research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and corrosion inhibition study of 3,6-bis­­(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetra­methyl­tetra­hydro-5H-bis­­[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl)meth­­oxy]meth­yl}pyridazine monohydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, bLaboratoire de Chimie Analytique Appliquée, Matériaux et Environnement (LC2AME), Faculté des Sciences, BP 717, 60000 Oujda, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dLaboratoire MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers 2 bd Lavoisier, 49045 Angers Cedex, France
*Correspondence e-mail: mmouadfilali10@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 4 June 2019; accepted 9 July 2019; online 12 July 2019)

In the title compound, C27H30N4O6·H2O, the two dioxolo rings are in envelope conformations, while the pyran ring is in a twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Ometh­oxy­meth­yl and O—Hwater⋯Npyridazine hydrogen bonds link the mol­ecules into chains along [010]. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmeth­oxy­meth­ylπ inter­action complete the three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (55.7%), H⋯C/C⋯H (14.6%), H⋯O/O⋯H (14.5%) and H⋯N/N⋯H (9.6%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Electrochemical measurements are also reported.

1. Chemical context

Given their importance in the pharmaceutical, chemical and industrial fields, the synthesis of 3,6-di(pyridin-2-yl)pyridazine and its derivatives has been a goal of chemists in recent years. 5-[3,6-Di(pyridin-2-yl)pyridazine-4-yl]-2′-de­oxy­uridine-5′-O-triphosphate can be used as a potential substrate for fluorescence detection and imaging of DNA (Kore et al., 2015[Kore, A. R., Yang, B. & Srinivasan, B. (2015). Tetrahedron Lett. 56, 808-811.]). Systems containing this moiety have also shown remarkable corrosion inhibitory (Khadiri et al., 2016[Khadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552-564.]). Heterocyclic mol­ecules such as 3,6-bis (2′-pyrid­yl)-1,2,4,5-tetra­zine have been used in transition-metal chemistry (Kaim & Kohlmann, 1987[Kaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68-77.]). This bidentate chelate ligand is popular in coordination chemistry and complexes of a wide range of metals, including iridium and palladium (Tsukada et al., 2001[Tsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121-126.]). We report herein the synthesis and the mol­ecular and crystal structures of the title compound, (I)[link], along with the Hirshfeld surface analysis and its corrosion inhibition properties.

2. Structural commentary

The title mol­ecule contains two dioxolo, two pyridine, one pyridazine and one pyran rings (Fig. 1[link]). The pyridazine ring is linked to the pyran ring through the meth­oxy­methyl moiety. The two dioxolo rings, B (O2/O3/C2–C4) and C (O4/O5/C5–C7), are in envelope conformations. Atoms O3 and O4 are at the flap positions and are displaced by 0.442 (2) and −0.397 (2) Å, respectively, from the least-squares planes of the four atoms. A puckering analysis of the pyran ring A (O1/C1/C2/C4–C6), gave the parameters QT = 0.6508 (25) Å, q2 = 0.6451 (25) Å, q3 = −0.0865 (26) Å, φ = 214.6 (2)° and θ = 97.64 (23)°, indicating a twisted-boat conformation. The pyradizine ring D (N1/N2/C14–C17) is oriented at dihedral angles of 9.23 (6) and 12.98 (9)°, respectively, to the pyridine rings E (N3/C18–C22) and F (N4/C23–C27), while the dihedral angle between the two pyridine rings is 13.45 (10)°. The meth­oxy­methyl moiety is nearly co-planar with the pyradizine ring, as indicated by the O6—C13—C14—C15 torsion angle of −172.8 (2)°.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms bonded to C atoms are not shown.

3. Supra­molecular features

In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Ometh­oxy­meth­yl and O—Hwater⋯Npyridazine hydrogen bonds (Table 1[link] and Fig. 2[link]) link the mol­ecules, forming chains along [010]. The hydrogen bond involving H7B is bifurcated. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmeth­oxy­meth­ylπ inter­action complete the three-dimensional structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N3/C18–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯N2i 0.84 (2) 2.18 (3) 3.019 (4) 172 (6)
O7—H7B⋯O1 0.86 (2) 2.30 (3) 3.112 (4) 157 (6)
O7—H7B⋯O6 0.86 (2) 2.57 (5) 3.176 (5) 129 (5)
C2—H2⋯O3ii 0.98 2.51 3.444 (4) 160
C12—H12ACgiv 0.97 3.07 3.761 (3) 130
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram showing the O—Hwater⋯Opyran, O—Hwater⋯Ometh­oxy­meth­yl and O—Hwater⋯Npyridazine hydrogen bonds (Table 1[link]) as dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), white indicates contacts with distances equal to the sum of van der Waals radii, while red and blue indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near O1, O6, N2 and hydrogen atoms H2, H7A, H7B indicate their roles as the respective donors and/or acceptors. The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if these are absent, then there are no ππ inter­actions. Fig. 4[link] clearly suggest that there are no ππ inter­actions in (I)[link]. The overall two-dimensional fingerprint plot, Fig. 5[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N ⋯H, C⋯C and C⋯N/N⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) are illustrated in Fig. 5[link]bg, respectively, together with their relative contributions to the Hirshfeld surface. Selected contacts are listed in Table 2[link].

Table 2
Selected interatomic distances (Å)

O1⋯O3 3.153 (2) C2⋯C4ii 3.538 (4)
O1⋯O4 3.115 (3) C2⋯H4ii 2.96
O1⋯O5 2.999 (3) C3⋯H1 2.88
O1⋯O6 2.920 (3) C4⋯H11A 2.84
O3⋯O1 3.153 (2) C4⋯H2iii 2.83
O3⋯C1 3.002 (3) C4⋯H1 2.76
O7⋯O1 3.112 (3) C5⋯H9A 2.85
O7⋯O6 3.176 (3) C10⋯H1 2.93
O7⋯N2i 3.020 (3) H1⋯H10C 2.24
O2⋯H1 2.70 H2⋯H4ii 2.44
O2⋯H4ii 2.90 H4⋯H11A 2.47
O3⋯H1 2.54 H5⋯H9A 2.56
O3⋯H2iii 2.51 H7A⋯H19i 2.20
O5⋯H12B 2.70 H7A⋯N1i 2.84 (3)
O5⋯H12A 2.77 H7A⋯N2i 2.19 (4)
O6⋯H17 2.23 H7B⋯O1 2.30 (2)
O7⋯H19i 2.64 H7B⋯O6 2.56 (4)
N4⋯C13 2.776 (3) H8A⋯H9C 2.55
N1⋯H24 2.44 H8B⋯H9B 2.50
N2⋯H19 2.56 H8C⋯H11Cii 2.48
N3⋯H17 2.46 H10A⋯H11C 2.53
N4⋯H13A 2.56 H10B⋯H11B 2.57
N4⋯H13B 2.54 H12A⋯H13B 2.26
C1⋯C3 3.485 (3)    
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.4555 to 1.4860 a.u.
[Figure 4]
Figure 4
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) C⋯C and (g) C⋯N/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The most important inter­action is H⋯H, contributing 55.7% to the overall crystal packing, which is reflected in Fig. 5[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di ∼1.00 Å. In the presence of a weak C—H⋯π inter­action, the wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (14.6% contribution to the HS) have a symmetrical distribution of points, Fig. 5[link]c, with the thin and thick edges at de + di = 2.85 and 2.78 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (14.5%, Fig. 5[link]d) arises from the O—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) as well as from the H⋯O/O⋯H contacts (Table 2[link]) and has a pair of spikes with the tips at de + di = 2.18 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 5[link]e, 9.6%) arises from the O—H⋯N hydrogen bonds (Table 1[link]) as well as from the H⋯N/N⋯H contacts has a pair of spikes with the tips at de + di = 2.04 Å. Finally, the C⋯C contacts (Fig. 5[link]g, 2.4%) have a wide spike with the tip at de = di = 1.75 Å.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions in Fig. 6[link]ad, respectively.

[Figure 6]
Figure 6
Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯N/N⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Electrochemical measurements

The effect of the title compound as an inhibitor of the corrosion of mild steel (MS) were studied using electrochemical impedance spectroscopy in the concentration range of 10−6 to 10−3 M at 308 K. The electrochemical experiment consisted of a 3 electrode electrolytic cell consisting of platinum foil as counter-electrode, saturated calomel as reference electrode and MS as working electrode with an exposed area of 1 cm2. The MS specimen was immersed in a test solution for 0.5 h until a steady-state potential was achieved using a PGZ100 potentiostat (Bouayad et al., 2018[Bouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). Mor. J. Chem. 6, 22-34.]). Electrochemical impedance spectroscopy (EIS) measurements were performed over a frequency range of 0.1 × 10−3 KHz to 10 mHz and an amplitude of 10 mV with 10 points per decade. The percentage inhibition efficiency is calculated from Rt values as (Sikine et al., 2016[Sikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620-4632.]) E (%) = [1 − Rt(HCl)/Rt(inh)] × 100, where Rt(inh) and Rt(HCl) are the charge-transfer resistances for MS immersed in HCl, with the title compound and without inhibitor. Nyquist representations of mild steel in 1 M HCl in the absence and presence of the inhibitor system are shown in Fig. 7[link].

[Figure 7]
Figure 7
Nyquist plots of mild steel in 1M HCl in presence of different concentrations of 3,6-bis­(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetra­methyl­tetra­hydro-5H-bis­[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl)meth­oxy]meth­yl}pyridazine monohydrate.

The impedance method provides information about the kinetics of the electrode processes and the surface properties of the investigated systems. The technique is based on the measurement of the impedance of the double layer at the MS/solution inter­face, and represents the Nyquist plots of mild steel (MS) specimens in 1 M HCl without and with various concentrations of the inhibitor. The impedance diagrams obtained have an almost semicircular appearance. This indicates that the corrosion of mild steel in aqueous solution is mainly controlled by a charge-transfer process. The imp­edance parameters are given in Fig. 8[link]. It is observed from the plots that the impedance response of mild steel was significantly changed after addition of the inhibitor. Rct is increased to a maximum value of 185 Ω cm2 for the inhibitor, showing a maximum inhibition efficiency of 91% at 10−3 M. The decrease in Cdl from the HCl acid value of 200 µF cm−2, may be due to the increase in the thickness of the electrical double layer or to a decrease in the local dielectric constant (Elmsellem et al., 2014[Elmsellem, H., Nacer, H., Halaimia, F., Aouniti, A., Lakehal, I., Chetouani, A., Al-Deyab, S. S., Warad, I., Touzani, R. & Hammouti, B. (2014). Int. J. Electrochem. Sci. 9, 5328-5351.]). This is caused by the gradual displacement of water mol­ecules by the adsorption of organic mol­ecules on the mild steel surface (Hjouji et al., 2016[Hjouji, M. Y., Djedid, M., Elmsellem, H., Kandri Rodi, Y., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M., Abdel-Rahman, I. & Hammouti, B. (2016). J. Mater. Environ. Sci. 7, 1425-1435.]). Apart from the experimental impedance (EIS) results, the following conclusion is drawn: the alternating impedance spectrum reveals that the double-layer capacitances decrease with respect to the blank solution when the title compound is added. This fact confirms the adsorption of inhibitor mol­ecules on the surface of the MS.

[Figure 8]
Figure 8
EIS parameters for the corrosion of mild steel in 1M HCl with and without inhibitor 3,6-bis­(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetra­methyl­tetra­hydro-5H-bis­[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl)meth­oxy]meth­yl}pyridazine monohydrate at 308 K.

6. Database survey

Silver(I) complexes coordinated by 3,6-di(pyridin-2-yl)pyridazine ligands have been reported (Constable et al., 2008[Constable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. (2008). Aust. J. Chem. 61, 847-853.]). Three other metal complexes including 3,6-di(pyridin-2-yl)pyridazine have also been reported, viz. aqua­bis­[3,6-bis(pyridin-2-yl)pyridazine-κ2N1,N6]copper(II) bis­(tri­fluoro­meth­ane­sulfonate) (Showrilu et al., 2017[Showrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). IUCrData, 2, x171142.]), tetra­kis­[μ-3,6-di(pyridin-2-yl)pyridazine]bis­(μ-hydroxo)bis­(μ-aqua)­tetra­nickel(II) hexa­kis­(nitrate) tetra­deca­hydrate (Marino et al., 2019[Marino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). CrystEngComm, 21, 917-924.]) and catena-[[μ2-3,6-di(pyridin-2-yl)pyridazine]bis­(μ2-azido)­diaza­idodicopper monohydrate] (Mastropietro et al., 2013[Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270-281.]).

7. Synthesis and crystallization

6-O-Propargyl-1,2:3,4-di-O-iso­propyl­idene-α-D-galacto­pyran­oside (4 mmol) was added to a solution of 3,6-bis­(2-pyrid­yl)-1,2,4,5-tetra­zine (4 mmol) in toluene (20 ml). Stirring was continued at room temperature for 4 h. The solvent was removed under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1:2) as eluent. Colourless crystals were isolated on evaporation of the solvent (yield: 82%).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Water hydrogen atoms were located in a difference-Fourier map and refined with the distance constraint O—H = 0.80 (2) Å. Other H atoms were positioned geometrically with C—H = 0.93, 0.98, 0.97 and 0.96 Å, for aromatic, methine, methyl­ene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C-meth­yl) or 1.2Ueq(C) for all other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C27H30N4O6·H2O
Mr 524.56
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 8.8417 (3), 11.3252 (3), 25.7003 (8)
V3) 2573.47 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.82
Crystal size (mm) 0.47 × 0.15 × 0.10
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, single source at offset, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.656, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6128, 4277, 3853
Rint 0.037
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.121, 1.10
No. of reflections 4277
No. of parameters 353
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.36
Absolute structure Flack x determined using 1226 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.01 (16)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2015); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2015).

3,6-Bis(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5H-bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)methoxy]methyl}pyridazine monohydrate top
Crystal data top
C27H30N4O6·H2ODx = 1.354 Mg m3
Mr = 524.56Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 2843 reflections
a = 8.8417 (3) Åθ = 3.3–72.3°
b = 11.3252 (3) ŵ = 0.82 mm1
c = 25.7003 (8) ÅT = 150 K
V = 2573.47 (14) Å3Plate, colourless
Z = 40.47 × 0.15 × 0.10 mm
F(000) = 1112
Data collection top
Rigaku Oxford Diffraction SuperNova, single source at offset, AtlasS2
diffractometer
4277 independent reflections
Radiation source: SuperNova(Cu) micro-focus sealed X-ray Source3853 reflections with I > 2σ(I)
Detector resolution: 5.1990 pixels mm-1Rint = 0.037
ω scansθmax = 72.4°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO (Rigaku OD, 2015)
h = 910
Tmin = 0.656, Tmax = 1.000k = 135
6128 measured reflectionsl = 3129
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.4885P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.27 e Å3
4277 reflectionsΔρmin = 0.36 e Å3
353 parametersAbsolute structure: Flack x determined using 1226 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.01 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3541 (3)0.1622 (2)0.41689 (9)0.0282 (5)
O20.3948 (3)0.34989 (19)0.45130 (10)0.0314 (5)
O30.6462 (3)0.30998 (18)0.44345 (9)0.0275 (5)
O40.5889 (3)0.00085 (19)0.47272 (8)0.0298 (5)
O50.5504 (4)0.04337 (19)0.38768 (10)0.0397 (7)
O60.2874 (3)0.20336 (19)0.30710 (9)0.0341 (6)
N10.0414 (3)0.4001 (2)0.16743 (11)0.0279 (6)
N20.0957 (3)0.5016 (2)0.18697 (10)0.0280 (6)
N30.3589 (4)0.6013 (3)0.28330 (11)0.0324 (6)
N40.0746 (4)0.0864 (2)0.17094 (12)0.0358 (7)
C10.4587 (4)0.1547 (3)0.37413 (12)0.0258 (7)
H10.4950930.2343480.3660980.031*
C20.4106 (4)0.2260 (3)0.45945 (13)0.0277 (7)
H20.3550330.2034000.4908910.033*
C30.5408 (4)0.4049 (3)0.44788 (14)0.0310 (7)
C40.5790 (4)0.2100 (3)0.46886 (12)0.0246 (6)
H40.6008430.2120230.5062340.030*
C50.6463 (4)0.0999 (3)0.44448 (12)0.0254 (6)
H50.7569730.1021350.4460600.031*
C60.5926 (4)0.0790 (3)0.38885 (12)0.0272 (7)
H60.6760970.0929960.3645270.033*
C70.5754 (4)0.0947 (3)0.43729 (13)0.0310 (7)
C80.4413 (5)0.1669 (4)0.4525 (2)0.0550 (12)
H8A0.4534990.1941500.4876140.082*
H8B0.4325770.2334400.4295690.082*
H8C0.3515590.1194630.4500950.082*
C90.7193 (5)0.1667 (3)0.43584 (15)0.0394 (9)
H9A0.8028430.1163530.4270160.059*
H9B0.7098780.2278810.4102080.059*
H9C0.7365830.2014670.4693760.059*
C100.5503 (5)0.4786 (3)0.39910 (15)0.0427 (9)
H10A0.6502630.5108850.3958920.064*
H10B0.4780450.5417220.4009670.064*
H10C0.5286530.4300670.3693950.064*
C110.5698 (5)0.4759 (3)0.49680 (16)0.0442 (9)
H11A0.5697290.4241250.5263800.066*
H11B0.4918030.5341470.5008560.066*
H11C0.6662210.5144000.4941890.066*
C120.3729 (4)0.1086 (3)0.32779 (13)0.0286 (7)
H12A0.4426590.0787820.3017970.034*
H12B0.3063420.0447680.3382370.034*
C130.2122 (4)0.1736 (3)0.26014 (13)0.0275 (7)
H13A0.1222730.1275140.2675500.033*
H13B0.2782920.1271300.2380420.033*
C140.1697 (4)0.2873 (3)0.23325 (12)0.0253 (6)
C150.0791 (4)0.2958 (3)0.18820 (12)0.0247 (6)
C160.1872 (4)0.4980 (3)0.22846 (12)0.0247 (6)
C170.2238 (4)0.3919 (3)0.25319 (12)0.0263 (6)
H170.2842240.3919840.2828220.032*
C180.2537 (4)0.6114 (3)0.24658 (12)0.0265 (7)
C190.2107 (4)0.7197 (3)0.22546 (14)0.0315 (7)
H190.1357610.7238460.2001450.038*
C200.2823 (5)0.8210 (3)0.24304 (15)0.0380 (8)
H200.2566300.8944990.2294900.046*
C210.3920 (4)0.8114 (3)0.28088 (15)0.0376 (9)
H210.4416300.8779610.2934260.045*
C220.4265 (5)0.7001 (3)0.29975 (14)0.0349 (8)
H220.5006900.6937070.3252470.042*
C230.0175 (4)0.1927 (3)0.15887 (12)0.0253 (7)
C240.0897 (4)0.2085 (3)0.12003 (13)0.0325 (7)
H240.1268280.2833130.1124010.039*
C250.1402 (5)0.1107 (3)0.09294 (14)0.0378 (8)
H250.2116740.1191100.0666530.045*
C260.0836 (5)0.0004 (3)0.10520 (14)0.0375 (8)
H260.1160140.0668360.0876560.045*
C270.0224 (5)0.0065 (3)0.14423 (15)0.0414 (9)
H270.0603420.0806940.1526400.050*
O70.0146 (4)0.1893 (3)0.38725 (14)0.0542 (8)
H7A0.011 (7)0.141 (5)0.3642 (19)0.081*
H7B0.111 (3)0.189 (6)0.386 (2)0.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0250 (11)0.0272 (10)0.0325 (11)0.0023 (10)0.0016 (10)0.0023 (9)
O20.0294 (12)0.0210 (10)0.0438 (13)0.0057 (9)0.0026 (11)0.0024 (9)
O30.0280 (11)0.0181 (10)0.0364 (12)0.0007 (9)0.0010 (10)0.0006 (9)
O40.0419 (14)0.0190 (9)0.0286 (11)0.0011 (10)0.0005 (11)0.0020 (8)
O50.0627 (18)0.0179 (10)0.0385 (13)0.0041 (11)0.0184 (14)0.0038 (9)
O60.0499 (15)0.0190 (9)0.0333 (12)0.0033 (11)0.0182 (12)0.0023 (9)
N10.0324 (15)0.0203 (12)0.0310 (13)0.0004 (11)0.0037 (13)0.0002 (10)
N20.0339 (16)0.0192 (11)0.0310 (13)0.0005 (11)0.0006 (13)0.0010 (10)
N30.0367 (16)0.0252 (13)0.0352 (14)0.0026 (12)0.0011 (13)0.0045 (11)
N40.0485 (18)0.0212 (12)0.0377 (15)0.0021 (13)0.0154 (15)0.0018 (11)
C10.0331 (17)0.0180 (12)0.0265 (15)0.0010 (13)0.0025 (14)0.0020 (11)
C20.0333 (17)0.0201 (13)0.0298 (15)0.0016 (13)0.0036 (15)0.0006 (12)
C30.0324 (18)0.0192 (13)0.0415 (18)0.0039 (14)0.0005 (16)0.0011 (13)
C40.0299 (16)0.0179 (12)0.0260 (14)0.0003 (13)0.0018 (14)0.0005 (11)
C50.0295 (16)0.0188 (13)0.0280 (15)0.0026 (13)0.0008 (14)0.0019 (12)
C60.0333 (18)0.0209 (13)0.0274 (15)0.0010 (13)0.0001 (14)0.0005 (12)
C70.0382 (19)0.0194 (13)0.0354 (17)0.0006 (14)0.0015 (16)0.0004 (12)
C80.047 (2)0.0365 (19)0.081 (3)0.012 (2)0.017 (2)0.020 (2)
C90.044 (2)0.0321 (17)0.042 (2)0.0111 (17)0.0034 (18)0.0023 (15)
C100.051 (2)0.0257 (16)0.051 (2)0.0042 (16)0.002 (2)0.0079 (15)
C110.051 (2)0.0317 (17)0.050 (2)0.0028 (18)0.007 (2)0.0124 (16)
C120.0360 (18)0.0191 (12)0.0307 (15)0.0030 (13)0.0085 (15)0.0024 (12)
C130.0331 (17)0.0174 (13)0.0319 (16)0.0019 (13)0.0062 (14)0.0005 (12)
C140.0270 (16)0.0224 (14)0.0265 (15)0.0009 (13)0.0004 (13)0.0014 (12)
C150.0269 (16)0.0194 (13)0.0277 (14)0.0000 (13)0.0005 (14)0.0013 (12)
C160.0265 (16)0.0212 (13)0.0265 (14)0.0003 (12)0.0026 (13)0.0020 (11)
C170.0297 (16)0.0220 (13)0.0272 (15)0.0006 (13)0.0020 (14)0.0011 (12)
C180.0285 (16)0.0217 (14)0.0293 (15)0.0001 (12)0.0037 (14)0.0029 (12)
C190.0348 (18)0.0208 (14)0.0389 (17)0.0005 (15)0.0010 (16)0.0021 (13)
C200.043 (2)0.0209 (15)0.050 (2)0.0014 (15)0.0039 (18)0.0021 (14)
C210.039 (2)0.0247 (15)0.049 (2)0.0039 (14)0.0037 (18)0.0108 (14)
C220.0395 (19)0.0276 (15)0.0375 (17)0.0033 (16)0.0026 (16)0.0073 (14)
C230.0262 (16)0.0238 (14)0.0259 (14)0.0037 (12)0.0008 (13)0.0003 (12)
C240.0327 (18)0.0295 (15)0.0353 (16)0.0029 (15)0.0075 (15)0.0002 (14)
C250.0383 (19)0.0395 (18)0.0358 (18)0.0010 (17)0.0148 (17)0.0026 (15)
C260.049 (2)0.0271 (15)0.0366 (17)0.0079 (17)0.0059 (18)0.0080 (14)
C270.058 (3)0.0234 (15)0.0428 (19)0.0013 (16)0.015 (2)0.0027 (15)
O70.0524 (18)0.0479 (16)0.0623 (19)0.0030 (15)0.0015 (16)0.0140 (14)
Geometric parameters (Å, º) top
O1—C21.403 (4)C9—H9B0.9600
O1—C11.439 (4)C9—H9C0.9600
O2—C21.425 (4)C10—H10A0.9600
O2—C31.437 (4)C10—H10B0.9600
O3—C31.428 (4)C10—H10C0.9600
O3—C41.436 (4)C11—H11A0.9600
O4—C71.419 (4)C11—H11B0.9600
O4—C51.430 (4)C11—H11C0.9600
O5—C71.418 (4)C12—H12A0.9700
O5—C61.436 (4)C12—H12B0.9700
O6—C121.416 (4)C13—C141.509 (4)
O6—C131.418 (4)C13—H13A0.9700
N1—C151.339 (4)C13—H13B0.9700
N1—N21.343 (4)C14—C171.377 (4)
N2—C161.339 (4)C14—C151.411 (4)
N3—C181.330 (5)C15—C231.493 (4)
N3—C221.337 (5)C16—C171.397 (4)
N4—C271.339 (5)C16—C181.488 (4)
N4—C231.341 (4)C17—H170.9300
C1—C121.506 (5)C18—C191.394 (5)
C1—C61.510 (5)C19—C201.386 (5)
C1—H10.9800C19—H190.9300
C2—C41.519 (5)C20—C211.378 (6)
C2—H20.9800C20—H200.9300
C3—C101.508 (5)C21—C221.385 (5)
C3—C111.514 (5)C21—H210.9300
C4—C51.517 (4)C22—H220.9300
C4—H40.9800C23—C241.388 (5)
C5—C61.525 (4)C24—C251.382 (5)
C5—H50.9800C24—H240.9300
C6—H60.9800C25—C261.383 (5)
C7—C81.492 (6)C25—H250.9300
C7—C91.512 (5)C26—C271.375 (6)
C8—H8A0.9600C26—H260.9300
C8—H8B0.9600C27—H270.9300
C8—H8C0.9600O7—H7A0.84 (2)
C9—H9A0.9600O7—H7B0.86 (2)
O1···O33.153 (2)C2···C4ii3.538 (4)
O1···O43.115 (3)C2···H4ii2.96
O1···O52.999 (3)C3···H12.88
O1···O62.920 (3)C4···H11A2.84
O3···O13.153 (2)C4···H2iii2.83
O3···C13.002 (3)C4···H12.76
O7···O13.112 (3)C5···H9A2.85
O7···O63.176 (3)C10···H12.93
O7···N2i3.020 (3)H1···H10C2.24
O2···H12.70H2···H4ii2.44
O2···H4ii2.90H4···H11A2.47
O3···H12.54H5···H9A2.56
O3···H2iii2.51H7A···H19i2.20
O5···H12B2.70H7A···N1i2.84 (3)
O5···H12A2.77H7A···N2i2.19 (4)
O6···H172.23H7B···O12.30 (2)
O7···H19i2.64H7B···O62.56 (4)
N4···C132.776 (3)H8A···H9C2.55
N1···H242.44H8B···H9B2.50
N2···H192.56H8C···H11Cii2.48
N3···H172.46H10A···H11C2.53
N4···H13A2.56H10B···H11B2.57
N4···H13B2.54H12A···H13B2.26
C1···C33.485 (3)
C2—O1—C1113.4 (2)H10A—C10—H10B109.5
C2—O2—C3110.4 (2)C3—C10—H10C109.5
C3—O3—C4106.7 (2)H10A—C10—H10C109.5
C7—O4—C5107.6 (2)H10B—C10—H10C109.5
C7—O5—C6109.6 (2)C3—C11—H11A109.5
C12—O6—C13112.9 (2)C3—C11—H11B109.5
C15—N1—N2121.1 (3)H11A—C11—H11B109.5
C16—N2—N1119.2 (3)C3—C11—H11C109.5
C18—N3—C22117.7 (3)H11A—C11—H11C109.5
C27—N4—C23117.2 (3)H11B—C11—H11C109.5
O1—C1—C12107.5 (3)O6—C12—C1107.7 (2)
O1—C1—C6110.3 (2)O6—C12—H12A110.2
C12—C1—C6113.4 (3)C1—C12—H12A110.2
O1—C1—H1108.5O6—C12—H12B110.2
C12—C1—H1108.5C1—C12—H12B110.2
C6—C1—H1108.5H12A—C12—H12B108.5
O1—C2—O2111.0 (3)O6—C13—C14107.7 (2)
O1—C2—C4114.3 (3)O6—C13—H13A110.2
O2—C2—C4103.7 (3)C14—C13—H13A110.2
O1—C2—H2109.2O6—C13—H13B110.2
O2—C2—H2109.2C14—C13—H13B110.2
C4—C2—H2109.2H13A—C13—H13B108.5
O3—C3—O2105.4 (2)C17—C14—C15116.4 (3)
O3—C3—C10108.3 (3)C17—C14—C13118.5 (3)
O2—C3—C10109.9 (3)C15—C14—C13125.1 (3)
O3—C3—C11110.8 (3)N1—C15—C14121.9 (3)
O2—C3—C11109.4 (3)N1—C15—C23113.5 (3)
C10—C3—C11112.8 (3)C14—C15—C23124.6 (3)
O3—C4—C5107.3 (2)N2—C16—C17121.9 (3)
O3—C4—C2103.9 (2)N2—C16—C18117.5 (3)
C5—C4—C2114.6 (3)C17—C16—C18120.5 (3)
O3—C4—H4110.3C14—C17—C16119.3 (3)
C5—C4—H4110.3C14—C17—H17120.3
C2—C4—H4110.3C16—C17—H17120.3
O4—C5—C4107.2 (2)N3—C18—C19122.9 (3)
O4—C5—C6104.1 (2)N3—C18—C16115.1 (3)
C4—C5—C6113.2 (3)C19—C18—C16122.0 (3)
O4—C5—H5110.7C20—C19—C18118.5 (3)
C4—C5—H5110.7C20—C19—H19120.8
C6—C5—H5110.7C18—C19—H19120.8
O5—C6—C1109.8 (3)C21—C20—C19119.1 (3)
O5—C6—C5104.5 (2)C21—C20—H20120.5
C1—C6—C5113.0 (3)C19—C20—H20120.5
O5—C6—H6109.8C20—C21—C22118.3 (3)
C1—C6—H6109.8C20—C21—H21120.8
C5—C6—H6109.8C22—C21—H21120.8
O5—C7—O4106.1 (2)N3—C22—C21123.5 (3)
O5—C7—C8109.6 (4)N3—C22—H22118.2
O4—C7—C8108.4 (3)C21—C22—H22118.2
O5—C7—C9109.3 (3)N4—C23—C24122.6 (3)
O4—C7—C9110.9 (3)N4—C23—C15116.6 (3)
C8—C7—C9112.3 (3)C24—C23—C15120.8 (3)
C7—C8—H8A109.5C25—C24—C23118.7 (3)
C7—C8—H8B109.5C25—C24—H24120.7
H8A—C8—H8B109.5C23—C24—H24120.7
C7—C8—H8C109.5C24—C25—C26119.5 (3)
H8A—C8—H8C109.5C24—C25—H25120.3
H8B—C8—H8C109.5C26—C25—H25120.3
C7—C9—H9A109.5C27—C26—C25117.7 (3)
C7—C9—H9B109.5C27—C26—H26121.2
H9A—C9—H9B109.5C25—C26—H26121.2
C7—C9—H9C109.5N4—C27—C26124.4 (3)
H9A—C9—H9C109.5N4—C27—H27117.8
H9B—C9—H9C109.5C26—C27—H27117.8
C3—C10—H10A109.5H7A—O7—H7B104 (6)
C3—C10—H10B109.5
C15—N1—N2—C161.1 (5)O1—C1—C12—O677.8 (3)
C2—O1—C1—C12167.7 (2)C6—C1—C12—O6160.1 (3)
C2—O1—C1—C668.2 (3)C12—O6—C13—C14161.7 (3)
C1—O1—C2—O281.1 (3)O6—C13—C14—C178.0 (4)
C1—O1—C2—C435.8 (3)O6—C13—C14—C15172.8 (3)
C3—O2—C2—O1115.1 (3)N2—N1—C15—C143.9 (5)
C3—O2—C2—C48.1 (3)N2—N1—C15—C23175.6 (3)
C4—O3—C3—O227.7 (3)C17—C14—C15—N13.3 (5)
C4—O3—C3—C10145.2 (3)C13—C14—C15—N1177.6 (3)
C4—O3—C3—C1190.5 (3)C17—C14—C15—C23176.1 (3)
C2—O2—C3—O311.5 (4)C13—C14—C15—C233.0 (5)
C2—O2—C3—C10128.0 (3)N1—N2—C16—C172.2 (5)
C2—O2—C3—C11107.7 (3)N1—N2—C16—C18175.7 (3)
C3—O3—C4—C5154.1 (3)C15—C14—C17—C160.0 (5)
C3—O3—C4—C232.4 (3)C13—C14—C17—C16179.2 (3)
O1—C2—C4—O396.5 (3)N2—C16—C17—C142.7 (5)
O2—C2—C4—O324.4 (3)C18—C16—C17—C14175.2 (3)
O1—C2—C4—C520.2 (4)C22—N3—C18—C190.8 (5)
O2—C2—C4—C5141.2 (3)C22—N3—C18—C16177.7 (3)
C7—O4—C5—C4147.7 (3)N2—C16—C18—N3171.4 (3)
C7—O4—C5—C627.5 (3)C17—C16—C18—N36.5 (4)
O3—C4—C5—O4175.2 (2)N2—C16—C18—C197.1 (5)
C2—C4—C5—O470.0 (3)C17—C16—C18—C19174.9 (3)
O3—C4—C5—C670.5 (3)N3—C18—C19—C200.9 (5)
C2—C4—C5—C644.2 (4)C16—C18—C19—C20177.5 (3)
C7—O5—C6—C1121.7 (3)C18—C19—C20—C210.5 (5)
C7—O5—C6—C50.3 (4)C19—C20—C21—C220.1 (5)
O1—C1—C6—O576.1 (3)C18—N3—C22—C210.4 (5)
C12—C1—C6—O544.5 (4)C20—C21—C22—N30.1 (6)
O1—C1—C6—C540.1 (3)C27—N4—C23—C240.9 (5)
C12—C1—C6—C5160.7 (3)C27—N4—C23—C15178.8 (3)
O4—C5—C6—O516.4 (3)N1—C15—C23—N4167.1 (3)
C4—C5—C6—O5132.5 (3)C14—C15—C23—N412.4 (5)
O4—C5—C6—C1102.9 (3)N1—C15—C23—C2410.8 (4)
C4—C5—C6—C113.2 (4)C14—C15—C23—C24169.7 (3)
C6—O5—C7—O417.2 (4)N4—C23—C24—C250.4 (5)
C6—O5—C7—C8134.1 (3)C15—C23—C24—C25178.2 (3)
C6—O5—C7—C9102.4 (3)C23—C24—C25—C260.2 (6)
C5—O4—C7—O528.3 (4)C24—C25—C26—C270.3 (6)
C5—O4—C7—C8146.0 (3)C23—N4—C27—C260.8 (6)
C5—O4—C7—C990.3 (3)C25—C26—C27—N40.3 (7)
C13—O6—C12—C1174.4 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N3/C18–C22 ring.
D—H···AD—HH···AD···AD—H···A
O7—H7A···N2i0.84 (2)2.18 (3)3.019 (4)172 (6)
O7—H7B···O10.86 (2)2.30 (3)3.112 (4)157 (6)
O7—H7B···O60.86 (2)2.57 (5)3.176 (5)129 (5)
C2—H2···O3ii0.982.513.444 (4)160
C12—H12A···Cgiv0.973.073.761 (3)130
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1; (iv) x+1, y1/2, z+1/2.
 

Funding information

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). Mor. J. Chem. 6, 22–34.  CAS Google Scholar
First citationConstable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. (2008). Aust. J. Chem. 61, 847–853.  Web of Science CSD CrossRef CAS Google Scholar
First citationElmsellem, H., Nacer, H., Halaimia, F., Aouniti, A., Lakehal, I., Chetouani, A., Al-Deyab, S. S., Warad, I., Touzani, R. & Hammouti, B. (2014). Int. J. Electrochem. Sci. 9, 5328–5351.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHjouji, M. Y., Djedid, M., Elmsellem, H., Kandri Rodi, Y., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M., Abdel-Rahman, I. & Hammouti, B. (2016). J. Mater. Environ. Sci. 7, 1425–1435.  CAS Google Scholar
First citationKaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68–77.  CrossRef CAS Web of Science Google Scholar
First citationKhadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552–564.  Web of Science CrossRef CAS Google Scholar
First citationKore, A. R., Yang, B. & Srinivasan, B. (2015). Tetrahedron Lett. 56, 808–811.  Web of Science CrossRef CAS Google Scholar
First citationMarino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). CrystEngComm, 21, 917–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationMastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270–281.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShowrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). IUCrData, 2, x171142.  Google Scholar
First citationSikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620–4632.  CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121–126.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds