research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of two N′-(1-phenyl­benzyl­­idene)-2-(thio­phen-3-yl)acetohydrazides

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bBien Hoa Gifted High School, 86 Chu Van An Street, Phu Ly City, Ha Nam Province, Vietnam, cFaculty of Foundation Science, College of Printing Industry, Phuc Dien, Bac Tu Liem, Hanoi, Vietnam, dInstitute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, eGraduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, fPublishing House for Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, and gDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: trungvq@hnue.edu.vn, Luc.VanMeervelt@kuleuven.be

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 12 June 2019; accepted 21 June 2019; online 2 July 2019)

The synthesis, spectroscopic data, crystal and mol­ecular structures of two N′-(1-phenyl­benzyl­idene)-2-(thio­phen-3-yl)acetohydrazides, namely N′-[1-(4-hy­droxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide, C13H10N2O2S, (3a), and N′-[1-(4-meth­oxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide, C14H14N2O2S, (3b), are described. Both compounds differ in the substituent at the para position of the phenyl ring: –OH for (3a) and –OCH3 for (3b). In (3a), the thio­phene ring is disordered over two orientations with occupancies of 0.762 (3) and 0.238 (3). The configuration about the C=N bond is E. The thio­phene and phenyl rings are inclined by 84.0 (3) and 87.0 (9)° for the major- and minor-occupancy disorder components in (3a), and by 85.89 (12)° in (3b). Although these dihedral angles are similar, the conformation of the linker between the two rings is different [the C—C—C—N torsion angle is −ac for (3a) and −sc for (3b), while the C6—C7—N9—N10 torsion angle is +ap for (3a) and −sp for (3b)]. A common feature in the crystal packing of (3a) and (3b) is the presence of N—H⋯O hydrogen bonds, resulting in the formation of chains of mol­ecules running along the b-axis direction in the case of (3a), or inversion dimers for (3b). The most prominent contributions to the surface contacts are those in which H atoms are involved, as confirmed by an analysis of the Hirshfeld surface.

1. Chemical context

Acetohydrazides are considered to be good candidates for different pharmaceutical applications, including their use as anti­bacterial, anti­fugal, anti­microbial and anti­convulsant agents (Yadav et al., 2015[Yadav, M., Sinha, R. R., Kumar, S., Bahadur, I. & Ebenso, E. E. (2015). J. Mol. Liq. 208, 322-332.]; Bharti et al., 2010[Bharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651-660.]; Loncle et al., 2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]; Papakonstanti­nou-Garoufalias et al., 2002[Papakonstantinou-Garoufalias, S., Pouli, N., Marakos, P. & Chytyroglou-Ladas, A. (2002). Farmaco, 57, 973-977.]). Moreover, many of them have shown analgesic and anti­platelet properties (Wardakhan et al., 2013[Wardakhan, W. W., Eid, E.-S. N. N & Mohareb, R. M. (2013). Acta Pharm. 63, 45-57.]). Combinations of acetohydrazide with other heterocyclic rings have also been investigated, such as the hydrazide-based 2-oxonicotino­nitrile derivatives that are considered to be potential anti­microbial agents (El-Sayed et al., 2018[El-Sayed, H. A., Moustafa, A. H., El-Moneim, M. A., Awad, H. M. & Esmat, A. (2018). J. Pharm. Appl. Chem. 4, 125-131.]).

As a continuation of our research (Nguyen et al., 2016[Nguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259-263.]; Vu et al., 2016[Vu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730-735.], 2017[Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901-904.]) on the chemical and physical properties of novel polythio­phenes, a new thio­phene monomer-containing acetohydrazide has been prepared. We have synthesized two N′-(1-(phenyl­benzyl­idene)-2-(thio­phen-3-yl)acetohydrazides and present here the spectroscopic data and crystal structures of the title compounds, together with the Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The hy­droxy derivative (3a) crystallizes in the ortho­rhom­bic space group Pbca. The thio­phene ring is disordered over two sites (the major and minor components are labelled with the suffixes A and B, respectively), corresponding to a rotation about the C3—C6 bond of approximately 180° with population parameters 0.762 (3) for S1A/C1A–C5A and 0.238 (3) for S1B/C1B–C5B (Fig. 1[link]). The configuration of the C11=N10 bond can be described as E [the N9—N10—C11—C12 torsion angle is 174.82 (16)°]. The torsion angle C7—N9—N10—C11 of 177.10 (18)° indicates that the conformation around the N9—N10 bond is +ap. The mol­ecule is twisted about the C6—C7 bond with a dihedral angle of 84.0 (3)° between the thio­phene and benzene rings [87.0 (9)° for S1B/C1B–C5B] .

[Figure 1]
Figure 1
A view of the mol­ecular structure of (3a), with atom labels and displacement ellipsoids drawn at the 50% probability level. The minor-disorder component is shown in light green.

The meth­oxy derivative (3b) (Fig. 2[link]) crystallizes in the triclinic space group P[\overline{1}]. Compared to (3a), the central part of (3b) displays a similar +ap conformation around the N9—N10 bond and an E configuration of the C11=N10 bond, as illustrated by the torsion angles C7—N9—N10—C11 [177.8 (2)°] and N9—N10—C11—C12 [179.26 (19)°]. However, the conformation about the two other bonds, C6—C7 and especially C7—N9, in the linker between both rings is different. The torsion angle C3—C6—C7—N9 is −101.8 (2)° (or -ac) for (3a) and −85.4 (3)° (or -sc) for (3b). As a consequence, in (3b) a short C6—H6⋯N10 inter­action occurs (Table 2[link]). In (3a) we observe an +ap conformation [torsion angle C6—C7—N9—N10 is 167.45 (16)°], while this is -sp in (3b) [torsion angle C6—C7—N9—N10 is −5.8 (3)°]. The dihedral angle between the thio­phene and phenyl rings is 85.89 (12)°, in the same order as for (3a).

Table 2
Hydrogen-bond geometry (Å, °) for (3b)[link]

Cg1 is the centroid of the S1/C1–C5 thio­phene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O8i 0.86 2.08 2.935 (3) 179
C6—H6A⋯N10 0.97 2.44 2.782 (3) 100
C13—H13⋯Cg1ii 0.93 2.68 3.611 (2) 179
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
The mol­ecular structure of (3b) with atom labels and 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, mol­ecules of (3a) are connected by N9—H9⋯O8i [symmetry code: (i) −x + [{1\over 2}], y + [{1\over 2}], z] hydrogen bonds, resulting in the formation of chains in the b-axis direction with a C11(4) graph-set motif (Fig. 3[link], Table 1[link]). In addition, chains with a C11(11) graph-set motif running along the a-axis direction are formed by O18—H18⋯O8ii [symmetry code: (ii) x − [{1\over 2}], y, −z + [{1\over 2}]] hydrogen bonds (Fig. 4[link], Table 1[link]). Two weaker inter­actions are present in the packing: a C—H⋯O and C—H⋯π(phen­yl) inter­action (for details see Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (3a)[link]

Cg3 is the centroid of the C12–C17 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O8i 0.86 2.12 2.953 (2) 162
O18—H18⋯O8ii 0.82 1.97 2.782 (2) 169
C2A—H2A⋯O8iii 0.93 2.57 3.439 (7) 155
C13—H13⋯Cg3iv 0.93 2.89 3.818 (3) 176
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Part of the crystal structure of (3a), showing the chain formation through N—H⋯O inter­actions (red dashed lines) along the b-axis direction. The minor disorder component is not shown. Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], z; (v) −x + [{1\over 2}], y − [{1\over 2}], z.
[Figure 4]
Figure 4
Part of the crystal structure of (3a), illustrating the chain formation through O—H⋯O inter­actions (red dashed lines) along the a-axis direction. The minor disorder component is not shown. Symmetry codes: (i) x + [{1\over 2}], y, −z + [{1\over 2}]; (ii) x − [{1\over 2}], y, −z + [{1\over 2}].

Replacing the –OH group in (3a) by an –OMe group in (3b) changes the hydrogen-bonding pattern. The crystal packing of (3b) is now characterized by the presence of two different inversion dimers. The first type, with an R22(8) graph-set motif, is formed by N9—H9⋯O8i [symmetry code: (i) −x, −y + 2, −z + 1] hydrogen bonds (Fig. 5[link], Table 2[link]). The second one involves C13—H13⋯π(thio­phene) inter­actions (Fig. 6[link], Table 2[link]).

[Figure 5]
Figure 5
A partial packing diagram of (3b), showing dimer formation through N—H⋯O inter­actions (red dashed lines). Symmetry code: (i) −x, −y + 2, −z + 1.
[Figure 6]
Figure 6
A partial packing diagram of (3b), illustrating the dimer formation through C—H⋯π inter­actions (gray dashed lines). Cg1 is the centroid of the S1/C2–C5 thio­phene ring. Symmetry code: (ii) −x + 1, −y + 2, −z + 1.

No voids or ππ stackings are observed in the crystal packing of (3a) and (3b).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the central linker between the two rings in the title compound, C—CH2—C(=O)—NH—N=CH—C (Fig. 7[link]a), resulted in 137 hits. Histograms of the distribution of the four torsion angles τ1τ4 along the linker backbone are shown in Fig. 7[link]be [the red and green lines depict the torsion angles for title compounds (3a) and (3b), respectively]. The histogram of τ1 reflects a wide spread with a preference for the −ap/+ap conformation, followed by the −sc/+sc conformation and only a few entries in the remaining regions. In the case of torsion angle τ2, two regions are preferred: −ap/+ap [for the majority of the entries and similar to (3a)] and −sp/+sp [similar to (3b)]. Torsion angles τ3 and τ4 show both a narrow spread in the region −ap/+ap.

[Figure 7]
Figure 7
(a) Fragment used for a search in the CSD. (b)–(e) Histograms of torsion angles τ1, τ2, τ3 and τ4, respectively. The vertical red and green lines show the torsion angles observed in title compounds (3a) and (3b), respectively.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surfaces of compounds (3a) and (3b) mapped over dnorm are given in Fig. 8[link].

[Figure 8]
Figure 8
The Hirshfeld surface mapped over dnorm for (a) compound (3a) in the range −0.6166 to 1.1782 a.u., and (b) compound (3b) in the range −0.5274 to 1.2642 a.u.

The bright-red spots in Fig. 8[link]a near atoms O8 and N9 illustrate the N9—H9⋯O8 hydrogen bond, and near atoms O8 and O18 the O18—H18⋯O8 hydrogen bond. The faint-red spots near atoms O8 and H2A, and C11 and H17 refer to short contacts in the crystal packing of (3a). The most significant contributions to the Hirshfeld surface are from H⋯H (30.5%), C⋯H/H⋯C (26.1%), O⋯H/H⋯O (18.6%) and S⋯H/H⋯S (10.7%) contacts.

For compound (3b), the N9—H9⋯O8 dimer formation is viewed as the bright-red spots near atoms O8 and N9 in Fig. 8[link]b. The faint-red spots near atoms H19C and H13 are indicative for a short H19C⋯H19C contact and the C13—H13⋯π(thio­phene) inter­action. The most significant contributions to the Hirshfeld surface are from H⋯H (40.6%), C⋯H/H⋯C (22.2%), O⋯H/H⋯O (15.1%) and S⋯H/H⋯S (12.5%) contacts.

6. Synthesis and crystallization

The reaction scheme to synthesize the title compounds, (3a) and (3b), is given in Fig. 9[link].

[Figure 9]
Figure 9
Reaction scheme for the title compounds (3a) and (3b).

Methyl 2-(thio­phen-3-yl)acetate (1) and 2-(thio­phen-3-yl)acetohydrazide (2) were synthesized according to our previous research (Vu et al., 2017[Vu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901-904.]).

Synthesis of N-[1-(4-hy­droxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide:

Compound (2) (3 mmol) and the appropriate benzaldehyde derivatives (6 mmol) with acetic acid (1.5 mL) in ethanol (20 mL) were refluxed for 5 h. The reaction mixture was cooled down and the solid product was separated by filtration and purified by recrystallization in ethanol to give the compounds (3a) and (3b).

Data for N-[1-(4-hy­droxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide (3a):

White crystals; m.p. 443 K; yield 63%. IR (KBr, cm−1): 3289, 3207 (NH), 3050, 2874 (C—H), 1621 (C=O), 1606 (CH=N), 1511 (C=C). 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 7.19 (m, 1H, H2), 7.11 (d, 1H, 5J = 5.0, H4), 7.25 (dd, 1H, 2J = 3.0, 4J = 5.0, H5), 4.07 (s, 2H, H6), 9.17 (s, 1H, H8), 7.79 (s, 1H, H9), 7.52 (d, 2H, J = 8.5 H11, H15), 6.87 (d, 2H, J = 8.5 H12, H14), 10.10/10.04 (s, 1H, H16). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 122.3/122.4 (C2), 135.3/135.4 (C3), 128.7/128.8 (C4), 125.4/125.8 (C5), 33.6/35.9 (C6), 165.7/171.4 (C7), 146.7 (C9), 143.5 (C10), 128.3/128.6 (C11, C15), 115.6/116.6 (C12,C14), 159.6/159.2 (C13). Calculation for C13H12N2O2S: M[+H] = 260.9 au.

Data for N-[1-(4-meth­oxy­phen­yl)benzyl­idene]-2-(thio­phen-3-yl)acetohydrazide (3b):

White crystals, m.p. 431 K, yield 53%. IR (KBr, cm−1): 3442, 3112 (NH), 3014, 2950 (C—H), 1706 (C=O), 1617 (CH=N), 1558, 1503 (C=C). 1H NMR [Bruker XL-500, 500 MHz, d6-CDCl3, δ (ppm), J (Hz)]: 7.22 (m, 1H, H2); 7.12 (m, 1H, H4); 7.26 (dd, 1H, 2J = 3.0, 5J = 5.0, H5); 4.11 (s, 2H, H6); 8.97 (s, 1H, H8); 7.69 (s, 1H, H9); 7.61 (d, 2H, J = 8.5, H11, H15); 6.94 (d, 2H, J = 8.5, H12, H14); 3.85 (m, 3H, H16). 13C NMR [Bruker XL-500, 125 MHz, d6-CDCl3, δ (ppm)]: 122.8 (C2), 134.4 (C3), 129.3 (C4), 125.4 (C5), 34.3 (C6), 172.9 (C7), 143.6 (C9), 126.4 (C10), 128.8 (C11, C15), 114.3 (C12, C14), 161.3 (C13), 55.4 (C16). Calculation for C14H14N2O2S: M[+H] = 274.9 au.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for methyl groups), with C—H distances of 0.93 (aromatic), 0.96 (CH3) and 0.97 Å (CH2), N—H distances of 0.86 Å and O—H distances of 0.82 Å (rotating OH). In (3a), the thio­phene ring is disordered over two positions [population parameters 0.762 (3) and 0.238 (3)] and was refined with restraints for the bond lengths and angles in the ring. The anisotropic temperature factors for atoms S1, C2, C4 and C5 in both orientations were constrained to be equal. In the final cycles of refinement, four and two outliers were omitted for (3a) and (3b), respectively.

Table 3
Experimental details

  (3a) (3b)
Crystal data
Chemical formula C13H12N2O2S C14H14N2O2S
Mr 260.31 274.33
Crystal system, space group Orthorhombic, Pbca Triclinic, P[\overline{1}]
Temperature (K) 293 293
a, b, c (Å) 13.0820 (8), 8.0287 (4), 24.0442 (12) 6.5185 (2), 9.7447 (5), 10.9291 (6)
α, β, γ (°) 90, 90, 90 78.327 (4), 83.070 (4), 87.013 (4)
V3) 2525.4 (2) 674.63 (6)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.25 0.24
Crystal size (mm) 0.35 × 0.2 × 0.05 0.5 × 0.15 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.453, 1.000 0.687, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13596, 2571, 1759 13795, 2752, 2238
Rint 0.039 0.027
(sin θ/λ)max−1) 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.109, 1.07 0.051, 0.145, 1.06
No. of reflections 2571 2752
No. of parameters 178 173
No. of restraints 80 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.18 0.33, −0.38
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]b) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N'-[1-(4-Hydroxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3a) top
Crystal data top
C13H12N2O2SDx = 1.369 Mg m3
Mr = 260.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3446 reflections
a = 13.0820 (8) Åθ = 3.1–23.7°
b = 8.0287 (4) ŵ = 0.25 mm1
c = 24.0442 (12) ÅT = 293 K
V = 2525.4 (2) Å3Plate, white
Z = 80.35 × 0.2 × 0.05 mm
F(000) = 1088
Data collection top
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
diffractometer
2571 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source1759 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 1615
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 910
Tmin = 0.453, Tmax = 1.000l = 2830
13596 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.6755P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.19 e Å3
2571 reflectionsΔρmin = 0.18 e Å3
178 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
80 restraintsExtinction coefficient: 0.0022 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.67164 (8)0.8283 (2)0.43607 (8)0.0718 (4)0.762 (3)
S1B0.6152 (4)0.9867 (10)0.3990 (3)0.0718 (4)0.238 (3)
C2A0.5667 (3)0.7484 (7)0.4673 (3)0.0542 (12)0.762 (3)
H2A0.5681850.6598970.4922160.065*0.762 (3)
C2B0.4941 (11)0.970 (3)0.4213 (16)0.0542 (12)0.238 (3)
H2B0.4430261.0471110.4138330.065*0.238 (3)
C30.47998 (16)0.8287 (2)0.45167 (8)0.0449 (5)
C4A0.5018 (5)0.9582 (10)0.4141 (5)0.062 (2)0.762 (3)
H4A0.4511691.0262380.3992050.074*0.762 (3)
C4B0.5719 (9)0.741 (3)0.4587 (11)0.062 (2)0.238 (3)
H4B0.5759240.6409130.4781660.074*0.238 (3)
C5A0.6056 (6)0.9770 (11)0.4008 (4)0.100 (3)0.762 (3)
H5A0.6332331.0563380.3769540.120*0.762 (3)
C5B0.6580 (10)0.818 (2)0.4337 (11)0.100 (3)0.238 (3)
H5B0.7254380.7816360.4359090.120*0.238 (3)
C60.37396 (16)0.7786 (3)0.47035 (8)0.0506 (6)
H6A0.3772540.7268250.5067610.061*
H6B0.3305280.8762000.4729220.061*
C70.33041 (15)0.6577 (3)0.42864 (8)0.0419 (5)
O80.36037 (11)0.51138 (17)0.42613 (5)0.0476 (4)
N90.26256 (13)0.7198 (2)0.39247 (6)0.0455 (4)
H90.2365950.8169550.3976690.055*
N100.23452 (13)0.6255 (2)0.34641 (6)0.0441 (4)
C110.16622 (15)0.6908 (2)0.31536 (8)0.0444 (5)
H110.1356670.7900930.3263640.053*
C120.13478 (16)0.6139 (2)0.26302 (8)0.0428 (5)
C130.04946 (18)0.6712 (3)0.23499 (9)0.0553 (6)
H130.0121780.7590470.2499520.066*
C140.01803 (18)0.6010 (3)0.18517 (9)0.0561 (6)
H140.0402090.6404540.1673310.067*
C150.07373 (17)0.4720 (2)0.16220 (8)0.0462 (5)
C160.16018 (17)0.4149 (3)0.18911 (9)0.0562 (6)
H160.1982330.3286790.1736410.067*
C170.19021 (17)0.4850 (3)0.23870 (9)0.0538 (6)
H170.2486570.4454410.2563290.065*
O180.04708 (13)0.39577 (19)0.11361 (6)0.0620 (5)
H180.0038090.4410850.1006630.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0493 (6)0.0807 (8)0.0853 (7)0.0003 (5)0.0078 (5)0.0050 (6)
S1B0.0493 (6)0.0807 (8)0.0853 (7)0.0003 (5)0.0078 (5)0.0050 (6)
C2A0.065 (2)0.051 (2)0.047 (3)0.0092 (16)0.0120 (16)0.0016 (17)
C2B0.065 (2)0.051 (2)0.047 (3)0.0092 (16)0.0120 (16)0.0016 (17)
C30.0513 (14)0.0403 (11)0.0430 (11)0.0013 (10)0.0106 (10)0.0057 (9)
C4A0.060 (3)0.053 (3)0.072 (6)0.0011 (18)0.008 (2)0.015 (3)
C4B0.060 (3)0.053 (3)0.072 (6)0.0011 (18)0.008 (2)0.015 (3)
C5A0.132 (6)0.063 (3)0.103 (4)0.025 (3)0.011 (3)0.021 (2)
C5B0.132 (6)0.063 (3)0.103 (4)0.025 (3)0.011 (3)0.021 (2)
C60.0551 (15)0.0539 (13)0.0427 (11)0.0014 (11)0.0020 (10)0.0088 (10)
C70.0408 (13)0.0444 (12)0.0405 (11)0.0017 (9)0.0056 (9)0.0002 (9)
O80.0533 (10)0.0400 (8)0.0495 (8)0.0012 (7)0.0023 (7)0.0005 (6)
N90.0489 (11)0.0370 (9)0.0506 (10)0.0033 (8)0.0043 (8)0.0084 (8)
N100.0471 (11)0.0408 (10)0.0444 (9)0.0029 (8)0.0030 (8)0.0029 (8)
C110.0451 (13)0.0420 (11)0.0461 (11)0.0020 (9)0.0006 (10)0.0014 (9)
C120.0458 (13)0.0404 (11)0.0424 (11)0.0007 (9)0.0002 (9)0.0024 (9)
C130.0611 (16)0.0527 (14)0.0520 (13)0.0196 (11)0.0082 (11)0.0087 (10)
C140.0600 (15)0.0569 (14)0.0515 (13)0.0146 (11)0.0136 (11)0.0038 (11)
C150.0553 (14)0.0429 (12)0.0405 (11)0.0003 (10)0.0008 (10)0.0007 (9)
C160.0616 (16)0.0536 (13)0.0535 (13)0.0137 (11)0.0009 (12)0.0088 (11)
C170.0516 (15)0.0545 (13)0.0553 (13)0.0117 (11)0.0082 (11)0.0018 (11)
O180.0748 (13)0.0574 (10)0.0539 (9)0.0122 (8)0.0116 (8)0.0129 (8)
Geometric parameters (Å, º) top
S1A—C2A1.691 (4)C7—O81.240 (2)
C2A—H2A0.9300C7—N91.339 (2)
S1B—C2B1.677 (9)N9—H90.8600
C2B—H2B0.9300N9—N101.391 (2)
C2A—C31.357 (4)N10—C111.277 (2)
C2B—C31.360 (9)C11—H110.9300
C4A—H4A0.9300C11—C121.461 (3)
C4B—H4B0.9300C12—C131.382 (3)
S1A—C5A1.700 (7)C12—C171.393 (3)
C4A—C5A1.404 (6)C13—H130.9300
C5A—H5A0.9300C13—C141.386 (3)
S1B—C5B1.688 (9)C14—H140.9300
C4B—C5B1.419 (9)C14—C151.381 (3)
C5B—H5B0.9300C15—C161.381 (3)
C3—C4A1.407 (4)C15—O181.364 (2)
C3—C4B1.404 (9)C16—H160.9300
C3—C61.512 (3)C16—C171.376 (3)
C6—H6A0.9700C17—H170.9300
C6—H6B0.9700O18—H180.8200
C6—C71.508 (3)
C4A—C5A—S1A107.6 (5)C3—C4B—C5B114.2 (9)
C4B—C5B—S1B107.2 (8)O8—C7—C6121.54 (19)
S1A—C2A—H2A124.0O8—C7—N9122.07 (18)
S1B—C2B—H2B124.2N9—C7—C6116.27 (18)
C5A—C4A—C3115.0 (5)C7—N9—H9120.4
C5A—C4A—H4A122.5C7—N9—N10119.29 (16)
C5B—C4B—H4B122.9N10—N9—H9120.4
C2A—S1A—C5A94.3 (3)C11—N10—N9115.25 (17)
S1A—C5A—H5A126.2N10—C11—H11119.1
C4A—C5A—H5A126.2N10—C11—C12121.81 (19)
C2B—S1B—C5B95.2 (6)C12—C11—H11119.1
S1B—C5B—H5B126.4C13—C12—C11120.45 (18)
C4B—C5B—H5B126.4C13—C12—C17117.57 (19)
C2A—C3—C4A111.1 (3)C17—C12—C11121.95 (19)
C2B—C3—C4B111.5 (7)C12—C13—H13119.1
C4A—C3—C6125.0 (3)C12—C13—C14121.7 (2)
C2A—C3—C6123.9 (3)C14—C13—H13119.1
C4B—C3—C6128.0 (6)C13—C14—H14120.2
C2B—C3—C6120.4 (5)C15—C14—C13119.6 (2)
C3—C6—H6A110.0C15—C14—H14120.2
C3—C2A—S1A112.1 (3)C14—C15—C16119.6 (2)
C3—C2B—S1B111.6 (7)O18—C15—C14123.0 (2)
C3—C6—H6B110.0O18—C15—C16117.47 (19)
H6A—C6—H6B108.3C15—C16—H16119.9
C3—C2A—H2A124.0C17—C16—C15120.3 (2)
C3—C2B—H2B124.2C17—C16—H16119.9
C7—C6—C3108.68 (16)C12—C17—H17119.4
C7—C6—H6A110.0C16—C17—C12121.3 (2)
C3—C4A—H4A122.5C16—C17—H17119.4
C3—C4B—H4B122.9C15—O18—H18109.5
C7—C6—H6B110.0
C2A—S1A—C5A—C4A0.7 (11)C6—C3—C4B—C5B176.8 (17)
C2B—S1B—C5B—C4B5 (3)C6—C3—C4A—C5A177.0 (8)
C5B—S1B—C2B—C35 (3)C6—C7—N9—N10167.45 (16)
C5A—S1A—C2A—C30.8 (7)C7—N9—N10—C11177.10 (18)
S1B—C2B—C3—C4B3 (3)O8—C7—N9—N108.6 (3)
S1A—C2A—C3—C4A0.7 (5)N9—N10—C11—C12174.82 (16)
S1A—C2A—C3—C6176.5 (3)N10—C11—C12—C13169.1 (2)
S1B—C2B—C3—C6173.1 (14)N10—C11—C12—C1712.8 (3)
C2B—C3—C6—C795 (2)C11—C12—C13—C14179.8 (2)
C2A—C3—C6—C791.1 (5)C11—C12—C17—C16179.4 (2)
C4A—C3—C6—C785.7 (7)C12—C13—C14—C150.9 (4)
C4B—C3—C6—C781.0 (17)C13—C12—C17—C161.2 (3)
C2A—C3—C4A—C5A0.1 (11)C13—C14—C15—C160.1 (3)
C2B—C3—C4B—C5B1 (3)C13—C14—C15—O18179.4 (2)
C3—C4A—C5A—S1A0.5 (14)C14—C15—C16—C170.5 (3)
C3—C4B—C5B—S1B4 (3)C15—C16—C17—C120.1 (3)
C3—C6—C7—O874.2 (2)C17—C12—C13—C141.6 (3)
C3—C6—C7—N9101.8 (2)O18—C15—C16—C17179.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C12–C17 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N9—H9···O8i0.862.122.953 (2)162
O18—H18···O8ii0.821.972.782 (2)169
C2A—H2A···O8iii0.932.573.439 (7)155
C13—H13···Cg3iv0.932.893.818 (3)176
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2.
N'-[1-(4-Methoxyphenyl)benzylidene]-2-(thiophen-3-yl)acetohydrazide (3b) top
Crystal data top
C14H14N2O2SZ = 2
Mr = 274.33F(000) = 288
Triclinic, P1Dx = 1.350 Mg m3
a = 6.5185 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7447 (5) ÅCell parameters from 5534 reflections
c = 10.9291 (6) Åθ = 3.1–27.2°
α = 78.327 (4)°µ = 0.24 mm1
β = 83.070 (4)°T = 293 K
γ = 87.013 (4)°Needle, white
V = 674.63 (6) Å30.5 × 0.15 × 0.05 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Single source at offset/far, Eos
diffractometer
2752 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2238 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.6°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1212
Tmin = 0.687, Tmax = 1.000l = 1313
13795 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.5294P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2752 reflectionsΔρmax = 0.33 e Å3
173 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68895 (12)0.78924 (10)0.16957 (9)0.0734 (3)
C20.5595 (4)0.7356 (3)0.3147 (3)0.0534 (6)
H20.6191530.7269650.3891680.064*
C30.3579 (4)0.7066 (2)0.3100 (2)0.0436 (5)
C40.3123 (4)0.7275 (3)0.1841 (2)0.0512 (6)
H40.1823100.7125130.1630710.061*
C50.4790 (4)0.7727 (3)0.0935 (2)0.0497 (6)
H50.4760970.7907290.0068520.060*
C60.2002 (4)0.6708 (3)0.4234 (2)0.0479 (6)
H6A0.2658530.6159100.4931420.057*
H6B0.0930720.6153470.4046200.057*
C70.1056 (3)0.8042 (3)0.4589 (2)0.0418 (5)
O80.0513 (2)0.86009 (19)0.41630 (16)0.0508 (4)
N90.2051 (3)0.8658 (2)0.53376 (18)0.0417 (5)
H90.1600890.9457170.5493500.050*
N100.3778 (3)0.8031 (2)0.58594 (17)0.0412 (5)
C110.4621 (3)0.8739 (2)0.6517 (2)0.0411 (5)
H110.4060000.9616420.6601650.049*
C120.6438 (3)0.8207 (2)0.7139 (2)0.0372 (5)
C130.7354 (4)0.9057 (2)0.7794 (2)0.0423 (5)
H130.6790050.9947410.7823540.051*
C140.9070 (4)0.8605 (2)0.8396 (2)0.0444 (5)
H140.9660610.9190040.8822660.053*
C150.9921 (3)0.7276 (2)0.8368 (2)0.0409 (5)
C160.9037 (4)0.6415 (2)0.7722 (2)0.0442 (5)
H160.9600750.5522760.7699440.053*
C170.7322 (4)0.6880 (2)0.7113 (2)0.0435 (5)
H170.6746360.6296470.6678080.052*
O181.1602 (3)0.69079 (19)0.90073 (17)0.0565 (5)
C191.2603 (4)0.5592 (3)0.8926 (3)0.0634 (8)
H19A1.3072440.5572080.8062280.095*
H19B1.1647880.4854330.9255100.095*
H19C1.3763980.5461150.9404660.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0554 (5)0.0848 (6)0.0861 (6)0.0076 (4)0.0084 (4)0.0394 (5)
C20.0441 (13)0.0592 (16)0.0640 (16)0.0019 (11)0.0103 (12)0.0270 (13)
C30.0445 (13)0.0376 (12)0.0529 (14)0.0006 (9)0.0085 (10)0.0175 (10)
C40.0541 (15)0.0493 (14)0.0568 (15)0.0023 (11)0.0156 (12)0.0207 (12)
C50.0528 (14)0.0505 (14)0.0506 (14)0.0044 (11)0.0003 (11)0.0238 (11)
C60.0503 (14)0.0436 (13)0.0526 (14)0.0098 (10)0.0110 (11)0.0108 (11)
C70.0368 (12)0.0511 (13)0.0368 (11)0.0088 (10)0.0037 (9)0.0056 (10)
O80.0366 (9)0.0680 (12)0.0511 (10)0.0008 (8)0.0129 (7)0.0152 (8)
N90.0364 (10)0.0489 (11)0.0424 (10)0.0032 (8)0.0114 (8)0.0121 (8)
N100.0381 (10)0.0472 (11)0.0386 (10)0.0011 (8)0.0096 (8)0.0069 (8)
C110.0421 (12)0.0422 (12)0.0396 (12)0.0021 (9)0.0073 (9)0.0087 (9)
C120.0370 (11)0.0399 (12)0.0343 (11)0.0020 (9)0.0055 (9)0.0052 (9)
C130.0485 (13)0.0361 (12)0.0436 (12)0.0034 (10)0.0101 (10)0.0098 (9)
C140.0498 (13)0.0439 (13)0.0444 (13)0.0029 (10)0.0149 (10)0.0143 (10)
C150.0393 (12)0.0467 (13)0.0356 (11)0.0006 (10)0.0088 (9)0.0034 (9)
C160.0482 (13)0.0365 (12)0.0491 (13)0.0036 (10)0.0117 (11)0.0094 (10)
C170.0470 (13)0.0408 (12)0.0465 (13)0.0032 (10)0.0113 (10)0.0135 (10)
O180.0538 (10)0.0595 (11)0.0613 (11)0.0109 (8)0.0284 (9)0.0142 (9)
C190.0560 (16)0.0645 (18)0.0690 (18)0.0175 (13)0.0214 (14)0.0085 (14)
Geometric parameters (Å, º) top
S1—C21.700 (3)C11—H110.9300
S1—C51.715 (3)C11—C121.456 (3)
C2—H20.9300C12—C131.396 (3)
C2—C31.368 (3)C12—C171.393 (3)
C3—C41.415 (3)C13—H130.9300
C3—C61.507 (3)C13—C141.374 (3)
C4—H40.9300C14—H140.9300
C4—C51.403 (4)C14—C151.387 (3)
C5—H50.9300C15—C161.387 (3)
C6—H6A0.9700C15—O181.363 (3)
C6—H6B0.9700C16—H160.9300
C6—C71.511 (3)C16—C171.379 (3)
C7—O81.230 (3)C17—H170.9300
C7—N91.348 (3)O18—C191.422 (3)
N9—H90.8600C19—H19A0.9600
N9—N101.382 (2)C19—H19B0.9600
N10—C111.277 (3)C19—H19C0.9600
C2—S1—C593.48 (13)N10—C11—C12121.7 (2)
S1—C2—H2123.7C12—C11—H11119.2
C3—C2—S1112.5 (2)C13—C12—C11119.1 (2)
C3—C2—H2123.7C17—C12—C11123.1 (2)
C2—C3—C4111.0 (2)C17—C12—C13117.8 (2)
C2—C3—C6124.5 (2)C12—C13—H13119.3
C4—C3—C6124.3 (2)C14—C13—C12121.4 (2)
C3—C4—H4122.7C14—C13—H13119.3
C5—C4—C3114.5 (2)C13—C14—H14120.0
C5—C4—H4122.7C13—C14—C15120.0 (2)
S1—C5—H5125.7C15—C14—H14120.0
C4—C5—S1108.50 (19)C14—C15—C16119.5 (2)
C4—C5—H5125.7O18—C15—C14116.0 (2)
C3—C6—H6A109.8O18—C15—C16124.5 (2)
C3—C6—H6B109.8C15—C16—H16119.9
C3—C6—C7109.57 (19)C17—C16—C15120.1 (2)
H6A—C6—H6B108.2C17—C16—H16119.9
C7—C6—H6A109.8C12—C17—H17119.4
C7—C6—H6B109.8C16—C17—C12121.2 (2)
O8—C7—C6121.7 (2)C16—C17—H17119.4
O8—C7—N9120.2 (2)C15—O18—C19117.5 (2)
N9—C7—C6117.9 (2)O18—C19—H19A109.5
C7—N9—H9119.3O18—C19—H19B109.5
C7—N9—N10121.3 (2)O18—C19—H19C109.5
N10—N9—H9119.3H19A—C19—H19B109.5
C11—N10—N9115.4 (2)H19A—C19—H19C109.5
N10—C11—H11119.2H19B—C19—H19C109.5
S1—C2—C3—C40.8 (3)N10—C11—C12—C13176.9 (2)
S1—C2—C3—C6173.66 (19)N10—C11—C12—C173.1 (4)
C2—S1—C5—C40.8 (2)C11—C12—C13—C14180.0 (2)
C2—C3—C4—C50.2 (3)C11—C12—C17—C16179.6 (2)
C2—C3—C6—C784.9 (3)C12—C13—C14—C150.4 (4)
C3—C4—C5—S10.5 (3)C13—C12—C17—C160.4 (3)
C3—C6—C7—O890.8 (3)C13—C14—C15—C160.4 (4)
C3—C6—C7—N985.4 (3)C13—C14—C15—O18179.0 (2)
C4—C3—C6—C788.8 (3)C14—C15—C16—C170.0 (4)
C5—S1—C2—C31.0 (2)C14—C15—O18—C19175.7 (2)
C6—C3—C4—C5174.3 (2)C15—C16—C17—C120.4 (4)
C6—C7—N9—N105.8 (3)C16—C15—O18—C194.9 (4)
C7—N9—N10—C11177.8 (2)C17—C12—C13—C140.0 (3)
O8—C7—N9—N10177.97 (19)O18—C15—C16—C17179.4 (2)
N9—N10—C11—C12179.26 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C1–C5 thiophene ring.
D—H···AD—HH···AD···AD—H···A
N9—H9···O8i0.862.082.935 (3)179
C6—H6A···N100.972.442.782 (3)100
C13—H13···Cg1ii0.932.683.611 (2)179
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

LVM thanks the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035.

References

First citationBharti, S. K., Nath, G., Tilak, R. & Singh, S. K. (2010). Eur. J. Med. Chem. 45, 651–660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl-Sayed, H. A., Moustafa, A. H., El-Moneim, M. A., Awad, H. M. & Esmat, A. (2018). J. Pharm. Appl. Chem. 4, 125–131.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259–263.  Google Scholar
First citationPapakonstantinou-Garoufalias, S., Pouli, N., Marakos, P. & Chytyroglou-Ladas, A. (2002). Farmaco, 57, 973–977.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730–735.  Google Scholar
First citationVu Quoc, T., Nguyen Ngoc, L., Nguyen Tien, C., Thang Pham, C. & Van Meervelt, L. (2017). Acta Cryst. E73, 901–904.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardakhan, W. W., Eid, E.-S. N. N & Mohareb, R. M. (2013). Acta Pharm. 63, 45–57.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYadav, M., Sinha, R. R., Kumar, S., Bahadur, I. & Ebenso, E. E. (2015). J. Mol. Liq. 208, 322–332.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds