research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[[(μ3-hydroxido-κ3O:O:O)(μ3-selenato-κ3O1:O2:O3)tris­­[μ3-2-(1,2,4-triazol-4-yl)acetato-κ3N1:N2:O]tricopper(II)] dihydrate]

CROSSMARK_Color_square_no_text.svg

aInorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Volodimirska Street 64, Kyiv 01033, Ukraine
*Correspondence e-mail: ab_lysenko@univ.kiev.ua

Edited by A. J. Lough, University of Toronto, Canada (Received 11 June 2019; accepted 9 July 2019; online 16 July 2019)

The title coordination polymer, {[Cu3(C4H4N3O9)3(SeO4)(OH)]·2H2O}n or ([Cu3(μ3-OH)(trgly)3(SeO4)]·2H2O), crystallizes in the monoclinic space group P21/c. The three independent Cu2+ cations adopt distorted square-pyramidal geometries with {O2N2+O} polyhedra. The three copper centres are bridged by a μ3-OH anion, leading to a triangular [Cu3(μ3-OH)] core. 2-(1,2,4-Triazol-4-yl)acetic acid (trgly-H) acts in a deprotonated form as a μ3-κ3N1:N2:O ligand. The three triazolyl groups bridge three copper centres of the hydroxo-cluster in an N1:N2 mode, thus supporting the triangular geometry. The [Cu3(μ3-OH)(tr)3] clusters serve as secondary building units (SBUs). Each SBU can be regarded as a six-connected node, which is linked to six neighbouring triangles through carboxyl­ate groups, generating a two-dimensional uninodal (3,6) coordination network. The selenate anion is bound in a μ3-κ3O1:O2:O3 fashion to the trinuclear copper platform. The [Cu3(OH)(trgly)3(SeO4)] coordination layers and guest water mol­ecules are linked together by numerous O—H⋯O and C—H⋯O hydrogen bonds, leading to a three-dimensional structure.

1. Chemical context

Extended coordination networks incorporating trinuclear 1,2,4-triazole (tr)-based hydroxo(oxo) clusters [Cu3(μ3-OH/or O)(tr)3] as secondary building units (SBUs) are a subject of high inter­est in many inter­disciplinary fields including gas storage and sorption (Lincke et al., 2012[Lincke, J., Lässig, D., Kobalz, M., Bergmann, J., Handke, M., Möllmer, J., Lange, M., Roth, C., Möller, A., Staudt, R. & Krautscheid, H. (2012). Inorg. Chem. 51, 7579-7586.]), magnetism (Ouellette et al., 2006[Ouellette, W., Prosvirin, A. V., Chieffo, V., Dunbar, K. R., Hudson, B. & Zubieta, J. (2006). Inorg. Chem. 45, 9346-9366.]), anion exchange and separation (Wang et al., 2007[Wang, Y., Cheng, P., Song, Y., Liao, D.-Z. & Yan, S.-P. (2007). Chem. Eur. J. 13, 8131-8138.]). In these clusters, the copper(II) cations display either distorted tetra­gonal–pyramidal (TP) or (and) octa­hedral coordination geometries, two of the most stable configurations in the OH/tr ligand arrangement. Typically, the basal plane for a five-coordinate CuII atom (or the equatorial plane for six-coordinate CuII) consists of two nitro­gen atoms from two trans-coordinated tr groups, an oxygen atom from OH/O2− and an O (N, or Cl) donor atom (or anion) from an extra ligand, whereas the apical position is occupied by a water mol­ecule or anionic ligand (Lysenko et al., 2006[Lysenko, A. B., Govor, E. V., Krautscheid, H. & Domasevitch, K. V. (2006). Dalton Trans. pp. 3772-3776.]; Naik et al., 2010[Naik, A. D., Dîrtu, M. M., Léonard, A., Tinant, B., Marchand-Brynaert, J., Su, B.-L. & Garcia, Y. (2010). Cryst. Growth Des. 10, 1798-1807.]). The alternative trigonal–bypiramidal (TBP) environment around the copper centres can not be realized in the specific ligand configuration. Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) introduced a useful structural parameter, τ, as a criterion for distinguishing between TP and TBP polyhedra. This parameter, which varies from 0 (in TP) to 1 (in TBP), could perhaps be used to predict the anion binding affinity of closely related anions (e.g. SO42− versus SeO42−) toward the [Cu3(μ3-OH/or O)(tr)3] SBUs. The higher binding affinity might be associated with the lower τ parameter. As a matter of fact, the [Cu3(μ3-OH/or O)(tr)3] cationic clusters are perfectly suited for the binding of tetra­hedral anions through its three apical sites. In this context, it would be inter­esting to clarify how the size of the coordinating anions correlates with the τ value. In this paper, we report the crystal structure of the title Cu2+ complex, (I)[link], which was prepared by reacting CuSeO4 and trgly-H in an aqueous solution under hydro­thermal conditions. The compound is isomorphous to the [Cu3(μ3-OH)(trgly)3(SO4)]·2H2O complex (Vasylevs'kyy et al., 2014[Vasylevs'kyy, S. I., Senchyk, G. A., Lysenko, A. B., Rusanov, E. B., Chernega, A. N., Jezierska, J., Krautscheid, H., Domasevitch, K. V. & Ozarowski, A. (2014). Inorg. Chem. 53, 3642-3654.]).

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the centrosymmetric monoclinic space group P21/c. The asymmetric unit consists of three copper(II) cations, one selenate anion, one hydroxide anion, three deprotonated trgly ligands and two water mol­ecules (Fig. 1[link] and Table 1[link]). Each copper centre adopts a similar tetra­gonal–pyramidal coordination environment with the {O2N2+O} donor set. The basal plane of Cu1 is completed by atom O1 of the μ3-bridging hydroxide group [Cu1—O1 = 2.022 (2) Å], atom N1 from one bridging tr-group [Cu1—N1 = 1.980 (3) Å], atom N8 from the other bridging tr-group [Cu1—N8, 1.993 (3) Å] and a carboxyl­ate O atom from the trgly ligand [Cu1—O8i = 1.935 (3) Å; symmetry code: (i) x, y, z − 1]. The basal planes of Cu2 and Cu3 cations consist four short bonds as follows: Cu2—N2 = 1.979 (3), Cu2—N4 = 1.986 (3), Cu2—O1 = 2.039 (3) and Cu2—O6ii 1.954 (3) Å and Cu3—N5 = 1.974 (3), Cu3—N7 = 1.982 (3), Cu3—O1 = 2.039 (2) and Cu3—O10iii 1.990 (3) Å for Cu2 and for Cu3, respectively [symmetry codes: (ii) x, −y − [{1\over 2}], z + [{1\over 2}]; (iii) x, −y + [{1\over 2}], z + [{1\over 2}]]. The basal planes of the three square pyramids share a common corner at the O1 atom of the OH anion, forming a triangular [Cu3(μ3-OH)] core. The trinuclear motif is supported by a facially coordinating tripodal selenate anion [Cu1—O2 2.182 (3), Cu2—O3 = 2.146 (3) and Cu3—O4 = 2.182 (3) Å]. The value of the Addison structural parameter τ varies from 0.025 for Cu2 through 0.070 for Cu1 to 0.189 for Cu3, indicating the preference of a TP configuration (versus TBP) around the copper centres. A comparison of the τ values for (I)[link] with the corresponding values for the isomorphous sulfate complex [Cu3(μ3-OH)(trgly)3(SO4)]·2H2O (τ = 0.021, 0.103, 0.211; Vasylevs'kyy et al., 2014[Vasylevs'kyy, S. I., Senchyk, G. A., Lysenko, A. B., Rusanov, E. B., Chernega, A. N., Jezierska, J., Krautscheid, H., Domasevitch, K. V. & Ozarowski, A. (2014). Inorg. Chem. 53, 3642-3654.]) indicates a lower degree of TBP distortion for the selenate compound. This tendency is also observed for the other two isomorphous MOFs [{Cu3(μ3-OH)(X)}4{Cu2(H2O)2}3(trz-ia)12] [X = SO42− and SeO42−, trz-ia is the 5-(4H-1,2,4-triazol-4-yl)isophthalate anion], where the τ parameter values are 0.096 and 0.083 for the sulfate and selenate complexes, respectively (Lincke et al., 2012[Lincke, J., Lässig, D., Kobalz, M., Bergmann, J., Handke, M., Möllmer, J., Lange, M., Roth, C., Möller, A., Staudt, R. & Krautscheid, H. (2012). Inorg. Chem. 51, 7579-7586.]). Unlike [Cu3(μ3-OH)(trgly)3(SO4)]·2H2O, in which the highest τ value corresponds with the longest Cu—O axial bond, the τ parameter values for the title compound do not correlate with the Cu—O axial bond lengths. Atoms Cu1 and Cu3 with the lowest and highest τ values, respectively, have the same Cu—O axial bond lengths. For compound (I)[link], the hydroxide oxygen atom O1 is displaced by 0.532 Å from the centroid of the Cu1–Cu2–Cu3 triangular fragment, whereas for [Cu3(μ3-OH)(trgly)3(SO4)]·2H2O, the O–centroid distance is 0.570 Å. Thus, the larger anion–anion repulsion (OH/SO42− versus OH/SeO42−) in the sulfate complex also confirms the higher TBP distortion. The trinuclear clusters function as SBUs (six-connected nodes), which self-assemble into a two-dimensional coordination network (Fig. 2[link]) with all of the selenate anions on the same side of the coordination layer. The resultant 2D network topology can be rationalized as a (3,6) type. Inter­estingly, the selenate anions of two neighbouring layers point in opposite directions (Fig. 3[link]).

Table 1
Selected bond lengths (Å)

Cu1—O8i 1.935 (3) Cu3—N5 1.974 (3)
Cu1—N1 1.980 (3) Cu3—N7 1.982 (3)
Cu1—N8 1.993 (3) Cu3—O10iii 1.990 (3)
Cu1—O1 2.022 (2) Cu3—O1 2.039 (2)
Cu1—O2 2.182 (3) Cu3—O4 2.182 (3)
Cu2—O6ii 1.954 (3) Se1—O5 1.632 (3)
Cu2—N2 1.979 (3) Se1—O2 1.637 (3)
Cu2—N4 1.986 (3) Se1—O3 1.645 (3)
Cu2—O1 2.039 (3) Se1—O4 1.649 (3)
Cu2—O3 2.146 (3)    
Symmetry codes: (i) x, y, z-1; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A portion of the structure of (I)[link], showing the atom-labelling scheme and the copper coordination environments. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, y, z − 1; (ii) x, −y − [{1\over 2}], z + [{1\over 2}]; (iii) x, −y + [{1\over 2}], z + [{1\over 2}]].
[Figure 2]
Figure 2
A single layer of the structure has the (3,6) topological type (view along the [[\overline{4}]0[\overline{1}]] direction, selenates shown as tetra­hedra).
[Figure 3]
Figure 3
Crystal packing of compound (I)[link] (a) along the a axis, and (b) along the c axis. In (a), neighboring layers are shifted relative to one another while in (b) they are held together by O—H⋯O hydrogen bonds between hydroxide oxygen atoms and carboxyl­ate group oxygen atoms [O1⋯O10iv = 2.811 (4) Å, O1—H1O⋯O10iv = 156°; symmetry code: (iv) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]].

3. Supra­molecular features

The trinuclear [Cu3(μ3-OH)(tr)3] clusters are involved in inter- and intra­molecular hydrogen-bonding inter­actions. Adjacent layers are linked together by hydrogen bonding between the hydroxide oxygen atoms (O1 as H-atom donor) and carboxyl­ate group oxygen atoms (O10 as H-atom acceptor) and are shifted with respect to each other, forming a H-bonded double layer (Fig. 3[link]a, Table 2[link]). The guest water mol­ecules are trapped between neighboring double-layers, forming a set of hydrogen bonds to selenate oxygen atoms [O1W⋯O4 = 2.767 (4) Å, O1W—H2W⋯O4 = 168°], carboxyl­ate oxygen atoms [O1W⋯O11 = 2.940 (5) Å, O1W—H1W⋯O11 = 166°, and O2W⋯O9v = 2.798 (5) Å, O2W—H3W⋯O9v 178°, symmetry code: (v) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]] and to one another [O2W⋯O1W = 2.812 (6) Å, O2W—H4W⋯O1W = 159°, Fig. 4[link]]. Apparently, the presence of the hydrogen bond between the O1W water mol­ecule and the selenate oxygen atom O4 leads to an increase in the trigonal–bypiramidal distortion of the square-pyramidal coordination polyhedra of Cu3 (τ = 0.189 for Cu3, markedly higher than the values of 0.070 and 0.025 for Cu1 and for Cu2, respectively) in the trinuclear [Cu3(μ3-OH)(tr)3] core.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O10iv 0.85 2.01 2.811 (4) 156
O1W—H1W⋯O11 0.85 2.11 2.940 (5) 166
O1W—H2W⋯O4 0.85 1.93 2.767 (4) 168
O2W—H3W⋯O9v 0.85 1.95 2.798 (5) 178
O2W—H4W⋯O1W 0.85 2.00 2.812 (6) 159
C1—H1⋯O5vi 0.94 2.58 3.346 (5) 139
C2—H2⋯O5vii 0.94 2.28 2.955 (5) 128
C5—H5⋯O3viii 0.94 2.39 2.941 (5) 117
C6—H6⋯O2Wiii 0.94 2.30 3.176 (6) 154
C7—H7A⋯O3viii 0.98 2.25 3.094 (6) 144
C7—H7B⋯O1Wiii 0.98 2.38 3.338 (5) 164
C9—H9⋯O7ix 0.94 2.25 3.067 (6) 144
Symmetry codes: (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x, -y, -z; (vii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) -x, -y, -z+1; (ix) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Crystal packing pattern in (I)[link] showing the O—H⋯O hydrogen-bonding inter­actions between neighboring layers.

The coordination polymeric network is reinforced by weak C—H⋯O hydrogen-bonding inter­actions (Desiraju & Steiner, 1999[Desiraju, R. G. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.], Fig. 5[link], Table 2[link]). These C—H hydrogen bonds with one acceptor oxygen atom [C⋯O distances ranging from 2.955 (5) to 3.440 (5) Å] help to stabilize the resulting three-dimensional hydrogen-bonded network.

[Figure 5]
Figure 5
Crystal packing patterns in (I)[link] showing the presence of C—H⋯O hydrogen bonds.

Thus, the hydro­thermal reaction of CuSeO4 and trgly-H leads to a two-dimensional coordination network [Cu3(μ3-OH)(trgly)3(SeO4)] based on the trinuclear coordination clusters [Cu3(μ3-OH)]. The five-coordinate copper(II) centres in the [Cu3(μ3-OH)(tr)3] SBU display less-distorted square-pyramidal arrangements in comparison to those of the isomorphous complex [Cu3(μ3-OH)(trgly)3(SO4)]·2H2O.

3.1. Database survey

Among the known [Cu3(μ3-OH/or O)(tr)3] complexes (CSD version 5.39, update of May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the highest possible value of τ (0.313) in the five-coordinate copper(II) cation was once observed for the copper(II)-polyoxomolybdate complex with 4-amino-1,2,4-triazole [Cu3(4-atrz)3(Mo8O27)(H2O)4]·6H2O (Wang et al., 2015[Wang, X.-L., Gong, C.-H., Zhang, J.-W., Liu, G.-C., Kan, X.-M. & Xu, N. (2015). CrystEngComm, 17, 4179-4189.]). However, the authors described the trinuclear cationic core as [Cu3(μ3-H2O)(4-atrz)3]. They also inter­preted the five-coord­inate copper geometry as trigonal–bipyramidal, although the τ parameter is closer to 0 than to 1.

4. Synthesis and crystallization

1,2,4-Triazol-4-yl-acetic acid, (trgly-H) was prepared in a yield of 30% by reacting glycine and N,N-di­methyl­formamide azine in boiling toluene under acidic conditions (Vasylevs'kyy et al., 2014[Vasylevs'kyy, S. I., Senchyk, G. A., Lysenko, A. B., Rusanov, E. B., Chernega, A. N., Jezierska, J., Krautscheid, H., Domasevitch, K. V. & Ozarowski, A. (2014). Inorg. Chem. 53, 3642-3654.]). Copper(II) selenate penta­hydrate was prepared by treating basic copper carbonate with selenic acid followed by crystallization. A solution of CuSeO4·5H2O (59.2 mg, 0.20 mmol) in 4 mL of water was added to a solution of trgly-H (27.2 mg, 0.20 mmol) in water (2 mL). The resulting solution was placed in a 20 mL Teflon-lined steel autoclave and heated at 393 K for 24 h. Cooling from to rt over 48 h afforded green–blue crystals of the product (yield 52%). Analysis calculated for C12H17Cu3N9O13Se (%): C, 18.84; H, 2.24; N, 16.48. Found: C, 18.79; H, 2.28; N, 16.40. Elemental analysis was carried out with a Vario EL-Heraeus microanalyzer.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed at calculated positions [C—H = 0.94 Å (aromatic), C—H = 0.98 Å (aliphatic)] and refined using a riding model with Uiso(H) = 1.2Ueq(CH). All O-bound H atoms were located in a difference-Fourier map and then fixed at O—H = 0.85 Å and with Uiso(H) =1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Cu3(C4H4N3O9)3(SeO4)(OH)]·2H2O
Mr 764.92
Crystal system, space group Monoclinic, P21/c
Temperature (K) 213
a, b, c (Å) 10.9403 (8), 17.5393 (15), 12.1289 (9)
β (°) 108.965 (8)
V3) 2201.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.62
Crystal size (mm) 0.20 × 0.16 × 0.14
 
Data collection
Diffractometer Stoe Image plate diffraction system
Absorption correction Numerical [X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.]) and X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.])]
Tmin, Tmax 0.405, 0.569
No. of measured, independent and observed [I > 2σ(I)] reflections 16928, 4681, 3306
Rint 0.057
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.072, 0.88
No. of reflections 4681
No. of parameters 343
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.99, −0.64
Computer programs: IPDS Software (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: IPDS Software (Stoe & Cie, 2000); cell refinement: IPDS Software (Stoe & Cie, 2000); data reduction: IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Poly[[(µ3-hydroxido-κ3O:O:O)(µ3-selenato-κ3O1:O2:O3)tris[µ3-2-(1,2,4-triazol-4-yl)acetato-κ3N1:N2:O]tricopper(II)] dihydrate] top
Crystal data top
[Cu3(C4H4N3O9)3(SeO4)(OH)]·2H2OF(000) = 1508
Mr = 764.92Dx = 2.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9403 (8) ÅCell parameters from 8000 reflections
b = 17.5393 (15) Åθ = 2.0–26.8°
c = 12.1289 (9) ŵ = 4.62 mm1
β = 108.965 (8)°T = 213 K
V = 2201.0 (3) Å3Prism, blue
Z = 40.20 × 0.16 × 0.14 mm
Data collection top
Stoe Image plate diffraction system
diffractometer
3306 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
φ oscillation scansθmax = 26.8°, θmin = 2.0°
Absorption correction: numerical
[X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
h = 1313
Tmin = 0.405, Tmax = 0.569k = 2222
16928 measured reflectionsl = 1515
4681 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0392P)2]
where P = (Fo2 + 2Fc2)/3
4681 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.99 e Å3
0 restraintsΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27623 (5)0.00328 (2)0.16661 (4)0.01311 (11)
Cu20.17026 (5)0.07181 (2)0.37617 (4)0.01200 (11)
Cu30.39077 (5)0.07288 (3)0.44294 (4)0.01223 (11)
Se10.08793 (4)0.10530 (2)0.27442 (3)0.01415 (10)
O10.3177 (3)0.01857 (14)0.3386 (2)0.0113 (5)
H1O0.3787800.0509420.3548770.017*
O20.1203 (3)0.08350 (16)0.1556 (2)0.0237 (7)
O30.0502 (3)0.02779 (15)0.3325 (3)0.0228 (7)
O40.2182 (3)0.14261 (15)0.3694 (3)0.0218 (7)
O50.0323 (3)0.16534 (15)0.2454 (3)0.0231 (7)
O60.0419 (3)0.36472 (15)0.0871 (2)0.0174 (6)
O70.2019 (3)0.28370 (17)0.0029 (3)0.0301 (8)
O80.2547 (3)0.02330 (16)1.0045 (2)0.0253 (7)
O90.3408 (4)0.0683 (2)0.9233 (3)0.0375 (9)
O100.5155 (3)0.36051 (14)0.0589 (2)0.0160 (6)
O110.3676 (3)0.28549 (17)0.0946 (3)0.0307 (8)
N10.1686 (4)0.09003 (18)0.1341 (3)0.0148 (7)
N20.1237 (4)0.11875 (18)0.2195 (3)0.0165 (7)
N30.0471 (3)0.18786 (17)0.0647 (3)0.0139 (7)
N40.2432 (3)0.03365 (18)0.5386 (3)0.0142 (7)
N50.3327 (3)0.02449 (18)0.5642 (3)0.0152 (7)
N60.2564 (4)0.01245 (19)0.7085 (3)0.0177 (8)
N70.4666 (3)0.10867 (18)0.3243 (3)0.0135 (7)
N80.4102 (4)0.08493 (17)0.2103 (3)0.0143 (7)
N90.5346 (3)0.18128 (17)0.2111 (3)0.0146 (7)
C10.1208 (4)0.1327 (2)0.0416 (4)0.0174 (9)
H10.1356620.1258980.0298850.021*
C20.0507 (4)0.1772 (2)0.1748 (4)0.0180 (9)
H20.0071930.2073860.2142520.022*
C30.0143 (4)0.2514 (2)0.0127 (3)0.0151 (8)
H3A0.0705770.2313210.0873600.018*
H3B0.0675850.2811620.0227230.018*
C40.0885 (4)0.3024 (2)0.0333 (3)0.0153 (8)
C50.1996 (4)0.0399 (2)0.6262 (3)0.0173 (9)
H50.1376190.0755820.6313770.021*
C60.3394 (5)0.0504 (2)0.6674 (4)0.0209 (9)
H60.3943630.0898640.7070400.025*
C70.2191 (5)0.0356 (2)0.8093 (3)0.0196 (9)
H7A0.1249930.0308300.7882610.024*
H7B0.2406170.0895920.8248420.024*
C80.2803 (4)0.0084 (2)0.9205 (4)0.0202 (9)
C90.5423 (4)0.1668 (2)0.3220 (4)0.0156 (8)
H90.5936030.1938480.3876700.019*
C100.4526 (4)0.1297 (2)0.1453 (4)0.0174 (9)
H100.4291030.1263250.0636760.021*
C110.5883 (4)0.2477 (2)0.1676 (4)0.0182 (9)
H11A0.6351220.2305770.1156120.022*
H11B0.6490850.2750100.2331750.022*
C120.4785 (4)0.3008 (2)0.1017 (3)0.0159 (9)
O1W0.3015 (4)0.28114 (19)0.3110 (4)0.0441 (10)
H1W0.3090860.2777780.2435760.066*
H2W0.2649860.2408680.3236860.066*
O2W0.5427 (4)0.3544 (2)0.3669 (3)0.0408 (9)
H3W0.5762590.3784370.4305050.061*
H4W0.4716690.3351270.3676850.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0193 (3)0.0112 (2)0.0091 (2)0.00358 (19)0.0050 (2)0.00138 (17)
Cu20.0176 (3)0.0096 (2)0.0093 (2)0.00239 (19)0.0050 (2)0.00079 (17)
Cu30.0169 (3)0.0109 (2)0.0091 (2)0.00224 (19)0.0045 (2)0.00038 (17)
Se10.0155 (2)0.01058 (17)0.01497 (19)0.00218 (16)0.00297 (17)0.00008 (15)
O10.0139 (16)0.0091 (12)0.0104 (12)0.0007 (10)0.0033 (12)0.0019 (10)
O20.0289 (19)0.0285 (16)0.0131 (14)0.0102 (13)0.0061 (14)0.0027 (12)
O30.0225 (18)0.0143 (13)0.0333 (17)0.0021 (12)0.0114 (15)0.0066 (12)
O40.0208 (18)0.0158 (14)0.0243 (15)0.0005 (12)0.0013 (14)0.0001 (12)
O50.0201 (18)0.0172 (14)0.0275 (16)0.0101 (12)0.0014 (15)0.0007 (12)
O60.0208 (17)0.0165 (13)0.0147 (14)0.0032 (12)0.0056 (13)0.0039 (11)
O70.021 (2)0.0212 (15)0.046 (2)0.0001 (14)0.0079 (17)0.0058 (15)
O80.045 (2)0.0250 (15)0.0092 (13)0.0068 (14)0.0130 (15)0.0017 (12)
O90.046 (2)0.045 (2)0.0257 (17)0.0226 (18)0.0176 (18)0.0120 (16)
O100.0215 (17)0.0116 (13)0.0151 (14)0.0002 (11)0.0063 (13)0.0023 (10)
O110.023 (2)0.0256 (17)0.041 (2)0.0006 (14)0.0068 (17)0.0117 (15)
N10.020 (2)0.0161 (16)0.0088 (15)0.0036 (13)0.0059 (15)0.0001 (12)
N20.026 (2)0.0129 (16)0.0124 (16)0.0029 (14)0.0086 (16)0.0006 (12)
N30.018 (2)0.0099 (15)0.0123 (16)0.0009 (13)0.0032 (15)0.0016 (12)
N40.014 (2)0.0145 (15)0.0123 (16)0.0019 (13)0.0023 (15)0.0024 (13)
N50.020 (2)0.0157 (16)0.0104 (16)0.0047 (14)0.0050 (15)0.0008 (12)
N60.023 (2)0.0201 (17)0.0100 (16)0.0050 (14)0.0057 (16)0.0009 (13)
N70.0153 (19)0.0140 (15)0.0102 (15)0.0015 (14)0.0028 (15)0.0001 (12)
N80.0177 (19)0.0147 (16)0.0096 (15)0.0005 (13)0.0034 (15)0.0002 (12)
N90.019 (2)0.0107 (15)0.0165 (17)0.0012 (13)0.0089 (16)0.0008 (12)
C10.023 (3)0.0138 (18)0.0154 (19)0.0007 (16)0.0069 (19)0.0008 (15)
C20.026 (3)0.0131 (18)0.017 (2)0.0056 (16)0.010 (2)0.0036 (15)
C30.017 (2)0.0120 (17)0.0123 (19)0.0029 (15)0.0001 (18)0.0027 (14)
C40.021 (3)0.0128 (18)0.0108 (18)0.0008 (16)0.0037 (18)0.0023 (14)
C50.020 (3)0.021 (2)0.0123 (19)0.0051 (17)0.0077 (19)0.0011 (15)
C60.027 (3)0.022 (2)0.0140 (19)0.0078 (18)0.007 (2)0.0000 (16)
C70.025 (3)0.022 (2)0.0127 (19)0.0013 (18)0.0076 (19)0.0029 (16)
C80.019 (2)0.023 (2)0.018 (2)0.0069 (18)0.004 (2)0.0012 (17)
C90.018 (2)0.0141 (18)0.0146 (19)0.0023 (16)0.0048 (18)0.0006 (15)
C100.023 (3)0.0156 (18)0.016 (2)0.0018 (16)0.009 (2)0.0009 (15)
C110.021 (3)0.0146 (19)0.021 (2)0.0025 (17)0.010 (2)0.0057 (16)
C120.023 (3)0.0129 (17)0.0122 (19)0.0027 (16)0.0061 (19)0.0006 (14)
O1W0.053 (3)0.0231 (17)0.064 (3)0.0041 (17)0.029 (2)0.0046 (17)
O2W0.037 (2)0.054 (2)0.0280 (19)0.0025 (18)0.0055 (18)0.0045 (17)
Geometric parameters (Å, º) top
Cu1—O8i1.935 (3)N4—C51.303 (5)
Cu1—N11.980 (3)N4—N51.377 (4)
Cu1—N81.993 (3)N5—C61.311 (5)
Cu1—O12.022 (2)N6—C61.346 (5)
Cu1—O22.182 (3)N6—C51.349 (5)
Cu2—O6ii1.954 (3)N6—C71.466 (5)
Cu2—N21.979 (3)N7—C91.320 (5)
Cu2—N41.986 (3)N7—N81.382 (4)
Cu2—O12.039 (3)N8—C101.301 (5)
Cu2—O32.146 (3)N9—C101.339 (5)
Cu3—N51.974 (3)N9—C91.345 (5)
Cu3—N71.982 (3)N9—C111.478 (5)
Cu3—O10iii1.990 (3)C1—H10.9400
Cu3—O12.039 (2)C2—H20.9400
Cu3—O42.182 (3)C3—C41.520 (6)
Se1—O51.632 (3)C3—H3A0.9800
Se1—O21.637 (3)C3—H3B0.9800
Se1—O31.645 (3)C5—H50.9400
Se1—O41.649 (3)C6—H60.9400
O1—H1O0.8500C7—C81.509 (6)
O6—C41.289 (5)C7—H7A0.9800
O7—C41.219 (5)C7—H7B0.9800
O8—C81.270 (5)C9—H90.9400
O9—C81.235 (5)C10—H100.9400
O10—C121.291 (4)C11—C121.525 (6)
O11—C121.218 (5)C11—H11A0.9800
N1—C11.308 (5)C11—H11B0.9800
N1—N21.379 (4)O1W—H1W0.8500
N2—C21.304 (5)O1W—H2W0.8500
N3—C21.337 (5)O2W—H3W0.8500
N3—C11.346 (5)O2W—H4W0.8500
N3—C31.471 (5)
O8i—Cu1—N194.55 (13)C6—N5—Cu3129.1 (3)
O8i—Cu1—N888.65 (13)N4—N5—Cu3121.9 (2)
N1—Cu1—N8170.10 (14)C6—N6—C5105.5 (3)
O8i—Cu1—O1174.35 (13)C6—N6—C7125.2 (3)
N1—Cu1—O188.18 (11)C5—N6—C7128.2 (3)
N8—Cu1—O187.86 (12)C9—N7—N8107.0 (3)
O8i—Cu1—O289.20 (12)C9—N7—Cu3132.3 (3)
N1—Cu1—O296.79 (13)N8—N7—Cu3118.3 (2)
N8—Cu1—O292.62 (13)C10—N8—N7107.0 (3)
O1—Cu1—O295.40 (10)C10—N8—Cu1130.4 (3)
O6ii—Cu2—N290.12 (12)N7—N8—Cu1122.2 (2)
O6ii—Cu2—N493.00 (12)C10—N9—C9106.3 (3)
N2—Cu2—N4170.93 (15)C10—N9—C11125.9 (3)
O6ii—Cu2—O1172.41 (11)C9—N9—C11127.1 (3)
N2—Cu2—O187.23 (12)N1—C1—N3109.4 (3)
N4—Cu2—O188.59 (12)N1—C1—H1125.3
O6ii—Cu2—O395.29 (11)N3—C1—H1125.3
N2—Cu2—O398.97 (13)N2—C2—N3109.9 (3)
N4—Cu2—O389.24 (13)N2—C2—H2125.0
O1—Cu2—O392.15 (11)N3—C2—H2125.0
N5—Cu3—N7171.64 (14)N3—C3—C4110.0 (3)
N5—Cu3—O10iii92.21 (12)N3—C3—H3A109.7
N7—Cu3—O10iii88.56 (12)C4—C3—H3A109.7
N5—Cu3—O188.15 (12)N3—C3—H3B109.7
N7—Cu3—O188.32 (12)C4—C3—H3B109.7
O10iii—Cu3—O1160.30 (11)H3A—C3—H3B108.2
N5—Cu3—O495.76 (13)O7—C4—O6125.3 (4)
N7—Cu3—O492.07 (13)O7—C4—C3121.7 (3)
O10iii—Cu3—O4105.28 (11)O6—C4—C3112.9 (4)
O1—Cu3—O494.27 (11)N4—C5—N6110.1 (4)
O5—Se1—O2110.53 (15)N4—C5—H5125.0
O5—Se1—O3109.17 (15)N6—C5—H5125.0
O2—Se1—O3109.91 (15)N5—C6—N6110.3 (4)
O5—Se1—O4110.35 (15)N5—C6—H6124.9
O2—Se1—O4108.82 (16)N6—C6—H6124.9
O3—Se1—O4108.01 (15)N6—C7—C8116.2 (4)
Cu1—O1—Cu3113.72 (11)N6—C7—H7A108.2
Cu1—O1—Cu2112.88 (13)C8—C7—H7A108.2
Cu3—O1—Cu2113.63 (11)N6—C7—H7B108.2
Cu1—O1—H1O105.2C8—C7—H7B108.2
Cu3—O1—H1O105.1H7A—C7—H7B107.4
Cu2—O1—H1O105.2O9—C8—O8127.3 (4)
Se1—O2—Cu1119.02 (15)O9—C8—C7122.5 (4)
Se1—O3—Cu2124.02 (16)O8—C8—C7110.1 (4)
Se1—O4—Cu3119.98 (15)N7—C9—N9109.3 (4)
C4—O6—Cu2iv113.7 (3)N7—C9—H9125.3
C8—O8—Cu1v138.6 (3)N9—C9—H9125.3
C12—O10—Cu3vi121.8 (3)N8—C10—N9110.4 (4)
C1—N1—N2107.1 (3)N8—C10—H10124.8
C1—N1—Cu1133.6 (3)N9—C10—H10124.8
N2—N1—Cu1119.1 (2)N9—C11—C12109.4 (3)
C2—N2—N1107.1 (3)N9—C11—H11A109.8
C2—N2—Cu2131.1 (3)C12—C11—H11A109.8
N1—N2—Cu2121.7 (2)N9—C11—H11B109.8
C2—N3—C1106.4 (3)C12—C11—H11B109.8
C2—N3—C3127.1 (3)H11A—C11—H11B108.2
C1—N3—C3126.3 (3)O11—C12—O10125.9 (4)
C5—N4—N5107.5 (3)O11—C12—C11120.0 (3)
C5—N4—Cu2130.2 (3)O10—C12—C11114.1 (4)
N5—N4—Cu2120.0 (2)H1W—O1W—H2W108.4
C6—N5—N4106.7 (3)H3W—O2W—H4W108.4
O5—Se1—O2—Cu1179.53 (17)Cu2iv—O6—C4—C3176.2 (2)
O3—Se1—O2—Cu159.0 (2)N3—C3—C4—O710.4 (5)
O4—Se1—O2—Cu159.1 (2)N3—C3—C4—O6170.9 (3)
O5—Se1—O3—Cu2175.78 (18)N5—N4—C5—N60.4 (5)
O2—Se1—O3—Cu254.4 (2)Cu2—N4—C5—N6161.7 (3)
O4—Se1—O3—Cu264.2 (2)C6—N6—C5—N41.1 (5)
O5—Se1—O4—Cu3172.90 (16)C7—N6—C5—N4167.1 (4)
O2—Se1—O4—Cu365.7 (2)N4—N5—C6—N61.2 (5)
O3—Se1—O4—Cu353.6 (2)Cu3—N5—C6—N6161.3 (3)
C1—N1—N2—C20.1 (5)C5—N6—C6—N51.4 (5)
Cu1—N1—N2—C2176.8 (3)C7—N6—C6—N5167.2 (4)
C1—N1—N2—Cu2179.7 (3)C6—N6—C7—C8103.6 (5)
Cu1—N1—N2—Cu22.8 (4)C5—N6—C7—C890.4 (5)
C5—N4—N5—C60.4 (5)Cu1v—O8—C8—O94.3 (8)
Cu2—N4—N5—C6164.7 (3)Cu1v—O8—C8—C7172.5 (3)
C5—N4—N5—Cu3163.6 (3)N6—C7—C8—O911.9 (6)
Cu2—N4—N5—Cu30.7 (4)N6—C7—C8—O8171.1 (4)
C9—N7—N8—C100.7 (4)N8—N7—C9—N90.8 (4)
Cu3—N7—N8—C10163.8 (3)Cu3—N7—C9—N9160.7 (3)
C9—N7—N8—Cu1175.1 (3)C10—N9—C9—N70.6 (5)
Cu3—N7—N8—Cu110.5 (4)C11—N9—C9—N7170.5 (4)
N2—N1—C1—N30.1 (5)N7—N8—C10—N90.4 (5)
Cu1—N1—C1—N3176.4 (3)Cu1—N8—C10—N9174.1 (3)
C2—N3—C1—N10.4 (5)C9—N9—C10—N80.1 (5)
C3—N3—C1—N1174.2 (4)C11—N9—C10—N8171.1 (4)
N1—N2—C2—N30.4 (5)C10—N9—C11—C1262.3 (5)
Cu2—N2—C2—N3179.8 (3)C9—N9—C11—C12107.2 (4)
C1—N3—C2—N20.4 (5)Cu3vi—O10—C12—O1113.8 (6)
C3—N3—C2—N2174.0 (4)Cu3vi—O10—C12—C11167.2 (2)
C2—N3—C3—C4110.0 (5)N9—C11—C12—O111.7 (5)
C1—N3—C3—C463.4 (5)N9—C11—C12—O10179.2 (3)
Cu2iv—O6—C4—O72.5 (5)
Symmetry codes: (i) x, y, z1; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z1/2; (v) x, y, z+1; (vi) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O10vii0.852.012.811 (4)156
O1W—H1W···O110.852.112.940 (5)166
O1W—H2W···O40.851.932.767 (4)168
O2W—H3W···O9viii0.851.952.798 (5)178
O2W—H4W···O1W0.852.002.812 (6)159
C1—H1···O5ix0.942.583.346 (5)139
C2—H2···O5x0.942.282.955 (5)128
C5—H5···O3xi0.942.392.941 (5)117
C6—H6···O2Wiii0.942.303.176 (6)154
C7—H7A···O3xi0.982.253.094 (6)144
C7—H7B···O1Wiii0.982.383.338 (5)164
C9—H9···O7xii0.942.253.067 (6)144
Symmetry codes: (iii) x, y+1/2, z+1/2; (vii) x+1, y1/2, z+1/2; (viii) x+1, y+1/2, z+3/2; (ix) x, y, z; (x) x, y1/2, z+1/2; (xi) x, y, z+1; (xii) x+1, y+1/2, z+1/2.
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (project No. 19BF037–05).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDesiraju, R. G. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLincke, J., Lässig, D., Kobalz, M., Bergmann, J., Handke, M., Möllmer, J., Lange, M., Roth, C., Möller, A., Staudt, R. & Krautscheid, H. (2012). Inorg. Chem. 51, 7579–7586.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLysenko, A. B., Govor, E. V., Krautscheid, H. & Domasevitch, K. V. (2006). Dalton Trans. pp. 3772–3776.  Web of Science CSD CrossRef Google Scholar
First citationNaik, A. D., Dîrtu, M. M., Léonard, A., Tinant, B., Marchand-Brynaert, J., Su, B.-L. & Garcia, Y. (2010). Cryst. Growth Des. 10, 1798–1807.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuellette, W., Prosvirin, A. V., Chieffo, V., Dunbar, K. R., Hudson, B. & Zubieta, J. (2006). Inorg. Chem. 45, 9346–9366.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2000). IPDS Software. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVasylevs'kyy, S. I., Senchyk, G. A., Lysenko, A. B., Rusanov, E. B., Chernega, A. N., Jezierska, J., Krautscheid, H., Domasevitch, K. V. & Ozarowski, A. (2014). Inorg. Chem. 53, 3642–3654.  Web of Science CAS PubMed Google Scholar
First citationWang, X.-L., Gong, C.-H., Zhang, J.-W., Liu, G.-C., Kan, X.-M. & Xu, N. (2015). CrystEngComm, 17, 4179–4189.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y., Cheng, P., Song, Y., Liao, D.-Z. & Yan, S.-P. (2007). Chem. Eur. J. 13, 8131–8138.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds