research communications
μ3-hydroxido-κ3O:O:O)(μ3-selenato-κ3O1:O2:O3)tris[μ3-2-(1,2,4-triazol-4-yl)acetato-κ3N1:N2:O]tricopper(II)] dihydrate]
of poly[[(aInorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodimirska Street 64, Kyiv 01033, Ukraine
*Correspondence e-mail: ab_lysenko@univ.kiev.ua
The title coordination polymer, {[Cu3(C4H4N3O9)3(SeO4)(OH)]·2H2O}n or ([Cu3(μ3-OH)(trgly)3(SeO4)]·2H2O), crystallizes in the monoclinic P21/c. The three independent Cu2+ cations adopt distorted square-pyramidal geometries with {O2N2+O} polyhedra. The three copper centres are bridged by a μ3-OH anion, leading to a triangular [Cu3(μ3-OH)] core. 2-(1,2,4-Triazol-4-yl)acetic acid (trgly-H) acts in a deprotonated form as a μ3-κ3N1:N2:O ligand. The three triazolyl groups bridge three copper centres of the hydroxo-cluster in an N1:N2 mode, thus supporting the triangular geometry. The [Cu3(μ3-OH)(tr)3] clusters serve as secondary building units (SBUs). Each SBU can be regarded as a six-connected node, which is linked to six neighbouring triangles through carboxylate groups, generating a two-dimensional uninodal (3,6) coordination network. The selenate anion is bound in a μ3-κ3O1:O2:O3 fashion to the trinuclear copper platform. The [Cu3(OH)(trgly)3(SeO4)] coordination layers and guest water molecules are linked together by numerous O—H⋯O and C—H⋯O hydrogen bonds, leading to a three-dimensional structure.
Keywords: crystal structure; metal-organic frameworks; secondary building units; copper(II) complexes.
CCDC reference: 1939397
1. Chemical context
Extended coordination networks incorporating trinuclear 1,2,4-triazole (tr)-based hydroxo(oxo) clusters [Cu3(μ3-OH/or O)(tr)3] as secondary building units (SBUs) are a subject of high interest in many interdisciplinary fields including gas storage and sorption (Lincke et al., 2012), magnetism (Ouellette et al., 2006), and separation (Wang et al., 2007). In these clusters, the copper(II) cations display either distorted tetragonal–pyramidal (TP) or (and) octahedral coordination geometries, two of the most stable configurations in the OH−/tr ligand arrangement. Typically, the basal plane for a five-coordinate CuII atom (or the equatorial plane for six-coordinate CuII) consists of two nitrogen atoms from two trans-coordinated tr groups, an oxygen atom from OH−/O2− and an O (N, or Cl−) donor atom (or anion) from an extra ligand, whereas the apical position is occupied by a water molecule or anionic ligand (Lysenko et al., 2006; Naik et al., 2010). The alternative trigonal–bypiramidal (TBP) environment around the copper centres can not be realized in the specific ligand configuration. Addison et al. (1984) introduced a useful structural parameter, τ, as a criterion for distinguishing between TP and TBP polyhedra. This parameter, which varies from 0 (in TP) to 1 (in TBP), could perhaps be used to predict the anion binding affinity of closely related anions (e.g. SO42− versus SeO42−) toward the [Cu3(μ3-OH/or O)(tr)3] SBUs. The higher binding affinity might be associated with the lower τ parameter. As a matter of fact, the [Cu3(μ3-OH/or O)(tr)3] cationic clusters are perfectly suited for the binding of tetrahedral anions through its three apical sites. In this context, it would be interesting to clarify how the size of the coordinating anions correlates with the τ value. In this paper, we report the of the title Cu2+ complex, (I), which was prepared by reacting CuSeO4 and trgly-H in an aqueous solution under hydrothermal conditions. The compound is isomorphous to the [Cu3(μ3-OH)(trgly)3(SO4)]·2H2O complex (Vasylevs'kyy et al., 2014).
2. Structural commentary
The title compound crystallizes in the centrosymmetric monoclinic P21/c. The consists of three copper(II) cations, one selenate anion, one hydroxide anion, three deprotonated trgly− ligands and two water molecules (Fig. 1 and Table 1). Each copper centre adopts a similar tetragonal–pyramidal coordination environment with the {O2N2+O} donor set. The basal plane of Cu1 is completed by atom O1 of the μ3-bridging hydroxide group [Cu1—O1 = 2.022 (2) Å], atom N1 from one bridging tr-group [Cu1—N1 = 1.980 (3) Å], atom N8 from the other bridging tr-group [Cu1—N8, 1.993 (3) Å] and a carboxylate O atom from the trgly ligand [Cu1—O8i = 1.935 (3) Å; symmetry code: (i) x, y, z − 1]. The basal planes of Cu2 and Cu3 cations consist four short bonds as follows: Cu2—N2 = 1.979 (3), Cu2—N4 = 1.986 (3), Cu2—O1 = 2.039 (3) and Cu2—O6ii 1.954 (3) Å and Cu3—N5 = 1.974 (3), Cu3—N7 = 1.982 (3), Cu3—O1 = 2.039 (2) and Cu3—O10iii 1.990 (3) Å for Cu2 and for Cu3, respectively [symmetry codes: (ii) x, −y − , z + ; (iii) x, −y + , z + ]. The basal planes of the three square pyramids share a common corner at the O1 atom of the OH− anion, forming a triangular [Cu3(μ3-OH)] core. The trinuclear motif is supported by a facially coordinating tripodal selenate anion [Cu1—O2 2.182 (3), Cu2—O3 = 2.146 (3) and Cu3—O4 = 2.182 (3) Å]. The value of the Addison structural parameter τ varies from 0.025 for Cu2 through 0.070 for Cu1 to 0.189 for Cu3, indicating the preference of a TP configuration (versus TBP) around the copper centres. A comparison of the τ values for (I) with the corresponding values for the isomorphous sulfate complex [Cu3(μ3-OH)(trgly)3(SO4)]·2H2O (τ = 0.021, 0.103, 0.211; Vasylevs'kyy et al., 2014) indicates a lower degree of TBP distortion for the selenate compound. This tendency is also observed for the other two isomorphous MOFs [{Cu3(μ3-OH)(X)}4{Cu2(H2O)2}3(trz-ia)12] [X = SO42− and SeO42−, trz-ia is the 5-(4H-1,2,4-triazol-4-yl)isophthalate anion], where the τ parameter values are 0.096 and 0.083 for the sulfate and selenate complexes, respectively (Lincke et al., 2012). Unlike [Cu3(μ3-OH)(trgly)3(SO4)]·2H2O, in which the highest τ value corresponds with the longest Cu—O axial bond, the τ parameter values for the title compound do not correlate with the Cu—O axial bond lengths. Atoms Cu1 and Cu3 with the lowest and highest τ values, respectively, have the same Cu—O axial bond lengths. For compound (I), the hydroxide oxygen atom O1 is displaced by 0.532 Å from the centroid of the Cu1–Cu2–Cu3 triangular fragment, whereas for [Cu3(μ3-OH)(trgly)3(SO4)]·2H2O, the O–centroid distance is 0.570 Å. Thus, the larger anion–anion repulsion (OH−/SO42− versus OH−/SeO42−) in the sulfate complex also confirms the higher TBP distortion. The trinuclear clusters function as SBUs (six-connected nodes), which self-assemble into a two-dimensional coordination network (Fig. 2) with all of the selenate anions on the same side of the coordination layer. The resultant 2D network topology can be rationalized as a (3,6) type. Interestingly, the selenate anions of two neighbouring layers point in opposite directions (Fig. 3).
3. Supramolecular features
The trinuclear [Cu3(μ3-OH)(tr)3] clusters are involved in inter- and intramolecular hydrogen-bonding interactions. Adjacent layers are linked together by hydrogen bonding between the hydroxide oxygen atoms (O1 as H-atom donor) and carboxylate group oxygen atoms (O10 as H-atom acceptor) and are shifted with respect to each other, forming a H-bonded double layer (Fig. 3a, Table 2). The guest water molecules are trapped between neighboring double-layers, forming a set of hydrogen bonds to selenate oxygen atoms [O1W⋯O4 = 2.767 (4) Å, O1W—H2W⋯O4 = 168°], carboxylate oxygen atoms [O1W⋯O11 = 2.940 (5) Å, O1W—H1W⋯O11 = 166°, and O2W⋯O9v = 2.798 (5) Å, O2W—H3W⋯O9v 178°, symmetry code: (v) −x + 1, y + , −z + ] and to one another [O2W⋯O1W = 2.812 (6) Å, O2W—H4W⋯O1W = 159°, Fig. 4]. Apparently, the presence of the hydrogen bond between the O1W water molecule and the selenate oxygen atom O4 leads to an increase in the trigonal–bypiramidal distortion of the square-pyramidal coordination polyhedra of Cu3 (τ = 0.189 for Cu3, markedly higher than the values of 0.070 and 0.025 for Cu1 and for Cu2, respectively) in the trinuclear [Cu3(μ3-OH)(tr)3] core.
|
The coordination polymeric network is reinforced by weak C—H⋯O hydrogen-bonding interactions (Desiraju & Steiner, 1999, Fig. 5, Table 2). These C—H hydrogen bonds with one acceptor oxygen atom [C⋯O distances ranging from 2.955 (5) to 3.440 (5) Å] help to stabilize the resulting three-dimensional hydrogen-bonded network.
Thus, the hydrothermal reaction of CuSeO4 and trgly-H leads to a two-dimensional coordination network [Cu3(μ3-OH)(trgly)3(SeO4)] based on the trinuclear coordination clusters [Cu3(μ3-OH)]. The five-coordinate copper(II) centres in the [Cu3(μ3-OH)(tr)3] SBU display less-distorted square-pyramidal arrangements in comparison to those of the isomorphous complex [Cu3(μ3-OH)(trgly)3(SO4)]·2H2O.
3.1. Database survey
Among the known [Cu3(μ3-OH/or O)(tr)3] complexes (CSD version 5.39, update of May 2018; Groom et al., 2016), the highest possible value of τ (0.313) in the five-coordinate copper(II) cation was once observed for the copper(II)-polyoxomolybdate complex with 4-amino-1,2,4-triazole [Cu3(4-atrz)3(Mo8O27)(H2O)4]·6H2O (Wang et al., 2015). However, the authors described the trinuclear cationic core as [Cu3(μ3-H2O)(4-atrz)3]. They also interpreted the five-coordinate copper geometry as trigonal–bipyramidal, although the τ parameter is closer to 0 than to 1.
4. Synthesis and crystallization
1,2,4-Triazol-4-yl-acetic acid, (trgly-H) was prepared in a yield of 30% by reacting glycine and N,N-dimethylformamide azine in boiling toluene under acidic conditions (Vasylevs'kyy et al., 2014). Copper(II) selenate pentahydrate was prepared by treating basic copper carbonate with selenic acid followed by crystallization. A solution of CuSeO4·5H2O (59.2 mg, 0.20 mmol) in 4 mL of water was added to a solution of trgly-H (27.2 mg, 0.20 mmol) in water (2 mL). The resulting solution was placed in a 20 mL Teflon-lined steel autoclave and heated at 393 K for 24 h. Cooling from to rt over 48 h afforded green–blue crystals of the product (yield 52%). Analysis calculated for C12H17Cu3N9O13Se (%): C, 18.84; H, 2.24; N, 16.48. Found: C, 18.79; H, 2.28; N, 16.40. Elemental analysis was carried out with a Vario EL-Heraeus microanalyzer.
5. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed at calculated positions [C—H = 0.94 Å (aromatic), C—H = 0.98 Å (aliphatic)] and refined using a riding model with Uiso(H) = 1.2Ueq(CH). All O-bound H atoms were located in a difference-Fourier map and then fixed at O—H = 0.85 Å and with Uiso(H) =1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1939397
https://doi.org/10.1107/S2056989019009812/lh5911sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019009812/lh5911Isup2.hkl
Data collection: IPDS Software (Stoe & Cie, 2000); cell
IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).[Cu3(C4H4N3O9)3(SeO4)(OH)]·2H2O | F(000) = 1508 |
Mr = 764.92 | Dx = 2.308 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.9403 (8) Å | Cell parameters from 8000 reflections |
b = 17.5393 (15) Å | θ = 2.0–26.8° |
c = 12.1289 (9) Å | µ = 4.62 mm−1 |
β = 108.965 (8)° | T = 213 K |
V = 2201.0 (3) Å3 | Prism, blue |
Z = 4 | 0.20 × 0.16 × 0.14 mm |
Stoe Image plate diffraction system diffractometer | 3306 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.057 |
φ oscillation scans | θmax = 26.8°, θmin = 2.0° |
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] | h = −13→13 |
Tmin = 0.405, Tmax = 0.569 | k = −22→22 |
16928 measured reflections | l = −15→15 |
4681 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 0.88 | w = 1/[σ2(Fo2) + (0.0392P)2] where P = (Fo2 + 2Fc2)/3 |
4681 reflections | (Δ/σ)max < 0.001 |
343 parameters | Δρmax = 0.99 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.27623 (5) | 0.00328 (2) | 0.16661 (4) | 0.01311 (11) | |
Cu2 | 0.17026 (5) | −0.07181 (2) | 0.37617 (4) | 0.01200 (11) | |
Cu3 | 0.39077 (5) | 0.07288 (3) | 0.44294 (4) | 0.01223 (11) | |
Se1 | 0.08793 (4) | 0.10530 (2) | 0.27442 (3) | 0.01415 (10) | |
O1 | 0.3177 (3) | −0.01857 (14) | 0.3386 (2) | 0.0113 (5) | |
H1O | 0.378780 | −0.050942 | 0.354877 | 0.017* | |
O2 | 0.1203 (3) | 0.08350 (16) | 0.1556 (2) | 0.0237 (7) | |
O3 | 0.0502 (3) | 0.02779 (15) | 0.3325 (3) | 0.0228 (7) | |
O4 | 0.2182 (3) | 0.14261 (15) | 0.3694 (3) | 0.0218 (7) | |
O5 | −0.0323 (3) | 0.16534 (15) | 0.2454 (3) | 0.0231 (7) | |
O6 | 0.0419 (3) | −0.36472 (15) | −0.0871 (2) | 0.0174 (6) | |
O7 | 0.2019 (3) | −0.28370 (17) | −0.0029 (3) | 0.0301 (8) | |
O8 | 0.2547 (3) | 0.02330 (16) | 1.0045 (2) | 0.0253 (7) | |
O9 | 0.3408 (4) | −0.0683 (2) | 0.9233 (3) | 0.0375 (9) | |
O10 | 0.5155 (3) | 0.36051 (14) | 0.0589 (2) | 0.0160 (6) | |
O11 | 0.3676 (3) | 0.28549 (17) | 0.0946 (3) | 0.0307 (8) | |
N1 | 0.1686 (4) | −0.09003 (18) | 0.1341 (3) | 0.0148 (7) | |
N2 | 0.1237 (4) | −0.11875 (18) | 0.2195 (3) | 0.0165 (7) | |
N3 | 0.0471 (3) | −0.18786 (17) | 0.0647 (3) | 0.0139 (7) | |
N4 | 0.2432 (3) | −0.03365 (18) | 0.5386 (3) | 0.0142 (7) | |
N5 | 0.3327 (3) | 0.02449 (18) | 0.5642 (3) | 0.0152 (7) | |
N6 | 0.2564 (4) | 0.01245 (19) | 0.7085 (3) | 0.0177 (8) | |
N7 | 0.4666 (3) | 0.10867 (18) | 0.3243 (3) | 0.0135 (7) | |
N8 | 0.4102 (4) | 0.08493 (17) | 0.2103 (3) | 0.0143 (7) | |
N9 | 0.5346 (3) | 0.18128 (17) | 0.2111 (3) | 0.0146 (7) | |
C1 | 0.1208 (4) | −0.1327 (2) | 0.0416 (4) | 0.0174 (9) | |
H1 | 0.135662 | −0.125898 | −0.029885 | 0.021* | |
C2 | 0.0507 (4) | −0.1772 (2) | 0.1748 (4) | 0.0180 (9) | |
H2 | 0.007193 | −0.207386 | 0.214252 | 0.022* | |
C3 | −0.0143 (4) | −0.2514 (2) | −0.0127 (3) | 0.0151 (8) | |
H3A | −0.070577 | −0.231321 | −0.087360 | 0.018* | |
H3B | −0.067585 | −0.281162 | 0.022723 | 0.018* | |
C4 | 0.0885 (4) | −0.3024 (2) | −0.0333 (3) | 0.0153 (8) | |
C5 | 0.1996 (4) | −0.0399 (2) | 0.6262 (3) | 0.0173 (9) | |
H5 | 0.137619 | −0.075582 | 0.631377 | 0.021* | |
C6 | 0.3394 (5) | 0.0504 (2) | 0.6674 (4) | 0.0209 (9) | |
H6 | 0.394363 | 0.089864 | 0.707040 | 0.025* | |
C7 | 0.2191 (5) | 0.0356 (2) | 0.8093 (3) | 0.0196 (9) | |
H7A | 0.124993 | 0.030830 | 0.788261 | 0.024* | |
H7B | 0.240617 | 0.089592 | 0.824842 | 0.024* | |
C8 | 0.2803 (4) | −0.0084 (2) | 0.9205 (4) | 0.0202 (9) | |
C9 | 0.5423 (4) | 0.1668 (2) | 0.3220 (4) | 0.0156 (8) | |
H9 | 0.593603 | 0.193848 | 0.387670 | 0.019* | |
C10 | 0.4526 (4) | 0.1297 (2) | 0.1453 (4) | 0.0174 (9) | |
H10 | 0.429103 | 0.126325 | 0.063676 | 0.021* | |
C11 | 0.5883 (4) | 0.2477 (2) | 0.1676 (4) | 0.0182 (9) | |
H11A | 0.635122 | 0.230577 | 0.115612 | 0.022* | |
H11B | 0.649085 | 0.275010 | 0.233175 | 0.022* | |
C12 | 0.4785 (4) | 0.3008 (2) | 0.1017 (3) | 0.0159 (9) | |
O1W | 0.3015 (4) | 0.28114 (19) | 0.3110 (4) | 0.0441 (10) | |
H1W | 0.309086 | 0.277778 | 0.243576 | 0.066* | |
H2W | 0.264986 | 0.240868 | 0.323686 | 0.066* | |
O2W | 0.5427 (4) | 0.3544 (2) | 0.3669 (3) | 0.0408 (9) | |
H3W | 0.576259 | 0.378437 | 0.430505 | 0.061* | |
H4W | 0.471669 | 0.335127 | 0.367685 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0193 (3) | 0.0112 (2) | 0.0091 (2) | −0.00358 (19) | 0.0050 (2) | −0.00138 (17) |
Cu2 | 0.0176 (3) | 0.0096 (2) | 0.0093 (2) | −0.00239 (19) | 0.0050 (2) | −0.00079 (17) |
Cu3 | 0.0169 (3) | 0.0109 (2) | 0.0091 (2) | −0.00224 (19) | 0.0045 (2) | −0.00038 (17) |
Se1 | 0.0155 (2) | 0.01058 (17) | 0.01497 (19) | 0.00218 (16) | 0.00297 (17) | 0.00008 (15) |
O1 | 0.0139 (16) | 0.0091 (12) | 0.0104 (12) | −0.0007 (10) | 0.0033 (12) | −0.0019 (10) |
O2 | 0.0289 (19) | 0.0285 (16) | 0.0131 (14) | 0.0102 (13) | 0.0061 (14) | 0.0027 (12) |
O3 | 0.0225 (18) | 0.0143 (13) | 0.0333 (17) | 0.0021 (12) | 0.0114 (15) | 0.0066 (12) |
O4 | 0.0208 (18) | 0.0158 (14) | 0.0243 (15) | −0.0005 (12) | 0.0013 (14) | −0.0001 (12) |
O5 | 0.0201 (18) | 0.0172 (14) | 0.0275 (16) | 0.0101 (12) | 0.0014 (15) | 0.0007 (12) |
O6 | 0.0208 (17) | 0.0165 (13) | 0.0147 (14) | 0.0032 (12) | 0.0056 (13) | −0.0039 (11) |
O7 | 0.021 (2) | 0.0212 (15) | 0.046 (2) | 0.0001 (14) | 0.0079 (17) | −0.0058 (15) |
O8 | 0.045 (2) | 0.0250 (15) | 0.0092 (13) | −0.0068 (14) | 0.0130 (15) | −0.0017 (12) |
O9 | 0.046 (2) | 0.045 (2) | 0.0257 (17) | 0.0226 (18) | 0.0176 (18) | 0.0120 (16) |
O10 | 0.0215 (17) | 0.0116 (13) | 0.0151 (14) | 0.0002 (11) | 0.0063 (13) | 0.0023 (10) |
O11 | 0.023 (2) | 0.0256 (17) | 0.041 (2) | −0.0006 (14) | 0.0068 (17) | 0.0117 (15) |
N1 | 0.020 (2) | 0.0161 (16) | 0.0088 (15) | −0.0036 (13) | 0.0059 (15) | −0.0001 (12) |
N2 | 0.026 (2) | 0.0129 (16) | 0.0124 (16) | −0.0029 (14) | 0.0086 (16) | −0.0006 (12) |
N3 | 0.018 (2) | 0.0099 (15) | 0.0123 (16) | −0.0009 (13) | 0.0032 (15) | −0.0016 (12) |
N4 | 0.014 (2) | 0.0145 (15) | 0.0123 (16) | −0.0019 (13) | 0.0023 (15) | −0.0024 (13) |
N5 | 0.020 (2) | 0.0157 (16) | 0.0104 (16) | −0.0047 (14) | 0.0050 (15) | −0.0008 (12) |
N6 | 0.023 (2) | 0.0201 (17) | 0.0100 (16) | −0.0050 (14) | 0.0057 (16) | −0.0009 (13) |
N7 | 0.0153 (19) | 0.0140 (15) | 0.0102 (15) | −0.0015 (14) | 0.0028 (15) | 0.0001 (12) |
N8 | 0.0177 (19) | 0.0147 (16) | 0.0096 (15) | −0.0005 (13) | 0.0034 (15) | 0.0002 (12) |
N9 | 0.019 (2) | 0.0107 (15) | 0.0165 (17) | −0.0012 (13) | 0.0089 (16) | 0.0008 (12) |
C1 | 0.023 (3) | 0.0138 (18) | 0.0154 (19) | −0.0007 (16) | 0.0069 (19) | 0.0008 (15) |
C2 | 0.026 (3) | 0.0131 (18) | 0.017 (2) | −0.0056 (16) | 0.010 (2) | −0.0036 (15) |
C3 | 0.017 (2) | 0.0120 (17) | 0.0123 (19) | −0.0029 (15) | 0.0001 (18) | −0.0027 (14) |
C4 | 0.021 (3) | 0.0128 (18) | 0.0108 (18) | −0.0008 (16) | 0.0037 (18) | 0.0023 (14) |
C5 | 0.020 (3) | 0.021 (2) | 0.0123 (19) | −0.0051 (17) | 0.0077 (19) | −0.0011 (15) |
C6 | 0.027 (3) | 0.022 (2) | 0.0140 (19) | −0.0078 (18) | 0.007 (2) | 0.0000 (16) |
C7 | 0.025 (3) | 0.022 (2) | 0.0127 (19) | −0.0013 (18) | 0.0076 (19) | −0.0029 (16) |
C8 | 0.019 (2) | 0.023 (2) | 0.018 (2) | −0.0069 (18) | 0.004 (2) | −0.0012 (17) |
C9 | 0.018 (2) | 0.0141 (18) | 0.0146 (19) | 0.0023 (16) | 0.0048 (18) | −0.0006 (15) |
C10 | 0.023 (3) | 0.0156 (18) | 0.016 (2) | −0.0018 (16) | 0.009 (2) | 0.0009 (15) |
C11 | 0.021 (3) | 0.0146 (19) | 0.021 (2) | −0.0025 (17) | 0.010 (2) | 0.0057 (16) |
C12 | 0.023 (3) | 0.0129 (17) | 0.0122 (19) | −0.0027 (16) | 0.0061 (19) | 0.0006 (14) |
O1W | 0.053 (3) | 0.0231 (17) | 0.064 (3) | −0.0041 (17) | 0.029 (2) | 0.0046 (17) |
O2W | 0.037 (2) | 0.054 (2) | 0.0280 (19) | −0.0025 (18) | 0.0055 (18) | −0.0045 (17) |
Cu1—O8i | 1.935 (3) | N4—C5 | 1.303 (5) |
Cu1—N1 | 1.980 (3) | N4—N5 | 1.377 (4) |
Cu1—N8 | 1.993 (3) | N5—C6 | 1.311 (5) |
Cu1—O1 | 2.022 (2) | N6—C6 | 1.346 (5) |
Cu1—O2 | 2.182 (3) | N6—C5 | 1.349 (5) |
Cu2—O6ii | 1.954 (3) | N6—C7 | 1.466 (5) |
Cu2—N2 | 1.979 (3) | N7—C9 | 1.320 (5) |
Cu2—N4 | 1.986 (3) | N7—N8 | 1.382 (4) |
Cu2—O1 | 2.039 (3) | N8—C10 | 1.301 (5) |
Cu2—O3 | 2.146 (3) | N9—C10 | 1.339 (5) |
Cu3—N5 | 1.974 (3) | N9—C9 | 1.345 (5) |
Cu3—N7 | 1.982 (3) | N9—C11 | 1.478 (5) |
Cu3—O10iii | 1.990 (3) | C1—H1 | 0.9400 |
Cu3—O1 | 2.039 (2) | C2—H2 | 0.9400 |
Cu3—O4 | 2.182 (3) | C3—C4 | 1.520 (6) |
Se1—O5 | 1.632 (3) | C3—H3A | 0.9800 |
Se1—O2 | 1.637 (3) | C3—H3B | 0.9800 |
Se1—O3 | 1.645 (3) | C5—H5 | 0.9400 |
Se1—O4 | 1.649 (3) | C6—H6 | 0.9400 |
O1—H1O | 0.8500 | C7—C8 | 1.509 (6) |
O6—C4 | 1.289 (5) | C7—H7A | 0.9800 |
O7—C4 | 1.219 (5) | C7—H7B | 0.9800 |
O8—C8 | 1.270 (5) | C9—H9 | 0.9400 |
O9—C8 | 1.235 (5) | C10—H10 | 0.9400 |
O10—C12 | 1.291 (4) | C11—C12 | 1.525 (6) |
O11—C12 | 1.218 (5) | C11—H11A | 0.9800 |
N1—C1 | 1.308 (5) | C11—H11B | 0.9800 |
N1—N2 | 1.379 (4) | O1W—H1W | 0.8500 |
N2—C2 | 1.304 (5) | O1W—H2W | 0.8500 |
N3—C2 | 1.337 (5) | O2W—H3W | 0.8500 |
N3—C1 | 1.346 (5) | O2W—H4W | 0.8500 |
N3—C3 | 1.471 (5) | ||
O8i—Cu1—N1 | 94.55 (13) | C6—N5—Cu3 | 129.1 (3) |
O8i—Cu1—N8 | 88.65 (13) | N4—N5—Cu3 | 121.9 (2) |
N1—Cu1—N8 | 170.10 (14) | C6—N6—C5 | 105.5 (3) |
O8i—Cu1—O1 | 174.35 (13) | C6—N6—C7 | 125.2 (3) |
N1—Cu1—O1 | 88.18 (11) | C5—N6—C7 | 128.2 (3) |
N8—Cu1—O1 | 87.86 (12) | C9—N7—N8 | 107.0 (3) |
O8i—Cu1—O2 | 89.20 (12) | C9—N7—Cu3 | 132.3 (3) |
N1—Cu1—O2 | 96.79 (13) | N8—N7—Cu3 | 118.3 (2) |
N8—Cu1—O2 | 92.62 (13) | C10—N8—N7 | 107.0 (3) |
O1—Cu1—O2 | 95.40 (10) | C10—N8—Cu1 | 130.4 (3) |
O6ii—Cu2—N2 | 90.12 (12) | N7—N8—Cu1 | 122.2 (2) |
O6ii—Cu2—N4 | 93.00 (12) | C10—N9—C9 | 106.3 (3) |
N2—Cu2—N4 | 170.93 (15) | C10—N9—C11 | 125.9 (3) |
O6ii—Cu2—O1 | 172.41 (11) | C9—N9—C11 | 127.1 (3) |
N2—Cu2—O1 | 87.23 (12) | N1—C1—N3 | 109.4 (3) |
N4—Cu2—O1 | 88.59 (12) | N1—C1—H1 | 125.3 |
O6ii—Cu2—O3 | 95.29 (11) | N3—C1—H1 | 125.3 |
N2—Cu2—O3 | 98.97 (13) | N2—C2—N3 | 109.9 (3) |
N4—Cu2—O3 | 89.24 (13) | N2—C2—H2 | 125.0 |
O1—Cu2—O3 | 92.15 (11) | N3—C2—H2 | 125.0 |
N5—Cu3—N7 | 171.64 (14) | N3—C3—C4 | 110.0 (3) |
N5—Cu3—O10iii | 92.21 (12) | N3—C3—H3A | 109.7 |
N7—Cu3—O10iii | 88.56 (12) | C4—C3—H3A | 109.7 |
N5—Cu3—O1 | 88.15 (12) | N3—C3—H3B | 109.7 |
N7—Cu3—O1 | 88.32 (12) | C4—C3—H3B | 109.7 |
O10iii—Cu3—O1 | 160.30 (11) | H3A—C3—H3B | 108.2 |
N5—Cu3—O4 | 95.76 (13) | O7—C4—O6 | 125.3 (4) |
N7—Cu3—O4 | 92.07 (13) | O7—C4—C3 | 121.7 (3) |
O10iii—Cu3—O4 | 105.28 (11) | O6—C4—C3 | 112.9 (4) |
O1—Cu3—O4 | 94.27 (11) | N4—C5—N6 | 110.1 (4) |
O5—Se1—O2 | 110.53 (15) | N4—C5—H5 | 125.0 |
O5—Se1—O3 | 109.17 (15) | N6—C5—H5 | 125.0 |
O2—Se1—O3 | 109.91 (15) | N5—C6—N6 | 110.3 (4) |
O5—Se1—O4 | 110.35 (15) | N5—C6—H6 | 124.9 |
O2—Se1—O4 | 108.82 (16) | N6—C6—H6 | 124.9 |
O3—Se1—O4 | 108.01 (15) | N6—C7—C8 | 116.2 (4) |
Cu1—O1—Cu3 | 113.72 (11) | N6—C7—H7A | 108.2 |
Cu1—O1—Cu2 | 112.88 (13) | C8—C7—H7A | 108.2 |
Cu3—O1—Cu2 | 113.63 (11) | N6—C7—H7B | 108.2 |
Cu1—O1—H1O | 105.2 | C8—C7—H7B | 108.2 |
Cu3—O1—H1O | 105.1 | H7A—C7—H7B | 107.4 |
Cu2—O1—H1O | 105.2 | O9—C8—O8 | 127.3 (4) |
Se1—O2—Cu1 | 119.02 (15) | O9—C8—C7 | 122.5 (4) |
Se1—O3—Cu2 | 124.02 (16) | O8—C8—C7 | 110.1 (4) |
Se1—O4—Cu3 | 119.98 (15) | N7—C9—N9 | 109.3 (4) |
C4—O6—Cu2iv | 113.7 (3) | N7—C9—H9 | 125.3 |
C8—O8—Cu1v | 138.6 (3) | N9—C9—H9 | 125.3 |
C12—O10—Cu3vi | 121.8 (3) | N8—C10—N9 | 110.4 (4) |
C1—N1—N2 | 107.1 (3) | N8—C10—H10 | 124.8 |
C1—N1—Cu1 | 133.6 (3) | N9—C10—H10 | 124.8 |
N2—N1—Cu1 | 119.1 (2) | N9—C11—C12 | 109.4 (3) |
C2—N2—N1 | 107.1 (3) | N9—C11—H11A | 109.8 |
C2—N2—Cu2 | 131.1 (3) | C12—C11—H11A | 109.8 |
N1—N2—Cu2 | 121.7 (2) | N9—C11—H11B | 109.8 |
C2—N3—C1 | 106.4 (3) | C12—C11—H11B | 109.8 |
C2—N3—C3 | 127.1 (3) | H11A—C11—H11B | 108.2 |
C1—N3—C3 | 126.3 (3) | O11—C12—O10 | 125.9 (4) |
C5—N4—N5 | 107.5 (3) | O11—C12—C11 | 120.0 (3) |
C5—N4—Cu2 | 130.2 (3) | O10—C12—C11 | 114.1 (4) |
N5—N4—Cu2 | 120.0 (2) | H1W—O1W—H2W | 108.4 |
C6—N5—N4 | 106.7 (3) | H3W—O2W—H4W | 108.4 |
O5—Se1—O2—Cu1 | −179.53 (17) | Cu2iv—O6—C4—C3 | 176.2 (2) |
O3—Se1—O2—Cu1 | −59.0 (2) | N3—C3—C4—O7 | −10.4 (5) |
O4—Se1—O2—Cu1 | 59.1 (2) | N3—C3—C4—O6 | 170.9 (3) |
O5—Se1—O3—Cu2 | 175.78 (18) | N5—N4—C5—N6 | 0.4 (5) |
O2—Se1—O3—Cu2 | 54.4 (2) | Cu2—N4—C5—N6 | −161.7 (3) |
O4—Se1—O3—Cu2 | −64.2 (2) | C6—N6—C5—N4 | −1.1 (5) |
O5—Se1—O4—Cu3 | 172.90 (16) | C7—N6—C5—N4 | 167.1 (4) |
O2—Se1—O4—Cu3 | −65.7 (2) | N4—N5—C6—N6 | −1.2 (5) |
O3—Se1—O4—Cu3 | 53.6 (2) | Cu3—N5—C6—N6 | 161.3 (3) |
C1—N1—N2—C2 | −0.1 (5) | C5—N6—C6—N5 | 1.4 (5) |
Cu1—N1—N2—C2 | 176.8 (3) | C7—N6—C6—N5 | −167.2 (4) |
C1—N1—N2—Cu2 | −179.7 (3) | C6—N6—C7—C8 | −103.6 (5) |
Cu1—N1—N2—Cu2 | −2.8 (4) | C5—N6—C7—C8 | 90.4 (5) |
C5—N4—N5—C6 | 0.4 (5) | Cu1v—O8—C8—O9 | −4.3 (8) |
Cu2—N4—N5—C6 | 164.7 (3) | Cu1v—O8—C8—C7 | 172.5 (3) |
C5—N4—N5—Cu3 | −163.6 (3) | N6—C7—C8—O9 | −11.9 (6) |
Cu2—N4—N5—Cu3 | 0.7 (4) | N6—C7—C8—O8 | 171.1 (4) |
C9—N7—N8—C10 | −0.7 (4) | N8—N7—C9—N9 | 0.8 (4) |
Cu3—N7—N8—C10 | 163.8 (3) | Cu3—N7—C9—N9 | −160.7 (3) |
C9—N7—N8—Cu1 | −175.1 (3) | C10—N9—C9—N7 | −0.6 (5) |
Cu3—N7—N8—Cu1 | −10.5 (4) | C11—N9—C9—N7 | 170.5 (4) |
N2—N1—C1—N3 | −0.1 (5) | N7—N8—C10—N9 | 0.4 (5) |
Cu1—N1—C1—N3 | −176.4 (3) | Cu1—N8—C10—N9 | 174.1 (3) |
C2—N3—C1—N1 | 0.4 (5) | C9—N9—C10—N8 | 0.1 (5) |
C3—N3—C1—N1 | −174.2 (4) | C11—N9—C10—N8 | −171.1 (4) |
N1—N2—C2—N3 | 0.4 (5) | C10—N9—C11—C12 | 62.3 (5) |
Cu2—N2—C2—N3 | 179.8 (3) | C9—N9—C11—C12 | −107.2 (4) |
C1—N3—C2—N2 | −0.4 (5) | Cu3vi—O10—C12—O11 | −13.8 (6) |
C3—N3—C2—N2 | 174.0 (4) | Cu3vi—O10—C12—C11 | 167.2 (2) |
C2—N3—C3—C4 | −110.0 (5) | N9—C11—C12—O11 | 1.7 (5) |
C1—N3—C3—C4 | 63.4 (5) | N9—C11—C12—O10 | −179.2 (3) |
Cu2iv—O6—C4—O7 | −2.5 (5) |
Symmetry codes: (i) x, y, z−1; (ii) x, −y−1/2, z+1/2; (iii) x, −y+1/2, z+1/2; (iv) x, −y−1/2, z−1/2; (v) x, y, z+1; (vi) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O10vii | 0.85 | 2.01 | 2.811 (4) | 156 |
O1W—H1W···O11 | 0.85 | 2.11 | 2.940 (5) | 166 |
O1W—H2W···O4 | 0.85 | 1.93 | 2.767 (4) | 168 |
O2W—H3W···O9viii | 0.85 | 1.95 | 2.798 (5) | 178 |
O2W—H4W···O1W | 0.85 | 2.00 | 2.812 (6) | 159 |
C1—H1···O5ix | 0.94 | 2.58 | 3.346 (5) | 139 |
C2—H2···O5x | 0.94 | 2.28 | 2.955 (5) | 128 |
C5—H5···O3xi | 0.94 | 2.39 | 2.941 (5) | 117 |
C6—H6···O2Wiii | 0.94 | 2.30 | 3.176 (6) | 154 |
C7—H7A···O3xi | 0.98 | 2.25 | 3.094 (6) | 144 |
C7—H7B···O1Wiii | 0.98 | 2.38 | 3.338 (5) | 164 |
C9—H9···O7xii | 0.94 | 2.25 | 3.067 (6) | 144 |
Symmetry codes: (iii) x, −y+1/2, z+1/2; (vii) −x+1, y−1/2, −z+1/2; (viii) −x+1, y+1/2, −z+3/2; (ix) −x, −y, −z; (x) −x, y−1/2, −z+1/2; (xi) −x, −y, −z+1; (xii) −x+1, y+1/2, −z+1/2. |
Funding information
This work was supported by the Ministry of Education and Science of Ukraine (project No. 19BF037–05).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Desiraju, R. G. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Lincke, J., Lässig, D., Kobalz, M., Bergmann, J., Handke, M., Möllmer, J., Lange, M., Roth, C., Möller, A., Staudt, R. & Krautscheid, H. (2012). Inorg. Chem. 51, 7579–7586. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lysenko, A. B., Govor, E. V., Krautscheid, H. & Domasevitch, K. V. (2006). Dalton Trans. pp. 3772–3776. Web of Science CSD CrossRef Google Scholar
Naik, A. D., Dîrtu, M. M., Léonard, A., Tinant, B., Marchand-Brynaert, J., Su, B.-L. & Garcia, Y. (2010). Cryst. Growth Des. 10, 1798–1807. Web of Science CSD CrossRef CAS Google Scholar
Ouellette, W., Prosvirin, A. V., Chieffo, V., Dunbar, K. R., Hudson, B. & Zubieta, J. (2006). Inorg. Chem. 45, 9346–9366. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2000). IPDS Software. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Vasylevs'kyy, S. I., Senchyk, G. A., Lysenko, A. B., Rusanov, E. B., Chernega, A. N., Jezierska, J., Krautscheid, H., Domasevitch, K. V. & Ozarowski, A. (2014). Inorg. Chem. 53, 3642–3654. Web of Science CAS PubMed Google Scholar
Wang, X.-L., Gong, C.-H., Zhang, J.-W., Liu, G.-C., Kan, X.-M. & Xu, N. (2015). CrystEngComm, 17, 4179–4189. Web of Science CSD CrossRef CAS Google Scholar
Wang, Y., Cheng, P., Song, Y., Liao, D.-Z. & Yan, S.-P. (2007). Chem. Eur. J. 13, 8131–8138. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.