research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-4-{[2,2-di­chloro-1-(4-meth­­oxy­phen­yl)ethen­yl]diazen­yl}benzo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr

Edited by A. J. Lough, University of Toronto, Canada (Received 27 May 2019; accepted 5 July 2019; online 16 July 2019)

In the title compound, C16H11Cl2N3O, the 4-meth­oxy-substituted benzene ring makes a dihedral angle of 41.86 (9)° with the benzene ring of the benzo­nitrile group. In the crystal, mol­ecules are linked into layers parallel to (020) by C—H⋯O contacts and face-to-face ππ stacking inter­actions [centroid–centroid distances = 3.9116 (14) and 3.9118 (14) Å] between symmetry-related aromatic rings along the a-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from Cl⋯H/H⋯Cl (22.8%), H⋯H (21.4%), N⋯H/H⋯N (16.1%), C⋯H/H⋯C (14.7%) and C⋯C (9.1%) inter­actions.

1. Chemical context

Weak inter­actions, such as hydrogen, aerogen, halogen, chalcogen, pnicogen, tetrel and icosa­gen bonds, as well as nπ*, ππ stacking, π–cation, π–anion and hydro­phobic inter­actions, can control or organize the conformation, aggregation, tertiary and quaternary structure of the mol­ecule, its reactivity, stabilization and other properties (Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145-153.]; Maharramov et al., 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281.], 2014a[Mahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67-73.],b[Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1-37.], 2015[Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602-5610.], 2017a[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121-10138.],b[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54-72.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]; Shixaliyev et al., 2013[Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76-79.], 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). The functionalization of azo/hydrazone ligands with non-covalent bond-donor or acceptor sites greatly affects their coordination ability and the catalytic activity of the corresponding coordination compounds (Akbari et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]; Karmakar et al., 2016[Karmakar, A., Paul, A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). New J. Chem. 40, 1535-1546.]; Kopylovich et al., 2011a[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175-180.],b[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248-7250.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17-23.]; Mahmoudi et al., 2016[Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056-9066.], 2017a[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763-4772.],b[Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698-9709.],c[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017c). Inorg. Chim. Acta, 461, 192-205.], 2018a[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959-4971.],b[Mahmoudi, G., Zareba, J. K., Gurbanov, A. V., Bauza, A., Zubkov, F. I., Kubicki, M., Stilinovic?, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763-4772.],c[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018c). CrystEngComm, 20, 2812-2821.]). In our previous work, we have attached chloro atoms to dye mol­ecules, which lead to halogen bonding (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]). In a continuation of this work, we have functionalized a new azo dye, (E)-4-{[2,2-di­chloro-1-(4-meth­oxy­phen­yl)ethen­yl]diazen­yl}benzo­nitrile, which provides weak C—H⋯O inter­molecular hydrogen bonds.

[Scheme 1]

2. Structural commentary

In the title compound, (Fig. 1[link]), the dihedral angle between the 4-meth­oxy-substituted benzene ring and the benzene ring of the benzo­nitrile moiety is 41.86 (9)°. The C1—C6—N1—N2, C6—N1—N2—C7, N1—N2—C7—C8, N2—C7—C8—Cl1, N2—C7—C8—Cl2, Cl1—C8—C7—C9 and C8—C7—C9—C14 torsion angles of 24.8 (2), −178.37 (15), −176.77 (17), −2.2 (2), 178.27 (14), −176.26 (14) and −52.1 (3)°, respectively, describe the essentially planar conformation of the di­chloro-vinyl­diazenyl moiety. Bond lengths and angles are within normal ranges and are comparable to those observed in related structures such as (E)-1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), (2E)-1-(2-hy­droxy-5-methyl­phen­yl)-3-(4-meth­oxy­phen­yl)prop-2-en-1-one (Fun et al., 2011a[Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011a). Acta Cryst. E67, o1248-o1249.]), (2E)-3-(3-benzyl­oxyphen­yl)-1-(2-hy­droxy-5-methyl­phen­yl)prop-2-en-1-one (Fun et al., 2011b[Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011b). Acta Cryst. E67, o1372-o1373.]), (2E)-3-[3-(benz­yloxy)phen­yl]-1-(2-hy­droxy­phen­yl)prop-2-en-1-one (Fun et al., 2011c[Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011c). Acta Cryst. E67, o1313-o1314.]), (2E)-1-(2,5-di­meth­oxy­phen­yl)-3-(3-nitro­phen­yl)prop-2-en-1-one (Fun et al., 2011d[Fun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011d). Acta Cryst. E67, o3058-o3059.]) and (2E)-3-(3-nitro­phen­yl)-1-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one (Fun et al., 2012[Fun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o974.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are linked into layers parallel to the (020) plane by C—H⋯O contacts and face-to-face ππ stacking inter­actions [centroid-centroid distances = 3.9116 (14) and 3.9118 (14) Å] along the a-axis between the same aromatic rings (Table 1[link]; Figs. 2[link] and 3[link]). These mol­ecular layers are held together by weak van der Waals forces.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.47 3.391 (2) 165
C16—H16C⋯O1ii 0.98 2.59 3.516 (3) 158
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z.
[Figure 2]
Figure 2
A view of the crystal packing of the title compound. The weak C—H⋯O inter­actions are shown as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
A packing diagram of the title compound, viewed along the a axis. The C—H⋯O inter­actions are shown as dashed lines.

Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing. The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.1603 (red) to 1.2420 (blue) a.u. is shown in Fig. 4[link]. The dark-red spots on the dnorm surface arise as a result of short inter­atomic contacts (Table 2[link]), while the other weaker inter­molecular inter­actions appear as light-red spots. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the C—H⋯O inter­actions. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) is shown in Fig. 5[link]. The red regions indicate atoms with the potential to be hydrogen-bond acceptors (negative electrostatic potential), while blue regions indicate atoms with positive electrostatic potential, i.e. hydrogen-bond donors. The shape-index of the Hirshfeld surface is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggest that there are ππ inter­actions in the title compound.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
Cl1⋯H5 3.05 1 + x, [{3\over 2}] − y, [{1\over 2}] + z
Cl1⋯H10 2.98 x, [{3\over 2}] − y, [{1\over 2}] + z
O1⋯H16C 2.59 1 + x, y, z
Cl2⋯N3 3.462 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
H16B⋯C13 2.90 2 − x, 2 − y, 1 − z
O1⋯H2 2.47 1 + x, [{3\over 2}] − y, −[{1\over 2}] + z
H4⋯N3 2.78 x, 1 − y, 1 − z
H4⋯N3 2.82 1 − x, 1 − y, 1 − z
H13⋯H13 2.52 1 − x, 2 − y, 1 − z
[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface of the title compound mapped over dnorm showing the C—H⋯O inter­actions (dashed lines).
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.

The percentage contributions of the various contacts to the total Hirshfeld surface are shown in the two dimensional fingerprint plots in Table 3[link]. The reciprocal Cl⋯H/H⋯Cl inter­actions appear as two symmetrical broad wings with de + di ≃ 2.8 Å and contribute 22.8% to the Hirshfeld surface (Fig. 7[link]b). The H⋯H inter­actions appear in the middle of the scattered points in the two dimensional fingerprint plots, with an overall contribution to the Hirshfeld surface of 21.4% (Fig. 7[link]c). The N⋯H/H⋯N and C⋯H/H⋯C inter­actions also appear as two symmetrical broad wings with de + di ≃ 2.6 and 2.8 Å, respectively, and contribute 16.1 and 14.7%, respectively, to the Hirshfeld surface (Fig. 7[link]d,e). The C⋯C inter­actions appear in the middle of the scattered points in the two-dimensional fingerprint plots with an overall contribution to the Hirshfeld surface of 9.1% (Fig. 7[link]f). The small percentage contributions from the other different inter­atomic contacts to the Hirshfeld surfaces are listed in Table 3[link]. The large number of Cl⋯H/H⋯Cl, H⋯H, N⋯H/H⋯N, C⋯H/H⋯C and C⋯C inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface

Contact Percentage contribution
Cl⋯H/H⋯Cl 22.8
H⋯H 21.4
N⋯H/H⋯N 16.1
C⋯H/H⋯C 14.7
C⋯C 9.1
O⋯H/H⋯O 5.3
N⋯C/C⋯N 4.2
Cl⋯N/N⋯Cl 2.6
Cl⋯C/C⋯Cl 1.7
Cl⋯Cl 1.6
C⋯O/O⋯C 0.4
N⋯N 0.2
[Figure 7]
Figure 7
The Hirshfeld surface representations and two-dimensional fingerprint plots of the title compound showing all inter­actions, and the most significant individual types of inter­actions.

4. Synthesis and crystallization

The title compound was synthesized according to the reported method (Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Shikhaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.], 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-4-[2-(4-meth­oxy­benzyl­idene)hydrazine­yl]benzo­nitrile (251 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (after TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into an 0.01 M solution of HCl (100 mL, pH = 2–3) and extracted with di­chloro­methane (3x20 mL). The combined organic phase was washed with water (3x50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo of the rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1), giving an orange solid (63%); m.p. 471 K. Analysis calculated for C16H11Cl2N3O (M = 332.18): C 57.85, H 3.34, N 12.65; found: C 57.78, H 3.29, N 12.58%. 1H NMR (300 MHz, CDCl3) δ 3.83–3.93 (3H, OCH3), 6.89–7.70 (8H, Ar). 13C NMR (75 MHz, CDCl3) δ 153.89, 133.85, 133.14, 130.54, 130.37, 130.34, 115.49, 115.00, 113.80, 55.51, 29.72, 14.15. ESI–MS: m/z: 333.17 [M + H]+.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms of aromatic and methyl groups were placed in calculated positions (C—H = 0.95 and 0.98 Å, respectively) and refined using a riding model with Uiso= 1.2Ueq(C-aromatic) and 1.5Ueq(C-meth­yl).

Table 4
Experimental details

Crystal data
Chemical formula C16H11Cl2N3O
Mr 332.18
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 3.9117 (8), 25.109 (5), 14.968 (3)
β (°) 97.07 (3)
V3) 1459.0 (5)
Z 4
Radiation type Synchrotron, λ = 0.80246 Å
μ (mm−1) 0.63
Crystal size (mm) 0.25 × 0.05 × 0.03
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.850, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 22750, 3144, 2978
Rint 0.068
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.07
No. of reflections 3144
No. of parameters 201
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.46
Computer programs: Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXLS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: Marccd (Doyle, 2011); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXLS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

(E)-4-{[2,2-Dichloro-1-(4-methoxyphenyl)ethenyl]diazenyl}benzonitrile top
Crystal data top
C16H11Cl2N3OF(000) = 680
Mr = 332.18Dx = 1.512 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.80246 Å
a = 3.9117 (8) ÅCell parameters from 600 reflections
b = 25.109 (5) Åθ = 1.8–30.0°
c = 14.968 (3) ŵ = 0.63 mm1
β = 97.07 (3)°T = 100 K
V = 1459.0 (5) Å3Needle, orange
Z = 40.25 × 0.05 × 0.03 mm
Data collection top
Rayonix SX165 CCD
diffractometer
2978 reflections with I > 2σ(I)
/f scanRint = 0.068
Absorption correction: multi-scan
(Scala; Evans, 2006)
θmax = 30.9°, θmin = 1.8°
Tmin = 0.850, Tmax = 0.975h = 44
22750 measured reflectionsk = 3232
3144 independent reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.066P)2 + 0.9448P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.30 e Å3
3144 reflectionsΔρmin = 0.46 e Å3
201 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.049 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4566 (5)0.66476 (7)0.67302 (12)0.0215 (4)
H10.4633810.6878850.7234400.026*
C20.3294 (5)0.61359 (7)0.67752 (13)0.0221 (4)
H20.2449630.6014500.7307800.026*
C30.3261 (5)0.57981 (7)0.60312 (13)0.0215 (4)
C40.4409 (5)0.59720 (7)0.52351 (12)0.0228 (4)
H40.4364340.5740230.4732080.027*
C50.5621 (5)0.64912 (7)0.51906 (12)0.0214 (4)
H50.6361720.6619650.4649130.026*
C60.5748 (5)0.68213 (7)0.59378 (12)0.0197 (4)
C70.9517 (5)0.80678 (7)0.65882 (12)0.0199 (4)
C81.0851 (5)0.82299 (7)0.74254 (13)0.0218 (4)
C90.9344 (5)0.84019 (7)0.57700 (12)0.0199 (4)
C101.0545 (5)0.82125 (7)0.49838 (13)0.0210 (4)
H101.1550980.7868230.4981090.025*
C111.0283 (5)0.85197 (7)0.42152 (12)0.0213 (4)
H111.1081470.8384030.3685760.026*
C120.8849 (5)0.90295 (7)0.42105 (12)0.0198 (4)
C130.7626 (5)0.92238 (7)0.49813 (13)0.0208 (4)
H130.6623740.9568400.4982300.025*
C140.7886 (5)0.89082 (7)0.57518 (13)0.0210 (4)
H140.7047250.9041540.6277520.025*
C150.1992 (5)0.52632 (8)0.61044 (13)0.0249 (4)
C160.7123 (5)0.98149 (7)0.33590 (13)0.0246 (4)
H16A0.7314940.9971430.2767450.037*
H16B0.8232401.0050030.3830950.037*
H16C0.4685960.9771800.3435270.037*
N10.7074 (4)0.73473 (6)0.58427 (10)0.0207 (3)
N20.8218 (4)0.75417 (6)0.65946 (10)0.0212 (3)
N30.1007 (5)0.48385 (7)0.61986 (13)0.0345 (4)
O10.8781 (4)0.93062 (5)0.34222 (9)0.0233 (3)
Cl11.07739 (13)0.78390 (2)0.83659 (3)0.02703 (18)
Cl21.27416 (13)0.88356 (2)0.76669 (3)0.02496 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (9)0.0195 (9)0.0207 (9)0.0005 (7)0.0001 (7)0.0001 (7)
C20.0246 (9)0.0192 (9)0.0220 (9)0.0002 (7)0.0009 (7)0.0028 (7)
C30.0234 (9)0.0166 (8)0.0234 (9)0.0005 (7)0.0012 (7)0.0016 (7)
C40.0285 (10)0.0197 (9)0.0193 (9)0.0018 (7)0.0009 (7)0.0006 (7)
C50.0242 (9)0.0195 (8)0.0193 (8)0.0005 (7)0.0021 (7)0.0024 (7)
C60.0207 (9)0.0154 (8)0.0218 (9)0.0007 (7)0.0020 (7)0.0027 (6)
C70.0223 (9)0.0159 (8)0.0211 (9)0.0008 (7)0.0016 (7)0.0007 (6)
C80.0257 (9)0.0173 (8)0.0223 (9)0.0005 (7)0.0025 (7)0.0010 (7)
C90.0215 (9)0.0167 (8)0.0207 (9)0.0021 (7)0.0003 (7)0.0006 (6)
C100.0244 (9)0.0159 (8)0.0221 (9)0.0002 (7)0.0000 (7)0.0026 (7)
C110.0244 (9)0.0181 (8)0.0211 (9)0.0005 (7)0.0016 (7)0.0021 (7)
C120.0221 (9)0.0186 (8)0.0179 (8)0.0029 (7)0.0007 (7)0.0012 (6)
C130.0237 (9)0.0150 (8)0.0231 (9)0.0004 (7)0.0006 (7)0.0003 (7)
C140.0247 (9)0.0178 (8)0.0201 (9)0.0004 (7)0.0017 (7)0.0018 (6)
C150.0294 (10)0.0231 (10)0.0217 (9)0.0028 (8)0.0011 (7)0.0002 (7)
C160.0290 (10)0.0182 (9)0.0254 (10)0.0013 (7)0.0015 (7)0.0030 (7)
N10.0225 (8)0.0161 (7)0.0227 (8)0.0004 (6)0.0004 (6)0.0013 (6)
N20.0251 (8)0.0164 (7)0.0212 (8)0.0003 (6)0.0007 (6)0.0006 (6)
N30.0490 (12)0.0242 (9)0.0304 (9)0.0092 (8)0.0046 (8)0.0008 (7)
O10.0307 (7)0.0186 (6)0.0203 (7)0.0020 (5)0.0018 (5)0.0023 (5)
Cl10.0386 (3)0.0223 (3)0.0191 (3)0.00365 (18)0.00068 (19)0.00226 (16)
Cl20.0343 (3)0.0185 (3)0.0213 (3)0.00454 (17)0.00074 (18)0.00278 (15)
Geometric parameters (Å, º) top
C1—C21.382 (3)C9—C141.392 (2)
C1—C61.395 (3)C9—C101.403 (3)
C1—H10.9500C10—C111.378 (3)
C2—C31.399 (3)C10—H100.9500
C2—H20.9500C11—C121.397 (3)
C3—C41.394 (3)C11—H110.9500
C3—C151.441 (3)C12—O11.367 (2)
C4—C51.392 (3)C12—C131.391 (3)
C4—H40.9500C13—C141.393 (3)
C5—C61.388 (3)C13—H130.9500
C5—H50.9500C14—H140.9500
C6—N11.433 (2)C15—N31.149 (3)
C7—C81.359 (3)C16—O11.430 (2)
C7—N21.416 (2)C16—H16A0.9800
C7—C91.479 (2)C16—H16B0.9800
C8—Cl21.7103 (19)C16—H16C0.9800
C8—Cl11.7196 (19)N1—N21.257 (2)
C2—C1—C6119.40 (17)C10—C9—C7121.08 (16)
C2—C1—H1120.3C11—C10—C9120.81 (17)
C6—C1—H1120.3C11—C10—H10119.6
C1—C2—C3119.55 (18)C9—C10—H10119.6
C1—C2—H2120.2C10—C11—C12120.36 (17)
C3—C2—H2120.2C10—C11—H11119.8
C4—C3—C2121.20 (17)C12—C11—H11119.8
C4—C3—C15120.48 (17)O1—C12—C13124.46 (17)
C2—C3—C15118.32 (17)O1—C12—C11115.79 (16)
C5—C4—C3118.80 (17)C13—C12—C11119.74 (17)
C5—C4—H4120.6C12—C13—C14119.34 (17)
C3—C4—H4120.6C12—C13—H13120.3
C6—C5—C4119.96 (17)C14—C13—H13120.3
C6—C5—H5120.0C9—C14—C13121.59 (17)
C4—C5—H5120.0C9—C14—H14119.2
C5—C6—C1121.04 (17)C13—C14—H14119.2
C5—C6—N1116.61 (16)N3—C15—C3177.3 (2)
C1—C6—N1122.33 (16)O1—C16—H16A109.5
C8—C7—N2111.75 (16)O1—C16—H16B109.5
C8—C7—C9124.52 (17)H16A—C16—H16B109.5
N2—C7—C9123.71 (15)O1—C16—H16C109.5
C7—C8—Cl2124.62 (15)H16A—C16—H16C109.5
C7—C8—Cl1122.71 (15)H16B—C16—H16C109.5
Cl2—C8—Cl1112.66 (11)N2—N1—C6111.24 (15)
C14—C9—C10118.16 (17)N1—N2—C7116.40 (15)
C14—C9—C7120.73 (17)C12—O1—C16118.13 (15)
C6—C1—C2—C30.9 (3)C14—C9—C10—C110.0 (3)
C1—C2—C3—C41.6 (3)C7—C9—C10—C11178.04 (17)
C1—C2—C3—C15178.65 (18)C9—C10—C11—C120.8 (3)
C2—C3—C4—C50.3 (3)C10—C11—C12—O1178.52 (17)
C15—C3—C4—C5179.91 (18)C10—C11—C12—C131.1 (3)
C3—C4—C5—C61.5 (3)O1—C12—C13—C14178.90 (17)
C4—C5—C6—C12.2 (3)C11—C12—C13—C140.7 (3)
C4—C5—C6—N1179.12 (16)C10—C9—C14—C130.4 (3)
C2—C1—C6—C50.9 (3)C7—C9—C14—C13178.47 (17)
C2—C1—C6—N1179.54 (17)C12—C13—C14—C90.0 (3)
N2—C7—C8—Cl2178.27 (14)C5—C6—N1—N2156.50 (17)
C9—C7—C8—Cl23.3 (3)C1—C6—N1—N224.8 (2)
N2—C7—C8—Cl12.2 (2)C6—N1—N2—C7178.37 (15)
C9—C7—C8—Cl1176.26 (14)C8—C7—N2—N1176.77 (17)
C8—C7—C9—C1452.1 (3)C9—C7—N2—N14.8 (3)
N2—C7—C9—C14126.2 (2)C13—C12—O1—C164.7 (3)
C8—C7—C9—C10129.9 (2)C11—C12—O1—C16175.67 (16)
N2—C7—C9—C1051.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.473.391 (2)165
C16—H16C···O1ii0.982.593.516 (3)158
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x1, y, z.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
Cl1···H53.051 + x, 3/2 - y, 1/2 + z
Cl1···H102.98x, 3/2 - y, 1/2 + z
O1···H16C2.591 + x, y, z
Cl2···N33.4621 - x, 1/2 + y, 3/2 - z
H16B···C132.902 - x, 2 - y, 1 - z
O1···H22.471 + x, 3/2 - y, -1/2 + z
H4···N32.78-x, 1 - y, 1 - z
H4···N32.821 - x, 1 - y, 1 - z
H13···H132.521 - x, 2 - y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface top
ContactPercentage contribution
Cl···H/H···Cl22.8
H···H21.4
N···H/H···N16.1
C···H/H···C14.7
C···C9.1
O···H/H···O5.3
N···C/C···N4.2
Cl···N/N···Cl2.6
Cl···C/C···Cl1.7
Cl···Cl1.6
C···O/O···C0.4
N···N0.2
 

Funding information

This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan [grant No. EİF/MQM/Elm-Tehsil-1–2016-1(26)–71/06/4].

References

First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.  Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011a). Acta Cryst. E67, o1248–o1249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011b). Acta Cryst. E67, o1372–o1373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011d). Acta Cryst. E67, o3058–o3059.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o974.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011c). Acta Cryst. E67, o1313–o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKarmakar, A., Paul, A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). New J. Chem. 40, 1535–1546.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17–23.  CAS Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017c). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018c). CrystEngComm, 20, 2812–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMahmoudi, G., Zareba, J. K., Gurbanov, A. V., Bauza, A., Zubkov, F. I., Kubicki, M., Stilinovic?, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763–4772.  Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1–37.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds