research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two new isocoumarin derivatives: 8-amino-6-methyl-3,4-di­phenyl-1H-isochromen-1-one and 8-amino-3,4-di­ethyl-6-methyl-1H-isochromen-1-one

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Physics, The New College (Autonomous), University of Madras, Chennai 600 014, Tamil Nadu, India, bOrganic & Bioorganic Chemistry, CSIR–Central Leather Research Institute, Chennai 600 020, Tamilnadu, India, cOrganic & Bioorganic Chemistry, CSIR-Central Leather Research Institute, Chennai 600 020, Tamilnadu, India, and dDepartment of Biophysics, All India Institute of Medical Science, New Delhi 110 029, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 May 2019; accepted 1 July 2019; online 9 July 2019)

The title compounds, 8-amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one, C22H17NO2, (I), and 8-amino-3,4-diethyl-6-methyl-1H-isochromen-1-one, C14H17NO2, (II), are new isocoumarin derivatives in which the isochromene ring systems are planar. Compound II crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In I, the two phenyl rings are inclined to each other by 56.41 (7)° and to the mean plane of the 1H-isochromene ring system by 67.64 (6) and 44.92 (6)°. In both compounds, there is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal of I, mol­ecules are linked by N—H⋯π inter­actions, forming chains along the b-axis direction. A C—H⋯π inter­action links the chains to form layers parallel to (100). The layers are then linked by a second C—H⋯π inter­action, forming a three-dimensional structure. In the crystal of II, the two independent mol­ecules (A and B) are linked by N—H⋯O hydrogen bonds, forming –A–B–A–B– chains along the [101] direction. The chains are linked into ribbons by C—H⋯π inter­actions involving inversion-related A mol­ecules. The latter are linked by offset ππ inter­actions [inter­centroid distances vary from 3.506 (1) to 3.870 (2) Å], forming a three-dimensional structure.

1. Chemical context

In recent years, there has been growing inter­est in the synthesis of natural products, since they are a tremendous and trustworthy source for the development of new drugs. The isocoumarin nucleus is a rich structural pattern in natural products (Barry, 1964[Barry, R. D. (1964). Chem. Rev. 64, 239-241.]) that are also constructive inter­mediates in the synthesis of a range of significant compounds, including some carbocyclic and heterocyclic compounds. Many isocoumarins show evidence of attention-grabbing biological properties and a number of pharmacological activities, such as anti­bacterial, anti­fungal, anti­tumor, anti-inflammatory, anti-allergic anti-cancer, anti-virus and anti-HIV (Khan et al., 2010[Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058-4064.]) activities. Isocoumarins are isolated in a enormous range of microorganisms, plants, insects and show significant biological activity, such the regulation of plant growth (Bianchi et al., 2004[Bianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufman, T. S. (2004). J. Agric. Food Chem. 52, 1923-1927.]). Isocoumarins and their derivatives are secondary metabolites of an extensive range of microbial plant and insect sources and in the creation of other medicinal compounds (Manivel et al., 2008[Manivel, P., Roopan, S. M. & Khan, F. N. (2008). J. Chil. Chem. Soc. 53, 1609-1610.]; Basvanag et al., 2009[Basvanag, U. M. V., Roopan, S. M. & Khan, F. N. (2009). Chem. Heterocycl. Compd, 45, 1276-1278.]). Depending on their chemical composition and concentration, they can be active either as inhibitors or stimulators in these processes. Isocoumarins and their derivatives (Ercole et al., 2009[Ercole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500-1511.]; Schnebel et al., 2003[Schnebel, M., Weidner, I., Wartchow, R. & Butenschön, H. (2003). Eur. J. Org. Chem. pp. 4363-4372.]; Schmalle et al., 1982[Schmalle, H. W., Jarchow, O. H., Hausen, B. M. & Schulz, K.-H. (1982). Acta Cryst. B38, 2938-2941.]) have been reported that have a close resemblance as far as isochromane and its attached phenyl ring is considered. The synthesis and pharmacological and other properties of coumarin and isocoumarin derivatives have been studied intensely and reviewed (Jain et al., 2012[Jain, P. K. & Joshi, H. (2012). J. Appl. Pharmaceutical Sciences, 2, 236-240.]; Pal et al., 2011[Pal, S., Chatare, V. & Pal, M. (2011). Curr. Org. Chem. 15, 782-800.]). Against this background and in view of the importance of their natural occurrence, biological activities, pharmacological activities, medicinal activities and utility as synthetic inter­mediates, we have synthesized the title compounds, and report herein on their crystal structures.

[Scheme 1]

2. Structural commentary

The mol­ecular structure and conformation of compound I is illustrated in Fig. 1[link]. It consists of a 1H-isochromen-1-one moiety substituted by two phenyl groups, an amino group and a methyl group. The mol­ecular structures and conformations of the two independent mol­ecules (A and B) of compound II are illustrated in Fig. 2[link]. Both mol­ecules consist of a 1H-isochromen-1-one moiety substituted by two ethyl groups, an amino group and a methyl group. The bond lengths and angles in the two independent mol­ecules agree with each other within experimental error. The normal probability plot analyses (Inter­national Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) for both bond lengths and angles show that the differences between the two symmetry-independent mol­ecules are of a statistical nature. For both compounds, the bond lengths and angles are close to those observed for a similar structure (Mayakrishnan et al., 2018[Mayakrishnan, S., Arun, Y., Maheswari, N. U. & Perumal, P. T. (2018). Chem. Commun. 54, 11889-11892.]). In both compounds, there is an intra­molecular N—H⋯O hydrogen bond present in each mol­ecule forming an S(6) ring motif: see Table 1[link] and Fig. 1[link] for I, and Table 2[link] and Fig. 2[link] for II.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C11–C16 and C1/C5–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N⋯O2 0.86 2.05 2.6915 (19) 131
N1—H1NCg1i 0.86 2.81 3.631 (2) 157
C20—H20⋯Cg2ii 0.93 2.70 3.588 (2) 160
C21—H21⋯Cg3iii 0.93 2.84 3.488 (2) 128
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

Cg2 is the centroid of the C1A/C5A–C9A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A2⋯O2A 0.86 2.05 2.701 (3) 131
N1B—H1B2⋯O2B 0.86 2.05 2.696 (3) 131
N1A—H1A1⋯O1Bi 0.86 2.57 3.328 (3) 148
N1B—H1B1⋯O1Aii 0.86 2.50 3.235 (3) 143
N1B—H1B1⋯O2Aii 0.86 2.53 3.367 (3) 165
C12A—H12ACg2iii 0.96 2.99 3.773 (2) 140
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of I, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bond (Table 1[link]) is shown as a dashed line.
[Figure 2]
Figure 2
The mol­ecular structure of the two independent mol­ecules (A and B) of II, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bonds (Table 2[link]) are shown as dashed lines.

In I, the phenyl rings (C11–C16 and C17–C22) are inclined to each other by 56.41 (7)° and to the mean plane of the 1H-isochromen-1-one (O1/C1–C9) ring system by 67.64 (6) and 44.92 (6)°, respectively. The 1H-isochromen-1-one moiety is planar (r.m.s. deviation = 0.021 Å) and atom O2 deviates from the mean plane by 0.041 (1) Å. In II, the 1H-isochromen-1-one ring system in each mol­ecule (A and B) is also planar (r.m.s. deviations are 0.012 and 0.0321Å, respectively) and atoms O2A and O2B deviate from their respective mean planes by 0.052 (2) and 0.014 (2) Å, respectively.

3. Supra­molecular features

In the crystal of I, mol­ecules are linked by N—H⋯π inter­actions, forming chains along the b-axis direction (Fig. 3[link] and Table 1[link]). A C—H⋯π inter­action (C20—H20⋯Cg2ii; Table 1[link]) links the chains into layers parallel to (100). The layers are linked by a second C—H⋯π inter­action (C21—H21⋯Cg3iii; Table 1[link]) to form a three-dimensional structure (Fig. 4[link]). No significant ππ inter­actions with centroid–centroid distances less than 4 Å are observed.

[Figure 3]
Figure 3
A partial view along the a axis of the crystal packing of I. The intra­molecular hydrogen bond and the N—H⋯π inter­action (Table 1[link]) are shown as dashed lines, and only the H atoms (grey balls) involved in the various inter­actions have been included.
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of I. The intra­molecular hydrogen bonds and the N—H⋯π and C—H⋯π inter­actions (Table 1[link]) are shown as dashed lines, and only the H atoms (grey balls) involved in the various inter­actions have been included.

In the crystal of II, the two independent mol­ecules are linked by N—H⋯O hydrogen bonds involving the amino H atom of mol­ecule B and the keto and chromen group oxygen atoms, O1A and O2A, of mol­ecule A, forming –ABAB– chains along the [101] direction (see Table 2[link] and Fig. 5[link]). The chains are linked by C—H⋯π inter­actions involving inversion-related A mol­ecules to form ribbons (Table 2[link] and Fig. 5[link]). The ribbons are linked by offset ππ inter­actions, forming a three-dimensional structure (Fig. 6[link]): inter­centroid distances Cg1⋯Cg2i = 3.506 (2) Å [α = 0.97 (12)°, β = 15.9°, inter­planar distances = 3.356 (1) and 3.373 (1) Å, offset = 0.958 Å] and Cg3⋯Cg4iv = 3.870 (2) Å [α = 6.01 (13)°, β = 16.5°, inter­planar distances = 3.611 (1) and 3.711 (1) Å, offset = 1.392 Å]; symmetry codes: (i) −x, −y, −z; (iv) −x, −y + [{1\over 2}], z − [{1\over 2}]; Cg1, Cg2, Cg3 and Cg4 are centroids of the (O1A/C1A–C4A/C9A), (C1A/C5A–C9A), (O1B/C1B–C4B/C9B) and (C1B/C5B–C9B) rings, respectively].

[Figure 5]
Figure 5
A partial view of the crystal packing of II (mol­ecule A blue, mol­ecule B red). The intra­molecular hydrogen bond (Table 2[link]) and the C—H⋯π inter­action, involving atom H12A (blue ball), are shown as dashed lines, and only the H atoms involved in the various inter­actions have been included.
[Figure 6]
Figure 6
A view along the a axis of the crystal packing of II (mol­ecule A blue, mol­ecule B red; O and N atoms are shown as balls). The hydrogen bonds (Table 2[link]) are shown as dashed lines, and only the H atoms involved in hydrogen bonding have been included.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), to analyse the inter­molecular contacts in the crystals, were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]).

The Hirshfeld surfaces of I and II mapped over dnorm are given in Fig. 7[link], and the inter­molecular contacts are illustrated in Fig. 8[link] for I and Fig. 9[link] for II. They are colour-mapped with the normalized contact distance, dnorm, ranging from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The dnorm surface was mapped over an arbitrary colour scale of −0.125 (red) to 1.528 (blue) for compound I and −0.178 (red) to 1.537 (blue) for compound II. The red spots on the surface indicate the inter­molecular contacts involved in hydrogen bonding.

[Figure 7]
Figure 7
The Hirshfeld surfaces mapped over dnorm, for (a) I and (b) II.
[Figure 8]
Figure 8
A view of the Hirshfeld surface mapped over dnorm of I, showing the various inter­molecular contacts in the crystal.
[Figure 9]
Figure 9
A view of the Hirshfeld surface mapped over dnorm of II, showing the various inter­molecular contacts in the crystal.

The fingerprint plots are given in Figs. 10[link] and 11[link]. For I, they reveal that the principal inter­molecular contacts are H⋯H at 48.9% (Fig. 10[link]b), O⋯H/H⋯O at 14.0% (Fig. 10[link]c), C⋯H/H⋯C contacts at 15.4% (Fig. 10[link]d) and H⋯N/N⋯H at 1.4% (Fig. 10[link]e) followed by the C⋯C contacts at 2% (Fig. 10[link]f). For II, they reveal a similar trend, with the principal inter­molecular contacts being H⋯H at 61.7% (Fig. 11[link]b), O⋯H/H⋯O at 15.6% (Fig. 11[link]c), C⋯H/H⋯C contacts at 14.6% (Fig. 11[link]d), and C⋯C contacts at 5.1% (Fig. 11[link]e) followed by the H⋯N/N⋯H at 2.2% (Fig. 11[link]f). In both compounds, the H⋯H inter­molecular contacts predominate, followed by O⋯H/H⋯O contacts. However, the C⋯C contacts are significantly different: 2% cf. 5.1% for I and II, respectively.

[Figure 10]
Figure 10
The full two-dimensional fingerprint plot for I, and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) N⋯H/H⋯N contacts and (f) C⋯C.
[Figure 11]
Figure 11
The full two-dimensional fingerprint plot for II, and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯·H/H⋯C, (e) C⋯C and (f) N⋯H/H⋯N contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, last update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 8-amino-1H-isochromen-1-ones gave only one hit, viz. 8-amino-3,4-bis­(4-meth­oxy­phen­yl)-1H-isochromen-1-one (CSD refcode NIKMAY; Mayakrishnan et al., 2018[Mayakrishnan, S., Arun, Y., Maheswari, N. U. & Perumal, P. T. (2018). Chem. Commun. 54, 11889-11892.]). The conformation of this mol­ecule is slightly different from that of compound (I)[link]. The isochromen-1-one ring system is planar (r.m.s. deviation = 0.042 Å) and the 4-meth­oxy­phenyl rings are inclined to this mean plane by 67.22 (13) and 71.26 (11)°, and to each other by 66.91 (18)°. The corresponding dihedral angles in compound I are 67.64 (6), 44.92 (6) and 56.41 (7)°. There is an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif as in compound (I)[link]. In the crystal, however, mol­ecules are linked by N—H⋯O hydrogen bonds into chains along [301], similar to the situation in compound II, rather than by N—H⋯π inter­actions as in the crystal of compound I.

6. Synthesis and crystallization

Compound I: An oven-dried round-bottom 25 ml flask with a magnetic stirrer bar was charged with 7-methyl-2H-benzo[d][1,3]oxazine-2,4(1H)-dione (1.0 equiv), di­phenyl­acetyl­ene (1.2 equiv), [RhCp*Cl2]2 (3.0 mol %), Cu(OAc) (1.0 equiv) and di­methyl­formamide (5 ml). The flask was sealed using a Teflon-coated screw cap and the reaction was continuously heated at 383 K for 24 h. The mixture was then cooled to ambient temperature, diluted with 25 ml of ethyl acetate, filtered through a celite pad, and washed with 40–60 ml of ethyl acetate. The combined organic phases were concentrated under reduced pressure, and the residue was purified by column chromatography using silica gel which led to the desired product, compound I.

Compound II: An oven-dried round-bottom 25 ml flask with a magnetic stirrer bar was charged with 7-methyl-2H-benzo[d][1,3]oxazine-2,4(1H)-dione (1.0 equiv), hex-3-yne (1.2 equiv), [RhCp*Cl2]2 (3.0 mol %), Cu(OAc) (1.0 equiv) and di­methyl­formamide (5 ml). The flask was sealed using a Teflon-coated screw cap and the reaction was continuously heated at 383 K for 24 h. The mixture was then cooled to ambient temperature, diluted with 25 ml of ethyl acetate, then filtered through a celite pad and washed with 40–60 ml of ethyl acetate. The combined organic phases were concentrated under reduced pressure, and the residue was purified by column chromatography using silica gel, which led to the desired product, viz. compound II.

Colourless block-like crystals of compounds I and II were obtained by slow evaporation of solutions in ethanol.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically, with N—H = 0.86 Å, C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(N, C) for other H atoms. The crystal of compound II diffracted extremely weakly beyond 20° in θ and the data set was restricted to a maximum θ angle of 23.8°.

Table 3
Experimental details

  I II
Crystal data
Chemical formula C22H17NO2 C14H17NO2
Mr 327.36 231.28
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 296 296
a, b, c (Å) 9.1652 (3), 16.9764 (6), 10.9687 (4) 10.4844 (8), 26.562 (2), 9.3651 (6)
β (°) 91.156 (1) 105.367 (3)
V3) 1706.30 (10) 2514.8 (3)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.08
Crystal size (mm) 0.32 × 0.18 × 0.12 0.25 × 0.22 × 0.13
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.756, 0.824 0.756, 0.824
No. of measured, independent and observed [I > 2σ(I)] reflections 14904, 3628, 2719 13067, 3755, 2132
Rint 0.025 0.048
θmax (°) 26.8 23.8
(sin θ/λ)max−1) 0.634 0.567
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.03 0.054, 0.168, 1.01
No. of reflections 3628 3755
No. of parameters 228 313
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.15 0.15, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2018 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

8-Amino-6-methyl-3,4-diphenyl-1H-isochromen-1-one (I) top
Crystal data top
C22H17NO2F(000) = 688
Mr = 327.36Dx = 1.274 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1652 (3) ÅCell parameters from 3001 reflections
b = 16.9764 (6) Åθ = 1.8–26.9°
c = 10.9687 (4) ŵ = 0.08 mm1
β = 91.156 (1)°T = 296 K
V = 1706.30 (10) Å3Block, colourless
Z = 40.32 × 0.18 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2719 reflections with I > 2σ(I)
ω and φ scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 26.8°, θmin = 2.2°
Tmin = 0.756, Tmax = 0.824h = 711
14904 measured reflectionsk = 1621
3628 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.3498P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3628 reflectionsΔρmax = 0.22 e Å3
228 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: (SHELXL-2018/3; Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30517 (11)0.50819 (6)0.13908 (8)0.0428 (3)
O20.34168 (15)0.45740 (7)0.31876 (9)0.0642 (4)
N10.29626 (19)0.30274 (9)0.35783 (12)0.0693 (5)
H1N0.2960820.2601750.4003590.083*
H2N0.3210680.3466620.3905140.083*
C10.25918 (14)0.36948 (8)0.16525 (11)0.0369 (3)
C20.30400 (16)0.44376 (9)0.21526 (12)0.0423 (3)
C30.26388 (14)0.50381 (8)0.01861 (11)0.0343 (3)
C40.22498 (14)0.43536 (8)0.03282 (11)0.0328 (3)
C50.18557 (15)0.29115 (8)0.00781 (13)0.0404 (3)
H50.1626840.2874980.0898350.048*
C60.18321 (16)0.22339 (9)0.06446 (14)0.0444 (4)
C70.21712 (16)0.22931 (9)0.18611 (14)0.0466 (4)
H70.2130120.1842950.2343750.056*
C80.25737 (16)0.30058 (9)0.23912 (12)0.0437 (4)
C90.22152 (14)0.36370 (8)0.04094 (11)0.0338 (3)
C100.1460 (2)0.14520 (10)0.00914 (18)0.0717 (6)
H10A0.0634440.1511580.0424990.108*
H10B0.2279830.1262750.0382500.108*
H10C0.1229610.1081740.0728110.108*
C110.19198 (14)0.43298 (7)0.16566 (11)0.0341 (3)
C120.05157 (16)0.41920 (9)0.20535 (13)0.0427 (3)
H120.0222640.4069270.1491280.051*
C130.02070 (18)0.42361 (10)0.32806 (14)0.0523 (4)
H130.0741060.4152710.3538310.063*
C140.1301 (2)0.44033 (10)0.41240 (13)0.0530 (4)
H140.1089690.4434480.4948300.064*
C150.27035 (18)0.45239 (9)0.37447 (13)0.0471 (4)
H150.3442960.4631120.4313700.057*
C160.30160 (16)0.44859 (8)0.25200 (12)0.0395 (3)
H160.3968140.4565370.2269360.047*
C170.27264 (14)0.58255 (8)0.03882 (12)0.0359 (3)
C180.16250 (17)0.60991 (9)0.11333 (14)0.0465 (4)
H180.0815200.5784370.1274400.056*
C190.1727 (2)0.68360 (9)0.16655 (15)0.0556 (4)
H190.0985910.7015820.2161010.067*
C200.2924 (2)0.73034 (9)0.14627 (14)0.0547 (4)
H200.2995690.7796220.1829150.066*
C210.40126 (18)0.70442 (9)0.07209 (15)0.0527 (4)
H210.4820360.7361850.0586950.063*
C220.39120 (16)0.63116 (9)0.01716 (14)0.0447 (4)
H220.4641960.6144170.0345120.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0583 (6)0.0377 (6)0.0324 (5)0.0033 (5)0.0039 (4)0.0015 (4)
O20.1014 (10)0.0597 (8)0.0317 (6)0.0104 (7)0.0110 (6)0.0030 (5)
N10.1126 (13)0.0608 (9)0.0347 (7)0.0103 (9)0.0097 (7)0.0132 (6)
C10.0402 (7)0.0394 (8)0.0310 (6)0.0003 (6)0.0027 (5)0.0023 (5)
C20.0523 (8)0.0445 (8)0.0301 (7)0.0001 (7)0.0013 (6)0.0002 (6)
C30.0358 (7)0.0364 (7)0.0307 (6)0.0014 (6)0.0008 (5)0.0007 (5)
C40.0340 (6)0.0339 (7)0.0305 (6)0.0023 (5)0.0008 (5)0.0023 (5)
C50.0477 (8)0.0367 (8)0.0370 (7)0.0016 (6)0.0064 (6)0.0021 (6)
C60.0440 (8)0.0362 (8)0.0531 (8)0.0033 (6)0.0050 (6)0.0064 (6)
C70.0508 (8)0.0414 (9)0.0474 (8)0.0016 (7)0.0002 (7)0.0158 (7)
C80.0486 (8)0.0495 (9)0.0329 (7)0.0003 (7)0.0020 (6)0.0088 (6)
C90.0347 (7)0.0351 (7)0.0316 (6)0.0009 (6)0.0017 (5)0.0019 (5)
C100.0957 (14)0.0402 (10)0.0803 (13)0.0122 (9)0.0301 (11)0.0094 (9)
C110.0424 (7)0.0271 (7)0.0328 (7)0.0027 (6)0.0010 (5)0.0023 (5)
C120.0422 (7)0.0455 (9)0.0404 (8)0.0012 (6)0.0027 (6)0.0027 (6)
C130.0547 (9)0.0536 (10)0.0493 (9)0.0054 (8)0.0173 (7)0.0003 (7)
C140.0782 (11)0.0486 (9)0.0327 (7)0.0133 (8)0.0101 (7)0.0031 (6)
C150.0650 (10)0.0406 (8)0.0354 (7)0.0070 (7)0.0083 (7)0.0049 (6)
C160.0444 (7)0.0373 (8)0.0367 (7)0.0019 (6)0.0020 (6)0.0015 (6)
C170.0401 (7)0.0320 (7)0.0355 (7)0.0032 (6)0.0066 (6)0.0020 (5)
C180.0486 (8)0.0389 (8)0.0520 (9)0.0026 (7)0.0036 (7)0.0011 (7)
C190.0721 (11)0.0435 (9)0.0513 (9)0.0128 (9)0.0072 (8)0.0047 (7)
C200.0816 (12)0.0332 (8)0.0488 (9)0.0013 (8)0.0110 (8)0.0042 (7)
C210.0570 (9)0.0399 (9)0.0609 (10)0.0069 (7)0.0110 (8)0.0020 (7)
C220.0440 (8)0.0394 (8)0.0505 (8)0.0015 (7)0.0020 (6)0.0003 (6)
Geometric parameters (Å, º) top
O1—C21.3763 (17)C11—C121.3867 (19)
O1—C31.3838 (15)C11—C161.3922 (19)
O2—C21.2155 (16)C12—C131.383 (2)
N1—C81.3574 (19)C12—H120.9300
N1—H1N0.8600C13—C141.380 (2)
N1—H2N0.8600C13—H130.9300
C1—C91.4167 (18)C14—C151.374 (2)
C1—C81.4227 (19)C14—H140.9300
C1—C21.438 (2)C15—C161.3807 (19)
C3—C41.3430 (18)C15—H150.9300
C3—C171.4792 (18)C16—H160.9300
C4—C91.4611 (18)C17—C221.389 (2)
C4—C111.4947 (17)C17—C181.391 (2)
C5—C91.3851 (19)C18—C191.383 (2)
C5—C61.397 (2)C18—H180.9300
C5—H50.9300C19—C201.375 (2)
C6—C71.380 (2)C19—H190.9300
C6—C101.501 (2)C20—C211.373 (2)
C7—C81.395 (2)C20—H200.9300
C7—H70.9300C21—C221.384 (2)
C10—H10A0.9600C21—H210.9300
C10—H10B0.9600C22—H220.9300
C10—H10C0.9600
C2—O1—C3122.56 (11)C12—C11—C16118.69 (12)
C8—N1—H1N120.0C12—C11—C4121.20 (12)
C8—N1—H2N120.0C16—C11—C4120.04 (12)
H1N—N1—H2N120.0C13—C12—C11120.39 (14)
C9—C1—C8119.40 (13)C13—C12—H12119.8
C9—C1—C2120.31 (12)C11—C12—H12119.8
C8—C1—C2120.25 (12)C14—C13—C12120.22 (15)
O2—C2—O1114.63 (13)C14—C13—H13119.9
O2—C2—C1127.72 (13)C12—C13—H13119.9
O1—C2—C1117.64 (11)C15—C14—C13119.94 (14)
C4—C3—O1121.84 (12)C15—C14—H14120.0
C4—C3—C17128.00 (12)C13—C14—H14120.0
O1—C3—C17110.16 (11)C14—C15—C16120.08 (14)
C3—C4—C9119.40 (11)C14—C15—H15120.0
C3—C4—C11119.57 (11)C16—C15—H15120.0
C9—C4—C11120.98 (11)C15—C16—C11120.64 (14)
C9—C5—C6120.94 (13)C15—C16—H16119.7
C9—C5—H5119.5C11—C16—H16119.7
C6—C5—H5119.5C22—C17—C18118.79 (13)
C7—C6—C5119.18 (14)C22—C17—C3120.00 (12)
C7—C6—C10120.84 (14)C18—C17—C3121.20 (13)
C5—C6—C10119.98 (14)C19—C18—C17120.41 (15)
C6—C7—C8122.20 (13)C19—C18—H18119.8
C6—C7—H7118.9C17—C18—H18119.8
C8—C7—H7118.9C20—C19—C18120.06 (15)
N1—C8—C7119.99 (14)C20—C19—H19120.0
N1—C8—C1121.59 (14)C18—C19—H19120.0
C7—C8—C1118.41 (13)C21—C20—C19120.17 (15)
C5—C9—C1119.84 (12)C21—C20—H20119.9
C5—C9—C4121.96 (12)C19—C20—H20119.9
C1—C9—C4118.19 (12)C20—C21—C22120.21 (15)
C6—C10—H10A109.5C20—C21—H21119.9
C6—C10—H10B109.5C22—C21—H21119.9
H10A—C10—H10B109.5C21—C22—C17120.32 (14)
C6—C10—H10C109.5C21—C22—H22119.8
H10A—C10—H10C109.5C17—C22—H22119.8
H10B—C10—H10C109.5
C3—O1—C2—O2179.19 (13)C3—C4—C9—C5178.47 (13)
C3—O1—C2—C10.67 (19)C11—C4—C9—C51.05 (19)
C9—C1—C2—O2178.61 (15)C3—C4—C9—C10.26 (18)
C8—C1—C2—O20.9 (2)C11—C4—C9—C1177.68 (12)
C9—C1—C2—O11.5 (2)C3—C4—C11—C12111.95 (15)
C8—C1—C2—O1179.26 (12)C9—C4—C11—C1270.64 (17)
C2—O1—C3—C42.49 (19)C3—C4—C11—C1664.84 (17)
C2—O1—C3—C17178.45 (12)C9—C4—C11—C16112.57 (14)
O1—C3—C4—C91.94 (19)C16—C11—C12—C132.2 (2)
C17—C3—C4—C9179.17 (12)C4—C11—C12—C13174.66 (13)
O1—C3—C4—C11175.51 (11)C11—C12—C13—C141.2 (2)
C17—C3—C4—C113.4 (2)C12—C13—C14—C150.2 (2)
C9—C5—C6—C70.1 (2)C13—C14—C15—C160.7 (2)
C9—C5—C6—C10179.11 (15)C14—C15—C16—C110.3 (2)
C5—C6—C7—C81.6 (2)C12—C11—C16—C151.7 (2)
C10—C6—C7—C8177.57 (16)C4—C11—C16—C15175.14 (13)
C6—C7—C8—N1176.95 (15)C4—C3—C17—C22136.31 (15)
C6—C7—C8—C11.8 (2)O1—C3—C17—C2242.68 (16)
C9—C1—C8—N1178.25 (14)C4—C3—C17—C1844.8 (2)
C2—C1—C8—N10.5 (2)O1—C3—C17—C18136.26 (13)
C9—C1—C8—C70.5 (2)C22—C17—C18—C191.2 (2)
C2—C1—C8—C7178.22 (13)C3—C17—C18—C19179.82 (13)
C6—C5—C9—C11.2 (2)C17—C18—C19—C200.2 (2)
C6—C5—C9—C4179.90 (13)C18—C19—C20—C210.7 (2)
C8—C1—C9—C50.97 (19)C19—C20—C21—C220.1 (2)
C2—C1—C9—C5176.77 (12)C20—C21—C22—C171.5 (2)
C8—C1—C9—C4179.73 (12)C18—C17—C22—C212.0 (2)
C2—C1—C9—C41.99 (19)C3—C17—C22—C21178.99 (13)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C17–C22, C11–C16 and C1/C5–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H2N···O20.862.052.6915 (19)131
N1—H1N···Cg1i0.862.813.631 (2)157
C20—H20···Cg2ii0.932.703.588 (2)160
C21—H21···Cg3iii0.932.843.488 (2)128
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+2, z+1.
8-Amino-3,4-diethyl-6-methyl-1H-isochromen-1-one (II) top
Crystal data top
C14H17NO2F(000) = 992
Mr = 231.28Dx = 1.222 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.4844 (8) ÅCell parameters from 3755 reflections
b = 26.562 (2) Åθ = 1.8–26.9°
c = 9.3651 (6) ŵ = 0.08 mm1
β = 105.367 (3)°T = 296 K
V = 2514.8 (3) Å3Block, colourless
Z = 80.25 × 0.22 × 0.13 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2132 reflections with I > 2σ(I)
ω and φ scansRint = 0.048
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 23.8°, θmin = 2.2°
Tmin = 0.756, Tmax = 0.824h = 1111
13067 measured reflectionsk = 2923
3755 independent reflectionsl = 107
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0872P)2]
where P = (Fo2 + 2Fc2)/3
3755 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.19526 (18)0.03883 (8)0.3169 (2)0.0621 (6)
O2A0.1114 (2)0.10719 (9)0.2007 (2)0.0765 (7)
N1A0.1310 (2)0.10445 (9)0.0078 (2)0.0688 (7)
H1A10.1980310.1170450.0559460.083*
H1A20.0622490.1226690.0440010.083*
C1A0.0241 (2)0.03391 (10)0.1564 (2)0.0420 (7)
C2A0.0926 (3)0.06286 (12)0.2204 (3)0.0529 (8)
C3A0.1906 (3)0.01162 (12)0.3555 (3)0.0532 (8)
C4A0.0834 (2)0.03978 (10)0.3010 (3)0.0458 (7)
C5A0.1438 (3)0.04469 (10)0.1329 (3)0.0493 (7)
H5A0.1478250.0783120.1590150.059*
C6A0.2512 (3)0.02321 (12)0.0321 (3)0.0538 (8)
C7A0.2452 (3)0.02619 (13)0.0072 (3)0.0556 (8)
H7A0.3174820.0404230.0749010.067*
C8A0.1338 (3)0.05578 (11)0.0513 (3)0.0492 (7)
C9A0.0303 (2)0.01716 (10)0.1956 (2)0.0417 (7)
C10A0.3711 (3)0.05465 (13)0.0348 (3)0.0806 (10)
H10A0.3499550.0791140.1003750.121*
H10B0.3988470.0715630.0425270.121*
H10C0.4412920.0333700.0891770.121*
C11A0.3183 (3)0.02507 (13)0.4640 (3)0.0761 (10)
H11A0.3263550.0614320.4703820.091*
H11B0.3910300.0122360.4287750.091*
C12A0.3281 (3)0.00403 (13)0.6162 (3)0.0828 (11)
H12A0.2621320.0194010.6560400.124*
H12B0.4143510.0109970.6799280.124*
H12C0.3142020.0317140.6094900.124*
C13A0.0781 (3)0.09389 (11)0.3488 (3)0.0597 (8)
H13A0.0337430.1139770.2636090.072*
H13B0.1675790.1065920.3852380.072*
C14A0.0062 (3)0.09996 (13)0.4687 (3)0.0818 (10)
H14A0.0826890.0877020.4330300.123*
H14B0.0044380.1349060.4942360.123*
H14C0.0514680.0811080.5546720.123*
O1B0.34202 (18)0.19483 (8)0.14816 (19)0.0623 (6)
O2B0.4302 (2)0.12582 (9)0.2580 (2)0.0859 (7)
N1B0.6446 (2)0.13134 (10)0.4921 (3)0.0786 (8)
H1B10.7055690.1192910.5642640.094*
H1B20.5918050.1113500.4319770.094*
C1B0.5316 (2)0.20312 (11)0.3560 (3)0.0442 (7)
C2B0.4371 (3)0.17168 (12)0.2564 (3)0.0562 (8)
C3B0.3370 (3)0.24666 (12)0.1273 (3)0.0532 (8)
C4B0.4230 (3)0.27743 (10)0.2151 (3)0.0479 (7)
C5B0.6132 (3)0.28607 (11)0.4388 (3)0.0564 (8)
H5B0.6088670.3208540.4270940.068*
C6B0.7082 (3)0.26519 (14)0.5561 (3)0.0614 (8)
C7B0.7174 (3)0.21419 (14)0.5708 (3)0.0628 (9)
H7B0.7828100.2004930.6482140.075*
C8B0.6315 (3)0.18187 (11)0.4730 (3)0.0531 (8)
C9B0.5246 (2)0.25581 (11)0.3387 (3)0.0447 (7)
C10B0.8005 (3)0.29914 (14)0.6652 (4)0.0914 (12)
H10D0.8612500.2790470.7377010.137*
H10E0.7502280.3201320.7136630.137*
H10F0.8489500.3198610.6138640.137*
C11B0.2212 (3)0.25846 (13)0.0000 (3)0.0767 (10)
H11C0.2264980.2383030.0845890.092*
H11D0.2251740.2936100.0265700.092*
C12B0.0907 (3)0.24846 (15)0.0340 (4)0.1083 (14)
H12D0.0907130.2149980.0727490.162*
H12E0.0202400.2516650.0550140.162*
H12F0.0780470.2723580.1059490.162*
C13B0.4150 (3)0.33380 (11)0.1925 (3)0.0604 (8)
H13C0.3740070.3409400.0889090.073*
H13D0.5037550.3476150.2171500.073*
C14B0.3362 (3)0.35947 (11)0.2865 (3)0.0731 (9)
H14D0.2474120.3466480.2604560.110*
H14E0.3344750.3951090.2690950.110*
H14F0.3769190.3528670.3892390.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0559 (13)0.0674 (16)0.0564 (12)0.0158 (11)0.0035 (10)0.0115 (11)
O2A0.1035 (18)0.0453 (15)0.0803 (14)0.0221 (13)0.0241 (12)0.0094 (12)
N1A0.0866 (19)0.0476 (18)0.0742 (17)0.0169 (14)0.0249 (14)0.0101 (13)
C1A0.0511 (17)0.0357 (18)0.0386 (13)0.0001 (13)0.0105 (12)0.0057 (12)
C2A0.064 (2)0.049 (2)0.0463 (16)0.0100 (17)0.0163 (15)0.0123 (15)
C3A0.0533 (19)0.056 (2)0.0485 (16)0.0012 (16)0.0103 (14)0.0049 (14)
C4A0.0430 (16)0.049 (2)0.0427 (14)0.0015 (14)0.0061 (13)0.0024 (13)
C5A0.0508 (17)0.0438 (19)0.0486 (15)0.0030 (14)0.0049 (14)0.0003 (13)
C6A0.0471 (18)0.059 (2)0.0502 (16)0.0017 (16)0.0046 (14)0.0033 (15)
C7A0.0494 (18)0.067 (2)0.0456 (16)0.0171 (17)0.0040 (13)0.0008 (15)
C8A0.067 (2)0.0393 (19)0.0470 (15)0.0117 (16)0.0243 (15)0.0002 (14)
C9A0.0415 (16)0.0449 (19)0.0371 (13)0.0023 (13)0.0078 (12)0.0049 (12)
C10A0.055 (2)0.092 (3)0.081 (2)0.0079 (19)0.0065 (16)0.0077 (19)
C11A0.0516 (19)0.096 (3)0.070 (2)0.0024 (18)0.0020 (16)0.0106 (19)
C12A0.087 (2)0.090 (3)0.0563 (19)0.007 (2)0.0078 (17)0.0083 (18)
C13A0.0571 (18)0.059 (2)0.0587 (17)0.0130 (15)0.0078 (14)0.0117 (15)
C14A0.093 (2)0.083 (3)0.073 (2)0.002 (2)0.0271 (18)0.0218 (18)
O1B0.0632 (13)0.0536 (15)0.0614 (12)0.0025 (11)0.0012 (10)0.0087 (11)
O2B0.1026 (18)0.0414 (16)0.1027 (17)0.0062 (13)0.0079 (14)0.0060 (13)
N1B0.0833 (19)0.056 (2)0.093 (2)0.0262 (15)0.0168 (15)0.0176 (15)
C1B0.0418 (16)0.044 (2)0.0457 (14)0.0047 (14)0.0097 (13)0.0033 (13)
C2B0.0595 (19)0.046 (2)0.0612 (18)0.0001 (17)0.0132 (16)0.0027 (16)
C3B0.0580 (19)0.050 (2)0.0506 (16)0.0081 (16)0.0120 (14)0.0028 (15)
C4B0.0540 (17)0.0415 (19)0.0477 (15)0.0049 (14)0.0125 (14)0.0031 (14)
C5B0.0607 (19)0.043 (2)0.0632 (17)0.0024 (15)0.0131 (16)0.0019 (15)
C6B0.0448 (18)0.074 (3)0.0608 (18)0.0025 (17)0.0062 (15)0.0052 (18)
C7B0.0483 (18)0.081 (3)0.0538 (17)0.0108 (18)0.0049 (14)0.0059 (18)
C8B0.0516 (18)0.048 (2)0.0620 (18)0.0109 (15)0.0197 (15)0.0048 (15)
C9B0.0437 (16)0.043 (2)0.0479 (15)0.0016 (13)0.0124 (13)0.0002 (13)
C10B0.066 (2)0.109 (3)0.087 (2)0.010 (2)0.0018 (19)0.024 (2)
C11B0.075 (2)0.086 (3)0.0574 (18)0.0129 (19)0.0039 (17)0.0030 (17)
C12B0.063 (2)0.118 (4)0.125 (3)0.013 (2)0.009 (2)0.008 (3)
C13B0.073 (2)0.052 (2)0.0570 (16)0.0107 (16)0.0178 (15)0.0086 (15)
C14B0.092 (2)0.050 (2)0.083 (2)0.0184 (18)0.0329 (19)0.0023 (17)
Geometric parameters (Å, º) top
O1A—C2A1.366 (3)O1B—C2B1.365 (3)
O1A—C3A1.392 (3)O1B—C3B1.389 (3)
O2A—C2A1.216 (3)O2B—C2B1.221 (3)
N1A—C8A1.358 (3)N1B—C8B1.356 (3)
N1A—H1A10.8600N1B—H1B10.8600
N1A—H1A20.8600N1B—H1B20.8600
C1A—C9A1.411 (3)C1B—C9B1.409 (3)
C1A—C8A1.425 (3)C1B—C8B1.417 (3)
C1A—C2A1.435 (4)C1B—C2B1.435 (4)
C3A—C4A1.334 (3)C3B—C4B1.328 (4)
C3A—C11A1.494 (4)C3B—C11B1.492 (4)
C4A—C9A1.461 (3)C4B—C9B1.467 (3)
C4A—C13A1.511 (4)C4B—C13B1.511 (4)
C5A—C6A1.386 (3)C5B—C6B1.388 (4)
C5A—C9A1.387 (3)C5B—C9B1.388 (3)
C5A—H5A0.9300C5B—H5B0.9300
C6A—C7A1.369 (4)C6B—C7B1.363 (4)
C6A—C10A1.501 (4)C6B—C10B1.507 (4)
C7A—C8A1.393 (4)C7B—C8B1.396 (4)
C7A—H7A0.9300C7B—H7B0.9300
C10A—H10A0.9600C10B—H10D0.9600
C10A—H10B0.9600C10B—H10E0.9600
C10A—H10C0.9600C10B—H10F0.9600
C11A—C12A1.509 (4)C11B—C12B1.509 (4)
C11A—H11A0.9700C11B—H11C0.9700
C11A—H11B0.9700C11B—H11D0.9700
C12A—H12A0.9600C12B—H12D0.9600
C12A—H12B0.9600C12B—H12E0.9600
C12A—H12C0.9600C12B—H12F0.9600
C13A—C14A1.517 (4)C13B—C14B1.519 (4)
C13A—H13A0.9700C13B—H13C0.9700
C13A—H13B0.9700C13B—H13D0.9700
C14A—H14A0.9600C14B—H14D0.9600
C14A—H14B0.9600C14B—H14E0.9600
C14A—H14C0.9600C14B—H14F0.9600
C2A—O1A—C3A123.1 (2)C2B—O1B—C3B122.9 (2)
C8A—N1A—H1A1120.0C8B—N1B—H1B1120.0
C8A—N1A—H1A2120.0C8B—N1B—H1B2120.0
H1A1—N1A—H1A2120.0H1B1—N1B—H1B2120.0
C9A—C1A—C8A119.1 (2)C9B—C1B—C8B119.3 (2)
C9A—C1A—C2A120.0 (2)C9B—C1B—C2B119.8 (2)
C8A—C1A—C2A120.9 (3)C8B—C1B—C2B120.8 (3)
O2A—C2A—O1A115.0 (3)O2B—C2B—O1B115.1 (3)
O2A—C2A—C1A127.6 (3)O2B—C2B—C1B127.3 (3)
O1A—C2A—C1A117.5 (3)O1B—C2B—C1B117.6 (3)
C4A—C3A—O1A121.6 (2)C4B—C3B—O1B121.9 (2)
C4A—C3A—C11A129.7 (3)C4B—C3B—C11B129.8 (3)
O1A—C3A—C11A108.7 (3)O1B—C3B—C11B108.3 (3)
C3A—C4A—C9A118.8 (3)C3B—C4B—C9B118.6 (3)
C3A—C4A—C13A120.9 (2)C3B—C4B—C13B121.3 (2)
C9A—C4A—C13A120.3 (2)C9B—C4B—C13B120.0 (2)
C6A—C5A—C9A121.5 (3)C6B—C5B—C9B121.0 (3)
C6A—C5A—H5A119.3C6B—C5B—H5B119.5
C9A—C5A—H5A119.3C9B—C5B—H5B119.5
C7A—C6A—C5A119.4 (3)C7B—C6B—C5B119.6 (3)
C7A—C6A—C10A121.0 (3)C7B—C6B—C10B120.7 (3)
C5A—C6A—C10A119.7 (3)C5B—C6B—C10B119.7 (3)
C6A—C7A—C8A121.9 (3)C6B—C7B—C8B121.9 (3)
C6A—C7A—H7A119.0C6B—C7B—H7B119.0
C8A—C7A—H7A119.0C8B—C7B—H7B119.0
N1A—C8A—C7A120.1 (3)N1B—C8B—C7B119.8 (3)
N1A—C8A—C1A121.2 (3)N1B—C8B—C1B121.6 (3)
C7A—C8A—C1A118.7 (3)C7B—C8B—C1B118.6 (3)
C5A—C9A—C1A119.3 (2)C5B—C9B—C1B119.5 (2)
C5A—C9A—C4A121.6 (3)C5B—C9B—C4B121.5 (3)
C1A—C9A—C4A119.1 (2)C1B—C9B—C4B119.0 (2)
C6A—C10A—H10A109.5C6B—C10B—H10D109.5
C6A—C10A—H10B109.5C6B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C6A—C10A—H10C109.5C6B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C3A—C11A—C12A112.3 (3)C3B—C11B—C12B112.7 (3)
C3A—C11A—H11A109.1C3B—C11B—H11C109.1
C12A—C11A—H11A109.1C12B—C11B—H11C109.1
C3A—C11A—H11B109.1C3B—C11B—H11D109.1
C12A—C11A—H11B109.1C12B—C11B—H11D109.1
H11A—C11A—H11B107.9H11C—C11B—H11D107.8
C11A—C12A—H12A109.5C11B—C12B—H12D109.5
C11A—C12A—H12B109.5C11B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C11A—C12A—H12C109.5C11B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
C4A—C13A—C14A112.6 (2)C4B—C13B—C14B112.5 (2)
C4A—C13A—H13A109.1C4B—C13B—H13C109.1
C14A—C13A—H13A109.1C14B—C13B—H13C109.1
C4A—C13A—H13B109.1C4B—C13B—H13D109.1
C14A—C13A—H13B109.1C14B—C13B—H13D109.1
H13A—C13A—H13B107.8H13C—C13B—H13D107.8
C13A—C14A—H14A109.5C13B—C14B—H14D109.5
C13A—C14A—H14B109.5C13B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C13A—C14A—H14C109.5C13B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C3A—O1A—C2A—O2A178.6 (2)C3B—O1B—C2B—O2B178.2 (2)
C3A—O1A—C2A—C1A0.4 (3)C3B—O1B—C2B—C1B2.8 (4)
C9A—C1A—C2A—O2A177.9 (3)C9B—C1B—C2B—O2B179.6 (3)
C8A—C1A—C2A—O2A3.1 (4)C8B—C1B—C2B—O2B0.2 (4)
C9A—C1A—C2A—O1A0.9 (3)C9B—C1B—C2B—O1B0.7 (4)
C8A—C1A—C2A—O1A178.1 (2)C8B—C1B—C2B—O1B178.7 (2)
C2A—O1A—C3A—C4A0.8 (4)C2B—O1B—C3B—C4B2.0 (4)
C2A—O1A—C3A—C11A179.3 (2)C2B—O1B—C3B—C11B179.9 (2)
O1A—C3A—C4A—C9A1.5 (4)O1B—C3B—C4B—C9B1.0 (4)
C11A—C3A—C4A—C9A179.6 (2)C11B—C3B—C4B—C9B176.7 (3)
O1A—C3A—C4A—C13A177.5 (2)O1B—C3B—C4B—C13B179.1 (2)
C11A—C3A—C4A—C13A0.6 (4)C11B—C3B—C4B—C13B1.4 (4)
C9A—C5A—C6A—C7A0.4 (4)C9B—C5B—C6B—C7B2.1 (4)
C9A—C5A—C6A—C10A179.1 (2)C9B—C5B—C6B—C10B178.3 (3)
C5A—C6A—C7A—C8A0.1 (4)C5B—C6B—C7B—C8B1.7 (4)
C10A—C6A—C7A—C8A178.7 (3)C10B—C6B—C7B—C8B178.8 (3)
C6A—C7A—C8A—N1A179.0 (2)C6B—C7B—C8B—N1B180.0 (3)
C6A—C7A—C8A—C1A0.8 (4)C6B—C7B—C8B—C1B0.5 (4)
C9A—C1A—C8A—N1A178.5 (2)C9B—C1B—C8B—N1B178.3 (2)
C2A—C1A—C8A—N1A0.5 (4)C2B—C1B—C8B—N1B2.3 (4)
C9A—C1A—C8A—C7A1.3 (3)C9B—C1B—C8B—C7B2.2 (4)
C2A—C1A—C8A—C7A179.7 (2)C2B—C1B—C8B—C7B177.2 (2)
C6A—C5A—C9A—C1A0.2 (4)C6B—C5B—C9B—C1B0.3 (4)
C6A—C5A—C9A—C4A179.6 (2)C6B—C5B—C9B—C4B179.4 (2)
C8A—C1A—C9A—C5A1.0 (3)C8B—C1B—C9B—C5B1.8 (3)
C2A—C1A—C9A—C5A180.0 (2)C2B—C1B—C9B—C5B177.6 (2)
C8A—C1A—C9A—C4A178.7 (2)C8B—C1B—C9B—C4B178.5 (2)
C2A—C1A—C9A—C4A0.2 (3)C2B—C1B—C9B—C4B2.2 (3)
C3A—C4A—C9A—C5A178.8 (2)C3B—C4B—C9B—C5B176.7 (2)
C13A—C4A—C9A—C5A2.2 (4)C13B—C4B—C9B—C5B1.4 (4)
C3A—C4A—C9A—C1A1.0 (3)C3B—C4B—C9B—C1B3.0 (3)
C13A—C4A—C9A—C1A178.1 (2)C13B—C4B—C9B—C1B178.9 (2)
C4A—C3A—C11A—C12A103.6 (4)C4B—C3B—C11B—C12B109.5 (4)
O1A—C3A—C11A—C12A74.7 (3)O1B—C3B—C11B—C12B68.5 (3)
C3A—C4A—C13A—C14A98.1 (3)C3B—C4B—C13B—C14B93.8 (3)
C9A—C4A—C13A—C14A80.9 (3)C9B—C4B—C13B—C14B84.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1A/C5A–C9A ring.
D—H···AD—HH···AD···AD—H···A
N1A—H1A2···O2A0.862.052.701 (3)131
N1B—H1B2···O2B0.862.052.696 (3)131
N1A—H1A1···O1Bi0.862.573.328 (3)148
N1B—H1B1···O1Aii0.862.503.235 (3)143
N1B—H1B1···O2Aii0.862.533.367 (3)165
C12A—H12A···Cg1iii0.962.993.773 (2)140
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x+2, y+1, z.
 

Acknowledgements

The authors are grateful to the SAIF, IIT, Madras, India, for the data collection.

References

First citationBarry, R. D. (1964). Chem. Rev. 64, 239–241.  CrossRef Web of Science Google Scholar
First citationBasvanag, U. M. V., Roopan, S. M. & Khan, F. N. (2009). Chem. Heterocycl. Compd, 45, 1276–1278.  Web of Science CrossRef CAS Google Scholar
First citationBianchi, D. A., Blanco, N. E., Carrillo, N. & Kaufman, T. S. (2004). J. Agric. Food Chem. 52, 1923–1927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErcole, F., Davis, T. P. & Evans, R. A. (2009). Macromolecules, 42, 1500–1511.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJain, P. K. & Joshi, H. (2012). J. Appl. Pharmaceutical Sciences, 2, 236–240.  Google Scholar
First citationKhan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManivel, P., Roopan, S. M. & Khan, F. N. (2008). J. Chil. Chem. Soc. 53, 1609–1610.  Web of Science CrossRef CAS Google Scholar
First citationMayakrishnan, S., Arun, Y., Maheswari, N. U. & Perumal, P. T. (2018). Chem. Commun. 54, 11889–11892.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPal, S., Chatare, V. & Pal, M. (2011). Curr. Org. Chem. 15, 782–800.  Web of Science CrossRef CAS Google Scholar
First citationSchmalle, H. W., Jarchow, O. H., Hausen, B. M. & Schulz, K.-H. (1982). Acta Cryst. B38, 2938–2941.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchnebel, M., Weidner, I., Wartchow, R. & Butenschön, H. (2003). Eur. J. Org. Chem. pp. 4363–4372.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds