61120.2
C24—C23—C22119.4 (3)C62—C61—H61120.2
F3—C24—C23120.0 (3)C61—C62—C63121.0 (2)
F3—C24—C25119.7 (3)C61—C62—H62119.5
C23—C24—C25120.3 (2)C63—C62—H62119.5
F4—C25—C24120.5 (2)C62—C63—C58119.17 (19)
F4—C25—C26120.3 (3)C62—C63—C10119.72 (19)
C24—C25—C26119.2 (3)C58—C63—C10121.01 (19)
F5—C26—C25117.9 (2)C71i—C71—Cl1i90.9 (8)
F5—C26—C21119.9 (2)C71i—C71—Cl2i78.7 (7)
C25—C26—C21122.2 (2)Cl1i—C71—Cl2i167.9 (6)
C28—C27—C32116.2 (2)C71i—C71—Cl149.1 (6)
C28—C27—C20121.0 (2)Cl1i—C71—Cl1140.1 (5)
C32—C27—C20122.8 (2)Cl2i—C71—Cl130.03 (17)
F6—C28—C27119.4 (2)C71i—C71—Cl262.8 (7)
F6—C28—C29117.7 (2)Cl1i—C71—Cl228.7 (2)
C27—C28—C29122.9 (3)Cl2i—C71—Cl2141.5 (4)
F7—C29—C30120.3 (3)Cl1—C71—Cl2111.7 (4)
F7—C29—C28120.7 (3)C71i—C71—H71A121.1
C30—C29—C28119.1 (3)Cl1i—C71—H71A90.2
F8—C30—C31120.2 (3)Cl2i—C71—H71A90.0
F8—C30—C29120.0 (3)Cl1—C71—H71A109.2
C31—C30—C29119.7 (2)Cl2—C71—H71A109.2
F9—C31—C30119.4 (2)C71i—C71—H71B130.2
F9—C31—C32120.5 (3)Cl1i—C71—H71B96.4
C30—C31—C32120.1 (3)Cl2i—C71—H71B95.1
F10—C32—C31118.0 (2)Cl1—C71—H71B109.3
F10—C32—C27120.0 (2)Cl2—C71—H71B109.3
C31—C32—C27122.0 (2)H71A—C71—H71B108.1
C34—C33—C38119.5 (2)Cl2i—Cl1—C71i104.9 (4)
C34—C33—C15119.0 (2)Cl2i—Cl1—C7165.8 (3)
C38—C33—C15121.5 (2)C71i—Cl1—C7139.9 (5)
C35—C34—C33121.1 (2)Cl1i—Cl2—C71i84.2 (4)
C35—C34—H34119.5Cl1i—Cl2—C7146.3 (3)
C33—C34—H34119.5C71i—Cl2—C7138.5 (4)
C34—C35—C36119.6 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···S2i0.953.023.886 (2)153
C71—H71B···N1i0.962.613.555 (8)169
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facility.

Funding information

The authors gratefully acknowledge financial support by the Deutsche Forschungsgesellschaft within the Sonderforschungsbereich 677.

References

First citationBediako, D. K., Solis, B. H., Dogutan, D. K., Roubelakis, M. M., Maher, A. G., Lee, C. H., Chambers, M. B., Hammes-Schiffer, S. & Nocera, D. G. (2014). Proc. Natl Acad. Sci. USA, 111, 15001–15006.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCaughey, W. S., Deal, R. M., McLees, B. D. & Alben, J. O. (1962). J. Am. Chem. Soc. 84, 1735–1736.  CrossRef CAS Web of Science Google Scholar
First citationDeutman, A. B. C., Smits, J. M. M., de Gelder, R., Elemans, J. A. A. W., Nolte, R. J. M. & Rowan, A. E. (2014). Chem. Eur. J. 20, 11574–11583.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDommaschk, M., Gutzeit, F., Boretius, S., Haag, R. & Herges, R. (2014a). Chem. Commun. 50, 12476–12478.  Web of Science CrossRef CAS Google Scholar
First citationDommaschk, M., Näther, C. & Herges, R. (2015a). J. Org. Chem. 80, 8496–8500.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDommaschk, M., Schütt, C., Venkataramani, S., Jana, U., Näther, C., Sönnichsen, F. D. & Herges, R. (2014b). Dalton Trans. 43, 17395–17405.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDommaschk, M., Thoms, V., Schütt, C., Näther, C., Puttreddy, R., Rissanen, K. & Herges, R. (2015b). Inorg. Chem. 54, 9390–9392.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEom, H. S., Jeoung, S. C., Kim, D., Ha, J.-H. & Kim, Y.-R. (1997). J. Phys. Chem. A, 101, 3661–3669.  CrossRef CAS Web of Science Google Scholar
First citationFindsen, E., Shelnutt, J., Friedman, J. & Ondrias, M. (1986). Chem. Phys. Lett. 126, 465–471.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGutzeit, F., Dommaschk, M., Levin, N., Buchholz, A., Schaub, E., Plass, W., Näther, C. & Herges, R. (2019). Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.9b00348.  Google Scholar
First citationHalime, Z., Lachkar, M., Roisnel, T., Richard, P. & Boitrel, B. (2007). Inorg. Chem. 46, 6338–6346.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHan, Y., Fang, H., Jing, H., Sun, H., Lei, H., Lai, W. & Cao, R. (2016). Angew. Chem. Int. Ed. 55, 5457–5462.  Web of Science CSD CrossRef CAS Google Scholar
First citationHijazi, I., Roisnel, T., Even-Hernandez, P., Furet, E., Halet, J.-F., Cador, O. & Boitrel, B. (2010). J. Am. Chem. Soc. 132, 10652–10653.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJentzen, W., Simpson, M. C., Hobbs, J. D., Song, X., Ema, T., Nelson, N. Y., Medforth, C. J., Smith, K. M., Veyrat, M., Mazzanti, M., Ramasseul, R., Marchon, J., Takeuchi, T., Goddard, W. A. III & Shelnutt, J. A. (1995). J. Am. Chem. Soc. 117, 11085–11097.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJia, S.-L., Jentzen, W., Shang, M., Song, X.-Z., Ma, J.-G., Scheidt, W. R. & Shelnutt, J. A. (1998). Inorg. Chem. 37, 4402–4412.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKadish, K. M., Smith, K. M. & Guilard, R. (2000). The Porphyrin Handbook – Inorganic, Organometallic and Coordination Chemistry, vol. 3. San Diego, California, London: Academic Press.  Google Scholar
First citationKim, D. & Holten, D. (1983). Chem. Phys. Lett. 98, 584–589.  CrossRef CAS Web of Science Google Scholar
First citationKim, D., Kirmaier, C. & Holten, D. (1983). Chem. Phys. 75, 305–322.  CrossRef CAS Web of Science Google Scholar
First citationKim, D., Su, Y. O. & Spiro, T. G. (1986). Inorg. Chem. 25, 3988–3993.  CrossRef CAS Web of Science Google Scholar
First citationKöbke, A., Gutzeit, F., Röhricht, F., Schlimm, A., Grunwald, J., Tuczek, F., Studniarek, M., Choueikani, F., Otero, E., Ohresser, P., Rohlf, S., Johannsen, S., Diekmann, F., Rossnagel, K., Jasper-Toennies, T., Näther, C., Herges, R., Berndt, R. & Gruber, M. (2019). Nature Nanotechnology. Submitted.  Google Scholar
First citationKruglik, S. G., Ermolenkov, V. V., Orlovich, V. A. & Turpin, P.-Y. (2003). Chem. Phys. 286, 97–108.  Web of Science CrossRef CAS Google Scholar
First citationKumar, R. & Sankar, M. (2014). Inorg. Chem. 53, 12706–12719.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcLees, B. D. & Caughey, W. S. (1968). Biochemistry, 7, 642–652.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMelin, F., Trivella, A., Lo, M., Ruzié, C., Hijazi, I., Oueslati, N., Wytko, J. A., Boitrel, B., Boudon, C., Hellwig, P. & Weiss, J. (2012). J. Inorg. Biochem. 108, 196–202.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNurco, D. J., Smith, K. M. & Fajer, J. (2002). Chem. Commun. pp. 2982–2983.  Web of Science CSD CrossRef Google Scholar
First citationOzette, K., Leduc, P., Palacio, M., Bartoli, J.-F., Barkigia, K. M., Fajer, J., Battioni, P. & Mansuy, D. (1997). J. Am. Chem. Soc. 119, 6442–6443.  CSD CrossRef CAS Web of Science Google Scholar
First citationPaul, D., Melin, F., Hirtz, C., Wytko, J., Ochsenbein, P., Bonin, M., Schenk, K., Maltese, P. & Weiss, J. (2003). Inorg. Chem. 42, 3779–3787.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRenner, M. W., Furenlid, L. R., Barkigia, K. M., Forman, A., Shim, H. K., Simpson, D. J., Smith, K. M. & Fajer, J. (1991). J. Am. Chem. Soc. 113, 6891–6898.  CSD CrossRef CAS Web of Science Google Scholar
First citationRichard, P., Rose, E. & Boitrel, B. (1998). Inorg. Chem. 37, 6532–6534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShelby, M. L., Mara, M. W. & Chen, L. X. (2014). Coord. Chem. Rev. 277–278, 291–299.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThies, S., Bornholdt, C., Köhler, F., Sönnichsen, F. D., Näther, C., Tuczek, F. & Herges, R. (2010). Chem. Eur. J. 16, 10074–10083.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVenkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. (2011). Science, 331, 445–448.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWalker, F. A., Hui, E. & Walker, J. M. (1975). J. Am. Chem. Soc. 97, 2390–2397.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Z., Shen, M., Cao, C., Liu, Q. & Yan, Z. (2012). Chem. Eur. J. 18, 7675–7679.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds