research communications
N′-(1-phenylbenzylidene)-2-(thiophen-3-yl)acetohydrazides
of twoaFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bBien Hoa Gifted High School, 86 Chu Van An Street, Phu Ly City, Ha Nam Province, Vietnam, cFaculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam, dInstitute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, eGraduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, fPublishing House for Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, and gDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: trungvq@hnue.edu.vn, Luc.VanMeervelt@kuleuven.be
The synthesis, spectroscopic data, crystal and molecular structures of two N′-(1-phenylbenzylidene)-2-(thiophen-3-yl)acetohydrazides, namely N′-[1-(4-hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide, C13H10N2O2S, (3a), and N′-[1-(4-methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide, C14H14N2O2S, (3b), are described. Both compounds differ in the substituent at the para position of the phenyl ring: –OH for (3a) and –OCH3 for (3b). In (3a), the thiophene ring is disordered over two orientations with occupancies of 0.762 (3) and 0.238 (3). The configuration about the C=N bond is E. The thiophene and phenyl rings are inclined by 84.0 (3) and 87.0 (9)° for the major- and minor-occupancy disorder components in (3a), and by 85.89 (12)° in (3b). Although these dihedral angles are similar, the conformation of the linker between the two rings is different [the C—C—C—N torsion angle is −ac for (3a) and −sc for (3b), while the C6—C7—N9—N10 torsion angle is +ap for (3a) and −sp for (3b)]. A common feature in the crystal packing of (3a) and (3b) is the presence of N—H⋯O hydrogen bonds, resulting in the formation of chains of molecules running along the b-axis direction in the case of (3a), or inversion dimers for (3b). The most prominent contributions to the surface contacts are those in which H atoms are involved, as confirmed by an analysis of the Hirshfeld surface.
Keywords: crystal structure; acetohydrazides; thiophene; Hirshfeld analysis.
1. Chemical context
Acetohydrazides are considered to be good candidates for different pharmaceutical applications, including their use as antibacterial, antifugal, antimicrobial and anticonvulsant agents (Yadav et al., 2015; Bharti et al., 2010; Loncle et al., 2004; Papakonstantinou-Garoufalias et al., 2002). Moreover, many of them have shown analgesic and antiplatelet properties (Wardakhan et al., 2013). Combinations of acetohydrazide with other heterocyclic rings have also been investigated, such as the hydrazide-based 2-oxonicotinonitrile derivatives that are considered to be potential antimicrobial agents (El-Sayed et al., 2018).
As a continuation of our research (Nguyen et al., 2016; Vu et al., 2016, 2017) on the chemical and physical properties of novel polythiophenes, a new thiophene monomer-containing acetohydrazide has been prepared. We have synthesized two N′-(1-(phenylbenzylidene)-2-(thiophen-3-yl)acetohydrazides and present here the spectroscopic data and crystal structures of the title compounds, together with the Hirshfeld surface analysis.
2. Structural commentary
The hydroxy derivative (3a) crystallizes in the orthorhombic Pbca. The thiophene ring is disordered over two sites (the major and minor components are labelled with the suffixes A and B, respectively), corresponding to a rotation about the C3—C6 bond of approximately 180° with population parameters 0.762 (3) for S1A/C1A–C5A and 0.238 (3) for S1B/C1B–C5B (Fig. 1). The configuration of the C11=N10 bond can be described as E [the N9—N10—C11—C12 torsion angle is 174.82 (16)°]. The torsion angle C7—N9—N10—C11 of 177.10 (18)° indicates that the conformation around the N9—N10 bond is +ap. The molecule is twisted about the C6—C7 bond with a dihedral angle of 84.0 (3)° between the thiophene and benzene rings [87.0 (9)° for S1B/C1B–C5B] .
The methoxy derivative (3b) (Fig. 2) crystallizes in the triclinic P. Compared to (3a), the central part of (3b) displays a similar +ap conformation around the N9—N10 bond and an E configuration of the C11=N10 bond, as illustrated by the torsion angles C7—N9—N10—C11 [177.8 (2)°] and N9—N10—C11—C12 [179.26 (19)°]. However, the conformation about the two other bonds, C6—C7 and especially C7—N9, in the linker between both rings is different. The torsion angle C3—C6—C7—N9 is −101.8 (2)° (or -ac) for (3a) and −85.4 (3)° (or -sc) for (3b). As a consequence, in (3b) a short C6—H6⋯N10 interaction occurs (Table 2). In (3a) we observe an +ap conformation [torsion angle C6—C7—N9—N10 is 167.45 (16)°], while this is -sp in (3b) [torsion angle C6—C7—N9—N10 is −5.8 (3)°]. The dihedral angle between the thiophene and phenyl rings is 85.89 (12)°, in the same order as for (3a).
3. Supramolecular features
In the crystal, molecules of (3a) are connected by N9—H9⋯O8i [symmetry code: (i) −x + , y + , z] hydrogen bonds, resulting in the formation of chains in the b-axis direction with a C11(4) graph-set motif (Fig. 3, Table 1). In addition, chains with a C11(11) graph-set motif running along the a-axis direction are formed by O18—H18⋯O8ii [symmetry code: (ii) x − , y, −z + ] hydrogen bonds (Fig. 4, Table 1). Two weaker interactions are present in the packing: a C—H⋯O and C—H⋯π(phenyl) interaction (for details see Table 1).
Replacing the –OH group in (3a) by an –OMe group in (3b) changes the hydrogen-bonding pattern. The crystal packing of (3b) is now characterized by the presence of two different inversion dimers. The first type, with an R22(8) graph-set motif, is formed by N9—H9⋯O8i [symmetry code: (i) −x, −y + 2, −z + 1] hydrogen bonds (Fig. 5, Table 2). The second one involves C13—H13⋯π(thiophene) interactions (Fig. 6, Table 2).
No voids or π–π stackings are observed in the crystal packing of (3a) and (3b).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016) for the central linker between the two rings in the title compound, C—CH2—C(=O)—NH—N=CH—C (Fig. 7a), resulted in 137 hits. Histograms of the distribution of the four torsion angles τ1–τ4 along the linker backbone are shown in Fig. 7b–e [the red and green lines depict the torsion angles for title compounds (3a) and (3b), respectively]. The histogram of τ1 reflects a wide spread with a preference for the −ap/+ap conformation, followed by the −sc/+sc conformation and only a few entries in the remaining regions. In the case of torsion angle τ2, two regions are preferred: −ap/+ap [for the majority of the entries and similar to (3a)] and −sp/+sp [similar to (3b)]. Torsion angles τ3 and τ4 show both a narrow spread in the region −ap/+ap.
5. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed using CrystalExplorer (Turner et al., 2017). The Hirshfeld surfaces of compounds (3a) and (3b) mapped over dnorm are given in Fig. 8.
The bright-red spots in Fig. 8a near atoms O8 and N9 illustrate the N9—H9⋯O8 hydrogen bond, and near atoms O8 and O18 the O18—H18⋯O8 hydrogen bond. The faint-red spots near atoms O8 and H2A, and C11 and H17 refer to short contacts in the crystal packing of (3a). The most significant contributions to the Hirshfeld surface are from H⋯H (30.5%), C⋯H/H⋯C (26.1%), O⋯H/H⋯O (18.6%) and S⋯H/H⋯S (10.7%) contacts.
For compound (3b), the N9—H9⋯O8 dimer formation is viewed as the bright-red spots near atoms O8 and N9 in Fig. 8b. The faint-red spots near atoms H19C and H13 are indicative for a short H19C⋯H19C contact and the C13—H13⋯π(thiophene) interaction. The most significant contributions to the Hirshfeld surface are from H⋯H (40.6%), C⋯H/H⋯C (22.2%), O⋯H/H⋯O (15.1%) and S⋯H/H⋯S (12.5%) contacts.
6. Synthesis and crystallization
The reaction scheme to synthesize the title compounds, (3a) and (3b), is given in Fig. 9.
Methyl 2-(thiophen-3-yl)acetate (1) and 2-(thiophen-3-yl)acetohydrazide (2) were synthesized according to our previous research (Vu et al., 2017).
Synthesis of N′-[1-(4-hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide:
Compound (2) (3 mmol) and the appropriate benzaldehyde derivatives (6 mmol) with acetic acid (1.5 mL) in ethanol (20 mL) were refluxed for 5 h. The reaction mixture was cooled down and the solid product was separated by filtration and purified by recrystallization in ethanol to give the compounds (3a) and (3b).
Data for N′-[1-(4-hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3a):
White crystals; m.p. 443 K; yield 63%. IR (KBr, cm−1): 3289, 3207 (NH), 3050, 2874 (C—H), 1621 (C=O), 1606 (CH=N), 1511 (C=C). 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 7.19 (m, 1H, H2), 7.11 (d, 1H, 5J = 5.0, H4), 7.25 (dd, 1H, 2J = 3.0, 4J = 5.0, H5), 4.07 (s, 2H, H6), 9.17 (s, 1H, H8), 7.79 (s, 1H, H9), 7.52 (d, 2H, J = 8.5 H11, H15), 6.87 (d, 2H, J = 8.5 H12, H14), 10.10/10.04 (s, 1H, H16). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 122.3/122.4 (C2), 135.3/135.4 (C3), 128.7/128.8 (C4), 125.4/125.8 (C5), 33.6/35.9 (C6), 165.7/171.4 (C7), 146.7 (C9), 143.5 (C10), 128.3/128.6 (C11, C15), 115.6/116.6 (C12,C14), 159.6/159.2 (C13). Calculation for C13H12N2O2S: M[+H] = 260.9 au.
Data for N′-[1-(4-methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3b):
White crystals, m.p. 431 K, yield 53%. IR (KBr, cm−1): 3442, 3112 (NH), 3014, 2950 (C—H), 1706 (C=O), 1617 (CH=N), 1558, 1503 (C=C). 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 7.22 (m, 1H, H2); 7.12 (m, 1H, H4); 7.26 (dd, 1H, 2J = 3.0, 5J = 5.0, H5); 4.11 (s, 2H, H6); 8.97 (s, 1H, H8); 7.69 (s, 1H, H9); 7.61 (d, 2H, J = 8.5, H11, H15); 6.94 (d, 2H, J = 8.5, H12, H14); 3.85 (m, 3H, H16). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 122.8 (C2), 134.4 (C3), 129.3 (C4), 125.4 (C5), 34.3 (C6), 172.9 (C7), 143.6 (C9), 126.4 (C10), 128.8 (C11, C15), 114.3 (C12, C14), 161.3 (C13), 55.4 (C16). Calculation for C14H14N2O2S: M[+H] = 274.9 au.
7. details
Crystal data, data collection and structure . All H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for methyl groups), with C—H distances of 0.93 (aromatic), 0.96 (CH3) and 0.97 Å (CH2), N—H distances of 0.86 Å and O—H distances of 0.82 Å (rotating OH). In (3a), the thiophene ring is disordered over two positions [population parameters 0.762 (3) and 0.238 (3)] and was refined with restraints for the bond lengths and angles in the ring. The anisotropic temperature factors for atoms S1, C2, C4 and C5 in both orientations were constrained to be equal. In the final cycles of four and two outliers were omitted for (3a) and (3b), respectively.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019008892/rz5260sup1.cif
contains datablocks 3a, 3b. DOI:Structure factors: contains datablock 3a. DOI: https://doi.org/10.1107/S2056989019008892/rz52603asup2.hkl
Structure factors: contains datablock 3b. DOI: https://doi.org/10.1107/S2056989019008892/rz52603bsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019008892/rz52603asup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019008892/rz52603bsup5.cml
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C13H12N2O2S | Dx = 1.369 Mg m−3 |
Mr = 260.31 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 3446 reflections |
a = 13.0820 (8) Å | θ = 3.1–23.7° |
b = 8.0287 (4) Å | µ = 0.25 mm−1 |
c = 24.0442 (12) Å | T = 293 K |
V = 2525.4 (2) Å3 | Plate, white |
Z = 8 | 0.35 × 0.2 × 0.05 mm |
F(000) = 1088 |
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos diffractometer | 2571 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 1759 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.039 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 3.1° |
ω scans | h = −16→15 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −9→10 |
Tmin = 0.453, Tmax = 1.000 | l = −28→30 |
13596 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0334P)2 + 0.6755P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.109 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 0.19 e Å−3 |
2571 reflections | Δρmin = −0.18 e Å−3 |
178 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
80 restraints | Extinction coefficient: 0.0022 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1A | 0.67164 (8) | 0.8283 (2) | 0.43607 (8) | 0.0718 (4) | 0.762 (3) |
S1B | 0.6152 (4) | 0.9867 (10) | 0.3990 (3) | 0.0718 (4) | 0.238 (3) |
C2A | 0.5667 (3) | 0.7484 (7) | 0.4673 (3) | 0.0542 (12) | 0.762 (3) |
H2A | 0.568185 | 0.659897 | 0.492216 | 0.065* | 0.762 (3) |
C2B | 0.4941 (11) | 0.970 (3) | 0.4213 (16) | 0.0542 (12) | 0.238 (3) |
H2B | 0.443026 | 1.047111 | 0.413833 | 0.065* | 0.238 (3) |
C3 | 0.47998 (16) | 0.8287 (2) | 0.45167 (8) | 0.0449 (5) | |
C4A | 0.5018 (5) | 0.9582 (10) | 0.4141 (5) | 0.062 (2) | 0.762 (3) |
H4A | 0.451169 | 1.026238 | 0.399205 | 0.074* | 0.762 (3) |
C4B | 0.5719 (9) | 0.741 (3) | 0.4587 (11) | 0.062 (2) | 0.238 (3) |
H4B | 0.575924 | 0.640913 | 0.478166 | 0.074* | 0.238 (3) |
C5A | 0.6056 (6) | 0.9770 (11) | 0.4008 (4) | 0.100 (3) | 0.762 (3) |
H5A | 0.633233 | 1.056338 | 0.376954 | 0.120* | 0.762 (3) |
C5B | 0.6580 (10) | 0.818 (2) | 0.4337 (11) | 0.100 (3) | 0.238 (3) |
H5B | 0.725438 | 0.781636 | 0.435909 | 0.120* | 0.238 (3) |
C6 | 0.37396 (16) | 0.7786 (3) | 0.47035 (8) | 0.0506 (6) | |
H6A | 0.377254 | 0.726825 | 0.506761 | 0.061* | |
H6B | 0.330528 | 0.876200 | 0.472922 | 0.061* | |
C7 | 0.33041 (15) | 0.6577 (3) | 0.42864 (8) | 0.0419 (5) | |
O8 | 0.36037 (11) | 0.51138 (17) | 0.42613 (5) | 0.0476 (4) | |
N9 | 0.26256 (13) | 0.7198 (2) | 0.39247 (6) | 0.0455 (4) | |
H9 | 0.236595 | 0.816955 | 0.397669 | 0.055* | |
N10 | 0.23452 (13) | 0.6255 (2) | 0.34641 (6) | 0.0441 (4) | |
C11 | 0.16622 (15) | 0.6908 (2) | 0.31536 (8) | 0.0444 (5) | |
H11 | 0.135667 | 0.790093 | 0.326364 | 0.053* | |
C12 | 0.13478 (16) | 0.6139 (2) | 0.26302 (8) | 0.0428 (5) | |
C13 | 0.04946 (18) | 0.6712 (3) | 0.23499 (9) | 0.0553 (6) | |
H13 | 0.012178 | 0.759047 | 0.249952 | 0.066* | |
C14 | 0.01803 (18) | 0.6010 (3) | 0.18517 (9) | 0.0561 (6) | |
H14 | −0.040209 | 0.640454 | 0.167331 | 0.067* | |
C15 | 0.07373 (17) | 0.4720 (2) | 0.16220 (8) | 0.0462 (5) | |
C16 | 0.16018 (17) | 0.4149 (3) | 0.18911 (9) | 0.0562 (6) | |
H16 | 0.198233 | 0.328679 | 0.173641 | 0.067* | |
C17 | 0.19021 (17) | 0.4850 (3) | 0.23870 (9) | 0.0538 (6) | |
H17 | 0.248657 | 0.445441 | 0.256329 | 0.065* | |
O18 | 0.04708 (13) | 0.39577 (19) | 0.11361 (6) | 0.0620 (5) | |
H18 | −0.003809 | 0.441085 | 0.100663 | 0.093* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0493 (6) | 0.0807 (8) | 0.0853 (7) | 0.0003 (5) | −0.0078 (5) | −0.0050 (6) |
S1B | 0.0493 (6) | 0.0807 (8) | 0.0853 (7) | 0.0003 (5) | −0.0078 (5) | −0.0050 (6) |
C2A | 0.065 (2) | 0.051 (2) | 0.047 (3) | 0.0092 (16) | −0.0120 (16) | 0.0016 (17) |
C2B | 0.065 (2) | 0.051 (2) | 0.047 (3) | 0.0092 (16) | −0.0120 (16) | 0.0016 (17) |
C3 | 0.0513 (14) | 0.0403 (11) | 0.0430 (11) | −0.0013 (10) | −0.0106 (10) | −0.0057 (9) |
C4A | 0.060 (3) | 0.053 (3) | 0.072 (6) | −0.0011 (18) | −0.008 (2) | 0.015 (3) |
C4B | 0.060 (3) | 0.053 (3) | 0.072 (6) | −0.0011 (18) | −0.008 (2) | 0.015 (3) |
C5A | 0.132 (6) | 0.063 (3) | 0.103 (4) | −0.025 (3) | −0.011 (3) | 0.021 (2) |
C5B | 0.132 (6) | 0.063 (3) | 0.103 (4) | −0.025 (3) | −0.011 (3) | 0.021 (2) |
C6 | 0.0551 (15) | 0.0539 (13) | 0.0427 (11) | 0.0014 (11) | −0.0020 (10) | −0.0088 (10) |
C7 | 0.0408 (13) | 0.0444 (12) | 0.0405 (11) | −0.0017 (9) | 0.0056 (9) | −0.0002 (9) |
O8 | 0.0533 (10) | 0.0400 (8) | 0.0495 (8) | 0.0012 (7) | −0.0023 (7) | 0.0005 (6) |
N9 | 0.0489 (11) | 0.0370 (9) | 0.0506 (10) | 0.0033 (8) | −0.0043 (8) | −0.0084 (8) |
N10 | 0.0471 (11) | 0.0408 (10) | 0.0444 (9) | −0.0029 (8) | −0.0030 (8) | −0.0029 (8) |
C11 | 0.0451 (13) | 0.0420 (11) | 0.0461 (11) | 0.0020 (9) | 0.0006 (10) | 0.0014 (9) |
C12 | 0.0458 (13) | 0.0404 (11) | 0.0424 (11) | −0.0007 (9) | −0.0002 (9) | 0.0024 (9) |
C13 | 0.0611 (16) | 0.0527 (14) | 0.0520 (13) | 0.0196 (11) | −0.0082 (11) | −0.0087 (10) |
C14 | 0.0600 (15) | 0.0569 (14) | 0.0515 (13) | 0.0146 (11) | −0.0136 (11) | −0.0038 (11) |
C15 | 0.0553 (14) | 0.0429 (12) | 0.0405 (11) | 0.0003 (10) | −0.0008 (10) | 0.0007 (9) |
C16 | 0.0616 (16) | 0.0536 (13) | 0.0535 (13) | 0.0137 (11) | −0.0009 (12) | −0.0088 (11) |
C17 | 0.0516 (15) | 0.0545 (13) | 0.0553 (13) | 0.0117 (11) | −0.0082 (11) | −0.0018 (11) |
O18 | 0.0748 (13) | 0.0574 (10) | 0.0539 (9) | 0.0122 (8) | −0.0116 (8) | −0.0129 (8) |
S1A—C2A | 1.691 (4) | C7—O8 | 1.240 (2) |
C2A—H2A | 0.9300 | C7—N9 | 1.339 (2) |
S1B—C2B | 1.677 (9) | N9—H9 | 0.8600 |
C2B—H2B | 0.9300 | N9—N10 | 1.391 (2) |
C2A—C3 | 1.357 (4) | N10—C11 | 1.277 (2) |
C2B—C3 | 1.360 (9) | C11—H11 | 0.9300 |
C4A—H4A | 0.9300 | C11—C12 | 1.461 (3) |
C4B—H4B | 0.9300 | C12—C13 | 1.382 (3) |
S1A—C5A | 1.700 (7) | C12—C17 | 1.393 (3) |
C4A—C5A | 1.404 (6) | C13—H13 | 0.9300 |
C5A—H5A | 0.9300 | C13—C14 | 1.386 (3) |
S1B—C5B | 1.688 (9) | C14—H14 | 0.9300 |
C4B—C5B | 1.419 (9) | C14—C15 | 1.381 (3) |
C5B—H5B | 0.9300 | C15—C16 | 1.381 (3) |
C3—C4A | 1.407 (4) | C15—O18 | 1.364 (2) |
C3—C4B | 1.404 (9) | C16—H16 | 0.9300 |
C3—C6 | 1.512 (3) | C16—C17 | 1.376 (3) |
C6—H6A | 0.9700 | C17—H17 | 0.9300 |
C6—H6B | 0.9700 | O18—H18 | 0.8200 |
C6—C7 | 1.508 (3) | ||
C4A—C5A—S1A | 107.6 (5) | C3—C4B—C5B | 114.2 (9) |
C4B—C5B—S1B | 107.2 (8) | O8—C7—C6 | 121.54 (19) |
S1A—C2A—H2A | 124.0 | O8—C7—N9 | 122.07 (18) |
S1B—C2B—H2B | 124.2 | N9—C7—C6 | 116.27 (18) |
C5A—C4A—C3 | 115.0 (5) | C7—N9—H9 | 120.4 |
C5A—C4A—H4A | 122.5 | C7—N9—N10 | 119.29 (16) |
C5B—C4B—H4B | 122.9 | N10—N9—H9 | 120.4 |
C2A—S1A—C5A | 94.3 (3) | C11—N10—N9 | 115.25 (17) |
S1A—C5A—H5A | 126.2 | N10—C11—H11 | 119.1 |
C4A—C5A—H5A | 126.2 | N10—C11—C12 | 121.81 (19) |
C2B—S1B—C5B | 95.2 (6) | C12—C11—H11 | 119.1 |
S1B—C5B—H5B | 126.4 | C13—C12—C11 | 120.45 (18) |
C4B—C5B—H5B | 126.4 | C13—C12—C17 | 117.57 (19) |
C2A—C3—C4A | 111.1 (3) | C17—C12—C11 | 121.95 (19) |
C2B—C3—C4B | 111.5 (7) | C12—C13—H13 | 119.1 |
C4A—C3—C6 | 125.0 (3) | C12—C13—C14 | 121.7 (2) |
C2A—C3—C6 | 123.9 (3) | C14—C13—H13 | 119.1 |
C4B—C3—C6 | 128.0 (6) | C13—C14—H14 | 120.2 |
C2B—C3—C6 | 120.4 (5) | C15—C14—C13 | 119.6 (2) |
C3—C6—H6A | 110.0 | C15—C14—H14 | 120.2 |
C3—C2A—S1A | 112.1 (3) | C14—C15—C16 | 119.6 (2) |
C3—C2B—S1B | 111.6 (7) | O18—C15—C14 | 123.0 (2) |
C3—C6—H6B | 110.0 | O18—C15—C16 | 117.47 (19) |
H6A—C6—H6B | 108.3 | C15—C16—H16 | 119.9 |
C3—C2A—H2A | 124.0 | C17—C16—C15 | 120.3 (2) |
C3—C2B—H2B | 124.2 | C17—C16—H16 | 119.9 |
C7—C6—C3 | 108.68 (16) | C12—C17—H17 | 119.4 |
C7—C6—H6A | 110.0 | C16—C17—C12 | 121.3 (2) |
C3—C4A—H4A | 122.5 | C16—C17—H17 | 119.4 |
C3—C4B—H4B | 122.9 | C15—O18—H18 | 109.5 |
C7—C6—H6B | 110.0 | ||
C2A—S1A—C5A—C4A | −0.7 (11) | C6—C3—C4B—C5B | 176.8 (17) |
C2B—S1B—C5B—C4B | 5 (3) | C6—C3—C4A—C5A | −177.0 (8) |
C5B—S1B—C2B—C3 | −5 (3) | C6—C7—N9—N10 | 167.45 (16) |
C5A—S1A—C2A—C3 | 0.8 (7) | C7—N9—N10—C11 | 177.10 (18) |
S1B—C2B—C3—C4B | 3 (3) | O8—C7—N9—N10 | −8.6 (3) |
S1A—C2A—C3—C4A | −0.7 (5) | N9—N10—C11—C12 | 174.82 (16) |
S1A—C2A—C3—C6 | 176.5 (3) | N10—C11—C12—C13 | 169.1 (2) |
S1B—C2B—C3—C6 | −173.1 (14) | N10—C11—C12—C17 | −12.8 (3) |
C2B—C3—C6—C7 | 95 (2) | C11—C12—C13—C14 | 179.8 (2) |
C2A—C3—C6—C7 | −91.1 (5) | C11—C12—C17—C16 | −179.4 (2) |
C4A—C3—C6—C7 | 85.7 (7) | C12—C13—C14—C15 | −0.9 (4) |
C4B—C3—C6—C7 | −81.0 (17) | C13—C12—C17—C16 | −1.2 (3) |
C2A—C3—C4A—C5A | 0.1 (11) | C13—C14—C15—C16 | −0.1 (3) |
C2B—C3—C4B—C5B | 1 (3) | C13—C14—C15—O18 | 179.4 (2) |
C3—C4A—C5A—S1A | 0.5 (14) | C14—C15—C16—C17 | 0.5 (3) |
C3—C4B—C5B—S1B | −4 (3) | C15—C16—C17—C12 | 0.1 (3) |
C3—C6—C7—O8 | 74.2 (2) | C17—C12—C13—C14 | 1.6 (3) |
C3—C6—C7—N9 | −101.8 (2) | O18—C15—C16—C17 | −179.0 (2) |
Cg3 is the centroid of the C12–C17 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9···O8i | 0.86 | 2.12 | 2.953 (2) | 162 |
O18—H18···O8ii | 0.82 | 1.97 | 2.782 (2) | 169 |
C2A—H2A···O8iii | 0.93 | 2.57 | 3.439 (7) | 155 |
C13—H13···Cg3iv | 0.93 | 2.89 | 3.818 (3) | 176 |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x−1/2, y, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x, y+1/2, −z+1/2. |
C14H14N2O2S | Z = 2 |
Mr = 274.33 | F(000) = 288 |
Triclinic, P1 | Dx = 1.350 Mg m−3 |
a = 6.5185 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7447 (5) Å | Cell parameters from 5534 reflections |
c = 10.9291 (6) Å | θ = 3.1–27.2° |
α = 78.327 (4)° | µ = 0.24 mm−1 |
β = 83.070 (4)° | T = 293 K |
γ = 87.013 (4)° | Needle, white |
V = 674.63 (6) Å3 | 0.5 × 0.15 × 0.05 mm |
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos diffractometer | 2752 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 2238 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.6° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −12→12 |
Tmin = 0.687, Tmax = 1.000 | l = −13→13 |
13795 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.145 | w = 1/[σ2(Fo2) + (0.0537P)2 + 0.5294P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2752 reflections | Δρmax = 0.33 e Å−3 |
173 parameters | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.68895 (12) | 0.78924 (10) | 0.16957 (9) | 0.0734 (3) | |
C2 | 0.5595 (4) | 0.7356 (3) | 0.3147 (3) | 0.0534 (6) | |
H2 | 0.619153 | 0.726965 | 0.389168 | 0.064* | |
C3 | 0.3579 (4) | 0.7066 (2) | 0.3100 (2) | 0.0436 (5) | |
C4 | 0.3123 (4) | 0.7275 (3) | 0.1841 (2) | 0.0512 (6) | |
H4 | 0.182310 | 0.712513 | 0.163071 | 0.061* | |
C5 | 0.4790 (4) | 0.7727 (3) | 0.0935 (2) | 0.0497 (6) | |
H5 | 0.476097 | 0.790729 | 0.006852 | 0.060* | |
C6 | 0.2002 (4) | 0.6708 (3) | 0.4234 (2) | 0.0479 (6) | |
H6A | 0.265853 | 0.615910 | 0.493142 | 0.057* | |
H6B | 0.093072 | 0.615347 | 0.404620 | 0.057* | |
C7 | 0.1056 (3) | 0.8042 (3) | 0.4589 (2) | 0.0418 (5) | |
O8 | −0.0513 (2) | 0.86009 (19) | 0.41630 (16) | 0.0508 (4) | |
N9 | 0.2051 (3) | 0.8658 (2) | 0.53376 (18) | 0.0417 (5) | |
H9 | 0.160089 | 0.945717 | 0.549350 | 0.050* | |
N10 | 0.3778 (3) | 0.8031 (2) | 0.58594 (17) | 0.0412 (5) | |
C11 | 0.4621 (3) | 0.8739 (2) | 0.6517 (2) | 0.0411 (5) | |
H11 | 0.406000 | 0.961642 | 0.660165 | 0.049* | |
C12 | 0.6438 (3) | 0.8207 (2) | 0.7139 (2) | 0.0372 (5) | |
C13 | 0.7354 (4) | 0.9057 (2) | 0.7794 (2) | 0.0423 (5) | |
H13 | 0.679005 | 0.994741 | 0.782354 | 0.051* | |
C14 | 0.9070 (4) | 0.8605 (2) | 0.8396 (2) | 0.0444 (5) | |
H14 | 0.966061 | 0.919004 | 0.882266 | 0.053* | |
C15 | 0.9921 (3) | 0.7276 (2) | 0.8368 (2) | 0.0409 (5) | |
C16 | 0.9037 (4) | 0.6415 (2) | 0.7722 (2) | 0.0442 (5) | |
H16 | 0.960075 | 0.552276 | 0.769944 | 0.053* | |
C17 | 0.7322 (4) | 0.6880 (2) | 0.7113 (2) | 0.0435 (5) | |
H17 | 0.674636 | 0.629647 | 0.667808 | 0.052* | |
O18 | 1.1602 (3) | 0.69079 (19) | 0.90073 (17) | 0.0565 (5) | |
C19 | 1.2603 (4) | 0.5592 (3) | 0.8926 (3) | 0.0634 (8) | |
H19A | 1.307244 | 0.557208 | 0.806228 | 0.095* | |
H19B | 1.164788 | 0.485433 | 0.925510 | 0.095* | |
H19C | 1.376398 | 0.546115 | 0.940466 | 0.095* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0554 (5) | 0.0848 (6) | 0.0861 (6) | −0.0076 (4) | 0.0084 (4) | −0.0394 (5) |
C2 | 0.0441 (13) | 0.0592 (16) | 0.0640 (16) | 0.0019 (11) | −0.0103 (12) | −0.0270 (13) |
C3 | 0.0445 (13) | 0.0376 (12) | 0.0529 (14) | −0.0006 (9) | −0.0085 (10) | −0.0175 (10) |
C4 | 0.0541 (15) | 0.0493 (14) | 0.0568 (15) | −0.0023 (11) | −0.0156 (12) | −0.0207 (12) |
C5 | 0.0528 (14) | 0.0505 (14) | 0.0506 (14) | −0.0044 (11) | 0.0003 (11) | −0.0238 (11) |
C6 | 0.0503 (14) | 0.0436 (13) | 0.0526 (14) | −0.0098 (10) | −0.0110 (11) | −0.0108 (11) |
C7 | 0.0368 (12) | 0.0511 (13) | 0.0368 (11) | −0.0088 (10) | −0.0037 (9) | −0.0056 (10) |
O8 | 0.0366 (9) | 0.0680 (12) | 0.0511 (10) | −0.0008 (8) | −0.0129 (7) | −0.0152 (8) |
N9 | 0.0364 (10) | 0.0489 (11) | 0.0424 (10) | 0.0032 (8) | −0.0114 (8) | −0.0121 (8) |
N10 | 0.0381 (10) | 0.0472 (11) | 0.0386 (10) | 0.0011 (8) | −0.0096 (8) | −0.0069 (8) |
C11 | 0.0421 (12) | 0.0422 (12) | 0.0396 (12) | 0.0021 (9) | −0.0073 (9) | −0.0087 (9) |
C12 | 0.0370 (11) | 0.0399 (12) | 0.0343 (11) | −0.0020 (9) | −0.0055 (9) | −0.0052 (9) |
C13 | 0.0485 (13) | 0.0361 (12) | 0.0436 (12) | 0.0034 (10) | −0.0101 (10) | −0.0098 (9) |
C14 | 0.0498 (13) | 0.0439 (13) | 0.0444 (13) | −0.0029 (10) | −0.0149 (10) | −0.0143 (10) |
C15 | 0.0393 (12) | 0.0467 (13) | 0.0356 (11) | −0.0006 (10) | −0.0088 (9) | −0.0034 (9) |
C16 | 0.0482 (13) | 0.0365 (12) | 0.0491 (13) | 0.0036 (10) | −0.0117 (11) | −0.0094 (10) |
C17 | 0.0470 (13) | 0.0408 (12) | 0.0465 (13) | −0.0032 (10) | −0.0113 (10) | −0.0135 (10) |
O18 | 0.0538 (10) | 0.0595 (11) | 0.0613 (11) | 0.0109 (8) | −0.0284 (9) | −0.0142 (9) |
C19 | 0.0560 (16) | 0.0645 (18) | 0.0690 (18) | 0.0175 (13) | −0.0214 (14) | −0.0085 (14) |
S1—C2 | 1.700 (3) | C11—H11 | 0.9300 |
S1—C5 | 1.715 (3) | C11—C12 | 1.456 (3) |
C2—H2 | 0.9300 | C12—C13 | 1.396 (3) |
C2—C3 | 1.368 (3) | C12—C17 | 1.393 (3) |
C3—C4 | 1.415 (3) | C13—H13 | 0.9300 |
C3—C6 | 1.507 (3) | C13—C14 | 1.374 (3) |
C4—H4 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.403 (4) | C14—C15 | 1.387 (3) |
C5—H5 | 0.9300 | C15—C16 | 1.387 (3) |
C6—H6A | 0.9700 | C15—O18 | 1.363 (3) |
C6—H6B | 0.9700 | C16—H16 | 0.9300 |
C6—C7 | 1.511 (3) | C16—C17 | 1.379 (3) |
C7—O8 | 1.230 (3) | C17—H17 | 0.9300 |
C7—N9 | 1.348 (3) | O18—C19 | 1.422 (3) |
N9—H9 | 0.8600 | C19—H19A | 0.9600 |
N9—N10 | 1.382 (2) | C19—H19B | 0.9600 |
N10—C11 | 1.277 (3) | C19—H19C | 0.9600 |
C2—S1—C5 | 93.48 (13) | N10—C11—C12 | 121.7 (2) |
S1—C2—H2 | 123.7 | C12—C11—H11 | 119.2 |
C3—C2—S1 | 112.5 (2) | C13—C12—C11 | 119.1 (2) |
C3—C2—H2 | 123.7 | C17—C12—C11 | 123.1 (2) |
C2—C3—C4 | 111.0 (2) | C17—C12—C13 | 117.8 (2) |
C2—C3—C6 | 124.5 (2) | C12—C13—H13 | 119.3 |
C4—C3—C6 | 124.3 (2) | C14—C13—C12 | 121.4 (2) |
C3—C4—H4 | 122.7 | C14—C13—H13 | 119.3 |
C5—C4—C3 | 114.5 (2) | C13—C14—H14 | 120.0 |
C5—C4—H4 | 122.7 | C13—C14—C15 | 120.0 (2) |
S1—C5—H5 | 125.7 | C15—C14—H14 | 120.0 |
C4—C5—S1 | 108.50 (19) | C14—C15—C16 | 119.5 (2) |
C4—C5—H5 | 125.7 | O18—C15—C14 | 116.0 (2) |
C3—C6—H6A | 109.8 | O18—C15—C16 | 124.5 (2) |
C3—C6—H6B | 109.8 | C15—C16—H16 | 119.9 |
C3—C6—C7 | 109.57 (19) | C17—C16—C15 | 120.1 (2) |
H6A—C6—H6B | 108.2 | C17—C16—H16 | 119.9 |
C7—C6—H6A | 109.8 | C12—C17—H17 | 119.4 |
C7—C6—H6B | 109.8 | C16—C17—C12 | 121.2 (2) |
O8—C7—C6 | 121.7 (2) | C16—C17—H17 | 119.4 |
O8—C7—N9 | 120.2 (2) | C15—O18—C19 | 117.5 (2) |
N9—C7—C6 | 117.9 (2) | O18—C19—H19A | 109.5 |
C7—N9—H9 | 119.3 | O18—C19—H19B | 109.5 |
C7—N9—N10 | 121.3 (2) | O18—C19—H19C | 109.5 |
N10—N9—H9 | 119.3 | H19A—C19—H19B | 109.5 |
C11—N10—N9 | 115.4 (2) | H19A—C19—H19C | 109.5 |
N10—C11—H11 | 119.2 | H19B—C19—H19C | 109.5 |
S1—C2—C3—C4 | 0.8 (3) | N10—C11—C12—C13 | 176.9 (2) |
S1—C2—C3—C6 | −173.66 (19) | N10—C11—C12—C17 | −3.1 (4) |
C2—S1—C5—C4 | 0.8 (2) | C11—C12—C13—C14 | 180.0 (2) |
C2—C3—C4—C5 | −0.2 (3) | C11—C12—C17—C16 | −179.6 (2) |
C2—C3—C6—C7 | 84.9 (3) | C12—C13—C14—C15 | −0.4 (4) |
C3—C4—C5—S1 | −0.5 (3) | C13—C12—C17—C16 | 0.4 (3) |
C3—C6—C7—O8 | 90.8 (3) | C13—C14—C15—C16 | 0.4 (4) |
C3—C6—C7—N9 | −85.4 (3) | C13—C14—C15—O18 | −179.0 (2) |
C4—C3—C6—C7 | −88.8 (3) | C14—C15—C16—C17 | 0.0 (4) |
C5—S1—C2—C3 | −1.0 (2) | C14—C15—O18—C19 | −175.7 (2) |
C6—C3—C4—C5 | 174.3 (2) | C15—C16—C17—C12 | −0.4 (4) |
C6—C7—N9—N10 | −5.8 (3) | C16—C15—O18—C19 | 4.9 (4) |
C7—N9—N10—C11 | 177.8 (2) | C17—C12—C13—C14 | 0.0 (3) |
O8—C7—N9—N10 | 177.97 (19) | O18—C15—C16—C17 | 179.4 (2) |
N9—N10—C11—C12 | 179.26 (19) |
Cg1 is the centroid of the S1/C1–C5 thiophene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N9—H9···O8i | 0.86 | 2.08 | 2.935 (3) | 179 |
C6—H6A···N10 | 0.97 | 2.44 | 2.782 (3) | 100 |
C13—H13···Cg1ii | 0.93 | 2.68 | 3.611 (2) | 179 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+2, −z+1. |
Acknowledgements
LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035.
References
Bharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651–660. Web of Science CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
El-Sayed, H. A., Moustafa, A. H., El-Moneim, M. A., Awad, H. M. & Esmat, A. (2018). J. Pharm. Appl. Chem. 4, 125–131. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071. Web of Science CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Nguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259–263. Google Scholar
Papakonstantinou-Garoufalias, S., Pouli, N., Marakos, P. & Chytyroglou-Ladas, A. (2002). Farmaco, 57, 973–977. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Vu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730–735. Google Scholar
Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wardakhan, W. W., Eid, E.-S. N. N & Mohareb, R. M. (2013). Acta Pharm. 63, 45–57. Web of Science CrossRef CAS PubMed Google Scholar
Yadav, M., Sinha, R. R., Kumar, S., Bahadur, I. & Ebenso, E. E. (2015). J. Mol. Liq. 208, 322–332. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.