research communications
S,5S,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5H-bis[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl)methoxy]methyl}pyridazine monohydrate
Hirshfeld surface analysis and corrosion inhibition study of 3,6-bis(pyridin-2-yl)-4-{[(3aaLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, bLaboratoire de Chimie Analytique Appliquée, Matériaux et Environnement (LC2AME), Faculté des Sciences, BP 717, 60000 Oujda, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dLaboratoire MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers 2 bd Lavoisier, 49045 Angers Cedex, France
*Correspondence e-mail: mmouadfilali10@gmail.com
In the title compound, C27H30N4O6·H2O, the two dioxolo rings are in envelope conformations, while the pyran ring is in a twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Omethoxymethyl and O—Hwater⋯Npyridazine hydrogen bonds link the molecules into chains along [010]. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmethoxymethyl⋯π interaction complete the three-dimensional structure. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (55.7%), H⋯C/C⋯H (14.6%), H⋯O/O⋯H (14.5%) and H⋯N/N⋯H (9.6%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Electrochemical measurements are also reported.
CCDC reference: 1939591
1. Chemical context
Given their importance in the pharmaceutical, chemical and industrial fields, the synthesis of 3,6-di(pyridin-2-yl)pyridazine and its derivatives has been a goal of chemists in recent years. 5-[3,6-Di(pyridin-2-yl)pyridazine-4-yl]-2′-deoxyuridine-5′-O-triphosphate can be used as a potential substrate for fluorescence detection and imaging of DNA (Kore et al., 2015). Systems containing this moiety have also shown remarkable corrosion inhibitory (Khadiri et al., 2016). Heterocyclic molecules such as 3,6-bis (2′-pyridyl)-1,2,4,5-tetrazine have been used in transition-metal chemistry (Kaim & Kohlmann, 1987). This bidentate chelate ligand is popular in coordination chemistry and complexes of a wide range of metals, including iridium and palladium (Tsukada et al., 2001). We report herein the synthesis and the molecular and crystal structures of the title compound, (I), along with the Hirshfeld surface analysis and its corrosion inhibition properties.
2. Structural commentary
The title molecule contains two dioxolo, two pyridine, one pyridazine and one pyran rings (Fig. 1). The pyridazine ring is linked to the pyran ring through the methoxymethyl moiety. The two dioxolo rings, B (O2/O3/C2–C4) and C (O4/O5/C5–C7), are in envelope conformations. Atoms O3 and O4 are at the flap positions and are displaced by 0.442 (2) and −0.397 (2) Å, respectively, from the least-squares planes of the four atoms. A puckering analysis of the pyran ring A (O1/C1/C2/C4–C6), gave the parameters QT = 0.6508 (25) Å, q2 = 0.6451 (25) Å, q3 = −0.0865 (26) Å, φ = 214.6 (2)° and θ = 97.64 (23)°, indicating a twisted-boat conformation. The pyradizine ring D (N1/N2/C14–C17) is oriented at dihedral angles of 9.23 (6) and 12.98 (9)°, respectively, to the pyridine rings E (N3/C18–C22) and F (N4/C23–C27), while the dihedral angle between the two pyridine rings is 13.45 (10)°. The methoxymethyl moiety is nearly co-planar with the pyradizine ring, as indicated by the O6—C13—C14—C15 torsion angle of −172.8 (2)°.
3. Supramolecular features
In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Omethoxymethyl and O—Hwater⋯Npyridazine hydrogen bonds (Table 1 and Fig. 2) link the molecules, forming chains along [010]. The hydrogen bond involving H7B is bifurcated. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmethoxymethyl⋯π interaction complete the three-dimensional structure.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), white indicates contacts with distances equal to the sum of van der Waals radii, while red and blue indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O1, O6, N2 and hydrogen atoms H2, H7A, H7B indicate their roles as the respective donors and/or acceptors. The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if these are absent, then there are no π–π interactions. Fig. 4 clearly suggest that there are no π–π interactions in (I). The overall two-dimensional fingerprint plot, Fig. 5a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N ⋯H, C⋯C and C⋯N/N⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 5b–g, respectively, together with their relative contributions to the Hirshfeld surface. Selected contacts are listed in Table 2.
|
The most important interaction is H⋯H, contributing 55.7% to the overall crystal packing, which is reflected in Fig. 5b as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di ∼1.00 Å. In the presence of a weak C—H⋯π interaction, the wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (14.6% contribution to the HS) have a symmetrical distribution of points, Fig. 5c, with the thin and thick edges at de + di = 2.85 and 2.78 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (14.5%, Fig. 5d) arises from the O—H⋯O and C—H⋯O hydrogen bonds (Table 1) as well as from the H⋯O/O⋯H contacts (Table 2) and has a pair of spikes with the tips at de + di = 2.18 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 5e, 9.6%) arises from the O—H⋯N hydrogen bonds (Table 1) as well as from the H⋯N/N⋯H contacts has a pair of spikes with the tips at de + di = 2.04 Å. Finally, the C⋯C contacts (Fig. 5g, 2.4%) have a wide spike with the tip at de = di = 1.75 Å.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H interactions in Fig. 6a–d, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Electrochemical measurements
The effect of the title compound as an inhibitor of the corrosion of mild steel (MS) were studied using electrochemical impedance spectroscopy in the concentration range of 10−6 to 10−3 M at 308 K. The electrochemical experiment consisted of a 3 electrode electrolytic cell consisting of platinum foil as counter-electrode, saturated calomel as and MS as with an exposed area of 1 cm2. The MS specimen was immersed in a test solution for 0.5 h until a steady-state potential was achieved using a PGZ100 potentiostat (Bouayad et al., 2018). Electrochemical impedance spectroscopy (EIS) measurements were performed over a frequency range of 0.1 × 10−3 KHz to 10 mHz and an amplitude of 10 mV with 10 points per decade. The percentage inhibition efficiency is calculated from Rt values as (Sikine et al., 2016) E (%) = [1 − Rt(HCl)/Rt(inh)] × 100, where Rt(inh) and Rt(HCl) are the charge-transfer resistances for MS immersed in HCl, with the title compound and without inhibitor. Nyquist representations of mild steel in 1 M HCl in the absence and presence of the inhibitor system are shown in Fig. 7.
The impedance method provides information about the kinetics of the electrode processes and the surface properties of the investigated systems. The technique is based on the measurement of the impedance of the double layer at the MS/solution interface, and represents the Nyquist plots of mild steel (MS) specimens in 1 M HCl without and with various concentrations of the inhibitor. The impedance diagrams obtained have an almost semicircular appearance. This indicates that the corrosion of mild steel in aqueous solution is mainly controlled by a charge-transfer process. The impedance parameters are given in Fig. 8. It is observed from the plots that the impedance response of mild steel was significantly changed after addition of the inhibitor. Rct is increased to a maximum value of 185 Ω cm2 for the inhibitor, showing a maximum inhibition efficiency of 91% at 10−3 M. The decrease in Cdl from the HCl acid value of 200 µF cm−2, may be due to the increase in the thickness of the electrical double layer or to a decrease in the local (Elmsellem et al., 2014). This is caused by the gradual displacement of water molecules by the adsorption of organic molecules on the mild steel surface (Hjouji et al., 2016). Apart from the experimental impedance (EIS) results, the following conclusion is drawn: the alternating impedance spectrum reveals that the double-layer capacitances decrease with respect to the blank solution when the title compound is added. This fact confirms the adsorption of inhibitor molecules on the surface of the MS.
6. Database survey
Silver(I) complexes coordinated by 3,6-di(pyridin-2-yl)pyridazine ligands have been reported (Constable et al., 2008). Three other metal complexes including 3,6-di(pyridin-2-yl)pyridazine have also been reported, viz. aquabis[3,6-bis(pyridin-2-yl)pyridazine-κ2N1,N6]copper(II) bis(trifluoromethanesulfonate) (Showrilu et al., 2017), tetrakis[μ-3,6-di(pyridin-2-yl)pyridazine]bis(μ-hydroxo)bis(μ-aqua)tetranickel(II) hexakis(nitrate) tetradecahydrate (Marino et al., 2019) and catena-[[μ2-3,6-di(pyridin-2-yl)pyridazine]bis(μ2-azido)diazaidodicopper monohydrate] (Mastropietro et al., 2013).
7. Synthesis and crystallization
6-O-Propargyl-1,2:3,4-di-O-isopropylidene-α-D-galactopyranoside (4 mmol) was added to a solution of 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (4 mmol) in toluene (20 ml). Stirring was continued at room temperature for 4 h. The solvent was removed under reduced pressure. The residue was separated by on a column of silica gel with ethyl acetate/hexane (1:2) as Colourless crystals were isolated on evaporation of the solvent (yield: 82%).
8. Refinement
Crystal data, data collection and structure . Water hydrogen atoms were located in a difference-Fourier map and refined with the distance constraint O—H = 0.80 (2) Å. Other H atoms were positioned geometrically with C—H = 0.93, 0.98, 0.97 and 0.96 Å, for aromatic, methine, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C-methyl) or 1.2Ueq(C) for all other H atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1939591
https://doi.org/10.1107/S2056989019009848/lh5910sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019009848/lh5910Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019009848/lh5910Isup3.cdx
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2015); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2015).C27H30N4O6·H2O | Dx = 1.354 Mg m−3 |
Mr = 524.56 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 2843 reflections |
a = 8.8417 (3) Å | θ = 3.3–72.3° |
b = 11.3252 (3) Å | µ = 0.82 mm−1 |
c = 25.7003 (8) Å | T = 150 K |
V = 2573.47 (14) Å3 | Plate, colourless |
Z = 4 | 0.47 × 0.15 × 0.10 mm |
F(000) = 1112 |
Rigaku Oxford Diffraction SuperNova, single source at offset, AtlasS2 diffractometer | 4277 independent reflections |
Radiation source: SuperNova(Cu) micro-focus sealed X-ray Source | 3853 reflections with I > 2σ(I) |
Detector resolution: 5.1990 pixels mm-1 | Rint = 0.037 |
ω scans | θmax = 72.4°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis PRO (Rigaku OD, 2015) | h = −9→10 |
Tmin = 0.656, Tmax = 1.000 | k = −13→5 |
6128 measured reflections | l = −31→29 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0538P)2 + 0.4885P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.121 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.27 e Å−3 |
4277 reflections | Δρmin = −0.36 e Å−3 |
353 parameters | Absolute structure: Flack x determined using 1226 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: −0.01 (16) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3541 (3) | 0.1622 (2) | 0.41689 (9) | 0.0282 (5) | |
O2 | 0.3948 (3) | 0.34989 (19) | 0.45130 (10) | 0.0314 (5) | |
O3 | 0.6462 (3) | 0.30998 (18) | 0.44345 (9) | 0.0275 (5) | |
O4 | 0.5889 (3) | 0.00085 (19) | 0.47272 (8) | 0.0298 (5) | |
O5 | 0.5504 (4) | −0.04337 (19) | 0.38768 (10) | 0.0397 (7) | |
O6 | 0.2874 (3) | 0.20336 (19) | 0.30710 (9) | 0.0341 (6) | |
N1 | 0.0414 (3) | 0.4001 (2) | 0.16743 (11) | 0.0279 (6) | |
N2 | 0.0957 (3) | 0.5016 (2) | 0.18697 (10) | 0.0280 (6) | |
N3 | 0.3589 (4) | 0.6013 (3) | 0.28330 (11) | 0.0324 (6) | |
N4 | 0.0746 (4) | 0.0864 (2) | 0.17094 (12) | 0.0358 (7) | |
C1 | 0.4587 (4) | 0.1547 (3) | 0.37413 (12) | 0.0258 (7) | |
H1 | 0.495093 | 0.234348 | 0.366098 | 0.031* | |
C2 | 0.4106 (4) | 0.2260 (3) | 0.45945 (13) | 0.0277 (7) | |
H2 | 0.355033 | 0.203400 | 0.490891 | 0.033* | |
C3 | 0.5408 (4) | 0.4049 (3) | 0.44788 (14) | 0.0310 (7) | |
C4 | 0.5790 (4) | 0.2100 (3) | 0.46886 (12) | 0.0246 (6) | |
H4 | 0.600843 | 0.212023 | 0.506234 | 0.030* | |
C5 | 0.6463 (4) | 0.0999 (3) | 0.44448 (12) | 0.0254 (6) | |
H5 | 0.756973 | 0.102135 | 0.446060 | 0.031* | |
C6 | 0.5926 (4) | 0.0790 (3) | 0.38885 (12) | 0.0272 (7) | |
H6 | 0.676097 | 0.092996 | 0.364527 | 0.033* | |
C7 | 0.5754 (4) | −0.0947 (3) | 0.43729 (13) | 0.0310 (7) | |
C8 | 0.4413 (5) | −0.1669 (4) | 0.4525 (2) | 0.0550 (12) | |
H8A | 0.453499 | −0.194150 | 0.487614 | 0.082* | |
H8B | 0.432577 | −0.233440 | 0.429569 | 0.082* | |
H8C | 0.351559 | −0.119463 | 0.450095 | 0.082* | |
C9 | 0.7193 (5) | −0.1667 (3) | 0.43584 (15) | 0.0394 (9) | |
H9A | 0.802843 | −0.116353 | 0.427016 | 0.059* | |
H9B | 0.709878 | −0.227881 | 0.410208 | 0.059* | |
H9C | 0.736583 | −0.201467 | 0.469376 | 0.059* | |
C10 | 0.5503 (5) | 0.4786 (3) | 0.39910 (15) | 0.0427 (9) | |
H10A | 0.650263 | 0.510885 | 0.395892 | 0.064* | |
H10B | 0.478045 | 0.541722 | 0.400967 | 0.064* | |
H10C | 0.528653 | 0.430067 | 0.369395 | 0.064* | |
C11 | 0.5698 (5) | 0.4759 (3) | 0.49680 (16) | 0.0442 (9) | |
H11A | 0.569729 | 0.424125 | 0.526380 | 0.066* | |
H11B | 0.491803 | 0.534147 | 0.500856 | 0.066* | |
H11C | 0.666221 | 0.514400 | 0.494189 | 0.066* | |
C12 | 0.3729 (4) | 0.1086 (3) | 0.32779 (13) | 0.0286 (7) | |
H12A | 0.442659 | 0.078782 | 0.301797 | 0.034* | |
H12B | 0.306342 | 0.044768 | 0.338237 | 0.034* | |
C13 | 0.2122 (4) | 0.1736 (3) | 0.26014 (13) | 0.0275 (7) | |
H13A | 0.122273 | 0.127514 | 0.267550 | 0.033* | |
H13B | 0.278292 | 0.127130 | 0.238042 | 0.033* | |
C14 | 0.1697 (4) | 0.2873 (3) | 0.23325 (12) | 0.0253 (6) | |
C15 | 0.0791 (4) | 0.2958 (3) | 0.18820 (12) | 0.0247 (6) | |
C16 | 0.1872 (4) | 0.4980 (3) | 0.22846 (12) | 0.0247 (6) | |
C17 | 0.2238 (4) | 0.3919 (3) | 0.25319 (12) | 0.0263 (6) | |
H17 | 0.284224 | 0.391984 | 0.282822 | 0.032* | |
C18 | 0.2537 (4) | 0.6114 (3) | 0.24658 (12) | 0.0265 (7) | |
C19 | 0.2107 (4) | 0.7197 (3) | 0.22546 (14) | 0.0315 (7) | |
H19 | 0.135761 | 0.723846 | 0.200145 | 0.038* | |
C20 | 0.2823 (5) | 0.8210 (3) | 0.24304 (15) | 0.0380 (8) | |
H20 | 0.256630 | 0.894499 | 0.229490 | 0.046* | |
C21 | 0.3920 (4) | 0.8114 (3) | 0.28088 (15) | 0.0376 (9) | |
H21 | 0.441630 | 0.877961 | 0.293426 | 0.045* | |
C22 | 0.4265 (5) | 0.7001 (3) | 0.29975 (14) | 0.0349 (8) | |
H22 | 0.500690 | 0.693707 | 0.325247 | 0.042* | |
C23 | 0.0175 (4) | 0.1927 (3) | 0.15887 (12) | 0.0253 (7) | |
C24 | −0.0897 (4) | 0.2085 (3) | 0.12003 (13) | 0.0325 (7) | |
H24 | −0.126828 | 0.283313 | 0.112401 | 0.039* | |
C25 | −0.1402 (5) | 0.1107 (3) | 0.09294 (14) | 0.0378 (8) | |
H25 | −0.211674 | 0.119110 | 0.066653 | 0.045* | |
C26 | −0.0836 (5) | 0.0004 (3) | 0.10520 (14) | 0.0375 (8) | |
H26 | −0.116014 | −0.066836 | 0.087656 | 0.045* | |
C27 | 0.0224 (5) | −0.0065 (3) | 0.14423 (15) | 0.0414 (9) | |
H27 | 0.060342 | −0.080694 | 0.152640 | 0.050* | |
O7 | 0.0146 (4) | 0.1893 (3) | 0.38725 (14) | 0.0542 (8) | |
H7A | −0.011 (7) | 0.141 (5) | 0.3642 (19) | 0.081* | |
H7B | 0.111 (3) | 0.189 (6) | 0.386 (2) | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0250 (11) | 0.0272 (10) | 0.0325 (11) | −0.0023 (10) | −0.0016 (10) | −0.0023 (9) |
O2 | 0.0294 (12) | 0.0210 (10) | 0.0438 (13) | 0.0057 (9) | −0.0026 (11) | −0.0024 (9) |
O3 | 0.0280 (11) | 0.0181 (10) | 0.0364 (12) | 0.0007 (9) | 0.0010 (10) | 0.0006 (9) |
O4 | 0.0419 (14) | 0.0190 (9) | 0.0286 (11) | −0.0011 (10) | −0.0005 (11) | 0.0020 (8) |
O5 | 0.0627 (18) | 0.0179 (10) | 0.0385 (13) | 0.0041 (11) | −0.0184 (14) | −0.0038 (9) |
O6 | 0.0499 (15) | 0.0190 (9) | 0.0333 (12) | 0.0033 (11) | −0.0182 (12) | −0.0023 (9) |
N1 | 0.0324 (15) | 0.0203 (12) | 0.0310 (13) | −0.0004 (11) | −0.0037 (13) | −0.0002 (10) |
N2 | 0.0339 (16) | 0.0192 (11) | 0.0310 (13) | 0.0005 (11) | 0.0006 (13) | −0.0010 (10) |
N3 | 0.0367 (16) | 0.0252 (13) | 0.0352 (14) | −0.0026 (12) | −0.0011 (13) | −0.0045 (11) |
N4 | 0.0485 (18) | 0.0212 (12) | 0.0377 (15) | 0.0021 (13) | −0.0154 (15) | −0.0018 (11) |
C1 | 0.0331 (17) | 0.0180 (12) | 0.0265 (15) | −0.0010 (13) | −0.0025 (14) | 0.0020 (11) |
C2 | 0.0333 (17) | 0.0201 (13) | 0.0298 (15) | 0.0016 (13) | 0.0036 (15) | −0.0006 (12) |
C3 | 0.0324 (18) | 0.0192 (13) | 0.0415 (18) | 0.0039 (14) | −0.0005 (16) | −0.0011 (13) |
C4 | 0.0299 (16) | 0.0179 (12) | 0.0260 (14) | −0.0003 (13) | −0.0018 (14) | −0.0005 (11) |
C5 | 0.0295 (16) | 0.0188 (13) | 0.0280 (15) | 0.0026 (13) | 0.0008 (14) | 0.0019 (12) |
C6 | 0.0333 (18) | 0.0209 (13) | 0.0274 (15) | 0.0010 (13) | −0.0001 (14) | −0.0005 (12) |
C7 | 0.0382 (19) | 0.0194 (13) | 0.0354 (17) | 0.0006 (14) | −0.0015 (16) | −0.0004 (12) |
C8 | 0.047 (2) | 0.0365 (19) | 0.081 (3) | −0.012 (2) | 0.017 (2) | −0.020 (2) |
C9 | 0.044 (2) | 0.0321 (17) | 0.042 (2) | 0.0111 (17) | −0.0034 (18) | 0.0023 (15) |
C10 | 0.051 (2) | 0.0257 (16) | 0.051 (2) | 0.0042 (16) | 0.002 (2) | 0.0079 (15) |
C11 | 0.051 (2) | 0.0317 (17) | 0.050 (2) | 0.0028 (18) | −0.007 (2) | −0.0124 (16) |
C12 | 0.0360 (18) | 0.0191 (12) | 0.0307 (15) | 0.0030 (13) | −0.0085 (15) | 0.0024 (12) |
C13 | 0.0331 (17) | 0.0174 (13) | 0.0319 (16) | −0.0019 (13) | −0.0062 (14) | 0.0005 (12) |
C14 | 0.0270 (16) | 0.0224 (14) | 0.0265 (15) | 0.0009 (13) | −0.0004 (13) | 0.0014 (12) |
C15 | 0.0269 (16) | 0.0194 (13) | 0.0277 (14) | 0.0000 (13) | −0.0005 (14) | −0.0013 (12) |
C16 | 0.0265 (16) | 0.0212 (13) | 0.0265 (14) | −0.0003 (12) | 0.0026 (13) | −0.0020 (11) |
C17 | 0.0297 (16) | 0.0220 (13) | 0.0272 (15) | 0.0006 (13) | −0.0020 (14) | −0.0011 (12) |
C18 | 0.0285 (16) | 0.0217 (14) | 0.0293 (15) | −0.0001 (12) | 0.0037 (14) | −0.0029 (12) |
C19 | 0.0348 (18) | 0.0208 (14) | 0.0389 (17) | −0.0005 (15) | −0.0010 (16) | −0.0021 (13) |
C20 | 0.043 (2) | 0.0209 (15) | 0.050 (2) | −0.0014 (15) | 0.0039 (18) | −0.0021 (14) |
C21 | 0.039 (2) | 0.0247 (15) | 0.049 (2) | −0.0039 (14) | 0.0037 (18) | −0.0108 (14) |
C22 | 0.0395 (19) | 0.0276 (15) | 0.0375 (17) | −0.0033 (16) | −0.0026 (16) | −0.0073 (14) |
C23 | 0.0262 (16) | 0.0238 (14) | 0.0259 (14) | −0.0037 (12) | 0.0008 (13) | 0.0003 (12) |
C24 | 0.0327 (18) | 0.0295 (15) | 0.0353 (16) | 0.0029 (15) | −0.0075 (15) | −0.0002 (14) |
C25 | 0.0383 (19) | 0.0395 (18) | 0.0358 (18) | −0.0010 (17) | −0.0148 (17) | −0.0026 (15) |
C26 | 0.049 (2) | 0.0271 (15) | 0.0366 (17) | −0.0079 (17) | −0.0059 (18) | −0.0080 (14) |
C27 | 0.058 (3) | 0.0234 (15) | 0.0428 (19) | 0.0013 (16) | −0.015 (2) | −0.0027 (15) |
O7 | 0.0524 (18) | 0.0479 (16) | 0.0623 (19) | 0.0030 (15) | −0.0015 (16) | −0.0140 (14) |
O1—C2 | 1.403 (4) | C9—H9B | 0.9600 |
O1—C1 | 1.439 (4) | C9—H9C | 0.9600 |
O2—C2 | 1.425 (4) | C10—H10A | 0.9600 |
O2—C3 | 1.437 (4) | C10—H10B | 0.9600 |
O3—C3 | 1.428 (4) | C10—H10C | 0.9600 |
O3—C4 | 1.436 (4) | C11—H11A | 0.9600 |
O4—C7 | 1.419 (4) | C11—H11B | 0.9600 |
O4—C5 | 1.430 (4) | C11—H11C | 0.9600 |
O5—C7 | 1.418 (4) | C12—H12A | 0.9700 |
O5—C6 | 1.436 (4) | C12—H12B | 0.9700 |
O6—C12 | 1.416 (4) | C13—C14 | 1.509 (4) |
O6—C13 | 1.418 (4) | C13—H13A | 0.9700 |
N1—C15 | 1.339 (4) | C13—H13B | 0.9700 |
N1—N2 | 1.343 (4) | C14—C17 | 1.377 (4) |
N2—C16 | 1.339 (4) | C14—C15 | 1.411 (4) |
N3—C18 | 1.330 (5) | C15—C23 | 1.493 (4) |
N3—C22 | 1.337 (5) | C16—C17 | 1.397 (4) |
N4—C27 | 1.339 (5) | C16—C18 | 1.488 (4) |
N4—C23 | 1.341 (4) | C17—H17 | 0.9300 |
C1—C12 | 1.506 (5) | C18—C19 | 1.394 (5) |
C1—C6 | 1.510 (5) | C19—C20 | 1.386 (5) |
C1—H1 | 0.9800 | C19—H19 | 0.9300 |
C2—C4 | 1.519 (5) | C20—C21 | 1.378 (6) |
C2—H2 | 0.9800 | C20—H20 | 0.9300 |
C3—C10 | 1.508 (5) | C21—C22 | 1.385 (5) |
C3—C11 | 1.514 (5) | C21—H21 | 0.9300 |
C4—C5 | 1.517 (4) | C22—H22 | 0.9300 |
C4—H4 | 0.9800 | C23—C24 | 1.388 (5) |
C5—C6 | 1.525 (4) | C24—C25 | 1.382 (5) |
C5—H5 | 0.9800 | C24—H24 | 0.9300 |
C6—H6 | 0.9800 | C25—C26 | 1.383 (5) |
C7—C8 | 1.492 (6) | C25—H25 | 0.9300 |
C7—C9 | 1.512 (5) | C26—C27 | 1.375 (6) |
C8—H8A | 0.9600 | C26—H26 | 0.9300 |
C8—H8B | 0.9600 | C27—H27 | 0.9300 |
C8—H8C | 0.9600 | O7—H7A | 0.84 (2) |
C9—H9A | 0.9600 | O7—H7B | 0.86 (2) |
O1···O3 | 3.153 (2) | C2···C4ii | 3.538 (4) |
O1···O4 | 3.115 (3) | C2···H4ii | 2.96 |
O1···O5 | 2.999 (3) | C3···H1 | 2.88 |
O1···O6 | 2.920 (3) | C4···H11A | 2.84 |
O3···O1 | 3.153 (2) | C4···H2iii | 2.83 |
O3···C1 | 3.002 (3) | C4···H1 | 2.76 |
O7···O1 | 3.112 (3) | C5···H9A | 2.85 |
O7···O6 | 3.176 (3) | C10···H1 | 2.93 |
O7···N2i | 3.020 (3) | H1···H10C | 2.24 |
O2···H1 | 2.70 | H2···H4ii | 2.44 |
O2···H4ii | 2.90 | H4···H11A | 2.47 |
O3···H1 | 2.54 | H5···H9A | 2.56 |
O3···H2iii | 2.51 | H7A···H19i | 2.20 |
O5···H12B | 2.70 | H7A···N1i | 2.84 (3) |
O5···H12A | 2.77 | H7A···N2i | 2.19 (4) |
O6···H17 | 2.23 | H7B···O1 | 2.30 (2) |
O7···H19i | 2.64 | H7B···O6 | 2.56 (4) |
N4···C13 | 2.776 (3) | H8A···H9C | 2.55 |
N1···H24 | 2.44 | H8B···H9B | 2.50 |
N2···H19 | 2.56 | H8C···H11Cii | 2.48 |
N3···H17 | 2.46 | H10A···H11C | 2.53 |
N4···H13A | 2.56 | H10B···H11B | 2.57 |
N4···H13B | 2.54 | H12A···H13B | 2.26 |
C1···C3 | 3.485 (3) | ||
C2—O1—C1 | 113.4 (2) | H10A—C10—H10B | 109.5 |
C2—O2—C3 | 110.4 (2) | C3—C10—H10C | 109.5 |
C3—O3—C4 | 106.7 (2) | H10A—C10—H10C | 109.5 |
C7—O4—C5 | 107.6 (2) | H10B—C10—H10C | 109.5 |
C7—O5—C6 | 109.6 (2) | C3—C11—H11A | 109.5 |
C12—O6—C13 | 112.9 (2) | C3—C11—H11B | 109.5 |
C15—N1—N2 | 121.1 (3) | H11A—C11—H11B | 109.5 |
C16—N2—N1 | 119.2 (3) | C3—C11—H11C | 109.5 |
C18—N3—C22 | 117.7 (3) | H11A—C11—H11C | 109.5 |
C27—N4—C23 | 117.2 (3) | H11B—C11—H11C | 109.5 |
O1—C1—C12 | 107.5 (3) | O6—C12—C1 | 107.7 (2) |
O1—C1—C6 | 110.3 (2) | O6—C12—H12A | 110.2 |
C12—C1—C6 | 113.4 (3) | C1—C12—H12A | 110.2 |
O1—C1—H1 | 108.5 | O6—C12—H12B | 110.2 |
C12—C1—H1 | 108.5 | C1—C12—H12B | 110.2 |
C6—C1—H1 | 108.5 | H12A—C12—H12B | 108.5 |
O1—C2—O2 | 111.0 (3) | O6—C13—C14 | 107.7 (2) |
O1—C2—C4 | 114.3 (3) | O6—C13—H13A | 110.2 |
O2—C2—C4 | 103.7 (3) | C14—C13—H13A | 110.2 |
O1—C2—H2 | 109.2 | O6—C13—H13B | 110.2 |
O2—C2—H2 | 109.2 | C14—C13—H13B | 110.2 |
C4—C2—H2 | 109.2 | H13A—C13—H13B | 108.5 |
O3—C3—O2 | 105.4 (2) | C17—C14—C15 | 116.4 (3) |
O3—C3—C10 | 108.3 (3) | C17—C14—C13 | 118.5 (3) |
O2—C3—C10 | 109.9 (3) | C15—C14—C13 | 125.1 (3) |
O3—C3—C11 | 110.8 (3) | N1—C15—C14 | 121.9 (3) |
O2—C3—C11 | 109.4 (3) | N1—C15—C23 | 113.5 (3) |
C10—C3—C11 | 112.8 (3) | C14—C15—C23 | 124.6 (3) |
O3—C4—C5 | 107.3 (2) | N2—C16—C17 | 121.9 (3) |
O3—C4—C2 | 103.9 (2) | N2—C16—C18 | 117.5 (3) |
C5—C4—C2 | 114.6 (3) | C17—C16—C18 | 120.5 (3) |
O3—C4—H4 | 110.3 | C14—C17—C16 | 119.3 (3) |
C5—C4—H4 | 110.3 | C14—C17—H17 | 120.3 |
C2—C4—H4 | 110.3 | C16—C17—H17 | 120.3 |
O4—C5—C4 | 107.2 (2) | N3—C18—C19 | 122.9 (3) |
O4—C5—C6 | 104.1 (2) | N3—C18—C16 | 115.1 (3) |
C4—C5—C6 | 113.2 (3) | C19—C18—C16 | 122.0 (3) |
O4—C5—H5 | 110.7 | C20—C19—C18 | 118.5 (3) |
C4—C5—H5 | 110.7 | C20—C19—H19 | 120.8 |
C6—C5—H5 | 110.7 | C18—C19—H19 | 120.8 |
O5—C6—C1 | 109.8 (3) | C21—C20—C19 | 119.1 (3) |
O5—C6—C5 | 104.5 (2) | C21—C20—H20 | 120.5 |
C1—C6—C5 | 113.0 (3) | C19—C20—H20 | 120.5 |
O5—C6—H6 | 109.8 | C20—C21—C22 | 118.3 (3) |
C1—C6—H6 | 109.8 | C20—C21—H21 | 120.8 |
C5—C6—H6 | 109.8 | C22—C21—H21 | 120.8 |
O5—C7—O4 | 106.1 (2) | N3—C22—C21 | 123.5 (3) |
O5—C7—C8 | 109.6 (4) | N3—C22—H22 | 118.2 |
O4—C7—C8 | 108.4 (3) | C21—C22—H22 | 118.2 |
O5—C7—C9 | 109.3 (3) | N4—C23—C24 | 122.6 (3) |
O4—C7—C9 | 110.9 (3) | N4—C23—C15 | 116.6 (3) |
C8—C7—C9 | 112.3 (3) | C24—C23—C15 | 120.8 (3) |
C7—C8—H8A | 109.5 | C25—C24—C23 | 118.7 (3) |
C7—C8—H8B | 109.5 | C25—C24—H24 | 120.7 |
H8A—C8—H8B | 109.5 | C23—C24—H24 | 120.7 |
C7—C8—H8C | 109.5 | C24—C25—C26 | 119.5 (3) |
H8A—C8—H8C | 109.5 | C24—C25—H25 | 120.3 |
H8B—C8—H8C | 109.5 | C26—C25—H25 | 120.3 |
C7—C9—H9A | 109.5 | C27—C26—C25 | 117.7 (3) |
C7—C9—H9B | 109.5 | C27—C26—H26 | 121.2 |
H9A—C9—H9B | 109.5 | C25—C26—H26 | 121.2 |
C7—C9—H9C | 109.5 | N4—C27—C26 | 124.4 (3) |
H9A—C9—H9C | 109.5 | N4—C27—H27 | 117.8 |
H9B—C9—H9C | 109.5 | C26—C27—H27 | 117.8 |
C3—C10—H10A | 109.5 | H7A—O7—H7B | 104 (6) |
C3—C10—H10B | 109.5 | ||
C15—N1—N2—C16 | −1.1 (5) | O1—C1—C12—O6 | 77.8 (3) |
C2—O1—C1—C12 | −167.7 (2) | C6—C1—C12—O6 | −160.1 (3) |
C2—O1—C1—C6 | 68.2 (3) | C12—O6—C13—C14 | −161.7 (3) |
C1—O1—C2—O2 | 81.1 (3) | O6—C13—C14—C17 | 8.0 (4) |
C1—O1—C2—C4 | −35.8 (3) | O6—C13—C14—C15 | −172.8 (3) |
C3—O2—C2—O1 | −115.1 (3) | N2—N1—C15—C14 | 3.9 (5) |
C3—O2—C2—C4 | 8.1 (3) | N2—N1—C15—C23 | −175.6 (3) |
C4—O3—C3—O2 | −27.7 (3) | C17—C14—C15—N1 | −3.3 (5) |
C4—O3—C3—C10 | −145.2 (3) | C13—C14—C15—N1 | 177.6 (3) |
C4—O3—C3—C11 | 90.5 (3) | C17—C14—C15—C23 | 176.1 (3) |
C2—O2—C3—O3 | 11.5 (4) | C13—C14—C15—C23 | −3.0 (5) |
C2—O2—C3—C10 | 128.0 (3) | N1—N2—C16—C17 | −2.2 (5) |
C2—O2—C3—C11 | −107.7 (3) | N1—N2—C16—C18 | 175.7 (3) |
C3—O3—C4—C5 | 154.1 (3) | C15—C14—C17—C16 | 0.0 (5) |
C3—O3—C4—C2 | 32.4 (3) | C13—C14—C17—C16 | 179.2 (3) |
O1—C2—C4—O3 | 96.5 (3) | N2—C16—C17—C14 | 2.7 (5) |
O2—C2—C4—O3 | −24.4 (3) | C18—C16—C17—C14 | −175.2 (3) |
O1—C2—C4—C5 | −20.2 (4) | C22—N3—C18—C19 | −0.8 (5) |
O2—C2—C4—C5 | −141.2 (3) | C22—N3—C18—C16 | 177.7 (3) |
C7—O4—C5—C4 | 147.7 (3) | N2—C16—C18—N3 | −171.4 (3) |
C7—O4—C5—C6 | 27.5 (3) | C17—C16—C18—N3 | 6.5 (4) |
O3—C4—C5—O4 | 175.2 (2) | N2—C16—C18—C19 | 7.1 (5) |
C2—C4—C5—O4 | −70.0 (3) | C17—C16—C18—C19 | −174.9 (3) |
O3—C4—C5—C6 | −70.5 (3) | N3—C18—C19—C20 | 0.9 (5) |
C2—C4—C5—C6 | 44.2 (4) | C16—C18—C19—C20 | −177.5 (3) |
C7—O5—C6—C1 | −121.7 (3) | C18—C19—C20—C21 | −0.5 (5) |
C7—O5—C6—C5 | −0.3 (4) | C19—C20—C21—C22 | 0.1 (5) |
O1—C1—C6—O5 | 76.1 (3) | C18—N3—C22—C21 | 0.4 (5) |
C12—C1—C6—O5 | −44.5 (4) | C20—C21—C22—N3 | −0.1 (6) |
O1—C1—C6—C5 | −40.1 (3) | C27—N4—C23—C24 | −0.9 (5) |
C12—C1—C6—C5 | −160.7 (3) | C27—N4—C23—C15 | −178.8 (3) |
O4—C5—C6—O5 | −16.4 (3) | N1—C15—C23—N4 | 167.1 (3) |
C4—C5—C6—O5 | −132.5 (3) | C14—C15—C23—N4 | −12.4 (5) |
O4—C5—C6—C1 | 102.9 (3) | N1—C15—C23—C24 | −10.8 (4) |
C4—C5—C6—C1 | −13.2 (4) | C14—C15—C23—C24 | 169.7 (3) |
C6—O5—C7—O4 | 17.2 (4) | N4—C23—C24—C25 | 0.4 (5) |
C6—O5—C7—C8 | 134.1 (3) | C15—C23—C24—C25 | 178.2 (3) |
C6—O5—C7—C9 | −102.4 (3) | C23—C24—C25—C26 | 0.2 (6) |
C5—O4—C7—O5 | −28.3 (4) | C24—C25—C26—C27 | −0.3 (6) |
C5—O4—C7—C8 | −146.0 (3) | C23—N4—C27—C26 | 0.8 (6) |
C5—O4—C7—C9 | 90.3 (3) | C25—C26—C27—N4 | −0.3 (7) |
C13—O6—C12—C1 | 174.4 (3) |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z+1; (iii) x+1/2, −y+1/2, −z+1. |
Cg is the centroid of the N3/C18–C22 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···N2i | 0.84 (2) | 2.18 (3) | 3.019 (4) | 172 (6) |
O7—H7B···O1 | 0.86 (2) | 2.30 (3) | 3.112 (4) | 157 (6) |
O7—H7B···O6 | 0.86 (2) | 2.57 (5) | 3.176 (5) | 129 (5) |
C2—H2···O3ii | 0.98 | 2.51 | 3.444 (4) | 160 |
C12—H12A···Cgiv | 0.97 | 3.07 | 3.761 (3) | 130 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z+1; (iv) −x+1, y−1/2, −z+1/2. |
Funding information
TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Bouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). Mor. J. Chem. 6, 22–34. CAS Google Scholar
Constable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. (2008). Aust. J. Chem. 61, 847–853. Web of Science CSD CrossRef CAS Google Scholar
Elmsellem, H., Nacer, H., Halaimia, F., Aouniti, A., Lakehal, I., Chetouani, A., Al-Deyab, S. S., Warad, I., Touzani, R. & Hammouti, B. (2014). Int. J. Electrochem. Sci. 9, 5328–5351. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hjouji, M. Y., Djedid, M., Elmsellem, H., Kandri Rodi, Y., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M., Abdel-Rahman, I. & Hammouti, B. (2016). J. Mater. Environ. Sci. 7, 1425–1435. CAS Google Scholar
Kaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68–77. CrossRef CAS Web of Science Google Scholar
Khadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552–564. Web of Science CrossRef CAS Google Scholar
Kore, A. R., Yang, B. & Srinivasan, B. (2015). Tetrahedron Lett. 56, 808–811. Web of Science CrossRef CAS Google Scholar
Marino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). CrystEngComm, 21, 917–924. Web of Science CSD CrossRef CAS Google Scholar
Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270–281. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Showrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). IUCrData, 2, x171142. Google Scholar
Sikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620–4632. CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Tsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121–126. Web of Science CSD CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.