research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of an imidazo[1,5-a]pyridinium-based ligand and its (C13H12N3)2[CdI4] hybrid salt

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bSchool of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by A. J. Lough, University of Toronto, Canada (Received 27 June 2019; accepted 11 July 2019; online 19 July 2019)

The monocation product of the oxidative condensation–cyclization between two mol­ecules of pyridine-2-carbaldehyde and one mol­ecule of CH3NH2·HCl in methanol, 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium, was isolated in the presence of metal ions as bis­[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetra­iodo­cadmate, (C13H12N3)2[CdI4], (I), and the mixed chloride/nitrate salt, bis­[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chlor­ide 0.5-nitrate trihydrate, 2C13H12N3+·1.5Cl·0.5NO3·3H2O, (II). Hybrid salt (I) crystallizes in the space group P21/n with two [L]2[CdI4] mol­ecules in the asymmetric unit related by pseudosymmetry. In the crystal of (I), layers of organic cations and of tetra­halometallate anions are stacked parallel to the ab plane. Anti­parallel L+ cations disposed in a herring-bone pattern form π-bonded chains through aromatic stacking. In the inorganic layer, adjacent tetra­hedral CdI4 units have no connectivity but demonstrate close packing of iodide anions. In the crystal lattice of (II), the cations are arranged in stacks propagating along the a axis; the one-dimensional hydrogen-bonded polymer built of chloride ions and water mol­ecules runs parallel to a column of stacked cations.

1. Chemical context

Organic–inorganic hybrid salts have maintained steady research inter­est in materials science (Díaz & Corma, 2018[Díaz, U. & Corma, A. (2018). Chem. Eur. J. 24, 3944-3958.]). By combining cation and anion networks in one continuous lattice, useful properties of organic and inorganic components are expected to translate into new multifunctional materials. Monovalent organic cations can form hybrid halometallates with halide anions and divalent metal ions with organic–inorganic Pb and Sn perovskites being the most investigated family because of their efficiency in solar cells (Brenner et al., 2016[Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. (2016). Nat. Rev. Mater. 1, 15007.]). The exploration of hybrid compounds based on other polyhedra and connectivity through control of their chemical composition and structural dimensionality may bring applications in new areas of science and technology. Hybrid tetra­halometallates are a promising variety that can demonstrate properties of multiferroics (β-K2SeO4 analogues) and ionic liquids, show luminescence and a series of solid-phase transitions (García-Saiz et al., 2014[García-Saiz, A., de Pedro, I., Migowski, P., Vallcorba, O., Junquera, J., Blanco, J. A., Fabelo, O., Sheptyakov, D., Waerenborgh, J. C., Fernández-Díaz, M. T., Rius, J., Dupont, J., Gonzalez, J. A. & Fernández, J. R. (2014). Inorg. Chem. 53, 8384-8396.]; Piecha-Bisiorek et al., 2016[Piecha-Bisiorek, A., Bieńko, A., Jakubas, R., Boča, R., Weselski, M., Kinzhybalo, V., Pietraszko, A., Wojciechowska, M., Medycki, W. & Kruk, D. (2016). J. Phys. Chem. A, 120, 2014-2021.]; Jiang et al., 2017[Jiang, C., Zhong, N., Luo, C., Lin, H., Zhang, Y., Peng, H. & Duan, C. G. (2017). Chem. Commun. 53, 5954-5957.]).

The serendipitous discovery of the formation of 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cation, L+, in the oxidative condensation–cyclization of 2-pyridine­carbaldehyde (2-PCA) and CH3NH2·HCl in methanol and the following preparation of the fluorescent [L]2[ZnCl4] hybrid salt in the presence of Zn2+ ions prompted our research on organic–inorganic halometalates with substituted imidazo[1,5-a]pyridinium cations (Buvaylo et al., 2015[Buvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735-13744.]; Vassilyeva et al., 2019[Vassilyeva, O. Yu., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Rajnák, C., Titiš, Y. & Boča, R. (2019). Dalton Trans. https://doi.org/10.1039/C9DT01642B]). The use of methyl­amine hydro­chloride instead of its conventional aqueous solution appeared to promote the cyclo­condensation with the formation of L+ instead of the expected neutral Schiff base. Heterocycles with the imidazo[1,5-a]pyridine skeleton show prominent photophysical properties (Hutt et al., 2012[Hutt, J. T., Jo, J., Olasz, A., Chen, C.-H., Lee, D. & Aron, Z. D. (2012). Org. Lett. 14, 3162-3165.]) and have the potential to be used in optoelectronic technology. Their incorporation in the halometallate structure may improve the mechanical properties, chemical resistance, thermal stability, etc. of organic materials.

[Scheme 1]

In the present work, we aimed to study the effect of the halide variation on the resulting hybrid salt structure. The new organic–inorganic hybrid [L]2[CdI4] (I)[link] involving the in situ-formed L+ cation has been prepared in the reaction system:

2-PCA – CH3NH2·HCl – CdI2 – KI – CH3OH

The use of Pb(NO3)2 in an attempt to synthesize a hybrid salt with an L+ cation was not successful but led to the isolation of 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium as a mixed chloride/nitrate salt, [L]2[Cl]1.5[NO3]0.5·3H2O (II)[link] in the system:

2-PCA – CH3NH2·HCl – Pb(NO3)2 – CH3OH

The identities of the title compounds were confirmed by elemental analysis, IR and NMR spectroscopy, and single-crystal diffraction studies.

2. Structural commentary

The hybrid salt (I)[link] is built of discrete L+ cations and CdI42– anions (Fig. 1[link]). There are two symmetry-independent sets of (2L+ + CdI42−) ions related by pseudosymmetry in the asymmetric unit; L+ cations in every set are crystallographically non-equivalent. They possess very similar structural configurations that are strictly comparable to those of the L+ cations in ortho­rhom­bic [L]2[ZnCl4] and monoclinic [L]2[CoCl4] reported by us previously (Buvaylo et al., 2015[Buvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735-13744.]; Vassilyeva et al., 2019[Vassilyeva, O. Yu., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Rajnák, C., Titiš, Y. & Boča, R. (2019). Dalton Trans. https://doi.org/10.1039/C9DT01642B]). The replacement of chloride with iodide anions did not influence the stoichiometry of the resulting tetra­halometallate and the overall structure of the hybrid salt remained roughly the same.

[Figure 1]
Figure 1
Mol­ecular structure and labelling of (I)[link] with ellipsoids at the 50% probability level.

The bond lengths of the pyridinium entities in the imidazo[1,5-a]pyridinium cores are as expected for such rings, the bond distances in the imidazolium rings fall in the range 1.350 (3)–1.409 (4) Å. The N12 and N13A, N22 and N23A, N32 and N33A, N42 and N43A atoms are planar with the sum of three angles being 360°. The fused cores of all four L+ cations are virtually coplanar: the dihedral angles between the five- and six-membered rings vary from 1.22 to 2.26°. The pendant pyridyl rings are twisted by approximately 25.60–38.52° with respect to the imidazo[1,5-a]pyridinium cores. The 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium units are mono-cationic and aromatic with the positive charge being delocalized on atoms N12 and N13A, N22 and N23A, N32 and N33A, N42 and N43A.

The tetra­hedral CdI42– anions are moderately distorted: the Cd—I distances lie in the range 2.7573 (3)–2.8023 (3) Å while the I—Cd—I angles vary from 102.186 (8) to 117.300 (9)° (Table 1[link]). The average Cd—I distance of 2.78 Å is comparable to those found in the CSD (version 5.40 of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for other CdII salts containing isolated CdI42– tetra­hedral anions (an average of 2.777 (3) Å for Cd—I with a range of 2.684–2.827 Å).

Table 1
Selected geometric parameters (Å, °) for (I)[link]

Cd1—I14 2.7573 (3) Cd2—I24 2.7575 (3)
Cd1—I11 2.7764 (3) Cd2—I21 2.7610 (3)
Cd1—I13 2.7949 (3) Cd2—I22 2.7943 (3)
Cd1—I12 2.8023 (3) Cd2—I23 2.7958 (3)
       
I14—Cd1—I11 107.058 (9) I24—Cd2—I21 105.915 (9)
I14—Cd1—I13 115.503 (10) I24—Cd2—I22 105.260 (8)
I11—Cd1—I13 103.726 (9) I21—Cd2—I22 116.026 (10)
I14—Cd1—I12 102.186 (8) I24—Cd2—I23 112.854 (9)
I11—Cd1—I12 117.300 (9) I21—Cd2—I23 108.090 (9)
I13—Cd1—I12 111.499 (9) I22—Cd2—I23 108.791 (9)

[L]2[Cl]1.5[NO3]0.5·3H2O (II)[link] crystallizes in the triclinic space group and is isomorphous with [L][Cl]·1.5H2O (CSD refcode HUMCUP; Buvaylo et al., 2015[Buvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735-13744.]). There are two crystallographically non-equivalent L+ cations, L1 (N12, N13A) and L2 (N22, N23A), 1.5 chloride and 0.5 nitrate anions, and three water mol­ecules of crystallization in the asymmetric unit (Fig. 2[link]). The bond lengths and angles of two independent L+ cations with planar fused cores (dihedral angles for L1 and L2 are about 0.88 and 1.45°, respectively) are very similar to those in (I)[link]. The twist of the pendant pyridyl rings with respect to the planes of the remainder of the cations is, however, more pronounced in (II)[link]: approximately 43.21 and 40.92° for L1 and L2, respectively.

[Figure 2]
Figure 2
Mol­ecular structure and labelling of (II)[link] with ellipsoids at the 50% probability level.

3. Supra­molecular features

Compound (I)[link] exhibits a pseudo-layered structure with layers of organic cations and of tetra­iodo­cadmate anions stacked parallel to the ab plane (Fig. 3[link]). In a layer, L+ cations disposed in an anti­parallel fashion adopt a herring-bone pattern and form π-bonded chains through three types of stacking contacts (Fig. 4[link]). Those involve the six-membered rings of neighbouring mol­ecules, pendant pyridyl rings, and ππ inter­actions between the former and the latter. The π-stacking is offset by about half a ring diameter with centroid–centroid distances in the range 3.465 (2)–4.070 (2) Å.

[Figure 3]
Figure 3
Crystal packing of (I)[link] viewed along the b axis, showing the alternation of cation and anion layers. Symmetry-independent L+ cations and CdI42– anions are drawn with different colours; H atoms are not shown.
[Figure 4]
Figure 4
Organic layer in (I)[link] viewed along the c axis, showing π-bonded chains of anti­parallel L+ cations disposed in a herringbone pattern.

In the inorganic layer, the adjacent CdI4 units have no connectivity with the minimum Cd⋯Cd distance being 8.943 Å. The halide anions, however, demonstrate close packing: the shortest distance between I atoms on adjacent anions of 4.192 Å is smaller than double the iodide Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) ionic radius [2 × r(I) = 4.40 Å]. The separation between two consecutive inorganic planes corresponds to half the cell length of the c axis (11.220 Å).

Classical hydrogen-bonding inter­actions are absent in (I)[link]. Numerous C—H⋯I—Cd contacts between the organic and inorganic counterparts with H⋯I distances in the range 2.93–3.22 Å are too weak and mostly result from van der Waals close packing. Such a structural feature is commonly observed in organic–inorganic hybrid iodo­metallates (Chen et al., 2010[Chen, Y., Yang, Z., Guo, C. X., Ni, C. Y., Ren, Z. G., Li, H. X. & Lang, J. P. (2010). Eur. J. Inorg. Chem. pp. 5326-5333.]; Li et al., 2018[Li, L., Zhao, D., Liu, Z., Zhang, D., Hu, Z., Li, K. & Yang, J. (2018). Acta Cryst. E74, 1878-1880.]).

In the crystal lattice of (II)[link], the alternating L1 and L2 cations are arranged in stacks aligned along the a-axis direction (Fig. 5[link]) with almost coplanar fused cores of adjacent mol­ecules (dihedral angle about 4.87°). The pendant pyridyl rings on neighbouring cations are twisted by approximately 16° with respect to each other and display aromatic stacking with ring-centroid distances of 3.675 (2) and 3.798 (2) Å. The chloride ions and water mol­ecules are involved in hydrogen bonding, forming a one-dimensional hydrogen-bonded polymer that runs parallel to a column of stacked cations (Fig. 5[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1AO⋯Cl2i 0.836 (18) 2.339 (18) 3.174 (2) 176 (3)
O1—H1BO⋯Cl2ii 0.832 (18) 2.41 (2) 3.229 (2) 171 (4)
O2—H2AO⋯O1 0.832 (17) 1.925 (18) 2.755 (3) 175 (4)
O2—H2BO⋯Cl2 0.832 (18) 2.352 (18) 3.178 (2) 172 (4)
O3—H3AO⋯Cl1 0.802 (19) 2.95 (5) 3.398 (4) 118 (4)
O3—H3BO⋯Cl2 0.848 (18) 2.33 (2) 3.166 (3) 168 (5)
O3—H3AO⋯O12 0.802 (19) 2.10 (5) 2.363 (7) 99 (4)
C11—H11⋯Cl2iii 0.95 2.71 3.640 (3) 166
C12—H12A⋯Cl1iv 0.98 2.79 3.638 (4) 146
C14—H14⋯N132 0.95 2.53 3.024 (4) 112
C14—H14⋯O3i 0.95 2.47 3.330 (4) 151
C15—H15⋯Cl2i 0.95 2.75 3.671 (3) 165
C17—H17⋯O2iii 0.95 2.57 3.244 (3) 128
C24—H24⋯N232 0.95 2.51 3.019 (4) 114
C27—H27⋯O2ii 0.95 2.48 3.255 (3) 139
C236—H236⋯O3 0.95 2.35 3.160 (5) 143
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) x, y-1, z; (iv) x+1, y-1, z.
[Figure 5]
Figure 5
The unit-cell contents of (II)[link] projected along the a axis, showing the stacking of L+ cations and the formation of a hydrogen-bonded polymer via O—H⋯Cl and O—H⋯O inter­actions. The C-bound H atoms are not shown.

4. Database survey

Apart from [L][Cl]·1.5H2O and four chloro­metallates [L]2[MCl4], [MLCl3] (M = CoII and ZnII) published by our research group, there are no compounds containing the L+ cation in the CSD (version 5.40 of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The structures in which the imidazo[1,5-a]pyridinium core is comparable with the title compounds are limited to a handful of organic salts with varying substituents in the imidazolium ring. The most similar to (II)[link] are 2-[2-(1H-imidazol-3-ium-5-yl)eth­yl]-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium diperchlorate (CSD refcode UREYIA; Türkyilmaz et al., 2011[Türkyılmaz, M., Baran, Y. & Özdemir, N. (2011). Acta Cryst. E67, o1282.]) and 2-(2-pyrid­yl)-N3-(4-chloro­phen­yl)imidazo[1,5-a]pyridinium perchlorate (YIHFEB; Mitra et al., 2007[Mitra, K., Biswas, S., Chattopadhyay, S. K., Lucas, C. R. & Adhikary, B. (2007). J. Chem. Crystallogr. 37, 567-571.]) having ethyl­imidazolium and chloro­phenyl substit­uents, respectively, instead of the methyl group in L+. The neutral mol­ecule of L lacking the methyl group was also reported (PRIMPY; Shibahara et al., 2006[Shibahara, F., Kitagawa, A., Yamaguchi, E. & Murai, T. (2006). Org. Lett. 8, 5621-5624.]). It crystallizes in the ortho­rhom­bic space group P212121 and is able to act as a κ2(N,N) chelate ligand forming an MnII complex (Álvarez et al., 2012[Álvarez, C. M., Álvarez-Miguel, L., García-Rodríguez, R. & Miguel, D. (2012). Dalton Trans. 41, 7041-7046.]). Inter­estingly, 3-(pyridin-2-yl)imidazo[1,5-a]pyridine could be easily separated from the metal by boiling the complex suspension in water.

5. Synthesis and crystallization

Synthesis of [L]2[CdI4] (I): 2-PCA (0.38 ml, 4 mmol) was stirred with CH3NH2·HCl (0.27 g, 4 mmol) in 20 ml of methanol in a 50 ml conical flask at room temperature (r.t.) for half an hour. The resultant yellow solution was left in the open air overnight and turned olive. Dry CdI2 (0.37 g, 1 mmol) and KI (0.33 g, 2 mmol) were added to the ligand solution and the mixture was heated slightly and stirred magnetically for half an hour to ensure salt dissolution. The resulting brownish solution was filtered and left to evaporate at r.t. Pale-brown prisms of (I)[link] suitable for X-ray crystallography formed within two days. The crystals were filtered off, washed with diethyl ether and finally dried in air. More product was obtained upon slow evaporation in air of the mother liquor. Yield: 65% (based on cadmium). Analysis calculated for C26H24I4N6Cd (1040.51): C, 30.01; H 2.32; N 8.08%. Found: C 30.36; H 2.04; N 8.24%. FT–IR (ν, cm−1): 3436br, 3138, 3116, 3056, 2994, 2924, 1652, 1582, 1518, 1464, 1446, 1424, 1366, 1334, 1286, 1250, 1180, 1154, 1104, 1054, 1038, 990, 942, 778, 742, 658, 610, 568, 556, 430, 404. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 8.92 (d, 1H, J = 4.4 Hz, H14), 8.70 (d, 1H, J = 7.3 Hz, H5), 8.60 (s, 1H, H1), 8.25–8.17 (m, 2H, H11+H12) , 8.02 (d, 1H, J = 9.3 Hz, H8), 7.76–7.73 (m, 1H, H13), 7.37 (t, 1H, J = 8.1 Hz, H7), 7.23 (t, 1H, J = 6.6 Hz, H6), 4.30 (s, 3H, CH3).

Synthesis of [L]2[Cl]1.5[NO3]0.5·3H2O (II): 2-PCA (0.38 ml, 4 mmol) was stirred with CH3NH2·HCl (0.27 g, 4 mmol) in 20 ml methanol in a 50 ml conical flask at r.t. for half an hour. Dry Pb(NO3)2 (0.33 g, 1 mmol) was added to this solution and the mixture was stirred magnetically for another hour under mild heating to ensure salt dissolution. The yellow solution that became turbid was filtered and left to evaporate. Light-brown needles of (II)[link] formed next day. They were filtered off, washed with diethyl ether and dried in air. Yield 51% (based on 2-PCA). Analysis calculated for C26H30Cl1.5N6.5O4.5 (558.74): C 55.89; H 5.41; N 16.29%. Found: C 54.75; H 5.66; N 15.67%. FT–IR (ν, cm−1): 3450br, 3142, 3094, 3062, 3040, 1652, 1604, 1586, 1520, 1470, 1388(NO3), 1364, 1334, 1302, 1250, 1180, 1160, 1100, 1054, 1040, 992, 944, 800, 780, 748, 666, 622, 610, 568, 558, 434, 408. 1H NMR (400 MHz, DMSO-d6/CCl4): δ (ppm) 8.94 (d, 1H, J = 4.9 Hz, H14), 8.72 (d, 1H, J = 6.8 Hz, H5), 8.59 (s, 1H, H1), 8.25–8.18 (m, 2H, H11+H12), 8.03 (d, 1H, J = 9.3 Hz, H8), 7.76 (t, 1H, J = 5.6 Hz, H13), 7.39 (t, 1H, J = 7.8 Hz, H7), 7.25 (t, 1H, J = 6.8 Hz, H6), 4.31 (s, 3H, CH3).

The compounds are soluble in water, alcohols, dmf and dmso. The hybrid salt (I)[link] is stable in air for months, while (II)[link] appears moisture sensitive. Medium intensity peaks above 3000 cm−1 and medium or strong peaks in the range 1650–1450 cm−1 in the IR spectra of (I)[link] and (II)[link] indicate the presence of aromatic rings. The presence of alkyl groups is confirmed by the medium-strength bands in the range 3000–2800 cm−1. A very strong band at 1388 cm−1 in the spectrum of (II)[link] originates from vibration of the NO3 ion. The 1H NMR spectra in DMSO-d6 at room temperature showed the correct pyrid­yl/alkyl proton ratios of L+ cation for (I)[link] and (II)[link].

6. Refinement

Crystal data, data collection and structure refinement details for both structures are summarized in Table 3[link]. Compound (I)[link] crystallizes with two [L]2[CdI4] mol­ecules in the asymmetric unit. The checkCIF implementation of PLATON ADDSYM detects an additional (pseudo) symmetry element, c/2, with a 91% fit and suggests that the length of the c axis should be halved. This is pseudosymmetry as seen in projections down the a and b axes and also by noting that the number of reflections with significant intensity being much greater than half the total number (23740 out of 31421). For (II)[link], the cell setting used is that of the isomorphous chloride HUMCUP. One anion site in (II)[link] was modelled as being disordered between a Cl and a NO3 ion with site occupancies constrained to 0.5 after trial refinement. The water mol­ecule hydrogen atoms in (II)[link] were located and refined with geometries restrained to ideal values. All remaining hydrogen atoms in (I)[link] and (II)[link] were added at calculated positions and refined by use of a riding model with isotropic displacement parameters based on those of the parent atom (C—H = 0.95 Å, Uiso(H) = 1.2UeqC for CH, C—H = 0.98 Å, Uiso(H) = 1.5UeqC for CH3).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula (C13H12N3)2[CdI4] 2C13H12N3+·1.5Cl·0.5NO3·3H2O
Mr 1040.51 558.74
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 17.2718 (2), 16.6530 (1), 22.4402 (2) 7.3959 (5), 10.2889 (8), 18.5155 (10)
α, β, γ (°) 90, 108.922 (1), 90 88.208 (5), 95.033 (5), 108.916 (5)
V3) 6105.62 (10) 1327.71 (16)
Z 8 2
Radiation type Mo Kα Cu Kα
μ (mm−1) 4.79 2.14
Crystal size (mm) 0.45 × 0.27 × 0.25 0.23 × 0.05 × 0.03
 
Data collection
Diffractometer Oxford Diffraction Gemini Oxford Diffraction Gemini
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]) Analytical (CrysAlis PRO; Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.248, 0.433 0.777, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 207318, 31421, 23740 11325, 4693, 3366
Rint 0.048 0.050
(sin θ/λ)max−1) 0.859 0.598
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.01 0.047, 0.121, 1.02
No. of reflections 31421 4693
No. of parameters 671 385
No. of restraints 0 9
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.66, −2.53 0.26, −0.26
Computer programs: CrysAlis PRO (Rigaku OD, 2016[Rigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2016); cell refinement: CrysAlis PRO (Rigaku OD, 2016); data reduction: CrysAlis PRO (Rigaku OD, 2016). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (I); SIR92 (Altomare et al., 1994) for (II). For both structures, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetraiodocadmate (I) top
Crystal data top
(C13H12N3)2[CdI4]F(000) = 3856
Mr = 1040.51Dx = 2.264 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 17.2718 (2) ÅCell parameters from 65440 reflections
b = 16.6530 (1) Åθ = 2.3–37.2°
c = 22.4402 (2) ŵ = 4.79 mm1
β = 108.922 (1)°T = 100 K
V = 6105.62 (10) Å3Prism, pale brown
Z = 80.45 × 0.27 × 0.25 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
31421 independent reflections
Radiation source: normal-focus sealed tube23740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.4738 pixels mm-1θmax = 37.7°, θmin = 2.3°
ω scansh = 2929
Absorption correction: analytical
(CrysAlis Pro; Rigaku OD, 2016)
k = 2728
Tmin = 0.248, Tmax = 0.433l = 3838
207318 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.045P)2 + 12.P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.003
31421 reflectionsΔρmax = 2.66 e Å3
671 parametersΔρmin = 2.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The largest peak is 0.57 Angstroms from I13; the deepest hole is 0.39 Angstroms from I14.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.37091 (2)0.23322 (2)0.02990 (2)0.01602 (4)
I110.27236 (2)0.11998 (2)0.06096 (2)0.02197 (4)
I120.29968 (2)0.38160 (2)0.01581 (2)0.01727 (3)
I130.50281 (2)0.25114 (2)0.14100 (2)0.02218 (4)
I140.40935 (2)0.17338 (2)0.07161 (2)0.02338 (4)
Cd20.64769 (2)0.76930 (2)0.47496 (2)0.01661 (4)
I210.74129 (2)0.87369 (2)0.43129 (2)0.02373 (4)
I220.72313 (2)0.62525 (2)0.52637 (2)0.01842 (4)
I230.50554 (2)0.73423 (2)0.37519 (2)0.02152 (4)
I240.61626 (2)0.84767 (2)0.57291 (2)0.02040 (4)
C110.19207 (18)0.32624 (17)0.10784 (13)0.0184 (5)
H110.20470.29870.07510.022*
N120.13723 (15)0.38690 (14)0.10047 (11)0.0158 (4)
C120.0920 (2)0.4207 (2)0.03863 (14)0.0230 (6)
H12A0.08090.47770.04330.034*
H12B0.04010.39190.02080.034*
H12C0.12470.41520.01040.034*
C130.13355 (17)0.41169 (16)0.15683 (13)0.0156 (4)
N13A0.18897 (15)0.36683 (14)0.20083 (11)0.0164 (4)
C140.2109 (2)0.36855 (18)0.26667 (13)0.0199 (5)
H140.18530.40510.28690.024*
C150.2689 (2)0.31740 (19)0.30068 (14)0.0220 (5)
H150.28380.31800.34530.026*
C160.3086 (2)0.2622 (2)0.27127 (15)0.0245 (6)
H160.34980.22730.29640.029*
C170.2875 (2)0.25948 (19)0.20740 (14)0.0209 (5)
H170.31380.22300.18760.025*
C17A0.22563 (18)0.31209 (16)0.17076 (13)0.0160 (4)
C1310.07949 (18)0.47317 (17)0.16853 (14)0.0179 (5)
N1320.11393 (17)0.51982 (15)0.21937 (12)0.0196 (4)
C1330.0665 (2)0.57605 (19)0.23213 (16)0.0242 (6)
H1330.08930.60850.26840.029*
C1340.0138 (2)0.58999 (19)0.19568 (17)0.0256 (6)
H1340.04430.63240.20570.031*
C1350.0492 (2)0.54062 (19)0.14400 (16)0.0249 (6)
H1350.10450.54810.11840.030*
C1360.00187 (18)0.47978 (18)0.13040 (15)0.0195 (5)
H1360.02450.44400.09620.023*
C210.34085 (19)0.55077 (18)0.31285 (14)0.0202 (5)
H210.30880.59340.32070.024*
N220.39912 (16)0.50795 (15)0.35691 (11)0.0183 (4)
C220.4268 (2)0.5301 (2)0.42410 (14)0.0245 (6)
H22A0.48550.51930.44250.037*
H22B0.39670.49840.44620.037*
H22C0.41650.58740.42830.037*
C230.43209 (17)0.45102 (16)0.32954 (13)0.0167 (5)
N23A0.39559 (15)0.45990 (14)0.26613 (11)0.0166 (4)
C240.40995 (19)0.41887 (18)0.21672 (14)0.0201 (5)
H240.44980.37740.22460.024*
C250.3656 (2)0.4397 (2)0.15704 (14)0.0236 (6)
H250.37550.41270.12290.028*
C260.3049 (2)0.5005 (2)0.14408 (15)0.0235 (6)
H260.27460.51340.10170.028*
C270.29006 (19)0.54049 (19)0.19192 (14)0.0207 (5)
H270.24910.58090.18360.025*
C27A0.33702 (17)0.52055 (18)0.25455 (14)0.0182 (5)
C2310.49081 (18)0.38885 (17)0.36104 (14)0.0190 (5)
N2320.53859 (17)0.36191 (16)0.32836 (14)0.0231 (5)
C2330.5925 (2)0.3044 (2)0.35546 (19)0.0286 (7)
H2330.62590.28380.33270.034*
C2340.6028 (2)0.2729 (2)0.4147 (2)0.0324 (8)
H2340.64370.23370.43260.039*
C2350.5522 (2)0.2998 (2)0.44706 (17)0.0302 (7)
H2350.55710.27890.48750.036*
C2360.4941 (2)0.35806 (19)0.41939 (15)0.0232 (6)
H2360.45720.37650.44000.028*
C310.65090 (19)0.43165 (19)0.19254 (14)0.0203 (5)
H310.67980.39000.17990.024*
N320.59055 (17)0.47812 (16)0.15388 (12)0.0204 (5)
C320.5572 (2)0.4634 (2)0.08537 (14)0.0274 (6)
H32A0.56490.40680.07670.041*
H32B0.58580.49740.06360.041*
H32C0.49860.47630.07030.041*
C340.6009 (2)0.55503 (19)0.30350 (15)0.0232 (6)
H340.56280.59710.30080.028*
N33A0.60665 (15)0.51811 (15)0.24932 (12)0.0176 (4)
C330.56372 (18)0.53278 (17)0.18755 (14)0.0187 (5)
C350.6512 (2)0.5294 (2)0.36002 (15)0.0269 (6)
H350.64740.55360.39730.032*
C360.7097 (2)0.4673 (2)0.36529 (15)0.0268 (6)
H360.74470.45110.40560.032*
C370.71557 (19)0.4317 (2)0.31319 (14)0.0228 (6)
H370.75480.39060.31630.027*
C37A0.66222 (18)0.45634 (18)0.25344 (14)0.0185 (5)
C3310.50283 (19)0.59623 (18)0.16398 (16)0.0238 (6)
N3320.46510 (18)0.62050 (16)0.20472 (16)0.0284 (6)
C3330.4092 (2)0.6785 (2)0.1857 (2)0.0381 (9)
H3330.38300.69680.21440.046*
C3340.3872 (3)0.7132 (2)0.1272 (3)0.0465 (12)
H3340.34540.75280.11520.056*
C3350.4270 (3)0.6896 (2)0.0863 (2)0.0445 (11)
H3350.41360.71310.04560.053*
C3360.4875 (3)0.6304 (2)0.10500 (19)0.0347 (8)
H3360.51730.61420.07810.042*
C410.80926 (18)0.65616 (16)0.38757 (13)0.0167 (4)
H410.79950.68360.42160.020*
N420.86433 (15)0.59627 (14)0.39249 (10)0.0154 (4)
C420.9130 (2)0.5618 (2)0.45322 (14)0.0236 (6)
H42A0.92350.50490.44760.035*
H42B0.88290.56690.48330.035*
H42C0.96520.59050.46930.035*
C430.86380 (17)0.57178 (16)0.33500 (12)0.0153 (4)
N43A0.80540 (15)0.61581 (14)0.29262 (11)0.0154 (4)
C440.77946 (19)0.61436 (18)0.22676 (13)0.0190 (5)
H440.80400.57880.20500.023*
C450.7187 (2)0.6647 (2)0.19465 (14)0.0226 (6)
H450.70080.66440.14990.027*
C460.6809 (2)0.7183 (2)0.22663 (15)0.0244 (6)
H460.63740.75200.20300.029*
C47A0.77035 (18)0.66993 (17)0.32480 (13)0.0168 (5)
C470.7067 (2)0.72139 (19)0.29039 (14)0.0220 (5)
H470.68230.75770.31160.026*
C4310.91603 (17)0.51078 (16)0.32062 (13)0.0162 (4)
N4320.87936 (16)0.46557 (15)0.26967 (12)0.0182 (4)
C4330.9247 (2)0.40867 (18)0.25464 (15)0.0219 (5)
H4330.90010.37690.21820.026*
C4341.0058 (2)0.39372 (19)0.28947 (16)0.0242 (6)
H4341.03500.35120.27830.029*
C4351.0435 (2)0.4425 (2)0.34129 (16)0.0243 (6)
H4351.09910.43410.36580.029*
C4360.99816 (18)0.50336 (18)0.35640 (14)0.0196 (5)
H4361.02260.53900.39030.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01811 (9)0.01385 (8)0.01690 (8)0.00019 (6)0.00679 (7)0.00022 (6)
I110.02464 (9)0.01729 (8)0.02594 (9)0.00521 (6)0.01090 (7)0.00041 (6)
I120.02242 (9)0.01406 (7)0.01630 (7)0.00214 (6)0.00761 (6)0.00116 (5)
I130.01875 (8)0.01961 (8)0.02435 (9)0.00307 (6)0.00169 (7)0.00509 (6)
I140.03063 (11)0.02327 (9)0.01615 (8)0.00862 (7)0.00748 (7)0.00058 (6)
Cd20.01928 (9)0.01392 (8)0.01732 (8)0.00019 (6)0.00691 (7)0.00021 (6)
I210.02773 (10)0.02007 (8)0.02569 (9)0.00627 (7)0.01185 (8)0.00100 (7)
I220.02594 (9)0.01397 (7)0.01642 (7)0.00303 (6)0.00836 (6)0.00036 (5)
I230.01884 (9)0.01971 (8)0.02393 (9)0.00086 (6)0.00406 (7)0.00565 (6)
I240.02381 (9)0.01991 (8)0.01579 (7)0.00374 (6)0.00408 (6)0.00304 (6)
C110.0186 (13)0.0197 (12)0.0178 (11)0.0006 (9)0.0072 (10)0.0014 (9)
N120.0141 (10)0.0177 (10)0.0150 (9)0.0021 (8)0.0041 (8)0.0014 (7)
C120.0226 (14)0.0301 (15)0.0147 (11)0.0048 (11)0.0039 (10)0.0010 (10)
C130.0142 (11)0.0163 (10)0.0168 (11)0.0019 (8)0.0058 (9)0.0010 (8)
N13A0.0165 (10)0.0185 (10)0.0157 (9)0.0005 (8)0.0072 (8)0.0001 (7)
C140.0232 (14)0.0230 (13)0.0158 (11)0.0031 (10)0.0098 (10)0.0013 (9)
C150.0266 (15)0.0259 (14)0.0140 (11)0.0009 (11)0.0072 (10)0.0021 (10)
C160.0276 (16)0.0253 (14)0.0201 (13)0.0067 (12)0.0071 (11)0.0064 (10)
C170.0217 (14)0.0236 (13)0.0185 (12)0.0059 (10)0.0079 (10)0.0042 (10)
C17A0.0168 (12)0.0175 (11)0.0151 (10)0.0012 (9)0.0069 (9)0.0005 (8)
C1310.0182 (12)0.0163 (11)0.0212 (12)0.0008 (9)0.0092 (10)0.0007 (9)
N1320.0220 (12)0.0194 (10)0.0207 (11)0.0032 (9)0.0116 (9)0.0028 (8)
C1330.0304 (16)0.0190 (12)0.0298 (15)0.0021 (11)0.0190 (13)0.0019 (11)
C1340.0296 (16)0.0173 (12)0.0365 (17)0.0017 (11)0.0201 (14)0.0049 (11)
C1350.0231 (15)0.0233 (13)0.0325 (16)0.0067 (11)0.0146 (13)0.0077 (12)
C1360.0160 (12)0.0191 (12)0.0249 (13)0.0000 (9)0.0086 (10)0.0021 (10)
C210.0196 (13)0.0215 (12)0.0211 (12)0.0063 (10)0.0089 (10)0.0027 (10)
N220.0188 (11)0.0193 (10)0.0178 (10)0.0019 (8)0.0073 (9)0.0001 (8)
C220.0316 (17)0.0259 (14)0.0161 (12)0.0036 (12)0.0078 (11)0.0004 (10)
C230.0154 (12)0.0173 (11)0.0177 (11)0.0000 (9)0.0057 (9)0.0020 (9)
N23A0.0141 (10)0.0177 (10)0.0180 (10)0.0017 (8)0.0053 (8)0.0026 (8)
C240.0194 (13)0.0213 (12)0.0200 (12)0.0013 (10)0.0069 (10)0.0046 (10)
C250.0246 (15)0.0264 (14)0.0192 (12)0.0077 (11)0.0064 (11)0.0060 (10)
C260.0186 (13)0.0294 (15)0.0189 (12)0.0072 (11)0.0013 (10)0.0004 (10)
C270.0154 (12)0.0249 (13)0.0197 (12)0.0015 (10)0.0029 (10)0.0023 (10)
C27A0.0132 (11)0.0220 (12)0.0202 (12)0.0010 (9)0.0068 (9)0.0006 (9)
C2310.0140 (12)0.0176 (11)0.0237 (13)0.0009 (9)0.0036 (10)0.0003 (9)
N2320.0184 (12)0.0170 (10)0.0341 (14)0.0004 (9)0.0090 (10)0.0024 (9)
C2330.0184 (14)0.0199 (13)0.047 (2)0.0026 (11)0.0096 (14)0.0016 (13)
C2340.0216 (15)0.0194 (14)0.049 (2)0.0040 (11)0.0014 (14)0.0050 (13)
C2350.0272 (17)0.0252 (15)0.0294 (16)0.0014 (12)0.0027 (13)0.0074 (12)
C2360.0206 (14)0.0202 (12)0.0249 (14)0.0012 (10)0.0020 (11)0.0018 (10)
C310.0172 (13)0.0238 (13)0.0211 (12)0.0010 (10)0.0080 (10)0.0000 (10)
N320.0192 (12)0.0226 (11)0.0187 (10)0.0015 (9)0.0050 (9)0.0007 (8)
C320.0300 (17)0.0339 (16)0.0169 (12)0.0080 (13)0.0055 (12)0.0022 (11)
C340.0227 (14)0.0246 (13)0.0234 (13)0.0070 (11)0.0091 (11)0.0080 (11)
N33A0.0134 (10)0.0185 (10)0.0197 (10)0.0029 (8)0.0038 (8)0.0025 (8)
C330.0159 (12)0.0188 (11)0.0200 (12)0.0024 (9)0.0040 (10)0.0009 (9)
C350.0275 (16)0.0329 (16)0.0203 (13)0.0129 (13)0.0077 (12)0.0073 (11)
C360.0225 (15)0.0346 (17)0.0198 (13)0.0109 (12)0.0018 (11)0.0032 (11)
C370.0142 (12)0.0309 (15)0.0214 (13)0.0030 (11)0.0030 (10)0.0048 (11)
C37A0.0129 (11)0.0223 (12)0.0201 (12)0.0008 (9)0.0050 (9)0.0012 (9)
C3310.0166 (13)0.0177 (12)0.0317 (15)0.0025 (10)0.0005 (11)0.0018 (11)
N3320.0189 (13)0.0178 (11)0.0460 (17)0.0003 (9)0.0070 (12)0.0020 (11)
C3330.0227 (17)0.0189 (14)0.067 (3)0.0014 (12)0.0069 (17)0.0040 (16)
C3340.028 (2)0.0224 (16)0.073 (3)0.0022 (14)0.006 (2)0.0070 (18)
C3350.038 (2)0.0285 (18)0.049 (2)0.0054 (16)0.0103 (19)0.0149 (17)
C3360.0292 (18)0.0340 (18)0.0308 (17)0.0034 (14)0.0043 (14)0.0080 (14)
C410.0178 (12)0.0167 (11)0.0155 (10)0.0004 (9)0.0054 (9)0.0003 (8)
N420.0146 (10)0.0190 (10)0.0121 (9)0.0030 (8)0.0035 (7)0.0016 (7)
C420.0250 (15)0.0262 (14)0.0151 (11)0.0037 (11)0.0005 (10)0.0007 (10)
C430.0139 (11)0.0171 (11)0.0149 (10)0.0012 (8)0.0048 (9)0.0004 (8)
N43A0.0139 (10)0.0189 (10)0.0140 (9)0.0005 (8)0.0052 (8)0.0003 (7)
C440.0209 (13)0.0224 (12)0.0149 (11)0.0006 (10)0.0075 (10)0.0006 (9)
C450.0237 (14)0.0289 (14)0.0140 (11)0.0027 (11)0.0046 (10)0.0028 (10)
C460.0267 (16)0.0265 (14)0.0188 (12)0.0082 (12)0.0055 (11)0.0036 (10)
C47A0.0184 (12)0.0176 (11)0.0150 (10)0.0004 (9)0.0063 (9)0.0018 (8)
C470.0222 (14)0.0243 (13)0.0180 (12)0.0059 (11)0.0046 (10)0.0032 (10)
C4310.0147 (11)0.0158 (10)0.0186 (11)0.0008 (8)0.0064 (9)0.0021 (8)
N4320.0180 (11)0.0177 (10)0.0212 (11)0.0027 (8)0.0095 (9)0.0013 (8)
C4330.0256 (15)0.0195 (12)0.0251 (13)0.0032 (10)0.0144 (12)0.0022 (10)
C4340.0262 (15)0.0191 (12)0.0324 (15)0.0045 (11)0.0166 (13)0.0055 (11)
C4350.0193 (14)0.0256 (14)0.0300 (15)0.0045 (11)0.0107 (12)0.0078 (11)
C4360.0145 (12)0.0219 (12)0.0232 (13)0.0003 (9)0.0071 (10)0.0027 (10)
Geometric parameters (Å, º) top
Cd1—I142.7573 (3)C234—H2340.9500
Cd1—I112.7764 (3)C235—C2361.390 (5)
Cd1—I132.7949 (3)C235—H2350.9500
Cd1—I122.8023 (3)C236—H2360.9500
Cd2—I242.7575 (3)C31—N321.361 (4)
Cd2—I212.7610 (3)C31—C37A1.379 (4)
Cd2—I222.7943 (3)C31—H310.9500
Cd2—I232.7958 (3)N32—C331.357 (4)
C11—N121.358 (4)N32—C321.477 (4)
C11—C17A1.362 (4)C32—H32A0.9800
C11—H110.9500C32—H32B0.9800
N12—C131.351 (3)C32—H32C0.9800
N12—C121.466 (4)C34—C351.353 (5)
C12—H12A0.9800C34—N33A1.394 (4)
C12—H12B0.9800C34—H340.9500
C12—H12C0.9800N33A—C331.365 (4)
C13—N13A1.355 (4)N33A—C37A1.389 (4)
C13—C1311.466 (4)C33—C3311.463 (4)
N13A—C17A1.401 (4)C35—C361.424 (5)
N13A—C141.402 (4)C35—H350.9500
C14—C151.348 (4)C36—C371.344 (5)
C14—H140.9500C36—H360.9500
C15—C161.430 (4)C37—C37A1.419 (4)
C15—H150.9500C37—H370.9500
C16—C171.360 (4)C331—N3321.345 (5)
C16—H160.9500C331—C3361.386 (5)
C17—C17A1.420 (4)N332—C3331.334 (5)
C17—H170.9500C333—C3341.371 (7)
C131—N1321.349 (4)C333—H3330.9500
C131—C1361.393 (4)C334—C3351.371 (8)
N132—C1331.335 (4)C334—H3340.9500
C133—C1341.383 (5)C335—C3361.397 (6)
C133—H1330.9500C335—H3350.9500
C134—C1351.391 (5)C336—H3360.9500
C134—H1340.9500C41—N421.358 (4)
C135—C1361.396 (4)C41—C47A1.369 (4)
C135—H1350.9500C41—H410.9500
C136—H1360.9500N42—C431.350 (3)
C21—N221.362 (4)N42—C421.466 (4)
C21—C27A1.383 (4)C42—H42A0.9800
C21—H210.9500C42—H42B0.9800
N22—C231.352 (4)C42—H42C0.9800
N22—C221.473 (4)C43—N43A1.355 (4)
C22—H22A0.9800C43—C4311.462 (4)
C22—H22B0.9800N43A—C441.399 (4)
C22—H22C0.9800N43A—C47A1.409 (4)
C23—N23A1.365 (4)C44—C451.354 (4)
C23—C2311.461 (4)C44—H440.9500
N23A—C241.392 (4)C45—C461.429 (4)
N23A—C27A1.393 (4)C45—H450.9500
C24—C251.354 (4)C46—C471.354 (4)
C24—H240.9500C46—H460.9500
C25—C261.419 (5)C47A—C471.410 (4)
C25—H250.9500C47—H470.9500
C26—C271.357 (5)C431—N4321.344 (4)
C26—H260.9500C431—C4361.391 (4)
C27—C27A1.416 (4)N432—C4331.340 (4)
C27—H270.9500C433—C4341.387 (5)
C231—N2321.346 (4)C433—H4330.9500
C231—C2361.390 (4)C434—C4351.394 (5)
N232—C2331.338 (4)C434—H4340.9500
C233—C2341.386 (6)C435—C4361.389 (4)
C233—H2330.9500C435—H4350.9500
C234—C2351.379 (6)C436—H4360.9500
I14—Cd1—I11107.058 (9)C234—C235—C236118.8 (3)
I14—Cd1—I13115.503 (10)C234—C235—H235120.6
I11—Cd1—I13103.726 (9)C236—C235—H235120.6
I14—Cd1—I12102.186 (8)C235—C236—C231118.7 (3)
I11—Cd1—I12117.300 (9)C235—C236—H236120.6
I13—Cd1—I12111.499 (9)C231—C236—H236120.6
I24—Cd2—I21105.915 (9)N32—C31—C37A107.2 (3)
I24—Cd2—I22105.260 (8)N32—C31—H31126.4
I21—Cd2—I22116.026 (10)C37A—C31—H31126.4
I24—Cd2—I23112.854 (9)C33—N32—C31110.8 (3)
I21—Cd2—I23108.090 (9)C33—N32—C32127.0 (3)
I22—Cd2—I23108.791 (9)C31—N32—C32122.0 (3)
N12—C11—C17A107.5 (2)N32—C32—H32A109.5
N12—C11—H11126.3N32—C32—H32B109.5
C17A—C11—H11126.3H32A—C32—H32B109.5
C13—N12—C11110.9 (2)N32—C32—H32C109.5
C13—N12—C12126.6 (2)H32A—C32—H32C109.5
C11—N12—C12122.5 (2)H32B—C32—H32C109.5
N12—C12—H12A109.5C35—C34—N33A118.2 (3)
N12—C12—H12B109.5C35—C34—H34120.9
H12A—C12—H12B109.5N33A—C34—H34120.9
N12—C12—H12C109.5C33—N33A—C37A109.6 (2)
H12A—C12—H12C109.5C33—N33A—C34129.6 (3)
H12B—C12—H12C109.5C37A—N33A—C34120.7 (3)
N12—C13—N13A106.1 (2)N32—C33—N33A105.9 (3)
N12—C13—C131127.4 (3)N32—C33—C331128.2 (3)
N13A—C13—C131126.5 (2)N33A—C33—C331125.9 (3)
C13—N13A—C17A109.3 (2)C34—C35—C36122.0 (3)
C13—N13A—C14129.9 (2)C34—C35—H35119.0
C17A—N13A—C14120.7 (2)C36—C35—H35119.0
C15—C14—N13A118.7 (3)C37—C36—C35120.0 (3)
C15—C14—H14120.6C37—C36—H36120.0
N13A—C14—H14120.6C35—C36—H36120.0
C14—C15—C16121.7 (3)C36—C37—C37A119.0 (3)
C14—C15—H15119.2C36—C37—H37120.5
C16—C15—H15119.2C37A—C37—H37120.5
C17—C16—C15120.2 (3)C31—C37A—N33A106.4 (3)
C17—C16—H16119.9C31—C37A—C37133.6 (3)
C15—C16—H16119.9N33A—C37A—C37120.0 (3)
C16—C17—C17A118.9 (3)N332—C331—C336122.8 (3)
C16—C17—H17120.5N332—C331—C33114.9 (3)
C17A—C17—H17120.5C336—C331—C33122.3 (3)
C11—C17A—N13A106.2 (2)C333—N332—C331117.4 (4)
C11—C17A—C17134.0 (3)N332—C333—C334124.0 (4)
N13A—C17A—C17119.7 (2)N332—C333—H333118.0
N132—C131—C136123.7 (3)C334—C333—H333118.0
N132—C131—C13115.0 (3)C333—C334—C335118.5 (4)
C136—C131—C13121.3 (3)C333—C334—H334120.8
C133—N132—C131116.9 (3)C335—C334—H334120.8
N132—C133—C134124.0 (3)C334—C335—C336119.3 (4)
N132—C133—H133118.0C334—C335—H335120.3
C134—C133—H133118.0C336—C335—H335120.3
C133—C134—C135118.6 (3)C331—C336—C335118.0 (4)
C133—C134—H134120.7C331—C336—H336121.0
C135—C134—H134120.7C335—C336—H336121.0
C134—C135—C136118.8 (3)N42—C41—C47A107.7 (2)
C134—C135—H135120.6N42—C41—H41126.1
C136—C135—H135120.6C47A—C41—H41126.1
C131—C136—C135118.0 (3)C43—N42—C41110.9 (2)
C131—C136—H136121.0C43—N42—C42126.4 (2)
C135—C136—H136121.0C41—N42—C42122.6 (2)
N22—C21—C27A107.1 (2)N42—C42—H42A109.5
N22—C21—H21126.5N42—C42—H42B109.5
C27A—C21—H21126.5H42A—C42—H42B109.5
C23—N22—C21111.0 (2)N42—C42—H42C109.5
C23—N22—C22126.6 (3)H42A—C42—H42C109.5
C21—N22—C22122.0 (3)H42B—C42—H42C109.5
N22—C22—H22A109.5N42—C43—N43A106.3 (2)
N22—C22—H22B109.5N42—C43—C431127.4 (3)
H22A—C22—H22B109.5N43A—C43—C431126.4 (2)
N22—C22—H22C109.5C43—N43A—C44130.0 (2)
H22A—C22—H22C109.5C43—N43A—C47A109.4 (2)
H22B—C22—H22C109.5C44—N43A—C47A120.6 (2)
N22—C23—N23A106.1 (2)C45—C44—N43A118.6 (3)
N22—C23—C231127.3 (3)C45—C44—H44120.7
N23A—C23—C231126.5 (2)N43A—C44—H44120.7
C23—N23A—C24129.5 (3)C44—C45—C46121.4 (3)
C23—N23A—C27A109.6 (2)C44—C45—H45119.3
C24—N23A—C27A120.9 (3)C46—C45—H45119.3
C25—C24—N23A118.2 (3)C47—C46—C45120.4 (3)
C25—C24—H24120.9C47—C46—H46119.8
N23A—C24—H24120.9C45—C46—H46119.8
C24—C25—C26121.9 (3)C41—C47A—N43A105.7 (2)
C24—C25—H25119.1C41—C47A—C47134.5 (3)
C26—C25—H25119.1N43A—C47A—C47119.7 (2)
C27—C26—C25120.4 (3)C46—C47—C47A119.1 (3)
C27—C26—H26119.8C46—C47—H47120.4
C25—C26—H26119.8C47A—C47—H47120.4
C26—C27—C27A118.4 (3)N432—C431—C436123.5 (3)
C26—C27—H27120.8N432—C431—C43115.0 (2)
C27A—C27—H27120.8C436—C431—C43121.4 (3)
C21—C27A—N23A106.2 (2)C433—N432—C431117.2 (3)
C21—C27A—C27133.6 (3)N432—C433—C434123.4 (3)
N23A—C27A—C27120.2 (3)N432—C433—H433118.3
N232—C231—C236123.0 (3)C434—C433—H433118.3
N232—C231—C23115.1 (3)C433—C434—C435118.6 (3)
C236—C231—C23121.8 (3)C433—C434—H434120.7
C233—N232—C231116.8 (3)C435—C434—H434120.7
N232—C233—C234124.1 (3)C436—C435—C434118.8 (3)
N232—C233—H233118.0C436—C435—H435120.6
C234—C233—H233118.0C434—C435—H435120.6
C235—C234—C233118.4 (3)C435—C436—C431118.3 (3)
C235—C234—H234120.8C435—C436—H436120.8
C233—C234—H234120.8C431—C436—H436120.8
C17A—C11—N12—C130.8 (3)C37A—C31—N32—C331.1 (3)
C17A—C11—N12—C12177.1 (3)C37A—C31—N32—C32174.4 (3)
C11—N12—C13—N13A1.5 (3)C35—C34—N33A—C33179.8 (3)
C12—N12—C13—N13A176.3 (3)C35—C34—N33A—C37A0.4 (4)
C11—N12—C13—C131177.1 (3)C31—N32—C33—N33A2.1 (3)
C12—N12—C13—C1315.1 (5)C32—N32—C33—N33A173.1 (3)
N12—C13—N13A—C17A1.6 (3)C31—N32—C33—C331176.6 (3)
C131—C13—N13A—C17A177.1 (3)C32—N32—C33—C3318.1 (5)
N12—C13—N13A—C14179.0 (3)C37A—N33A—C33—N322.3 (3)
C131—C13—N13A—C142.3 (5)C34—N33A—C33—N32177.6 (3)
C13—N13A—C14—C15179.7 (3)C37A—N33A—C33—C331176.5 (3)
C17A—N13A—C14—C151.1 (4)C34—N33A—C33—C3313.6 (5)
N13A—C14—C15—C160.4 (5)N33A—C34—C35—C360.9 (5)
C14—C15—C16—C170.9 (5)C34—C35—C36—C370.8 (5)
C15—C16—C17—C17A0.1 (5)C35—C36—C37—C37A0.6 (5)
N12—C11—C17A—N13A0.2 (3)N32—C31—C37A—N33A0.3 (3)
N12—C11—C17A—C17177.1 (3)N32—C31—C37A—C37179.7 (3)
C13—N13A—C17A—C111.2 (3)C33—N33A—C37A—C311.6 (3)
C14—N13A—C17A—C11179.4 (3)C34—N33A—C37A—C31178.2 (3)
C13—N13A—C17A—C17178.6 (3)C33—N33A—C37A—C37178.4 (3)
C14—N13A—C17A—C172.0 (4)C34—N33A—C37A—C371.8 (4)
C16—C17—C17A—C11178.0 (3)C36—C37—C37A—C31178.1 (3)
C16—C17—C17A—N13A1.5 (5)C36—C37—C37A—N33A1.9 (4)
N12—C13—C131—N132142.3 (3)N32—C33—C331—N332155.3 (3)
N13A—C13—C131—N13239.3 (4)N33A—C33—C331—N33226.2 (4)
N12—C13—C131—C13639.7 (4)N32—C33—C331—C33626.9 (5)
N13A—C13—C131—C136138.7 (3)N33A—C33—C331—C336151.7 (3)
C136—C131—N132—C1331.3 (4)C336—C331—N332—C3331.9 (5)
C13—C131—N132—C133179.3 (3)C33—C331—N332—C333179.8 (3)
C131—N132—C133—C1341.7 (4)C331—N332—C333—C3341.3 (5)
N132—C133—C134—C1352.9 (5)N332—C333—C334—C3352.7 (6)
C133—C134—C135—C1361.0 (4)C333—C334—C335—C3360.9 (6)
N132—C131—C136—C1353.1 (4)N332—C331—C336—C3353.6 (5)
C13—C131—C136—C135179.1 (3)C33—C331—C336—C335178.8 (3)
C134—C135—C136—C1311.8 (4)C334—C335—C336—C3312.0 (6)
C27A—C21—N22—C230.8 (3)C47A—C41—N42—C431.3 (3)
C27A—C21—N22—C22172.5 (3)C47A—C41—N42—C42175.5 (3)
C21—N22—C23—N23A2.1 (3)C41—N42—C43—N43A1.6 (3)
C22—N22—C23—N23A170.8 (3)C42—N42—C43—N43A175.0 (3)
C21—N22—C23—C231174.1 (3)C41—N42—C43—C431177.7 (3)
C22—N22—C23—C23113.0 (5)C42—N42—C43—C4315.6 (5)
N22—C23—N23A—C24176.9 (3)N42—C43—N43A—C44179.7 (3)
C231—C23—N23A—C246.8 (5)C431—C43—N43A—C441.0 (5)
N22—C23—N23A—C27A2.7 (3)N42—C43—N43A—C47A1.3 (3)
C231—C23—N23A—C27A173.6 (3)C431—C43—N43A—C47A178.1 (3)
C23—N23A—C24—C25179.3 (3)C43—N43A—C44—C45179.6 (3)
C27A—N23A—C24—C250.2 (4)C47A—N43A—C44—C451.5 (4)
N23A—C24—C25—C261.0 (5)N43A—C44—C45—C460.3 (5)
C24—C25—C26—C270.6 (5)C44—C45—C46—C471.7 (5)
C25—C26—C27—C27A0.7 (5)N42—C41—C47A—N43A0.5 (3)
N22—C21—C27A—N23A0.9 (3)N42—C41—C47A—C47177.5 (3)
N22—C21—C27A—C27179.0 (3)C43—N43A—C47A—C410.5 (3)
C23—N23A—C27A—C212.2 (3)C44—N43A—C47A—C41179.6 (3)
C24—N23A—C27A—C21177.4 (3)C43—N43A—C47A—C47178.9 (3)
C23—N23A—C27A—C27179.3 (3)C44—N43A—C47A—C472.0 (4)
C24—N23A—C27A—C271.0 (4)C45—C46—C47—C47A1.2 (5)
C26—C27—C27A—C21176.4 (3)C41—C47A—C47—C46178.4 (3)
C26—C27—C27A—N23A1.5 (4)N43A—C47A—C47—C460.6 (5)
N22—C23—C231—N232153.9 (3)N42—C43—C431—N432143.8 (3)
N23A—C23—C231—N23230.6 (4)N43A—C43—C431—N43237.0 (4)
N22—C23—C231—C23628.6 (5)N42—C43—C431—C43638.5 (4)
N23A—C23—C231—C236146.9 (3)N43A—C43—C431—C436140.7 (3)
C236—C231—N232—C2331.9 (5)C436—C431—N432—C4332.4 (4)
C23—C231—N232—C233179.3 (3)C43—C431—N432—C433179.9 (2)
C231—N232—C233—C2341.4 (5)C431—N432—C433—C4341.3 (4)
N232—C233—C234—C2352.8 (6)N432—C433—C434—C4352.9 (5)
C233—C234—C235—C2360.9 (5)C433—C434—C435—C4360.7 (4)
C234—C235—C236—C2312.1 (5)C434—C435—C436—C4312.7 (4)
N232—C231—C236—C2353.6 (5)N432—C431—C436—C4354.5 (4)
C23—C231—C236—C235179.1 (3)C43—C431—C436—C435178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···I110.953.253.972 (3)134
C11—H11···I120.953.313.918 (3)124
C12—H12A···I24i0.983.003.929 (3)158
C12—H12B···I24ii0.982.933.853 (3)158
C12—H12C···I120.983.314.198 (3)152
C14—H14···N1320.952.503.020 (4)114
C15—H15···I22iii0.953.073.956 (3)156
C17—H17···I110.953.203.963 (3)139
C22—H22B···I22iii0.983.124.062 (4)162
C24—H24···I130.953.153.877 (3)135
C24—H24···N2320.952.352.916 (4)118
C25—H25···I120.953.003.796 (3)142
C27—H27···I24i0.953.033.796 (3)139
C234—H234···I12iv0.953.204.144 (3)171
C31—H31···I21v0.953.223.934 (3)134
C32—H32A···I130.983.313.962 (4)126
C32—H32B···I12vi0.983.244.209 (3)170
C34—H34···I230.953.173.991 (3)146
C34—H34···N3320.952.302.870 (5)118
C35—H35···I220.953.013.875 (3)152
C37—H37···I14iv0.953.203.916 (3)134
C334—H334···I22i0.953.144.028 (4)157
C41—H41···I220.953.203.897 (3)132
C42—H42A···I14iv0.983.003.953 (3)165
C42—H42C···I14vii0.982.943.826 (3)151
C44—H44···N4320.952.482.994 (4)114
C45—H45···I12vi0.953.103.997 (3)158
C47—H47···I210.953.193.945 (3)137
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+3/2, y+1/2, z+1/2.
Bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chloride 0.5-nitrate trihydrate (II) top
Crystal data top
2C13H12N3+·1.5Cl·0.5NO3·3H2OZ = 2
Mr = 558.74F(000) = 586
Triclinic, P1Dx = 1.398 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.3959 (5) ÅCell parameters from 2491 reflections
b = 10.2889 (8) Åθ = 2.4–66.6°
c = 18.5155 (10) ŵ = 2.14 mm1
α = 88.208 (5)°T = 100 K
β = 95.033 (5)°Needle, light brown
γ = 108.916 (5)°0.23 × 0.05 × 0.03 mm
V = 1327.71 (16) Å3
Data collection top
Oxford Diffraction Gemini
diffractometer
4693 independent reflections
Radiation source: sealed X-ray tube3366 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 10.4738 pixels mm-1θmax = 67.3°, θmin = 2.4°
ω scansh = 88
Absorption correction: analytical
(CrysAlis Pro; Rigaku OD, 2016)
k = 1112
Tmin = 0.777, Tmax = 0.942l = 1822
11325 measured reflections
Refinement top
Refinement on F29 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.4628P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.045
4693 reflectionsΔρmax = 0.26 e Å3
385 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One anions site was modelled as being disordered between a Cl- and a NO3- ion with site occupancies constrained to 0.5 after trial refinement. Water molecule hydrogen geometries were restrained to ideal values.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.5212 (4)0.0797 (3)0.20815 (15)0.0450 (6)
H110.43860.16480.18880.054*
N120.5524 (3)0.0437 (2)0.27913 (12)0.0448 (5)
C120.4527 (4)0.1317 (3)0.33735 (16)0.0557 (8)
H12A0.53040.18680.35830.084*
H12B0.32810.19280.31740.084*
H12C0.43330.0740.37510.084*
C130.6785 (4)0.0847 (3)0.28750 (15)0.0436 (6)
N13A0.7256 (3)0.1306 (2)0.22022 (11)0.0392 (5)
C140.8549 (4)0.2565 (3)0.19923 (15)0.0419 (6)
H140.92180.32480.23410.05*
C150.8809 (4)0.2772 (3)0.12871 (16)0.0464 (7)
H150.96850.36170.11380.056*
C160.7814 (4)0.1768 (3)0.07516 (16)0.0512 (7)
H160.8010.19580.02540.061*
C170.6587 (4)0.0544 (3)0.09528 (16)0.0484 (7)
H170.5930.01310.05990.058*
C17A0.6293 (4)0.0281 (3)0.16953 (15)0.0420 (6)
C1310.7484 (4)0.1624 (3)0.35480 (15)0.0470 (7)
N1320.7557 (3)0.2948 (2)0.35039 (12)0.0470 (6)
C1330.8101 (4)0.3688 (3)0.41137 (16)0.0548 (8)
H1330.81690.46260.40950.066*
C1340.8572 (5)0.3143 (4)0.47729 (17)0.0650 (9)
H1340.89080.36940.51970.078*
C1350.8545 (5)0.1806 (4)0.48040 (17)0.0683 (10)
H1350.88850.14230.52480.082*
C1360.8011 (4)0.1009 (3)0.41742 (16)0.0589 (9)
H1360.80090.00850.41740.071*
C210.3963 (4)0.2931 (3)0.13167 (14)0.0391 (6)
H210.45060.3390.08950.047*
N220.4269 (3)0.3465 (2)0.19957 (11)0.0401 (5)
C220.5590 (4)0.4855 (3)0.21763 (15)0.0478 (7)
H22A0.48650.55020.21630.072*
H22B0.65570.51380.18230.072*
H22C0.62240.48470.26630.072*
C230.3290 (4)0.2537 (3)0.24656 (14)0.0386 (6)
N23A0.2338 (3)0.1378 (2)0.20761 (11)0.0374 (5)
C240.1083 (4)0.0130 (3)0.23010 (14)0.0402 (6)
H240.08170.00210.27950.048*
C250.0260 (4)0.0853 (3)0.18033 (15)0.0431 (6)
H250.06070.17050.19480.052*
C260.0666 (4)0.0642 (3)0.10589 (15)0.0441 (6)
H260.00760.13580.07190.053*
C270.1869 (4)0.0557 (3)0.08345 (14)0.0421 (6)
H270.21340.06920.0340.051*
C27A0.2738 (4)0.1618 (3)0.13487 (13)0.0372 (6)
C2310.3247 (4)0.2691 (3)0.32528 (14)0.0446 (7)
N2320.3284 (3)0.1595 (3)0.36524 (12)0.0492 (6)
C2330.3338 (5)0.1723 (4)0.43704 (16)0.0624 (9)
H2330.33610.09520.46630.075*
C2340.3363 (5)0.2894 (4)0.47135 (18)0.0710 (10)
H2340.34480.29420.52280.085*
C2350.3262 (5)0.3989 (4)0.42941 (18)0.0675 (10)
H2350.32360.48040.45140.081*
C2360.3198 (4)0.3902 (3)0.35404 (16)0.0565 (8)
H2360.31230.46480.32370.068*
Cl10.13460 (14)0.74736 (10)0.35172 (5)0.0385 (2)0.5
N10.13460 (14)0.74736 (10)0.35172 (5)0.0385 (2)0.5
O110.1116 (7)0.8679 (5)0.3658 (3)0.0704 (13)0.5
O120.0043 (8)0.7052 (6)0.3432 (3)0.0879 (16)0.5
O130.2989 (7)0.6577 (5)0.3587 (3)0.0818 (15)0.5
Cl20.19972 (10)0.62995 (7)0.10394 (4)0.0532 (2)
O10.7669 (3)0.5341 (2)0.03747 (13)0.0547 (5)
O20.6162 (3)0.7445 (2)0.04753 (13)0.0558 (5)
O30.0954 (4)0.5668 (4)0.26639 (16)0.0982 (11)
H1AO0.881 (3)0.563 (3)0.0552 (16)0.067 (11)*
H1BO0.767 (5)0.496 (4)0.0016 (14)0.103 (16)*
H2AO0.664 (4)0.682 (3)0.0471 (18)0.069 (11)*
H2BO0.513 (3)0.715 (3)0.0667 (19)0.080 (13)*
H3AO0.017 (3)0.552 (5)0.269 (2)0.121*
H3BO0.126 (6)0.596 (5)0.2244 (15)0.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0369 (15)0.0351 (14)0.0588 (17)0.0093 (12)0.0104 (12)0.0033 (12)
N120.0332 (12)0.0357 (12)0.0563 (14)0.0025 (10)0.0089 (10)0.0080 (10)
C120.0436 (17)0.0422 (16)0.0625 (18)0.0073 (13)0.0086 (13)0.0131 (13)
C130.0305 (14)0.0387 (15)0.0528 (16)0.0023 (11)0.0054 (11)0.0087 (12)
N13A0.0293 (12)0.0361 (12)0.0497 (13)0.0085 (9)0.0014 (9)0.0045 (9)
C140.0311 (14)0.0365 (14)0.0555 (17)0.0082 (11)0.0022 (11)0.0064 (12)
C150.0408 (16)0.0412 (15)0.0607 (18)0.0170 (13)0.0112 (13)0.0071 (13)
C160.0566 (19)0.0489 (17)0.0542 (17)0.0237 (15)0.0116 (14)0.0021 (13)
C170.0490 (18)0.0429 (16)0.0565 (17)0.0193 (14)0.0015 (13)0.0045 (13)
C17A0.0355 (15)0.0356 (14)0.0553 (16)0.0140 (12)0.0034 (12)0.0006 (12)
C1310.0305 (14)0.0436 (16)0.0515 (16)0.0066 (12)0.0043 (11)0.0076 (12)
N1320.0339 (13)0.0430 (13)0.0502 (13)0.0054 (10)0.0002 (10)0.0025 (10)
C1330.0407 (17)0.0513 (17)0.0552 (18)0.0082 (13)0.0020 (13)0.0007 (14)
C1340.054 (2)0.067 (2)0.0474 (17)0.0162 (16)0.0027 (14)0.0007 (15)
C1350.055 (2)0.064 (2)0.0541 (18)0.0188 (16)0.0165 (15)0.0160 (15)
C1360.0449 (18)0.0501 (18)0.0590 (19)0.0106 (14)0.0117 (14)0.0134 (14)
C210.0388 (15)0.0398 (14)0.0381 (14)0.0136 (12)0.0016 (11)0.0028 (11)
N220.0364 (12)0.0379 (12)0.0426 (12)0.0092 (10)0.0026 (9)0.0009 (9)
C220.0457 (17)0.0372 (15)0.0512 (16)0.0025 (12)0.0030 (12)0.0011 (12)
C230.0288 (14)0.0402 (14)0.0438 (14)0.0083 (11)0.0015 (10)0.0004 (11)
N23A0.0298 (11)0.0376 (12)0.0435 (12)0.0100 (9)0.0004 (9)0.0005 (9)
C240.0279 (13)0.0434 (15)0.0465 (15)0.0084 (11)0.0010 (11)0.0037 (12)
C250.0307 (14)0.0419 (15)0.0520 (16)0.0070 (12)0.0039 (11)0.0009 (12)
C260.0385 (16)0.0403 (15)0.0507 (16)0.0114 (12)0.0081 (12)0.0052 (12)
C270.0407 (15)0.0427 (15)0.0433 (14)0.0158 (12)0.0044 (11)0.0009 (11)
C27A0.0345 (14)0.0403 (14)0.0373 (13)0.0143 (11)0.0015 (10)0.0025 (11)
C2310.0294 (14)0.0518 (17)0.0455 (15)0.0024 (12)0.0038 (11)0.0070 (13)
N2320.0371 (13)0.0538 (15)0.0419 (13)0.0057 (11)0.0050 (10)0.0063 (11)
C2330.0517 (19)0.070 (2)0.0449 (17)0.0101 (16)0.0090 (13)0.0057 (15)
C2340.067 (2)0.077 (2)0.0469 (18)0.0102 (18)0.0198 (16)0.0031 (18)
C2350.062 (2)0.069 (2)0.061 (2)0.0015 (17)0.0141 (16)0.0214 (18)
C2360.0487 (19)0.0581 (19)0.0564 (18)0.0075 (15)0.0081 (14)0.0055 (15)
Cl10.0372 (6)0.0403 (6)0.0307 (5)0.0024 (4)0.0031 (4)0.0018 (4)
N10.0372 (6)0.0403 (6)0.0307 (5)0.0024 (4)0.0031 (4)0.0018 (4)
O110.069 (3)0.053 (3)0.079 (3)0.004 (2)0.013 (2)0.003 (2)
O120.062 (3)0.087 (4)0.112 (4)0.018 (3)0.013 (3)0.023 (3)
O130.069 (3)0.067 (3)0.094 (4)0.002 (3)0.014 (3)0.018 (3)
Cl20.0423 (4)0.0422 (4)0.0674 (5)0.0008 (3)0.0099 (3)0.0093 (3)
O10.0464 (14)0.0543 (13)0.0655 (14)0.0190 (11)0.0043 (10)0.0054 (11)
O20.0440 (13)0.0359 (11)0.0848 (15)0.0068 (10)0.0161 (11)0.0035 (10)
O30.0689 (18)0.100 (2)0.0867 (19)0.0167 (17)0.0188 (14)0.0375 (16)
Geometric parameters (Å, º) top
C11—N121.356 (4)C22—H22A0.98
C11—C17A1.363 (4)C22—H22B0.98
C11—H110.95C22—H22C0.98
N12—C131.352 (3)C23—N23A1.363 (3)
N12—C121.473 (4)C23—C2311.475 (4)
C12—H12A0.98N23A—C241.395 (3)
C12—H12B0.98N23A—C27A1.401 (3)
C12—H12C0.98C24—C251.343 (4)
C13—N13A1.353 (3)C24—H240.95
C13—C1311.463 (4)C25—C261.431 (4)
N13A—C17A1.399 (3)C25—H250.95
N13A—C141.404 (3)C26—C271.345 (4)
C14—C151.337 (4)C26—H260.95
C14—H140.95C27—C27A1.419 (4)
C15—C161.426 (4)C27—H270.95
C15—H150.95C231—N2321.335 (4)
C16—C171.356 (4)C231—C2361.383 (4)
C16—H160.95N232—C2331.336 (4)
C17—C17A1.415 (4)C233—C2341.374 (5)
C17—H170.95C233—H2330.95
C131—N1321.346 (4)C234—C2351.366 (5)
C131—C1361.390 (4)C234—H2340.95
N132—C1331.339 (4)C235—C2361.397 (4)
C133—C1341.391 (5)C235—H2350.95
C133—H1330.95C236—H2360.95
C134—C1351.370 (5)Cl1—O121.201 (6)
C134—H1340.95Cl1—O111.229 (5)
C135—C1361.399 (5)Cl1—O131.279 (5)
C135—H1350.95O1—H1AO0.836 (18)
C136—H1360.95O1—H1BO0.832 (18)
C21—N221.359 (3)O2—H2AO0.832 (17)
C21—C27A1.364 (4)O2—H2BO0.832 (18)
C21—H210.95O3—H3AO0.802 (19)
N22—C231.343 (3)O3—H3BO0.848 (18)
N22—C221.475 (3)
N12—C11—C17A107.7 (2)C23—N22—C21110.6 (2)
N12—C11—H11126.1C23—N22—C22126.1 (2)
C17A—C11—H11126.1C21—N22—C22123.1 (2)
C13—N12—C11110.5 (2)N22—C22—H22A109.5
C13—N12—C12125.8 (2)N22—C22—H22B109.5
C11—N12—C12123.6 (2)H22A—C22—H22B109.5
N12—C12—H12A109.5N22—C22—H22C109.5
N12—C12—H12B109.5H22A—C22—H22C109.5
H12A—C12—H12B109.5H22B—C22—H22C109.5
N12—C12—H12C109.5N22—C23—N23A106.5 (2)
H12A—C12—H12C109.5N22—C23—C231128.1 (2)
H12B—C12—H12C109.5N23A—C23—C231125.4 (2)
N12—C13—N13A106.3 (2)C23—N23A—C24129.7 (2)
N12—C13—C131127.9 (2)C23—N23A—C27A108.9 (2)
N13A—C13—C131125.8 (2)C24—N23A—C27A121.4 (2)
C13—N13A—C17A109.4 (2)C25—C24—N23A118.5 (2)
C13—N13A—C14129.1 (2)C25—C24—H24120.8
C17A—N13A—C14121.5 (2)N23A—C24—H24120.8
C15—C14—N13A118.0 (3)C24—C25—C26121.2 (3)
C15—C14—H14121C24—C25—H25119.4
N13A—C14—H14121C26—C25—H25119.4
C14—C15—C16122.2 (3)C27—C26—C25120.9 (2)
C14—C15—H15118.9C27—C26—H26119.6
C16—C15—H15118.9C25—C26—H26119.6
C17—C16—C15120.0 (3)C26—C27—C27A118.9 (2)
C17—C16—H16120C26—C27—H27120.5
C15—C16—H16120C27A—C27—H27120.5
C16—C17—C17A119.4 (3)C21—C27A—N23A106.1 (2)
C16—C17—H17120.3C21—C27A—C27134.8 (2)
C17A—C17—H17120.3N23A—C27A—C27119.1 (2)
C11—C17A—N13A106.0 (2)N232—C231—C236123.7 (3)
C11—C17A—C17135.1 (3)N232—C231—C23115.1 (2)
N13A—C17A—C17118.9 (2)C236—C231—C23121.1 (3)
N132—C131—C136124.1 (3)C231—N232—C233116.7 (3)
N132—C131—C13114.7 (2)N232—C233—C234124.3 (3)
C136—C131—C13121.2 (3)N232—C233—H233117.8
C133—N132—C131117.1 (2)C234—C233—H233117.8
N132—C133—C134122.9 (3)C235—C234—C233118.1 (3)
N132—C133—H133118.6C235—C234—H234121
C134—C133—H133118.6C233—C234—H234121
C135—C134—C133119.3 (3)C234—C235—C236119.6 (3)
C135—C134—H134120.3C234—C235—H235120.2
C133—C134—H134120.3C236—C235—H235120.2
C134—C135—C136119.2 (3)C231—C236—C235117.5 (3)
C134—C135—H135120.4C231—C236—H236121.2
C136—C135—H135120.4C235—C236—H236121.2
C131—C136—C135117.3 (3)O12—Cl1—O11123.2 (4)
C131—C136—H136121.3O12—Cl1—O13117.1 (4)
C135—C136—H136121.3O11—Cl1—O13118.6 (3)
N22—C21—C27A107.8 (2)H1AO—O1—H1BO107 (3)
N22—C21—H21126.1H2AO—O2—H2BO109 (2)
C27A—C21—H21126.1H3AO—O3—H3BO111 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1AO···Cl2i0.836 (18)2.339 (18)3.174 (2)176 (3)
O1—H1BO···Cl2ii0.832 (18)2.41 (2)3.229 (2)171 (4)
O2—H2AO···O10.832 (17)1.925 (18)2.755 (3)175 (4)
O2—H2BO···Cl20.832 (18)2.352 (18)3.178 (2)172 (4)
O3—H3AO···Cl10.802 (19)2.95 (5)3.398 (4)118 (4)
O3—H3BO···Cl20.848 (18)2.33 (2)3.166 (3)168 (5)
O3—H3AO···O120.802 (19)2.10 (5)2.363 (7)99 (4)
C11—H11···Cl2iii0.952.713.640 (3)166
C12—H12A···Cl1iv0.982.793.638 (4)146
C14—H14···N1320.952.533.024 (4)112
C14—H14···O3i0.952.473.330 (4)151
C15—H15···Cl2i0.952.753.671 (3)165
C17—H17···O2iii0.952.573.244 (3)128
C24—H24···N2320.952.513.019 (4)114
C27—H27···O2ii0.952.483.255 (3)139
C236—H236···O30.952.353.160 (5)143
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+1, y1, z.
 

Acknowledgements

The authors acknowledge the facilities, scientific and technical assistance of the Centre for Microscopy, Characterization and Analysis (CMCA) at the University of Western Australia.

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (project No. 19BF037-05).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationÁlvarez, C. M., Álvarez-Miguel, L., García-Rodríguez, R. & Miguel, D. (2012). Dalton Trans. 41, 7041–7046.  PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. (2016). Nat. Rev. Mater. 1, 15007.  CrossRef Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Linnik, R. P., Vassilyeva, O. Y. & Skelton, B. W. (2015). Dalton Trans. 44, 13735–13744.  CSD CrossRef CAS PubMed Google Scholar
First citationChen, Y., Yang, Z., Guo, C. X., Ni, C. Y., Ren, Z. G., Li, H. X. & Lang, J. P. (2010). Eur. J. Inorg. Chem. pp. 5326–5333.  CSD CrossRef Google Scholar
First citationDíaz, U. & Corma, A. (2018). Chem. Eur. J. 24, 3944–3958.  PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcía-Saiz, A., de Pedro, I., Migowski, P., Vallcorba, O., Junquera, J., Blanco, J. A., Fabelo, O., Sheptyakov, D., Waerenborgh, J. C., Fernández-Díaz, M. T., Rius, J., Dupont, J., Gonzalez, J. A. & Fernández, J. R. (2014). Inorg. Chem. 53, 8384–8396.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHutt, J. T., Jo, J., Olasz, A., Chen, C.-H., Lee, D. & Aron, Z. D. (2012). Org. Lett. 14, 3162–3165.  CSD CrossRef CAS PubMed Google Scholar
First citationJiang, C., Zhong, N., Luo, C., Lin, H., Zhang, Y., Peng, H. & Duan, C. G. (2017). Chem. Commun. 53, 5954–5957.  CSD CrossRef CAS Google Scholar
First citationLi, L., Zhao, D., Liu, Z., Zhang, D., Hu, Z., Li, K. & Yang, J. (2018). Acta Cryst. E74, 1878–1880.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMitra, K., Biswas, S., Chattopadhyay, S. K., Lucas, C. R. & Adhikary, B. (2007). J. Chem. Crystallogr. 37, 567–571.  CSD CrossRef CAS Google Scholar
First citationPiecha-Bisiorek, A., Bieńko, A., Jakubas, R., Boča, R., Weselski, M., Kinzhybalo, V., Pietraszko, A., Wojciechowska, M., Medycki, W. & Kruk, D. (2016). J. Phys. Chem. A, 120, 2014–2021.  CAS PubMed Google Scholar
First citationRigaku OD (2016). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShibahara, F., Kitagawa, A., Yamaguchi, E. & Murai, T. (2006). Org. Lett. 8, 5621–5624.  CSD CrossRef PubMed CAS Google Scholar
First citationTürkyılmaz, M., Baran, Y. & Özdemir, N. (2011). Acta Cryst. E67, o1282.  CSD CrossRef IUCr Journals Google Scholar
First citationVassilyeva, O. Yu., Buvaylo, E. A., Kokozay, V. N., Skelton, B. W., Rajnák, C., Titiš, Y. & Boča, R. (2019). Dalton Trans. https://doi.org/10.1039/C9DT01642B  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds