research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Palladium(II) complexes of a bridging amine bis­­(phenolate) ligand featuring κ2 and κ3 coordination modes

aDonald J. Bettinger Department of Chemistry and Biochemistry, Ohio Northern University, 525 S. Main Street, Ada, Ohio 45810, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, USA
*Correspondence e-mail: b-wile@onu.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 15 July 2019; accepted 22 July 2019; online 26 July 2019)

Bidentate and tridentate coordination of a 2,4-di-tert-butyl-substituted bridging amine bis­(phenolate) ligand to a palladium(II) center are observed within the same crystal structure, namely di­chlorido­({6,6′-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol))palladium(II) chlorido­(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hy­droxy­phen­yl)meth­yl](meth­yl)amino}­eth­yl)(meth­yl)amino]­meth­yl}phenolato)palladium(II) methanol 1.685-solvate 0.315-hydrate, [PdCl2(C34H56N2O2)][PdCl(C34H55N2O2)]·1.685CH3OH·0.315H2O. Both complexes exhibit a square-planar geometry, with unbound phenol moieties participating in inter­molecular hydrogen bonding with co-crystallized water and methanol. The presence of both κ2 and κ3 coordination modes arising from the same solution suggest a dynamic process in which phenol donors may coordinate or dissociate from the metal center, and offers insight into catalyst speciation throughout Pd-mediated processes. The unit cell contains di­chlorido­({6,6′-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol))palladium(II), {(L2)PdCl2}, and chlorido­(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hy­droxy­phen­yl)meth­yl](methyl)amino}eth­yl)(meth­yl)amino]­meth­yl}phenolato)palladium(II), {(L2X)PdCl}, mol­ecules as well as fractional water and methanol solvent mol­ecules.

1. Chemical context

The activity of early transition-metal and rare-earth complexes of amine bis­(phenolate) ligands for olefin (Tshuva et al., 2000[Tshuva, E. Y., Goldberg, I. & Kol, M. (2000). J. Am. Chem. Soc. 122, 10706-10707.]) and cyclic ester polymerization (Carpentier, 2015[Carpentier, J.-F. (2015). Organometallics, 34, 4175-4189.]) has been well documented. Several studies (Tshuva et al., 2001[Tshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2001). Organometallics, 20, 3017-3028.]; Qian et al., 2011[Qian, X., Dawe, L. N. & Kozak, C. M. (2011). Dalton Trans. 40, 933-943.]) demonstrated that the coordination mode and donor identity play a significant role in the activity of complexes derived from amine bis­(phenolate) and related ligands. Amine bis­(phenolate) complexes of iron have been employed as catalysts for cross-coupling (Chowdhury et al., 2008[Chowdhury, R. R., Crane, A. K., Fowler, C., Kwong, P. & Kozak, C. M. (2008). Chem. Commun. pp. 94-96.]), polymerization (Allan et al., 2014[Allan, L. E. N., MacDonald, J. P., Nichol, G. S. & Shaver, M. P. (2014). Macromolecules, 47, 1249-1257.]) and CO2 conversion (Andrea et al., 2018[Andrea, K. A., Brown, T. R., Murphy, J. N., Jagota, D., McKearney, D., Kozak, C. M. & Kerton, F. M. (2018). Inorg. Chem. 57, 13494-13504.]) and as functional models for various non-heme metalloenzymes (Karimpour et al., 2013[Karimpour, T., Safaei, E., Wojtczak, A., Jagličić, Z. & Kozakiewicz, A. (2013). Inorg. Chim. Acta, 395, 124-134.]; Strautmann et al., 2011[Strautmann, J. B. H., Freiherr von Richthofen, C.-G., Heinze-Brückner, G., DeBeer, S., Bothe, E., Bill, E., Weyhermüller, T., Stammler, A., Bögge, H. & Glaser, T. (2011). Inorg. Chem. 50, 155-171.]). While a relatively limited number of late transition-metal amine bis­(phenolate) complexes have been employed as catalysts, nearly all have been observed to bind through both amine and both phenolate donor atoms to form κ4 complexes. Related complexes featuring κ2 or κ3 coordination modes may offer unique insight into catalyst identity for species that may not be directly observed.

Several related complexes feature ligands similar to these amine bis­(phenolate) species bound in a κ3 fashion. Notably, Zn phen­oxy di­amine complexes are highly active catalysts for the polymerization of lactide. (Williams et al., 2003[Williams, C. K., Breyfogle, L. E., Choi, S. K., Nam, W., Young, V. G. Jr, Hillmyer, M. A. & Tolman, W. B. (2003). J. Am. Chem. Soc. 125, 11350-11359.]; Labourdette et al., 2009[Labourdette, G., Lee, D. J., Patrick, B. O., Ezhova, M. B. & Mehrkhodavandi, P. (2009). Organometallics, 28, 1309-1319.]) Related modification to the amine bis­(phenolate) framework generated `claw-type' κ3 Zn (Song et al., 2012[Song, S., Zhang, X., Ma, H. & Yang, Y. (2012). Dalton Trans. 41, 3266-3277.]; Wang et al., 2010[Wang, L. & Ma, H. (2010). Dalton Trans. 39, 7897-7910.]) and Ti (Zhao et al., 2014[Zhao, R., Liu, T., Wang, L. & Ma, H. (2014). Dalton Trans. 43, 12663-12677.]) complexes that serve as competent polymerization catalysts. To our knowledge, only one report describes Pd complexes with amine bis­(phenolate) ligands bound in a κ2 or κ3 coord­ination mode, in which both amine donors remain bound, and one phenolate donor may bind to the Pd center (Graziano et al., 2019[Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185-196.]). These species exhibit coordination behavior that varies with the steric parameters of the phenolate ortho and para substituents, with larger cumyl substituents favoring the formation of κ2 complexes. In this work, we describe diffraction data for a related Pd complex featuring the ligand {6,6′-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol) bound in both κ2 or κ3 coordination modes within a single unit cell. The presence of palladium(II) complexes displaying both κ2 and κ3 coordination modes arising from the same solution suggests a dynamic process in which phenol donors may coordinate or de-coordinate based on the electronic demands at the metal center.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the structure (Fig. 1[link]) consists of two distinct palladium(II) complexes of the amine bis­(phenolate) {6,6′-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol) and fractional qu­anti­ties of methanol and water crystallization solvents. Both metal centers adopt similar distorted square-planar geometric arrangements, in which both nitro­gen atoms of the ligand are bound to the Pd center to form a five-membered ring, and either one or two chlorine atoms are present to complete the coordination sphere depending on the coordination mode of the ligand. In both complexes, the N—Pd—N bond angle is similar to those observed for related amine bis­(phenolate) Pd complexes (Graziano et al., 2019[Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185-196.]), as described in Table 1[link].

Table 1
N—Pd—N bond angles for amine bis­(phenolate) PdII complexes

Complex Reference N—Pd—N
[(κ2-N,N)PdCl2] This work 85.44
[(κ3-N,N,O)PdCl] This work 85.84
[(κ2-N,N)PdCl2] Graziano et al. (2019[Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185-196.]) 82.8
[(κ2-N,N)PdCl2] Graziano et al. (2019[Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185-196.]) 85.58
[(κ3-N,N,O)PdCl] Graziano et al. (2019[Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185-196.]) 82.82
[(κ3-N,N,O)PdCl] Graziano et al. (2019[Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185-196.]) 86.86
[(κ3-N,N,O)PdCl] Graziano et al. (2019[Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185-196.]) 82.9
[(κ3-N,N,O)PdCl] Graziano et al. (2019[Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185-196.]) 83.0
[(κ2-N,N,)PdCl2] Ding et al. (2011[Ding, L., Chu, Z., Chen, L., Lü, X., Yan, B., Song, J., Fan, D. & Bao, F. (2011). Inorg. Chem. Commun. 14, 573-577.]) 84.07
[Figure 1]
Figure 1
The asymmetric unit of the title compound with only the major components of disorder shown. Displacement ellipsoids are drawn at the 50% probability level. H atoms bonded to C atoms are omitted for clarity and hydrogen bonds are shown as dotted lines.

Deprotonation and coordination of O1, presumably in the presence of water during crystallization, gives rise to the [(κ3-N,N,O)PdCl] complex. This complex is only slightly distorted from ideal square-planar geometry (τ4 parameter = 0.0823; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), and Pd1 lies 0.073 Å above the plane defined by O1/N1/N2/Cl1. The phenol ring containing O2 is disordered by rotation about the C20—C21 bond, such that in the minor component a close O2B—H2C⋯Cl1 inter­action of ∼2.065 Å is observed (see Refinement section for details of the disorder). An additional close contact of ∼2.460 Å is observed between Cl1 and the O3—H bond of an unbound phenol from the neighboring [(κ2-N,N)PdCl2] complex.

The [(κ2-N,N)PdCl2] complex also exhibits only minor distortions from an ideal square-planar geometry (τ4 parameter = 0.0638; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), and Pd2 lies within (±0.001 Å) the plane defined by N3/N4/Cl2/Cl3. Both phenol rings in this complex are disordered by rotation about the C54—C55 bond and the C39—C40 bond, giving rise to a close O3B—H3D⋯Cl3 inter­action of ∼2.12 Å and an O4B—H4D⋯Cl2 inter­action of ∼2.05 Å, respectively.

Solution NMR data (see Synthesis and crystallization section) suggest that the conformations observed in the solid state are retained on the NMR timescale. Signals attributed to both the κ2 and κ3 complexes are observed, including signals attributed to the protonated phenol moieties. Signals attributed to the ligand methyl­ene groups are rendered diastereotopic upon coordination of the distal donor atoms to the Pd center, while methyl­ene units for unbound donors remain magnetically equivalent.

3. Supra­molecular features

Hydrogen bonding (Table 2[link]) is observed between phenol O2—H2, co-crystallized methanol solvent O5—H5, and O1 of a neighboring complex, forming a two-dimensional network in the bc plane between [(κ3-N,N,O)PdCl] subunits. Details of this inter­action are illustrated in Fig. 2[link], which depicts the inter­action between neighboring κ3 species, viewed along the a axis. Additional O—H⋯Cl inter­actions are observed between O3—H3 and Cl1, and O6—H6 and Cl3, though neither of these inter­actions forms an extended network. The inter­action between O3—H3 and Cl1 is of inter­est as it is the only observed close contact between the κ2 and κ3 complexes within the asymmetric unit. This feature is absent in the minor component, in which the [(κ2-N,N)PdCl2] phenol hy­droxy moiety O3B—H3D exhibits an intra­molecular close contact with Cl3. Within the minor component, a related intra­molecular close contact is observed between the remaining [(κ2-N,N)PdCl2] phenol hy­droxy group O4B—H4D and Cl2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.84 1.95 2.787 (3) 171
C69—H69A⋯Cl1 0.98 2.90 3.642 (4) 134
C69—H69C⋯O3 0.98 2.57 3.267 (4) 128
O5B—H5C⋯O1 0.84 (2) 1.95 (3) 2.772 (6) 168 (12)
O6—H6⋯Cl2 0.84 2.90 3.592 (2) 141
O6—H6⋯Cl3 0.84 2.41 3.129 (2) 144
O6B—H6B⋯Cl2 0.84 2.45 3.242 (13) 157
O2—H2⋯O5i 0.84 1.88 2.715 (3) 170
O2B—H2C⋯Cl1 0.84 2.06 2.858 (13) 157
O3—H3⋯Cl1 0.84 2.46 3.1764 (17) 144
O3B—H3D⋯Cl3 0.84 2.12 2.886 (10) 152
O4—H4⋯O6ii 0.84 1.95 2.750 (3) 160
O4B—H4D⋯Cl2 0.84 2.05 2.726 (12) 137
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure viewed along the a axis, showing hydrogen bonding (in pink) between neighboring κ3 amine bis­(phenolate) PdII complexes.

4. Synthesis and crystallization

Both species within this unit cell are generated upon combining equimolar qu­anti­ties (0.254 mmol) of the {6,6′-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol) ligand and bis­(benzo­nitrile)­dichloro­palladium(II) in 5 mL of aceto­nitrile, using the method reported previously by Wile and co-workers (Graziano et al., 2019[Graziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185-196.]) as shown in Fig. 3[link]. The titular compound was obtained as an orange solid (116 mg, 0.169 mmol, 67%). Single crystals suitable for X-ray diffraction studies were grown from a concentrated solution of the metal complex in methanol, layered with distilled water (∼10:1 v/v).

[Figure 3]
Figure 3
Preparation of κ2 and κ3 amine bis­(phenolate) PdII complexes.

1H and 13C NMR spectra reveal signals attributed to both κ2 and κ3 Pd complexes in CDCl3 solution. The equilibrium, and the position of several signals shifts slightly when CD3OD is employed as the solvent for NMR characterization. The cleanest spectral data were obtained in CDCl3, and are reported below. Upon coordination, several methyl­ene H's were rendered diastereotopic. Spectroscopic assignments were confirmed through the use of 2D NMR (COSY, HSQC, HMBC) and polarization transfer (DEPT-135) experiments. 1H (CDCl3, 400.132 MHz) δ = 8.05 (s, 1H, OH), 7.51 (s, 1H, aryl C-H), 7.42 (m, 1H, aryl C-H), 7.36 (m, 2H, aryl C-H), 7.17–7.08 (m, 2H, aryl C-H), 6.83 (s, 1H, OH), 6.55 (m, 1H, aryl C-H), 4.64–4.50 (m, 2H, CH2), 3.79–3.65 (m, 1H, CH2), 3.59–3.48 (m, 1H, CH2), 3.35–3.20 (m, 3H), 3.00 (d, J = 13.6 Hz, 1H, CH2), 2.92–2.80 (m, 2H, CH2), 2.73–2.64 (m, 1H, CH2), 2.47 (s, 1H), 2.37–2.29 (m, 1H, CH2), 2.19–2.10 (m, 1H, CH2), 1.62 (s, 3H, CH3), 1.50 (s, 3H, CH3), 1.47–1.38 (m, 15H, CH3), 1.32 (s, 6H, CH3), 1.30 (s, 3H, CH3), 1.27 (s, 6H, CH3), 1.19 (s, 6H, CH3); 13C{1H} (CDCl3, 100.613 MHz) δ = 158.1 (4°), 153.3 (4°), 141.6 (4°), 139.6 (4°), 136.3 (4°), 129.0 (aryl C-H), 128.7 (4°), 125.5 (4°), 124.9 (4°), 124.0 (aryl C-H), 121.0 (4°), 117.6 (4°), 65.5 (CH2), 62.6 (CH2), 62.5 (CH2), 61.1 (CH2), 55.8 (CH2), 51.5, 41.7 (CH3), 35.4 (tBu 4°), 35.3 (tBu 4°), 35.0 (tBu 4°), 34.3 (tBu 4°), 34.1 (tBu 4°), 33.8 (tBu 4°), 31.6 (CH3), 30.2 (CH3), 30.1 (CH3), 29.9 (CH3), 29.6 (CH3). m.p. 435 K (decomp.)

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [PdCl2(C34H56N2O2)][PdCl(C34H55N2O2)]·1.685CH4O·0.315H2O
Mr 1427.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 15.8843 (5), 29.780 (1), 16.6629 (6)
β (°) 109.5536 (12)
V3) 7427.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.64
Crystal size (mm) 0.42 × 0.27 × 0.09
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.656, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 87447, 22272, 18396
Rint 0.041
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.03
No. of reflections 22272
No. of parameters 900
No. of restraints 186
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.12, −0.92
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), OLEX2 (Dolomanov, 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Water H atoms were restrained to have O—H bond lengths of 0.84 (2) Å, and 1.36 (2) Å H⋯H distances (DFIX, esd = 0.02 Å). All H atoms attached to carbon atoms as well as phenol and methanol hydroxyl hydrogens were positioned geometrically and constrained to ride on their parent atoms. C—H bond distances were constrained to 0.95 Å for aromatic C—H moieties, and to 0.99 and 0.98 Å for aliphatic CH2 and CH3 moieties, respectively. Phenol and methanol O—H distances were constrained to 0.84 Å. Methyl CH3 and hydroxyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C/O) with 1.5 for CH3, OH and water, and 1.2 for C—H, CH2, units, respectively.

Three of the four phenol hydroxyl groups are positionally disordered by rotation of the aromatic ring. For two of the three minor moieties, the O—C distance and the 1,3 O to C distances of the minor and major moieties were restrained to be similar (SADI command of SHELX, esd = 0.02 Å). Minor O atom O2B was constrained to have the same ADP as the C atom to which it is bonded. Two phenol H-atom positions were positionally restrained based on hydrogen-bonding considerations and to avoid close contacts to C-bound H atoms. Subject to these conditions, the occupancy rates of the major moieties refined to 0.917 (3), 0.857 (4) and 0.899 (4).

A tert-butyl group was refined as rotationally disordered. The two moieties were restrained to have similar geometries, the central C atoms to share one ADP, and the Uij components of ADPs were restrained to be similar (SIMU command of SHELX, esd = 0.01 Å2). Subject to these conditions the occupancy ratio refined to 0.716 (8):0.284 (8).

One solvate methanol mol­ecule was refined as disordered over two orientations, and another to be disordered with a water mol­ecule. The O—C distances of the major and minor methanol mol­ecules were restrained to be similar (SADI, esd = 0.02 Å), and the Uij components of ADPs were restrained to be similar for the three methanol and the one water moiety (SIMU, esd = 0.01 Å2). Subject to these conditions the occupancy ratio refined to 0.685 (8):0.315 (8) for the methanol-to-water ratio, and 0.843 (4):0.157 (4) for the methanol-to-methanol ratio.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015), SHELXLE (Hübschle et al., 2011); molecular graphics: OLEX2 (Dolomanov, 2009), VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Dichlorido({6,6'-[(ethane-1,2-diylbis(methylazanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenol))palladium(II) chlorido(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hydroxyphenyl)methyl](methyl)amino}ethyl)(methyl)amino]methyl}phenolato)palladium(II) methanol 1.685-solvate 0.315-hydrate top
Crystal data top
[PdCl2(C34H56N2O2)][PdCl(C34H55N2O2)]·1.685CH4O·0.315H2OF(000) = 3022
Mr = 1427.41Dx = 1.276 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.8843 (5) ÅCell parameters from 9425 reflections
b = 29.780 (1) Åθ = 2.9–36.3°
c = 16.6629 (6) ŵ = 0.64 mm1
β = 109.5536 (12)°T = 100 K
V = 7427.6 (4) Å3Plate, orange
Z = 40.42 × 0.27 × 0.09 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
22272 independent reflections
Radiation source: sealed tube X-ray source18396 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromatorRint = 0.041
ω and phi scansθmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2222
Tmin = 0.656, Tmax = 0.747k = 4235
87447 measured reflectionsl = 1823
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0251P)2 + 7.3036P]
where P = (Fo2 + 2Fc2)/3
22272 reflections(Δ/σ)max = 0.006
900 parametersΔρmax = 2.12 e Å3
186 restraintsΔρmin = 0.92 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Three of the four phenol hydroxyl groups are positionally disordered by rotation of the aromatic ring. For two of the three minor moieties the O-C distance and the 1,3 O to C distances of the minor and major moieties were restrained to be similar. Minor O atom O2B was constrained to have the same ADP as the C atom it is bonded to. Two phenol H atom positions were positionally restrained based on H-bonding considerations and to avoid close contacts to C bound H atoms. Subject to these conditions the occupancy rates of the major moieties refined to 0.917 (3), 0.857 (4) and 0.899 (4). A tert butyl group was refined as rotationally disordered. The two moieties were restrained to have similar geometries, the central C atoms to share one ADP, and Uij components of ADPs were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.716 (8) to 0.284 (8). One solvate methanol molecule was refined as disordered over two orientations, and another to be disordered with a water molecule. The O-C distance of the major and minor methanol molecules were restrained to be similar, and Uij components of ADPs were restrained to be similar for the three methanol and the one water moiety. Water H atoms were restrained to have O-H bond lengths of 0.84 (2) Angstroms, and 1.36 (2) Angstrom H···H distances. Subject to these conditions the occupancy ratio refined to 0.685 (8) to 0.315 (8) for the methanol to water ratio, and 0.843 (4) to 0.157 (4) for the methanol to methanol ratio.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.17953 (11)0.80735 (7)0.30459 (11)0.0194 (3)
H1A0.1242960.8254780.2912630.023*
H1B0.1642170.7756090.3107920.023*
C20.21826 (11)0.81161 (6)0.23312 (11)0.0186 (3)
H2A0.1770860.7979130.1804410.022*
H2B0.2259330.8436960.2216600.022*
C30.25578 (12)0.87326 (6)0.38525 (12)0.0189 (3)
H3A0.2749020.8823130.3374770.028*
H3B0.3002370.8831180.4388560.028*
H3C0.1979880.8871190.3790940.028*
C40.29176 (14)0.73906 (6)0.23957 (13)0.0252 (4)
H4A0.2599340.7350290.1785260.038*
H4B0.2559570.7265700.2720350.038*
H4C0.3493820.7234930.2554660.038*
C50.22069 (11)0.80871 (6)0.46069 (11)0.0175 (3)
H5A0.1597240.8196620.4533940.021*
H5B0.2198570.7754960.4628010.021*
C60.28488 (11)0.82650 (6)0.54299 (11)0.0172 (3)
C70.25435 (12)0.85501 (6)0.59361 (12)0.0203 (3)
H70.1925370.8620790.5766930.024*
C80.31289 (13)0.87344 (6)0.66884 (12)0.0214 (4)
C90.40305 (12)0.86206 (6)0.69068 (11)0.0195 (3)
H90.4435240.8742130.7417610.023*
C100.43751 (11)0.83389 (6)0.64207 (11)0.0176 (3)
C110.37664 (11)0.81525 (6)0.56647 (11)0.0165 (3)
C120.27754 (14)0.90546 (7)0.72233 (13)0.0278 (4)
C130.2301 (2)0.94537 (9)0.66700 (18)0.0493 (7)
H13A0.2712200.9601540.6427760.074*
H13B0.2111160.9668510.7021210.074*
H13C0.1776490.9345370.6208390.074*
C140.2107 (2)0.88091 (10)0.75446 (19)0.0514 (7)
H14A0.1628500.8682960.7059810.077*
H14B0.1851630.9020340.7851190.077*
H14C0.2412050.8566200.7929020.077*
C150.35247 (18)0.92506 (9)0.79799 (15)0.0401 (6)
H15A0.3949480.9411500.7772540.060*
H15B0.3834470.9006970.8359550.060*
H15C0.3269860.9458920.8292250.060*
C160.53860 (11)0.82428 (6)0.66905 (11)0.0190 (3)
C170.57415 (12)0.84092 (7)0.59878 (12)0.0238 (4)
H17A0.5442450.8245570.5458470.036*
H17B0.6386910.8356470.6163940.036*
H17C0.5621000.8731160.5894280.036*
C180.55738 (13)0.77371 (7)0.68368 (13)0.0239 (4)
H18A0.5252420.7572450.6314850.036*
H18B0.5372010.7634400.7300960.036*
H18C0.6216640.7682470.6987890.036*
C190.59150 (13)0.84892 (8)0.75145 (13)0.0289 (4)
H19A0.6550860.8416190.7666440.043*
H19B0.5699870.8394690.7975070.043*
H19C0.5831790.8813850.7427940.043*
C200.36366 (12)0.80514 (6)0.20834 (11)0.0194 (3)
H20A0.4221870.7896790.2284610.023*
H20B0.3341650.7970970.1477320.023*
C210.37937 (12)0.85519 (6)0.21469 (11)0.0179 (3)
C220.44292 (12)0.87334 (7)0.28698 (11)0.0201 (3)
H220.4763360.8538290.3313130.024*0.917 (3)
C230.45843 (12)0.91936 (7)0.29554 (12)0.0216 (4)
C240.40753 (12)0.94681 (7)0.22901 (12)0.0224 (4)
H240.4169300.9783270.2345040.027*
C250.34364 (12)0.93061 (7)0.15490 (12)0.0209 (4)
C260.33134 (12)0.88384 (7)0.14817 (11)0.0213 (4)
H260.2899260.8714340.0978850.026*0.083 (3)
C270.52639 (14)0.93896 (7)0.37683 (13)0.0274 (4)
C280.5518 (2)0.98740 (10)0.36385 (17)0.0528 (8)
H28A0.5771230.9883090.3177260.079*
H28B0.5960570.9984440.4165390.079*
H28C0.4984031.0064140.3489710.079*
C290.61076 (15)0.90945 (10)0.40685 (17)0.0475 (7)
H29A0.5945150.8790790.4189590.071*
H29B0.6534920.9223610.4586010.071*
H29C0.6379700.9081360.3620890.071*
C300.48404 (16)0.93941 (8)0.44706 (13)0.0320 (5)
H30A0.4315190.9590590.4300620.048*
H30B0.5275860.9505980.5000600.048*
H30C0.4659480.9088720.4559590.048*
C310.28669 (13)0.96291 (7)0.08547 (13)0.0235 (4)
C320.18826 (14)0.95698 (8)0.07806 (15)0.0310 (4)
H32A0.1512570.9781200.0358280.047*
H32B0.1814860.9628390.1334540.047*
H32C0.1692800.9261840.0601890.047*
C330.29709 (16)0.95343 (8)0.00108 (13)0.0342 (5)
H33A0.2578260.9734940.0440850.051*
H33B0.2808300.9221560.0172920.051*
H33C0.3592600.9585710.0027760.051*
C340.31216 (15)1.01223 (7)0.10743 (15)0.0335 (5)
H34A0.2748481.0315310.0616850.050*
H34B0.3751681.0166870.1136730.050*
H34C0.3027321.0199550.1609620.050*
C350.82670 (13)0.78738 (7)0.62727 (12)0.0227 (4)
H35A0.8248840.7846920.6858840.027*
H35B0.8145990.8190660.6090600.027*
C360.75680 (12)0.75753 (6)0.56829 (12)0.0214 (4)
H36A0.7633200.7266370.5915040.026*
H36B0.6966030.7686090.5637130.026*
C370.94963 (15)0.73294 (7)0.67850 (12)0.0260 (4)
H37A0.9061690.7086450.6575860.039*
H37B0.9565740.7394530.7380280.039*
H37C1.0073310.7237570.6744840.039*
C380.72900 (13)0.79913 (7)0.43422 (14)0.0276 (4)
H38A0.7336260.7976760.3770860.041*
H38B0.7626700.8250930.4647260.041*
H38C0.6661070.8021530.4295800.041*
C390.98438 (13)0.81102 (7)0.66335 (12)0.0242 (4)
H39A0.9942630.8134580.7250910.029*
H39B1.0421060.8030160.6565320.029*
C400.95395 (12)0.85599 (7)0.62173 (12)0.0223 (4)
C410.96205 (12)0.86495 (7)0.54242 (12)0.0216 (4)
H410.9926420.8441100.5188970.026*0.899 (4)
C420.92636 (12)0.90370 (6)0.49693 (12)0.0206 (3)
C430.88280 (12)0.93363 (6)0.53447 (12)0.0220 (4)
H430.8569250.9598670.5035810.026*
C440.87513 (12)0.92721 (6)0.61466 (12)0.0230 (4)
C450.91311 (13)0.88776 (7)0.65884 (12)0.0247 (4)
H450.9110170.8826510.7144200.030*0.101 (4)
C460.9314 (4)0.9110 (2)0.4058 (6)0.0242 (7)0.716 (8)
C471.0265 (4)0.9038 (3)0.4074 (6)0.083 (3)0.716 (8)
H47A1.0294650.9087720.3502390.125*0.716 (8)
H47B1.0451090.8729760.4254700.125*0.716 (8)
H47C1.0663310.9249590.4473850.125*0.716 (8)
C480.9003 (4)0.95804 (12)0.3720 (3)0.0453 (12)0.716 (8)
H48A0.9051890.9615430.3152130.068*0.716 (8)
H48B0.9378860.9805050.4105730.068*0.716 (8)
H48C0.8379930.9622260.3684660.068*0.716 (8)
C490.8698 (3)0.87713 (15)0.3444 (2)0.0431 (11)0.716 (8)
H49A0.8082350.8816080.3431650.065*0.716 (8)
H49B0.8890150.8465340.3635410.065*0.716 (8)
H49C0.8726530.8816150.2870670.065*0.716 (8)
C46B0.9326 (11)0.9135 (5)0.4130 (16)0.0242 (7)0.284 (8)
C47B1.0007 (11)0.8840 (6)0.3924 (10)0.060 (5)0.284 (8)
H47D1.0050370.8928810.3373050.090*0.284 (8)
H47E0.9818690.8525160.3898040.090*0.284 (8)
H47F1.0591270.8874870.4368440.090*0.284 (8)
C48B0.9648 (9)0.9616 (3)0.4077 (8)0.049 (3)0.284 (8)
H48D0.9716710.9663560.3520240.073*0.284 (8)
H48E1.0224280.9663220.4527470.073*0.284 (8)
H48F0.9209220.9829310.4150050.073*0.284 (8)
C49B0.8410 (6)0.9070 (6)0.3445 (6)0.056 (4)0.284 (8)
H49D0.8218450.8757750.3450830.084*0.284 (8)
H49E0.8450640.9141160.2885090.084*0.284 (8)
H49F0.7974980.9270240.3561950.084*0.284 (8)
C500.82772 (15)0.96168 (7)0.65348 (14)0.0302 (4)
C510.74905 (17)0.93991 (9)0.67292 (17)0.0415 (6)
H51A0.7079620.9264660.6208290.062*
H51B0.7174280.9628120.6940780.062*
H51C0.7715520.9165500.7162640.062*
C520.78897 (16)1.00097 (8)0.59236 (17)0.0397 (6)
H52A0.7455440.9894600.5395950.060*
H52B0.8373581.0163720.5792970.060*
H52C0.7593251.0221230.6192440.060*
C530.89511 (18)0.98139 (9)0.73532 (16)0.0434 (6)
H53A0.9456300.9944930.7222650.065*
H53B0.9167290.9575040.7776970.065*
H53C0.8658271.0047230.7580470.065*
C540.71609 (11)0.71773 (6)0.43015 (12)0.0199 (3)
H54A0.6512560.7241890.4115380.024*
H54B0.7331070.7145000.3784530.024*
C550.73381 (11)0.67400 (6)0.47843 (11)0.0181 (3)
C560.81404 (11)0.65147 (6)0.49064 (11)0.0190 (3)
H560.8537840.6624580.4634380.023*0.857 (4)
C570.83762 (12)0.61328 (6)0.54161 (11)0.0192 (3)
C580.77628 (13)0.59762 (6)0.57860 (12)0.0223 (4)
H580.7918710.5719040.6142550.027*
C590.69358 (12)0.61752 (7)0.56624 (12)0.0219 (4)
C600.67343 (11)0.65639 (7)0.51527 (12)0.0206 (3)
H600.6177400.6710040.5056290.025*0.143 (4)
C610.92834 (13)0.59069 (7)0.55567 (13)0.0244 (4)
C620.94060 (16)0.54802 (8)0.60966 (15)0.0349 (5)
H62A0.8922310.5268870.5822370.052*
H62B0.9392720.5557190.6664050.052*
H62C0.9981550.5341610.6148940.052*
C630.93679 (14)0.57830 (8)0.46884 (14)0.0304 (4)
H63A0.8874270.5584300.4378470.046*
H63B0.9937540.5628970.4778960.046*
H63C0.9345570.6056840.4355840.046*
C641.00323 (13)0.62374 (8)0.60294 (15)0.0335 (5)
H64A1.0614710.6096410.6122210.050*
H64B0.9974920.6316040.6579910.050*
H64C0.9983130.6509780.5686730.050*
C650.62817 (14)0.59830 (8)0.60747 (15)0.0327 (5)
C660.61091 (16)0.63295 (9)0.66877 (16)0.0403 (6)
H66A0.5850290.6601900.6371040.060*
H66B0.6674160.6403990.7133480.060*
H66C0.5692930.6203020.6948700.060*
C670.54135 (17)0.58412 (11)0.5376 (2)0.0559 (8)
H67A0.5131270.6104990.5042780.084*
H67B0.5005380.5707660.5639280.084*
H67C0.5550000.5620320.5001440.084*
C680.6653 (2)0.55572 (9)0.66041 (19)0.0482 (7)
H68A0.6771810.5326950.6235510.072*
H68B0.6214360.5443510.6850280.072*
H68C0.7209400.5631070.7062480.072*
O50.3231 (2)0.70311 (9)0.50018 (17)0.0253 (7)0.685 (8)
H50.3470380.7285680.5107650.038*0.685 (8)
C690.3784 (3)0.67414 (13)0.4738 (3)0.0462 (12)0.685 (8)
H69A0.3871860.6862960.4224880.069*0.685 (8)
H69B0.3503140.6444880.4611620.069*0.685 (8)
H69C0.4363370.6714170.5192100.069*0.685 (8)
O5B0.3750 (8)0.6952 (2)0.5134 (4)0.042 (2)0.315 (8)
H5C0.380 (7)0.7231 (9)0.520 (6)0.063*0.315 (8)
H5D0.341 (7)0.690 (3)0.462 (3)0.063*0.315 (8)
O61.02032 (15)0.66923 (8)0.36487 (12)0.0432 (6)0.843 (4)
H61.0017170.6914290.3851520.065*0.843 (4)
C701.1050 (3)0.65658 (16)0.4205 (2)0.0439 (9)0.843 (4)
H70A1.1496340.6784220.4167070.066*0.843 (4)
H70B1.1202490.6267760.4045790.066*0.843 (4)
H70C1.1040270.6557370.4789800.066*0.843 (4)
O6B1.1055 (10)0.7095 (5)0.3721 (9)0.063 (4)0.157 (4)
H6B1.0825140.7254180.4008060.095*0.157 (4)
C70B1.104 (3)0.6652 (8)0.3948 (17)0.065 (6)0.157 (4)
H70D1.1168750.6631480.4564600.097*0.157 (4)
H70E1.1488440.6483920.3788880.097*0.157 (4)
H70F1.0445210.6526380.3652080.097*0.157 (4)
N10.24699 (9)0.82353 (5)0.38574 (9)0.0144 (3)
N20.30708 (9)0.78810 (5)0.25896 (9)0.0153 (3)
N30.91741 (10)0.77394 (5)0.62590 (9)0.0177 (3)
N40.76653 (9)0.75710 (5)0.48193 (9)0.0172 (3)
O10.40507 (8)0.78699 (4)0.51791 (7)0.0172 (2)
O20.26805 (12)0.86608 (5)0.07650 (10)0.0330 (4)0.917 (3)
H20.2906740.8447710.0576690.049*0.917 (3)
O2B0.5034 (9)0.8514 (5)0.3518 (8)0.0201 (3)0.083 (3)
H2C0.4866030.8247430.3532870.030*0.083 (3)
O30.59302 (10)0.67610 (6)0.50671 (11)0.0295 (5)0.857 (4)
H30.5751900.6905700.4608180.044*0.857 (4)
O3B0.8753 (6)0.6616 (3)0.4513 (7)0.024 (3)0.143 (4)
H3D0.8719000.6890510.4388450.036*0.143 (4)
O40.90424 (13)0.88163 (6)0.73783 (10)0.0337 (5)0.899 (4)
H40.9436030.8636770.7665680.051*0.899 (4)
O4B1.0122 (8)0.8408 (4)0.5013 (7)0.022 (4)0.101 (4)
H4D1.0416650.8205830.5339470.033*0.101 (4)
Pd10.36273 (2)0.79241 (2)0.39043 (2)0.01248 (3)
Pd20.90248 (2)0.75700 (2)0.50140 (2)0.01722 (3)
Cl10.49514 (3)0.75869 (2)0.39289 (3)0.02383 (9)
Cl21.05553 (3)0.75220 (2)0.52937 (3)0.02905 (11)
Cl30.87855 (4)0.74325 (2)0.35902 (3)0.03647 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0134 (7)0.0250 (9)0.0175 (8)0.0010 (7)0.0021 (6)0.0029 (7)
C20.0145 (7)0.0250 (9)0.0142 (8)0.0016 (7)0.0021 (6)0.0014 (7)
C30.0197 (8)0.0139 (8)0.0249 (9)0.0018 (7)0.0096 (7)0.0010 (6)
C40.0309 (10)0.0181 (9)0.0260 (10)0.0027 (8)0.0089 (8)0.0083 (7)
C50.0146 (7)0.0226 (8)0.0172 (8)0.0009 (7)0.0077 (6)0.0005 (6)
C60.0163 (7)0.0203 (8)0.0161 (8)0.0004 (7)0.0069 (6)0.0010 (6)
C70.0205 (8)0.0225 (9)0.0211 (8)0.0021 (7)0.0111 (7)0.0003 (7)
C80.0271 (9)0.0227 (9)0.0182 (8)0.0001 (7)0.0125 (7)0.0017 (7)
C90.0240 (8)0.0212 (8)0.0138 (8)0.0039 (7)0.0072 (6)0.0014 (6)
C100.0188 (7)0.0206 (8)0.0141 (8)0.0004 (7)0.0062 (6)0.0018 (6)
C110.0192 (7)0.0180 (8)0.0143 (7)0.0009 (7)0.0081 (6)0.0019 (6)
C120.0350 (10)0.0260 (10)0.0278 (10)0.0001 (9)0.0177 (9)0.0087 (8)
C130.0653 (18)0.0386 (14)0.0454 (15)0.0174 (13)0.0202 (13)0.0054 (12)
C140.0624 (17)0.0483 (16)0.0654 (18)0.0167 (14)0.0506 (15)0.0241 (14)
C150.0536 (14)0.0372 (13)0.0344 (12)0.0036 (11)0.0212 (11)0.0139 (10)
C160.0166 (7)0.0236 (9)0.0152 (8)0.0016 (7)0.0035 (6)0.0024 (6)
C170.0196 (8)0.0282 (10)0.0242 (9)0.0026 (8)0.0082 (7)0.0057 (8)
C180.0211 (8)0.0255 (9)0.0235 (9)0.0006 (8)0.0052 (7)0.0051 (7)
C190.0241 (9)0.0357 (11)0.0210 (9)0.0026 (8)0.0002 (7)0.0032 (8)
C200.0224 (8)0.0240 (9)0.0139 (8)0.0036 (7)0.0090 (6)0.0010 (6)
C210.0202 (8)0.0204 (8)0.0158 (8)0.0021 (7)0.0095 (6)0.0029 (6)
C220.0193 (8)0.0277 (9)0.0151 (8)0.0027 (7)0.0079 (6)0.0033 (7)
C230.0213 (8)0.0276 (10)0.0185 (8)0.0027 (7)0.0099 (7)0.0000 (7)
C240.0246 (9)0.0232 (9)0.0227 (9)0.0002 (7)0.0125 (7)0.0018 (7)
C250.0217 (8)0.0244 (9)0.0194 (8)0.0047 (7)0.0104 (7)0.0042 (7)
C260.0218 (8)0.0266 (9)0.0155 (8)0.0042 (7)0.0065 (7)0.0019 (7)
C270.0283 (9)0.0310 (11)0.0220 (9)0.0034 (8)0.0072 (8)0.0010 (8)
C280.0636 (17)0.0521 (16)0.0329 (13)0.0340 (14)0.0032 (12)0.0030 (12)
C290.0257 (10)0.0689 (19)0.0408 (14)0.0030 (12)0.0016 (10)0.0218 (13)
C300.0417 (12)0.0330 (11)0.0198 (9)0.0031 (10)0.0085 (9)0.0029 (8)
C310.0241 (9)0.0231 (9)0.0247 (9)0.0063 (8)0.0102 (7)0.0061 (7)
C320.0258 (9)0.0290 (11)0.0387 (12)0.0067 (8)0.0113 (9)0.0069 (9)
C330.0408 (12)0.0397 (12)0.0238 (10)0.0187 (10)0.0129 (9)0.0132 (9)
C340.0360 (11)0.0259 (10)0.0376 (12)0.0029 (9)0.0109 (9)0.0079 (9)
C350.0272 (9)0.0251 (9)0.0226 (9)0.0019 (8)0.0172 (7)0.0005 (7)
C360.0222 (8)0.0219 (9)0.0272 (9)0.0018 (7)0.0176 (7)0.0017 (7)
C370.0385 (11)0.0247 (10)0.0163 (9)0.0086 (8)0.0115 (8)0.0048 (7)
C380.0190 (8)0.0242 (10)0.0375 (11)0.0018 (7)0.0065 (8)0.0133 (8)
C390.0252 (9)0.0256 (9)0.0168 (8)0.0005 (8)0.0005 (7)0.0001 (7)
C400.0208 (8)0.0230 (9)0.0192 (9)0.0031 (7)0.0015 (7)0.0006 (7)
C410.0182 (8)0.0226 (9)0.0228 (9)0.0006 (7)0.0055 (7)0.0012 (7)
C420.0178 (8)0.0222 (9)0.0217 (9)0.0028 (7)0.0063 (7)0.0009 (7)
C430.0195 (8)0.0187 (8)0.0262 (9)0.0032 (7)0.0056 (7)0.0029 (7)
C440.0221 (8)0.0213 (9)0.0248 (9)0.0063 (7)0.0069 (7)0.0085 (7)
C450.0270 (9)0.0259 (10)0.0189 (9)0.0061 (8)0.0047 (7)0.0055 (7)
C460.0223 (9)0.0295 (12)0.0238 (19)0.0036 (9)0.0115 (9)0.0053 (10)
C470.030 (2)0.177 (10)0.052 (4)0.025 (4)0.026 (2)0.043 (5)
C480.076 (3)0.0276 (17)0.037 (2)0.0010 (19)0.025 (2)0.0098 (14)
C490.065 (3)0.041 (2)0.0230 (16)0.007 (2)0.0152 (16)0.0002 (15)
C46B0.0223 (9)0.0295 (12)0.0238 (19)0.0036 (9)0.0115 (9)0.0053 (10)
C47B0.073 (11)0.086 (10)0.033 (6)0.066 (9)0.035 (8)0.035 (7)
C48B0.070 (8)0.035 (5)0.059 (7)0.011 (5)0.045 (6)0.005 (4)
C49B0.035 (5)0.114 (12)0.020 (4)0.021 (6)0.010 (4)0.007 (5)
C500.0325 (10)0.0257 (10)0.0349 (11)0.0077 (9)0.0146 (9)0.0142 (9)
C510.0402 (12)0.0415 (14)0.0515 (15)0.0076 (11)0.0270 (12)0.0154 (11)
C520.0388 (12)0.0252 (11)0.0575 (16)0.0020 (10)0.0193 (11)0.0127 (10)
C530.0499 (14)0.0412 (14)0.0401 (14)0.0137 (12)0.0164 (11)0.0247 (11)
C540.0139 (7)0.0249 (9)0.0192 (8)0.0001 (7)0.0032 (6)0.0056 (7)
C550.0139 (7)0.0220 (8)0.0165 (8)0.0012 (7)0.0027 (6)0.0019 (6)
C560.0166 (7)0.0227 (9)0.0169 (8)0.0015 (7)0.0043 (6)0.0008 (7)
C570.0185 (8)0.0197 (8)0.0164 (8)0.0005 (7)0.0019 (6)0.0023 (6)
C580.0257 (9)0.0195 (8)0.0196 (9)0.0019 (7)0.0049 (7)0.0011 (7)
C590.0195 (8)0.0242 (9)0.0212 (9)0.0050 (7)0.0057 (7)0.0004 (7)
C600.0137 (7)0.0262 (9)0.0198 (8)0.0008 (7)0.0029 (6)0.0022 (7)
C610.0218 (8)0.0233 (9)0.0247 (9)0.0042 (7)0.0035 (7)0.0028 (7)
C620.0362 (11)0.0291 (11)0.0325 (12)0.0114 (9)0.0025 (9)0.0028 (9)
C630.0256 (9)0.0338 (11)0.0305 (11)0.0042 (9)0.0078 (8)0.0080 (9)
C640.0188 (9)0.0328 (11)0.0414 (13)0.0047 (8)0.0002 (8)0.0139 (9)
C650.0266 (10)0.0385 (12)0.0348 (11)0.0073 (9)0.0127 (9)0.0074 (9)
C660.0344 (11)0.0534 (15)0.0414 (13)0.0084 (11)0.0236 (10)0.0136 (11)
C670.0356 (13)0.068 (2)0.0628 (19)0.0263 (14)0.0140 (13)0.0035 (15)
C680.0594 (16)0.0381 (14)0.0593 (17)0.0032 (13)0.0362 (14)0.0174 (12)
O50.0307 (15)0.0231 (12)0.0259 (12)0.0020 (11)0.0144 (11)0.0014 (9)
C690.055 (2)0.0218 (17)0.081 (3)0.0019 (16)0.048 (2)0.003 (2)
O5B0.076 (6)0.021 (3)0.038 (3)0.006 (3)0.030 (4)0.003 (2)
O60.0493 (13)0.0515 (14)0.0208 (10)0.0174 (10)0.0011 (9)0.0052 (8)
C700.0377 (15)0.064 (2)0.033 (2)0.0077 (17)0.0156 (16)0.0036 (16)
O6B0.079 (8)0.072 (8)0.053 (7)0.012 (7)0.041 (6)0.011 (6)
C70B0.078 (10)0.083 (10)0.039 (10)0.007 (9)0.027 (9)0.005 (9)
N10.0122 (6)0.0162 (7)0.0139 (6)0.0005 (5)0.0033 (5)0.0014 (5)
N20.0167 (6)0.0152 (7)0.0141 (6)0.0005 (5)0.0051 (5)0.0017 (5)
N30.0210 (7)0.0190 (7)0.0146 (7)0.0020 (6)0.0077 (6)0.0015 (5)
N40.0145 (6)0.0208 (7)0.0171 (7)0.0022 (6)0.0063 (5)0.0058 (6)
O10.0178 (5)0.0212 (6)0.0125 (5)0.0049 (5)0.0051 (4)0.0003 (5)
O20.0432 (10)0.0242 (8)0.0200 (8)0.0074 (7)0.0048 (7)0.0029 (6)
O2B0.0193 (8)0.0277 (9)0.0151 (8)0.0027 (7)0.0079 (6)0.0033 (7)
O30.0151 (7)0.0379 (10)0.0363 (10)0.0050 (7)0.0096 (7)0.0192 (8)
O3B0.018 (4)0.024 (5)0.038 (6)0.002 (4)0.019 (4)0.001 (4)
O40.0495 (11)0.0335 (10)0.0188 (8)0.0011 (8)0.0122 (7)0.0041 (7)
O4B0.020 (6)0.032 (8)0.014 (6)0.014 (5)0.008 (5)0.005 (5)
Pd10.01173 (5)0.01425 (6)0.01174 (6)0.00192 (5)0.00432 (4)0.00027 (4)
Pd20.01268 (6)0.02854 (7)0.01189 (6)0.00021 (5)0.00602 (4)0.00231 (5)
Cl10.02027 (19)0.0316 (2)0.0220 (2)0.01215 (18)0.01026 (16)0.00532 (18)
Cl20.01481 (18)0.0442 (3)0.0303 (2)0.00095 (19)0.01044 (17)0.0005 (2)
Cl30.0303 (2)0.0669 (4)0.0157 (2)0.0060 (3)0.01236 (19)0.0033 (2)
Geometric parameters (Å, º) top
C1—N11.496 (2)C41—H410.9500
C1—C21.518 (2)C42—C431.398 (3)
C1—H1A0.9900C42—C46B1.46 (3)
C1—H1B0.9900C42—C461.562 (10)
C2—N21.503 (2)C43—C441.395 (3)
C2—H2A0.9900C43—H430.9500
C2—H2B0.9900C44—C451.410 (3)
C3—N11.488 (2)C44—C501.538 (3)
C3—H3A0.9800C45—O41.382 (2)
C3—H3B0.9800C45—H450.9500
C3—H3C0.9800C46—C471.518 (7)
C4—N21.498 (2)C46—C481.530 (7)
C4—H4A0.9800C46—C491.533 (7)
C4—H4B0.9800C47—H47A0.9800
C4—H4C0.9800C47—H47B0.9800
C5—C61.505 (2)C47—H47C0.9800
C5—N11.509 (2)C48—H48A0.9800
C5—H5A0.9900C48—H48B0.9800
C5—H5B0.9900C48—H48C0.9800
C6—C71.393 (2)C49—H49A0.9800
C6—C111.417 (2)C49—H49B0.9800
C7—C81.399 (3)C49—H49C0.9800
C7—H70.9500C46B—C47B1.519 (16)
C8—C91.396 (3)C46B—C49B1.531 (16)
C8—C121.534 (3)C46B—C48B1.534 (15)
C9—C101.399 (2)C47B—H47D0.9800
C9—H90.9500C47B—H47E0.9800
C10—C111.419 (2)C47B—H47F0.9800
C10—C161.542 (2)C48B—H48D0.9800
C11—O11.346 (2)C48B—H48E0.9800
C12—C141.526 (3)C48B—H48F0.9800
C12—C151.531 (3)C49B—H49D0.9800
C12—C131.538 (3)C49B—H49E0.9800
C13—H13A0.9800C49B—H49F0.9800
C13—H13B0.9800C50—C511.535 (3)
C13—H13C0.9800C50—C521.538 (3)
C14—H14A0.9800C50—C531.540 (3)
C14—H14B0.9800C51—H51A0.9800
C14—H14C0.9800C51—H51B0.9800
C15—H15A0.9800C51—H51C0.9800
C15—H15B0.9800C52—H52A0.9800
C15—H15C0.9800C52—H52B0.9800
C16—C191.535 (3)C52—H52C0.9800
C16—C181.539 (3)C53—H53A0.9800
C16—C171.542 (3)C53—H53B0.9800
C17—H17A0.9800C53—H53C0.9800
C17—H17B0.9800C54—C551.507 (2)
C17—H17C0.9800C54—N41.516 (2)
C18—H18A0.9800C54—H54A0.9900
C18—H18B0.9800C54—H54B0.9900
C18—H18C0.9800C55—C561.394 (2)
C19—H19A0.9800C55—C601.402 (2)
C19—H19B0.9800C56—O3B1.377 (9)
C19—H19C0.9800C56—C571.394 (3)
C20—C211.509 (3)C56—H560.9500
C20—N21.511 (2)C57—C581.396 (3)
C20—H20A0.9900C57—C611.536 (3)
C20—H20B0.9900C58—C591.392 (3)
C21—C221.396 (3)C58—H580.9500
C21—C261.404 (2)C59—C601.408 (3)
C22—O2B1.350 (10)C59—C651.535 (3)
C22—C231.392 (3)C60—O31.369 (2)
C22—H220.9500C60—H600.9500
C23—C241.397 (3)C61—C621.531 (3)
C23—C271.537 (3)C61—C641.542 (3)
C24—C251.396 (3)C61—C631.542 (3)
C24—H240.9500C62—H62A0.9800
C25—C261.406 (3)C62—H62B0.9800
C25—C311.543 (3)C62—H62C0.9800
C26—O21.383 (2)C63—H63A0.9800
C26—H260.9500C63—H63B0.9800
C27—C281.532 (3)C63—H63C0.9800
C27—C301.533 (3)C64—H64A0.9800
C27—C291.539 (3)C64—H64B0.9800
C28—H28A0.9800C64—H64C0.9800
C28—H28B0.9800C65—C671.536 (3)
C28—H28C0.9800C65—C661.540 (4)
C29—H29A0.9800C65—C681.545 (3)
C29—H29B0.9800C66—H66A0.9800
C29—H29C0.9800C66—H66B0.9800
C30—H30A0.9800C66—H66C0.9800
C30—H30B0.9800C67—H67A0.9800
C30—H30C0.9800C67—H67B0.9800
C31—C331.532 (3)C67—H67C0.9800
C31—C341.535 (3)C68—H68A0.9800
C31—C321.537 (3)C68—H68B0.9800
C32—H32A0.9800C68—H68C0.9800
C32—H32B0.9800O5—C691.403 (5)
C32—H32C0.9800O5—H50.8400
C33—H33A0.9800C69—H69A0.9800
C33—H33B0.9800C69—H69B0.9800
C33—H33C0.9800C69—H69C0.9800
C34—H34A0.9800O5B—H5C0.84 (2)
C34—H34B0.9800O5B—H5D0.86 (2)
C34—H34C0.9800O6—C701.405 (5)
C35—C361.503 (3)O6—H60.8400
C35—N31.503 (2)C70—H70A0.9800
C35—H35A0.9900C70—H70B0.9800
C35—H35B0.9900C70—H70C0.9800
C36—N41.498 (2)O6B—C70B1.373 (18)
C36—H36A0.9900O6B—H6B0.8400
C36—H36B0.9900C70B—H70D0.9800
C37—N31.490 (2)C70B—H70E0.9800
C37—H37A0.9800C70B—H70F0.9800
C37—H37B0.9800N1—Pd12.0369 (14)
C37—H37C0.9800N2—Pd12.0739 (14)
C38—N41.496 (2)N3—Pd22.0699 (15)
C38—H38A0.9800N4—Pd22.0735 (14)
C38—H38B0.9800O1—Pd12.0085 (12)
C38—H38C0.9800O2—H20.8400
C39—C401.511 (3)O2B—H2C0.8400
C39—N31.515 (2)O3—H30.8400
C39—H39A0.9900O3B—H3D0.8400
C39—H39B0.9900O4—H40.8400
C40—C411.396 (3)O4B—H4D0.8400
C40—C451.403 (3)Pd1—Cl12.3186 (4)
C41—C421.393 (3)Pd2—Cl32.3102 (5)
C41—O4B1.410 (9)Pd2—Cl22.3216 (5)
N1—C1—C2109.06 (14)C45—C44—C50121.37 (18)
N1—C1—H1A109.9O4—C45—C40122.71 (19)
C2—C1—H1A109.9O4—C45—C44116.44 (18)
N1—C1—H1B109.9C40—C45—C44120.79 (18)
C2—C1—H1B109.9C40—C45—H45119.6
H1A—C1—H1B108.3C44—C45—H45119.6
N2—C2—C1108.93 (14)C47—C46—C48109.4 (6)
N2—C2—H2A109.9C47—C46—C49109.2 (6)
C1—C2—H2A109.9C48—C46—C49107.5 (5)
N2—C2—H2B109.9C47—C46—C42109.8 (6)
C1—C2—H2B109.9C48—C46—C42111.7 (5)
H2A—C2—H2B108.3C49—C46—C42109.2 (5)
N1—C3—H3A109.5C46—C47—H47A109.5
N1—C3—H3B109.5C46—C47—H47B109.5
H3A—C3—H3B109.5H47A—C47—H47B109.5
N1—C3—H3C109.5C46—C47—H47C109.5
H3A—C3—H3C109.5H47A—C47—H47C109.5
H3B—C3—H3C109.5H47B—C47—H47C109.5
N2—C4—H4A109.5C46—C48—H48A109.5
N2—C4—H4B109.5C46—C48—H48B109.5
H4A—C4—H4B109.5H48A—C48—H48B109.5
N2—C4—H4C109.5C46—C48—H48C109.5
H4A—C4—H4C109.5H48A—C48—H48C109.5
H4B—C4—H4C109.5H48B—C48—H48C109.5
C6—C5—N1111.11 (14)C46—C49—H49A109.5
C6—C5—H5A109.4C46—C49—H49B109.5
N1—C5—H5A109.4H49A—C49—H49B109.5
C6—C5—H5B109.4C46—C49—H49C109.5
N1—C5—H5B109.4H49A—C49—H49C109.5
H5A—C5—H5B108.0H49B—C49—H49C109.5
C7—C6—C11120.74 (16)C42—C46B—C47B112.4 (14)
C7—C6—C5119.95 (15)C42—C46B—C49B109.6 (13)
C11—C6—C5119.27 (15)C47B—C46B—C49B109.3 (15)
C6—C7—C8121.32 (17)C42—C46B—C48B111.8 (14)
C6—C7—H7119.3C47B—C46B—C48B104.6 (14)
C8—C7—H7119.3C49B—C46B—C48B109.1 (14)
C9—C8—C7117.04 (16)C46B—C47B—H47D109.5
C9—C8—C12122.84 (17)C46B—C47B—H47E109.5
C7—C8—C12120.11 (17)H47D—C47B—H47E109.5
C8—C9—C10124.11 (17)C46B—C47B—H47F109.5
C8—C9—H9117.9H47D—C47B—H47F109.5
C10—C9—H9117.9H47E—C47B—H47F109.5
C9—C10—C11117.78 (16)C46B—C48B—H48D109.5
C9—C10—C16120.90 (16)C46B—C48B—H48E109.5
C11—C10—C16121.31 (15)H48D—C48B—H48E109.5
O1—C11—C6120.19 (15)C46B—C48B—H48F109.5
O1—C11—C10120.80 (15)H48D—C48B—H48F109.5
C6—C11—C10119.00 (16)H48E—C48B—H48F109.5
C14—C12—C15109.5 (2)C46B—C49B—H49D109.5
C14—C12—C8109.80 (18)C46B—C49B—H49E109.5
C15—C12—C8112.38 (18)H49D—C49B—H49E109.5
C14—C12—C13108.8 (2)C46B—C49B—H49F109.5
C15—C12—C13106.8 (2)H49D—C49B—H49F109.5
C8—C12—C13109.47 (18)H49E—C49B—H49F109.5
C12—C13—H13A109.5C51—C50—C44110.77 (17)
C12—C13—H13B109.5C51—C50—C52106.7 (2)
H13A—C13—H13B109.5C44—C50—C52111.90 (19)
C12—C13—H13C109.5C51—C50—C53110.3 (2)
H13A—C13—H13C109.5C44—C50—C53109.49 (18)
H13B—C13—H13C109.5C52—C50—C53107.55 (19)
C12—C14—H14A109.5C50—C51—H51A109.5
C12—C14—H14B109.5C50—C51—H51B109.5
H14A—C14—H14B109.5H51A—C51—H51B109.5
C12—C14—H14C109.5C50—C51—H51C109.5
H14A—C14—H14C109.5H51A—C51—H51C109.5
H14B—C14—H14C109.5H51B—C51—H51C109.5
C12—C15—H15A109.5C50—C52—H52A109.5
C12—C15—H15B109.5C50—C52—H52B109.5
H15A—C15—H15B109.5H52A—C52—H52B109.5
C12—C15—H15C109.5C50—C52—H52C109.5
H15A—C15—H15C109.5H52A—C52—H52C109.5
H15B—C15—H15C109.5H52B—C52—H52C109.5
C19—C16—C18107.87 (15)C50—C53—H53A109.5
C19—C16—C17107.20 (16)C50—C53—H53B109.5
C18—C16—C17109.50 (16)H53A—C53—H53B109.5
C19—C16—C10112.13 (16)C50—C53—H53C109.5
C18—C16—C10110.82 (15)H53A—C53—H53C109.5
C17—C16—C10109.22 (14)H53B—C53—H53C109.5
C16—C17—H17A109.5C55—C54—N4113.32 (14)
C16—C17—H17B109.5C55—C54—H54A108.9
H17A—C17—H17B109.5N4—C54—H54A108.9
C16—C17—H17C109.5C55—C54—H54B108.9
H17A—C17—H17C109.5N4—C54—H54B108.9
H17B—C17—H17C109.5H54A—C54—H54B107.7
C16—C18—H18A109.5C56—C55—C60118.83 (17)
C16—C18—H18B109.5C56—C55—C54119.49 (16)
H18A—C18—H18B109.5C60—C55—C54121.60 (16)
C16—C18—H18C109.5O3B—C56—C55125.6 (4)
H18A—C18—H18C109.5O3B—C56—C57112.4 (4)
H18B—C18—H18C109.5C55—C56—C57121.86 (17)
C16—C19—H19A109.5C55—C56—H56119.1
C16—C19—H19B109.5C57—C56—H56119.1
H19A—C19—H19B109.5C56—C57—C58117.18 (17)
C16—C19—H19C109.5C56—C57—C61119.84 (17)
H19A—C19—H19C109.5C58—C57—C61122.97 (17)
H19B—C19—H19C109.5C59—C58—C57123.78 (18)
C21—C20—N2114.07 (14)C59—C58—H58118.1
C21—C20—H20A108.7C57—C58—H58118.1
N2—C20—H20A108.7C58—C59—C60116.87 (17)
C21—C20—H20B108.7C58—C59—C65121.44 (18)
N2—C20—H20B108.7C60—C59—C65121.68 (17)
H20A—C20—H20B107.6O3—C60—C55123.03 (17)
C22—C21—C26119.40 (17)O3—C60—C59115.54 (17)
C22—C21—C20119.85 (16)C55—C60—C59121.40 (17)
C26—C21—C20120.75 (16)C55—C60—H60119.3
O2B—C22—C23109.9 (6)C59—C60—H60119.3
O2B—C22—C21128.2 (6)C62—C61—C57112.43 (18)
C23—C22—C21121.46 (17)C62—C61—C64107.75 (17)
C23—C22—H22119.3C57—C61—C64108.80 (16)
C21—C22—H22119.3C62—C61—C63108.59 (17)
C22—C23—C24117.35 (17)C57—C61—C63109.50 (16)
C22—C23—C27120.83 (17)C64—C61—C63109.73 (18)
C24—C23—C27121.78 (18)C61—C62—H62A109.5
C25—C24—C23123.80 (18)C61—C62—H62B109.5
C25—C24—H24118.1H62A—C62—H62B109.5
C23—C24—H24118.1C61—C62—H62C109.5
C24—C25—C26116.97 (17)H62A—C62—H62C109.5
C24—C25—C31121.19 (18)H62B—C62—H62C109.5
C26—C25—C31121.79 (17)C61—C63—H63A109.5
O2—C26—C21119.66 (17)C61—C63—H63B109.5
O2—C26—C25119.30 (17)H63A—C63—H63B109.5
C21—C26—C25120.98 (17)C61—C63—H63C109.5
C21—C26—H26119.5H63A—C63—H63C109.5
C25—C26—H26119.5H63B—C63—H63C109.5
C28—C27—C30107.6 (2)C61—C64—H64A109.5
C28—C27—C23111.93 (18)C61—C64—H64B109.5
C30—C27—C23108.53 (17)H64A—C64—H64B109.5
C28—C27—C29110.0 (2)C61—C64—H64C109.5
C30—C27—C29108.28 (19)H64A—C64—H64C109.5
C23—C27—C29110.36 (18)H64B—C64—H64C109.5
C27—C28—H28A109.5C59—C65—C67109.51 (19)
C27—C28—H28B109.5C59—C65—C66110.16 (18)
H28A—C28—H28B109.5C67—C65—C66111.9 (2)
C27—C28—H28C109.5C59—C65—C68112.03 (19)
H28A—C28—H28C109.5C67—C65—C68106.3 (2)
H28B—C28—H28C109.5C66—C65—C68106.9 (2)
C27—C29—H29A109.5C65—C66—H66A109.5
C27—C29—H29B109.5C65—C66—H66B109.5
H29A—C29—H29B109.5H66A—C66—H66B109.5
C27—C29—H29C109.5C65—C66—H66C109.5
H29A—C29—H29C109.5H66A—C66—H66C109.5
H29B—C29—H29C109.5H66B—C66—H66C109.5
C27—C30—H30A109.5C65—C67—H67A109.5
C27—C30—H30B109.5C65—C67—H67B109.5
H30A—C30—H30B109.5H67A—C67—H67B109.5
C27—C30—H30C109.5C65—C67—H67C109.5
H30A—C30—H30C109.5H67A—C67—H67C109.5
H30B—C30—H30C109.5H67B—C67—H67C109.5
C33—C31—C34107.34 (18)C65—C68—H68A109.5
C33—C31—C32109.30 (18)C65—C68—H68B109.5
C34—C31—C32108.01 (17)H68A—C68—H68B109.5
C33—C31—C25111.72 (16)C65—C68—H68C109.5
C34—C31—C25112.10 (17)H68A—C68—H68C109.5
C32—C31—C25108.29 (16)H68B—C68—H68C109.5
C31—C32—H32A109.5C69—O5—H5109.5
C31—C32—H32B109.5O5—C69—H69A109.5
H32A—C32—H32B109.5O5—C69—H69B109.5
C31—C32—H32C109.5H69A—C69—H69B109.5
H32A—C32—H32C109.5O5—C69—H69C109.5
H32B—C32—H32C109.5H69A—C69—H69C109.5
C31—C33—H33A109.5H69B—C69—H69C109.5
C31—C33—H33B109.5H5C—O5B—H5D107 (3)
H33A—C33—H33B109.5C70—O6—H6109.5
C31—C33—H33C109.5O6—C70—H70A109.5
H33A—C33—H33C109.5O6—C70—H70B109.5
H33B—C33—H33C109.5H70A—C70—H70B109.5
C31—C34—H34A109.5O6—C70—H70C109.5
C31—C34—H34B109.5H70A—C70—H70C109.5
H34A—C34—H34B109.5H70B—C70—H70C109.5
C31—C34—H34C109.5C70B—O6B—H6B109.5
H34A—C34—H34C109.5O6B—C70B—H70D109.5
H34B—C34—H34C109.5O6B—C70B—H70E109.5
C36—C35—N3109.55 (15)H70D—C70B—H70E109.5
C36—C35—H35A109.8O6B—C70B—H70F109.5
N3—C35—H35A109.8H70D—C70B—H70F109.5
C36—C35—H35B109.8H70E—C70B—H70F109.5
N3—C35—H35B109.8C3—N1—C1110.84 (14)
H35A—C35—H35B108.2C3—N1—C5110.38 (13)
N4—C36—C35110.01 (14)C1—N1—C5109.91 (13)
N4—C36—H36A109.7C3—N1—Pd1111.59 (10)
C35—C36—H36A109.7C1—N1—Pd1104.61 (10)
N4—C36—H36B109.7C5—N1—Pd1109.36 (10)
C35—C36—H36B109.7C4—N2—C2108.85 (14)
H36A—C36—H36B108.2C4—N2—C20106.92 (14)
N3—C37—H37A109.5C2—N2—C20111.12 (13)
N3—C37—H37B109.5C4—N2—Pd1105.61 (11)
H37A—C37—H37B109.5C2—N2—Pd1107.53 (10)
N3—C37—H37C109.5C20—N2—Pd1116.48 (10)
H37A—C37—H37C109.5C37—N3—C35110.58 (15)
H37B—C37—H37C109.5C37—N3—C39107.41 (14)
N4—C38—H38A109.5C35—N3—C39110.12 (14)
N4—C38—H38B109.5C37—N3—Pd2106.95 (11)
H38A—C38—H38B109.5C35—N3—Pd2106.93 (11)
N4—C38—H38C109.5C39—N3—Pd2114.81 (11)
H38A—C38—H38C109.5C38—N4—C36110.64 (15)
H38B—C38—H38C109.5C38—N4—C54107.70 (14)
C40—C39—N3112.59 (14)C36—N4—C54110.40 (14)
C40—C39—H39A109.1C38—N4—Pd2107.06 (11)
N3—C39—H39A109.1C36—N4—Pd2106.65 (11)
C40—C39—H39B109.1C54—N4—Pd2114.35 (11)
N3—C39—H39B109.1C11—O1—Pd1121.65 (10)
H39A—C39—H39B107.8C26—O2—H2109.5
C41—C40—C45119.42 (18)C22—O2B—H2C109.5
C41—C40—C39119.16 (17)C60—O3—H3109.5
C45—C40—C39121.31 (18)C56—O3B—H3D109.5
C42—C41—C40121.61 (18)C45—O4—H4109.5
C42—C41—O4B110.6 (5)C41—O4B—H4D109.5
C40—C41—O4B127.5 (5)O1—Pd1—N193.18 (5)
C42—C41—H41119.2O1—Pd1—N2170.29 (5)
C40—C41—H41119.2N1—Pd1—N285.84 (6)
C41—C42—C43117.19 (18)O1—Pd1—Cl188.04 (4)
C41—C42—C46B122.6 (7)N1—Pd1—Cl1178.20 (4)
C43—C42—C46B120.2 (7)N2—Pd1—Cl193.17 (4)
C41—C42—C46120.0 (3)N3—Pd2—N485.44 (6)
C43—C42—C46122.7 (3)N3—Pd2—Cl3175.32 (5)
C44—C43—C42123.79 (18)N4—Pd2—Cl391.99 (4)
C44—C43—H43118.1N3—Pd2—Cl293.02 (4)
C42—C43—H43118.1N4—Pd2—Cl2175.77 (4)
C43—C44—C45117.08 (18)Cl3—Pd2—Cl289.801 (19)
C43—C44—C50121.56 (19)
N1—C1—C2—N253.29 (19)C41—C40—C45—C444.1 (3)
N1—C5—C6—C7118.98 (18)C39—C40—C45—C44172.13 (17)
N1—C5—C6—C1158.7 (2)C43—C44—C45—O4179.38 (17)
C11—C6—C7—C80.1 (3)C50—C44—C45—O40.9 (3)
C5—C6—C7—C8177.60 (17)C43—C44—C45—C402.1 (3)
C6—C7—C8—C90.1 (3)C50—C44—C45—C40178.18 (17)
C6—C7—C8—C12178.80 (18)C41—C42—C46—C4750.7 (6)
C7—C8—C9—C100.3 (3)C43—C42—C46—C47132.9 (5)
C12—C8—C9—C10178.30 (18)C41—C42—C46—C48172.2 (3)
C8—C9—C10—C110.9 (3)C43—C42—C46—C4811.3 (6)
C8—C9—C10—C16177.85 (17)C41—C42—C46—C4969.0 (5)
C7—C6—C11—O1178.73 (16)C43—C42—C46—C49107.5 (4)
C5—C6—C11—O13.6 (2)C41—C42—C46B—C47B14.7 (15)
C7—C6—C11—C100.7 (3)C43—C42—C46B—C47B165.7 (10)
C5—C6—C11—C10176.96 (16)C41—C42—C46B—C49B107.0 (11)
C9—C10—C11—O1178.33 (16)C43—C42—C46B—C49B72.6 (12)
C16—C10—C11—O12.9 (3)C41—C42—C46B—C48B131.9 (10)
C9—C10—C11—C61.1 (2)C43—C42—C46B—C48B48.5 (13)
C16—C10—C11—C6177.67 (16)C43—C44—C50—C51121.2 (2)
C9—C8—C12—C14118.9 (2)C45—C44—C50—C5159.1 (3)
C7—C8—C12—C1462.5 (3)C43—C44—C50—C522.3 (3)
C9—C8—C12—C153.3 (3)C45—C44—C50—C52178.01 (18)
C7—C8—C12—C15175.29 (19)C43—C44—C50—C53116.9 (2)
C9—C8—C12—C13121.8 (2)C45—C44—C50—C5362.8 (3)
C7—C8—C12—C1356.8 (3)N4—C54—C55—C5676.3 (2)
C9—C10—C16—C190.2 (2)N4—C54—C55—C60100.40 (19)
C11—C10—C16—C19178.51 (17)C60—C55—C56—O3B172.4 (6)
C9—C10—C16—C18120.36 (19)C54—C55—C56—O3B10.7 (6)
C11—C10—C16—C1860.9 (2)C60—C55—C56—C573.1 (3)
C9—C10—C16—C17118.92 (18)C54—C55—C56—C57173.71 (17)
C11—C10—C16—C1759.8 (2)O3B—C56—C57—C58174.5 (5)
N2—C20—C21—C2278.3 (2)C55—C56—C57—C581.6 (3)
N2—C20—C21—C26102.40 (19)O3B—C56—C57—C616.2 (5)
C26—C21—C22—O2B170.5 (8)C55—C56—C57—C61177.76 (17)
C20—C21—C22—O2B8.8 (9)C56—C57—C58—C591.0 (3)
C26—C21—C22—C231.5 (3)C61—C57—C58—C59179.65 (18)
C20—C21—C22—C23179.18 (16)C57—C58—C59—C601.9 (3)
O2B—C22—C23—C24173.6 (7)C57—C58—C59—C65178.98 (19)
C21—C22—C23—C240.3 (3)C56—C55—C60—O3179.92 (18)
O2B—C22—C23—C278.7 (7)C54—C55—C60—O33.3 (3)
C21—C22—C23—C27177.93 (17)C56—C55—C60—C592.1 (3)
C22—C23—C24—C250.9 (3)C54—C55—C60—C59174.65 (17)
C27—C23—C24—C25178.51 (17)C58—C59—C60—O3177.80 (17)
C23—C24—C25—C260.3 (3)C65—C59—C60—O31.3 (3)
C23—C24—C25—C31177.28 (17)C58—C59—C60—C550.3 (3)
C22—C21—C26—O2179.78 (17)C65—C59—C60—C55179.41 (18)
C20—C21—C26—O20.9 (3)C56—C57—C61—C62177.19 (17)
C22—C21—C26—C252.7 (3)C58—C57—C61—C623.5 (3)
C20—C21—C26—C25177.94 (16)C56—C57—C61—C6463.5 (2)
C24—C25—C26—O2179.19 (17)C58—C57—C61—C64115.8 (2)
C31—C25—C26—O21.6 (3)C56—C57—C61—C6356.4 (2)
C24—C25—C26—C212.1 (3)C58—C57—C61—C63124.3 (2)
C31—C25—C26—C21175.45 (16)C58—C59—C65—C67118.5 (2)
C22—C23—C27—C28164.4 (2)C60—C59—C65—C6762.4 (3)
C24—C23—C27—C2818.1 (3)C58—C59—C65—C66118.0 (2)
C22—C23—C27—C3077.0 (2)C60—C59—C65—C6661.0 (3)
C24—C23—C27—C30100.6 (2)C58—C59—C65—C680.8 (3)
C22—C23—C27—C2941.6 (3)C60—C59—C65—C68179.8 (2)
C24—C23—C27—C29140.9 (2)C2—C1—N1—C372.40 (18)
C24—C25—C31—C33122.7 (2)C2—C1—N1—C5165.31 (14)
C26—C25—C31—C3359.8 (2)C2—C1—N1—Pd148.00 (16)
C24—C25—C31—C342.2 (3)C6—C5—N1—C354.56 (18)
C26—C25—C31—C34179.64 (18)C6—C5—N1—C1177.13 (14)
C24—C25—C31—C32116.9 (2)C6—C5—N1—Pd168.57 (15)
C26—C25—C31—C3260.6 (2)C1—C2—N2—C483.83 (17)
N3—C35—C36—N452.50 (19)C1—C2—N2—C20158.69 (14)
N3—C39—C40—C4178.3 (2)C1—C2—N2—Pd130.14 (16)
N3—C39—C40—C4598.0 (2)C21—C20—N2—C4175.21 (15)
C45—C40—C41—C423.4 (3)C21—C20—N2—C256.55 (19)
C39—C40—C41—C42172.91 (17)C21—C20—N2—Pd167.03 (17)
C45—C40—C41—O4B169.6 (7)C36—C35—N3—C3777.92 (18)
C39—C40—C41—O4B14.1 (8)C36—C35—N3—C39163.52 (15)
C40—C41—C42—C430.7 (3)C36—C35—N3—Pd238.17 (16)
O4B—C41—C42—C43173.4 (6)C40—C39—N3—C37173.44 (16)
C40—C41—C42—C46B178.9 (7)C40—C39—N3—C3553.0 (2)
O4B—C41—C42—C46B7.0 (10)C40—C39—N3—Pd267.78 (18)
C40—C41—C42—C46176.0 (3)C35—C36—N4—C3877.38 (18)
C41—C42—C43—C441.4 (3)C35—C36—N4—C54163.50 (15)
C46B—C42—C43—C44178.9 (7)C35—C36—N4—Pd238.72 (17)
C46—C42—C43—C44178.0 (3)C55—C54—N4—C38168.30 (15)
C42—C43—C44—C450.8 (3)C55—C54—N4—C3647.40 (19)
C42—C43—C44—C50178.99 (17)C55—C54—N4—Pd272.86 (16)
C41—C40—C45—O4178.74 (18)C6—C11—O1—Pd144.6 (2)
C39—C40—C45—O45.0 (3)C10—C11—O1—Pd1135.99 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.841.952.787 (3)171
C69—H69A···Cl10.982.903.642 (4)134
C69—H69C···O30.982.573.267 (4)128
O5B—H5C···O10.84 (2)1.95 (3)2.772 (6)168 (12)
O6—H6···Cl20.842.903.592 (2)141
O6—H6···Cl30.842.413.129 (2)144
O6B—H6B···Cl20.842.453.242 (13)157
O2—H2···O5i0.841.882.715 (3)170
O2B—H2C···Cl10.842.062.858 (13)157
O3—H3···Cl10.842.463.1764 (17)144
O3B—H3D···Cl30.842.122.886 (10)152
O4—H4···O6ii0.841.952.750 (3)160
O4B—H4D···Cl20.842.052.726 (12)137
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2.
N—Pd—N bond angles for amine bis(phenolate) PdII complexes top
ComplexReferenceN—Pd—N
[(κ2-N,N)PdCl2]This work85.44
[(κ3-N,N,O)PdCl]This work85.84
[(κ2-N,N)PdCl2]Graziano et al. (2019)82.8
[(κ2-N,N)PdCl2]Graziano et al. (2019)85.58
[(κ3-N,N,O)PdCl]Graziano et al. (2019)82.82
[(κ3-N,N,O)PdCl]Graziano et al. (2019)86.86
[(κ3-N,N,O)PdCl]Graziano et al. (2019)82.9
[(κ3-N,N,O)PdCl]Graziano et al. (2019)83.0
[(κ2-N,N,)PdCl2]Ding et al. (2011)84.07
 

Funding information

Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for support (or partial support) of this research (grant No. 56549-UR3). This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer).

References

First citationAllan, L. E. N., MacDonald, J. P., Nichol, G. S. & Shaver, M. P. (2014). Macromolecules, 47, 1249–1257.  CSD CrossRef CAS Google Scholar
First citationAndrea, K. A., Brown, T. R., Murphy, J. N., Jagota, D., McKearney, D., Kozak, C. M. & Kerton, F. M. (2018). Inorg. Chem. 57, 13494–13504.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarpentier, J.-F. (2015). Organometallics, 34, 4175–4189.  CrossRef CAS Google Scholar
First citationChowdhury, R. R., Crane, A. K., Fowler, C., Kwong, P. & Kozak, C. M. (2008). Chem. Commun. pp. 94–96.  CSD CrossRef Google Scholar
First citationDing, L., Chu, Z., Chen, L., Lü, X., Yan, B., Song, J., Fan, D. & Bao, F. (2011). Inorg. Chem. Commun. 14, 573–577.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGraziano, B. J., Collins, E. M., McCutcheon, N. C., Griffith, C. L., Braunscheidel, N. M., Perrine, T. M. & Wile, B. M. (2019). Inorg. Chim. Acta, 484, 185–196.  CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKarimpour, T., Safaei, E., Wojtczak, A., Jagličić, Z. & Kozakiewicz, A. (2013). Inorg. Chim. Acta, 395, 124–134.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLabourdette, G., Lee, D. J., Patrick, B. O., Ezhova, M. B. & Mehrkhodavandi, P. (2009). Organometallics, 28, 1309–1319.  CSD CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQian, X., Dawe, L. N. & Kozak, C. M. (2011). Dalton Trans. 40, 933–943.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, S., Zhang, X., Ma, H. & Yang, Y. (2012). Dalton Trans. 41, 3266–3277.  CSD CrossRef CAS PubMed Google Scholar
First citationStrautmann, J. B. H., Freiherr von Richthofen, C.-G., Heinze-Brückner, G., DeBeer, S., Bothe, E., Bill, E., Weyhermüller, T., Stammler, A., Bögge, H. & Glaser, T. (2011). Inorg. Chem. 50, 155–171.  CSD CrossRef CAS PubMed Google Scholar
First citationTshuva, E. Y., Goldberg, I. & Kol, M. (2000). J. Am. Chem. Soc. 122, 10706–10707.  CSD CrossRef CAS Google Scholar
First citationTshuva, E. Y., Goldberg, I., Kol, M. & Goldschmidt, Z. (2001). Organometallics, 20, 3017–3028.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, L. & Ma, H. (2010). Dalton Trans. 39, 7897–7910.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, C. K., Breyfogle, L. E., Choi, S. K., Nam, W., Young, V. G. Jr, Hillmyer, M. A. & Tolman, W. B. (2003). J. Am. Chem. Soc. 125, 11350–11359.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, R., Liu, T., Wang, L. & Ma, H. (2014). Dalton Trans. 43, 12663–12677.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds