research communications
E)-4-{[2,2-dichloro-1-(4-methoxyphenyl)ethenyl]diazenyl}benzonitrile
and Hirshfeld surface analysis of (aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr
In the title compound, C16H11Cl2N3O, the 4-methoxy-substituted benzene ring makes a dihedral angle of 41.86 (9)° with the benzene ring of the benzonitrile group. In the crystal, molecules are linked into layers parallel to (020) by C—H⋯O contacts and face-to-face π–π stacking interactions [centroid–centroid distances = 3.9116 (14) and 3.9118 (14) Å] between symmetry-related aromatic rings along the a-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from Cl⋯H/H⋯Cl (22.8%), H⋯H (21.4%), N⋯H/H⋯N (16.1%), C⋯H/H⋯C (14.7%) and C⋯C (9.1%) interactions.
Keywords: crystal structure; 4-methoxyphenyl ring; benzonitrile; face-to-face π–π stacking interactions; Hirshfeld surface analysis.
CCDC reference: 1938782
1. Chemical context
Weak interactions, such as hydrogen, aerogen, halogen, chalcogen, pnicogen, tetrel and icosagen bonds, as well as n–π*, π–π stacking, π–cation, π–anion and hydrophobic interactions, can control or organize the conformation, aggregation, tertiary and of the molecule, its reactivity, stabilization and other properties (Asadov et al., 2016; Maharramov et al., 2010; Mahmudov et al., 2013, 2014a,b, 2015, 2017a,b, 2019; Shixaliyev et al., 2013, 2014). The functionalization of azo/hydrazone ligands with non-covalent bond-donor or acceptor sites greatly affects their coordination ability and the of the corresponding coordination compounds (Akbari et al., 2017; Gurbanov et al., 2018; Karmakar et al., 2016; Kopylovich et al., 2011a,b; Ma et al., 2017a,b; Mahmoudi et al., 2016, 2017a,b,c, 2018a,b,c). In our previous work, we have attached chloro atoms to dye molecules, which lead to halogen bonding (Atioğlu et al., 2019; Maharramov et al., 2018; Shixaliyev et al., 2018, 2019). In a continuation of this work, we have functionalized a new azo dye, (E)-4-{[2,2-dichloro-1-(4-methoxyphenyl)ethenyl]diazenyl}benzonitrile, which provides weak C—H⋯O intermolecular hydrogen bonds.
2. Structural commentary
In the title compound, (Fig. 1), the dihedral angle between the 4-methoxy-substituted benzene ring and the benzene ring of the benzonitrile moiety is 41.86 (9)°. The C1—C6—N1—N2, C6—N1—N2—C7, N1—N2—C7—C8, N2—C7—C8—Cl1, N2—C7—C8—Cl2, Cl1—C8—C7—C9 and C8—C7—C9—C14 torsion angles of 24.8 (2), −178.37 (15), −176.77 (17), −2.2 (2), 178.27 (14), −176.26 (14) and −52.1 (3)°, respectively, describe the essentially planar conformation of the dichloro-vinyldiazenyl moiety. Bond lengths and angles are within normal ranges and are comparable to those observed in related structures such as (E)-1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene (Atioğlu et al., 2019), (2E)-1-(2-hydroxy-5-methylphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Fun et al., 2011a), (2E)-3-(3-benzyloxyphenyl)-1-(2-hydroxy-5-methylphenyl)prop-2-en-1-one (Fun et al., 2011b), (2E)-3-[3-(benzyloxy)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one (Fun et al., 2011c), (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one (Fun et al., 2011d) and (2E)-3-(3-nitrophenyl)-1-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one (Fun et al., 2012).
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, the molecules are linked into layers parallel to the (020) plane by C—H⋯O contacts and face-to-face π–π stacking interactions [centroid-centroid distances = 3.9116 (14) and 3.9118 (14) Å] along the a-axis between the same aromatic rings (Table 1; Figs. 2 and 3). These molecular layers are held together by weak van der Waals forces.
|
Hirshfeld surfaces and fingerprint plots were generated for the title compound using CrystalExplorer (McKinnon et al., 2007) to quantify and visualize the intermolecular interactions and to explain the observed crystal packing. The Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −0.1603 (red) to 1.2420 (blue) a.u. is shown in Fig. 4. The dark-red spots on the dnorm surface arise as a result of short interatomic contacts (Table 2), while the other weaker intermolecular interactions appear as light-red spots. The red points, which represent closer contacts and negative dnorm values on the surface, correspond to the C—H⋯O interactions. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) is shown in Fig. 5. The red regions indicate atoms with the potential to be hydrogen-bond acceptors (negative electrostatic potential), while blue regions indicate atoms with positive electrostatic potential, i.e. hydrogen-bond donors. The shape-index of the Hirshfeld surface is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 6 clearly suggest that there are π–π interactions in the title compound.
|
The percentage contributions of the various contacts to the total Hirshfeld surface are shown in the two dimensional fingerprint plots in Table 3. The reciprocal Cl⋯H/H⋯Cl interactions appear as two symmetrical broad wings with de + di ≃ 2.8 Å and contribute 22.8% to the Hirshfeld surface (Fig. 7b). The H⋯H interactions appear in the middle of the scattered points in the two dimensional fingerprint plots, with an overall contribution to the Hirshfeld surface of 21.4% (Fig. 7c). The N⋯H/H⋯N and C⋯H/H⋯C interactions also appear as two symmetrical broad wings with de + di ≃ 2.6 and 2.8 Å, respectively, and contribute 16.1 and 14.7%, respectively, to the Hirshfeld surface (Fig. 7d,e). The C⋯C interactions appear in the middle of the scattered points in the two-dimensional fingerprint plots with an overall contribution to the Hirshfeld surface of 9.1% (Fig. 7f). The small percentage contributions from the other different interatomic contacts to the Hirshfeld surfaces are listed in Table 3. The large number of Cl⋯H/H⋯Cl, H⋯H, N⋯H/H⋯N, C⋯H/H⋯C and C⋯C interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
|
4. Synthesis and crystallization
The title compound was synthesized according to the reported method (Atioğlu et al., 2019; Maharramov et al., 2018; Shikhaliyev et al., 2018, 2019). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-4-[2-(4-methoxybenzylidene)hydrazineyl]benzonitrile (251 mg, 1 mmol), tetramethylethylenediamine (TMEDA; 295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv). After 1–3 h (after TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into an 0.01 M solution of HCl (100 mL, pH = 2–3) and extracted with dichloromethane (3x20 mL). The combined organic phase was washed with water (3x50 mL), brine (30 mL), dried over anhydrous Na2SO4 and concentrated in vacuo of the rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1), giving an orange solid (63%); m.p. 471 K. Analysis calculated for C16H11Cl2N3O (M = 332.18): C 57.85, H 3.34, N 12.65; found: C 57.78, H 3.29, N 12.58%. 1H NMR (300 MHz, CDCl3) δ 3.83–3.93 (3H, OCH3), 6.89–7.70 (8H, Ar). 13C NMR (75 MHz, CDCl3) δ 153.89, 133.85, 133.14, 130.54, 130.37, 130.34, 115.49, 115.00, 113.80, 55.51, 29.72, 14.15. ESI–MS: m/z: 333.17 [M + H]+.
5. Refinement
Crystal data, data collection and structure . The H atoms of aromatic and methyl groups were placed in calculated positions (C—H = 0.95 and 0.98 Å, respectively) and refined using a riding model with Uiso= 1.2Ueq(C-aromatic) and 1.5Ueq(C-methyl).
details are summarized in Table 4Supporting information
CCDC reference: 1938782
https://doi.org/10.1107/S2056989019009642/lh5909sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019009642/lh5909Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019009642/lh5909Isup3.cml
Data collection: Marccd (Doyle, 2011); cell
iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXLS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).C16H11Cl2N3O | F(000) = 680 |
Mr = 332.18 | Dx = 1.512 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.80246 Å |
a = 3.9117 (8) Å | Cell parameters from 600 reflections |
b = 25.109 (5) Å | θ = 1.8–30.0° |
c = 14.968 (3) Å | µ = 0.63 mm−1 |
β = 97.07 (3)° | T = 100 K |
V = 1459.0 (5) Å3 | Needle, orange |
Z = 4 | 0.25 × 0.05 × 0.03 mm |
Rayonix SX165 CCD diffractometer | 2978 reflections with I > 2σ(I) |
/f scan | Rint = 0.068 |
Absorption correction: multi-scan (Scala; Evans, 2006) | θmax = 30.9°, θmin = 1.8° |
Tmin = 0.850, Tmax = 0.975 | h = −4→4 |
22750 measured reflections | k = −32→32 |
3144 independent reflections | l = −19→19 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.066P)2 + 0.9448P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.123 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.30 e Å−3 |
3144 reflections | Δρmin = −0.46 e Å−3 |
201 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.049 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4566 (5) | 0.66476 (7) | 0.67302 (12) | 0.0215 (4) | |
H1 | 0.463381 | 0.687885 | 0.723440 | 0.026* | |
C2 | 0.3294 (5) | 0.61359 (7) | 0.67752 (13) | 0.0221 (4) | |
H2 | 0.244963 | 0.601450 | 0.730780 | 0.026* | |
C3 | 0.3261 (5) | 0.57981 (7) | 0.60312 (13) | 0.0215 (4) | |
C4 | 0.4409 (5) | 0.59720 (7) | 0.52351 (12) | 0.0228 (4) | |
H4 | 0.436434 | 0.574023 | 0.473208 | 0.027* | |
C5 | 0.5621 (5) | 0.64912 (7) | 0.51906 (12) | 0.0214 (4) | |
H5 | 0.636172 | 0.661965 | 0.464913 | 0.026* | |
C6 | 0.5748 (5) | 0.68213 (7) | 0.59378 (12) | 0.0197 (4) | |
C7 | 0.9517 (5) | 0.80678 (7) | 0.65882 (12) | 0.0199 (4) | |
C8 | 1.0851 (5) | 0.82299 (7) | 0.74254 (13) | 0.0218 (4) | |
C9 | 0.9344 (5) | 0.84019 (7) | 0.57700 (12) | 0.0199 (4) | |
C10 | 1.0545 (5) | 0.82125 (7) | 0.49838 (13) | 0.0210 (4) | |
H10 | 1.155098 | 0.786823 | 0.498109 | 0.025* | |
C11 | 1.0283 (5) | 0.85197 (7) | 0.42152 (12) | 0.0213 (4) | |
H11 | 1.108147 | 0.838403 | 0.368576 | 0.026* | |
C12 | 0.8849 (5) | 0.90295 (7) | 0.42105 (12) | 0.0198 (4) | |
C13 | 0.7626 (5) | 0.92238 (7) | 0.49813 (13) | 0.0208 (4) | |
H13 | 0.662374 | 0.956840 | 0.498230 | 0.025* | |
C14 | 0.7886 (5) | 0.89082 (7) | 0.57518 (13) | 0.0210 (4) | |
H14 | 0.704725 | 0.904154 | 0.627752 | 0.025* | |
C15 | 0.1992 (5) | 0.52632 (8) | 0.61044 (13) | 0.0249 (4) | |
C16 | 0.7123 (5) | 0.98149 (7) | 0.33590 (13) | 0.0246 (4) | |
H16A | 0.731494 | 0.997143 | 0.276745 | 0.037* | |
H16B | 0.823240 | 1.005003 | 0.383095 | 0.037* | |
H16C | 0.468596 | 0.977180 | 0.343527 | 0.037* | |
N1 | 0.7074 (4) | 0.73473 (6) | 0.58427 (10) | 0.0207 (3) | |
N2 | 0.8218 (4) | 0.75417 (6) | 0.65946 (10) | 0.0212 (3) | |
N3 | 0.1007 (5) | 0.48385 (7) | 0.61986 (13) | 0.0345 (4) | |
O1 | 0.8781 (4) | 0.93062 (5) | 0.34222 (9) | 0.0233 (3) | |
Cl1 | 1.07739 (13) | 0.78390 (2) | 0.83659 (3) | 0.02703 (18) | |
Cl2 | 1.27416 (13) | 0.88356 (2) | 0.76669 (3) | 0.02496 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0237 (9) | 0.0195 (9) | 0.0207 (9) | 0.0005 (7) | −0.0001 (7) | 0.0001 (7) |
C2 | 0.0246 (9) | 0.0192 (9) | 0.0220 (9) | 0.0002 (7) | 0.0009 (7) | 0.0028 (7) |
C3 | 0.0234 (9) | 0.0166 (8) | 0.0234 (9) | −0.0005 (7) | −0.0012 (7) | 0.0016 (7) |
C4 | 0.0285 (10) | 0.0197 (9) | 0.0193 (9) | −0.0018 (7) | −0.0009 (7) | −0.0006 (7) |
C5 | 0.0242 (9) | 0.0195 (8) | 0.0193 (8) | −0.0005 (7) | −0.0021 (7) | 0.0024 (7) |
C6 | 0.0207 (9) | 0.0154 (8) | 0.0218 (9) | 0.0007 (7) | −0.0020 (7) | 0.0027 (6) |
C7 | 0.0223 (9) | 0.0159 (8) | 0.0211 (9) | 0.0008 (7) | 0.0016 (7) | −0.0007 (6) |
C8 | 0.0257 (9) | 0.0173 (8) | 0.0223 (9) | 0.0005 (7) | 0.0025 (7) | −0.0010 (7) |
C9 | 0.0215 (9) | 0.0167 (8) | 0.0207 (9) | −0.0021 (7) | −0.0003 (7) | −0.0006 (6) |
C10 | 0.0244 (9) | 0.0159 (8) | 0.0221 (9) | 0.0002 (7) | 0.0000 (7) | −0.0026 (7) |
C11 | 0.0244 (9) | 0.0181 (8) | 0.0211 (9) | −0.0005 (7) | 0.0016 (7) | −0.0021 (7) |
C12 | 0.0221 (9) | 0.0186 (8) | 0.0179 (8) | −0.0029 (7) | −0.0007 (7) | 0.0012 (6) |
C13 | 0.0237 (9) | 0.0150 (8) | 0.0231 (9) | −0.0004 (7) | 0.0006 (7) | −0.0003 (7) |
C14 | 0.0247 (9) | 0.0178 (8) | 0.0201 (9) | −0.0004 (7) | 0.0017 (7) | −0.0018 (6) |
C15 | 0.0294 (10) | 0.0231 (10) | 0.0217 (9) | −0.0028 (8) | 0.0011 (7) | −0.0002 (7) |
C16 | 0.0290 (10) | 0.0182 (9) | 0.0254 (10) | 0.0013 (7) | −0.0015 (7) | 0.0030 (7) |
N1 | 0.0225 (8) | 0.0161 (7) | 0.0227 (8) | 0.0004 (6) | −0.0004 (6) | 0.0013 (6) |
N2 | 0.0251 (8) | 0.0164 (7) | 0.0212 (8) | −0.0003 (6) | −0.0007 (6) | −0.0006 (6) |
N3 | 0.0490 (12) | 0.0242 (9) | 0.0304 (9) | −0.0092 (8) | 0.0046 (8) | −0.0008 (7) |
O1 | 0.0307 (7) | 0.0186 (6) | 0.0203 (7) | 0.0020 (5) | 0.0018 (5) | 0.0023 (5) |
Cl1 | 0.0386 (3) | 0.0223 (3) | 0.0191 (3) | −0.00365 (18) | −0.00068 (19) | 0.00226 (16) |
Cl2 | 0.0343 (3) | 0.0185 (3) | 0.0213 (3) | −0.00454 (17) | 0.00074 (18) | −0.00278 (15) |
C1—C2 | 1.382 (3) | C9—C14 | 1.392 (2) |
C1—C6 | 1.395 (3) | C9—C10 | 1.403 (3) |
C1—H1 | 0.9500 | C10—C11 | 1.378 (3) |
C2—C3 | 1.399 (3) | C10—H10 | 0.9500 |
C2—H2 | 0.9500 | C11—C12 | 1.397 (3) |
C3—C4 | 1.394 (3) | C11—H11 | 0.9500 |
C3—C15 | 1.441 (3) | C12—O1 | 1.367 (2) |
C4—C5 | 1.392 (3) | C12—C13 | 1.391 (3) |
C4—H4 | 0.9500 | C13—C14 | 1.393 (3) |
C5—C6 | 1.388 (3) | C13—H13 | 0.9500 |
C5—H5 | 0.9500 | C14—H14 | 0.9500 |
C6—N1 | 1.433 (2) | C15—N3 | 1.149 (3) |
C7—C8 | 1.359 (3) | C16—O1 | 1.430 (2) |
C7—N2 | 1.416 (2) | C16—H16A | 0.9800 |
C7—C9 | 1.479 (2) | C16—H16B | 0.9800 |
C8—Cl2 | 1.7103 (19) | C16—H16C | 0.9800 |
C8—Cl1 | 1.7196 (19) | N1—N2 | 1.257 (2) |
C2—C1—C6 | 119.40 (17) | C10—C9—C7 | 121.08 (16) |
C2—C1—H1 | 120.3 | C11—C10—C9 | 120.81 (17) |
C6—C1—H1 | 120.3 | C11—C10—H10 | 119.6 |
C1—C2—C3 | 119.55 (18) | C9—C10—H10 | 119.6 |
C1—C2—H2 | 120.2 | C10—C11—C12 | 120.36 (17) |
C3—C2—H2 | 120.2 | C10—C11—H11 | 119.8 |
C4—C3—C2 | 121.20 (17) | C12—C11—H11 | 119.8 |
C4—C3—C15 | 120.48 (17) | O1—C12—C13 | 124.46 (17) |
C2—C3—C15 | 118.32 (17) | O1—C12—C11 | 115.79 (16) |
C5—C4—C3 | 118.80 (17) | C13—C12—C11 | 119.74 (17) |
C5—C4—H4 | 120.6 | C12—C13—C14 | 119.34 (17) |
C3—C4—H4 | 120.6 | C12—C13—H13 | 120.3 |
C6—C5—C4 | 119.96 (17) | C14—C13—H13 | 120.3 |
C6—C5—H5 | 120.0 | C9—C14—C13 | 121.59 (17) |
C4—C5—H5 | 120.0 | C9—C14—H14 | 119.2 |
C5—C6—C1 | 121.04 (17) | C13—C14—H14 | 119.2 |
C5—C6—N1 | 116.61 (16) | N3—C15—C3 | 177.3 (2) |
C1—C6—N1 | 122.33 (16) | O1—C16—H16A | 109.5 |
C8—C7—N2 | 111.75 (16) | O1—C16—H16B | 109.5 |
C8—C7—C9 | 124.52 (17) | H16A—C16—H16B | 109.5 |
N2—C7—C9 | 123.71 (15) | O1—C16—H16C | 109.5 |
C7—C8—Cl2 | 124.62 (15) | H16A—C16—H16C | 109.5 |
C7—C8—Cl1 | 122.71 (15) | H16B—C16—H16C | 109.5 |
Cl2—C8—Cl1 | 112.66 (11) | N2—N1—C6 | 111.24 (15) |
C14—C9—C10 | 118.16 (17) | N1—N2—C7 | 116.40 (15) |
C14—C9—C7 | 120.73 (17) | C12—O1—C16 | 118.13 (15) |
C6—C1—C2—C3 | 0.9 (3) | C14—C9—C10—C11 | 0.0 (3) |
C1—C2—C3—C4 | −1.6 (3) | C7—C9—C10—C11 | 178.04 (17) |
C1—C2—C3—C15 | 178.65 (18) | C9—C10—C11—C12 | 0.8 (3) |
C2—C3—C4—C5 | 0.3 (3) | C10—C11—C12—O1 | 178.52 (17) |
C15—C3—C4—C5 | −179.91 (18) | C10—C11—C12—C13 | −1.1 (3) |
C3—C4—C5—C6 | 1.5 (3) | O1—C12—C13—C14 | −178.90 (17) |
C4—C5—C6—C1 | −2.2 (3) | C11—C12—C13—C14 | 0.7 (3) |
C4—C5—C6—N1 | 179.12 (16) | C10—C9—C14—C13 | −0.4 (3) |
C2—C1—C6—C5 | 0.9 (3) | C7—C9—C14—C13 | −178.47 (17) |
C2—C1—C6—N1 | 179.54 (17) | C12—C13—C14—C9 | 0.0 (3) |
N2—C7—C8—Cl2 | 178.27 (14) | C5—C6—N1—N2 | −156.50 (17) |
C9—C7—C8—Cl2 | −3.3 (3) | C1—C6—N1—N2 | 24.8 (2) |
N2—C7—C8—Cl1 | −2.2 (2) | C6—N1—N2—C7 | −178.37 (15) |
C9—C7—C8—Cl1 | 176.26 (14) | C8—C7—N2—N1 | −176.77 (17) |
C8—C7—C9—C14 | −52.1 (3) | C9—C7—N2—N1 | 4.8 (3) |
N2—C7—C9—C14 | 126.2 (2) | C13—C12—O1—C16 | −4.7 (3) |
C8—C7—C9—C10 | 129.9 (2) | C11—C12—O1—C16 | 175.67 (16) |
N2—C7—C9—C10 | −51.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.95 | 2.47 | 3.391 (2) | 165 |
C16—H16C···O1ii | 0.98 | 2.59 | 3.516 (3) | 158 |
Symmetry codes: (i) x−1, −y+3/2, z+1/2; (ii) x−1, y, z. |
Contact | Distance | Symmetry operation |
Cl1···H5 | 3.05 | 1 + x, 3/2 - y, 1/2 + z |
Cl1···H10 | 2.98 | x, 3/2 - y, 1/2 + z |
O1···H16C | 2.59 | 1 + x, y, z |
Cl2···N3 | 3.462 | 1 - x, 1/2 + y, 3/2 - z |
H16B···C13 | 2.90 | 2 - x, 2 - y, 1 - z |
O1···H2 | 2.47 | 1 + x, 3/2 - y, -1/2 + z |
H4···N3 | 2.78 | -x, 1 - y, 1 - z |
H4···N3 | 2.82 | 1 - x, 1 - y, 1 - z |
H13···H13 | 2.52 | 1 - x, 2 - y, 1 - z |
Contact | Percentage contribution |
Cl···H/H···Cl | 22.8 |
H···H | 21.4 |
N···H/H···N | 16.1 |
C···H/H···C | 14.7 |
C···C | 9.1 |
O···H/H···O | 5.3 |
N···C/C···N | 4.2 |
Cl···N/N···Cl | 2.6 |
Cl···C/C···Cl | 1.7 |
Cl···Cl | 1.6 |
C···O/O···C | 0.4 |
N···N | 0.2 |
Funding information
This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan [grant No. EİF/MQM/Elm-Tehsil-1–2016-1(26)–71/06/4].
References
Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science CSD CrossRef CAS PubMed Google Scholar
Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145–153. Web of Science CrossRef CAS Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA. Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011a). Acta Cryst. E67, o1248–o1249. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Arshad, S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011b). Acta Cryst. E67, o1372–o1373. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Chia, T. S., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011d). Acta Cryst. E67, o3058–o3059. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o974. CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011c). Acta Cryst. E67, o1313–o1314. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Karmakar, A., Paul, A., Mahmudov, K. T., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2016). New J. Chem. 40, 1535–1546. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A Chem. 428, 17–23. CAS Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017c). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Gurbanov, A. V., Rodríguez-Hermida, S., Carballo, R., Amini, M., Bacchi, A., Mitoraj, M. P., Sagan, F., Kukułka, M. & Safin, D. A. (2017b). Inorg. Chem. 56, 9698–9709. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, T. & Frontera, A. (2018c). CrystEngComm, 20, 2812–2821. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018a). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017a). Eur. J. Inorg. Chem. pp. 4763–4772. Web of Science CSD CrossRef Google Scholar
Mahmoudi, G., Zareba, J. K., Gurbanov, A. V., Bauza, A., Zubkov, F. I., Kubicki, M., Stilinovic?, V., Kinzhybalo, V. & Frontera, A. (2018b). Eur. J. Inorg. Chem. 4763–4772. Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67–73. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Dalton Trans. 46, 10121–10138. Web of Science CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Coord. Chem. Rev. 345, 54–72. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1–37. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.