research communications
catena-poly[[gold(I)-μ-cyanido-[diaquabis(2-phenylpyrazine)iron(II)]-μ-cyanido] dicyanidogold(I)]
ofaDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, bUkrOrgSyntez Ltd, Chervonotkatska St., 67, Kyiv 02094, Ukraine, and cDepartment of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
*Correspondence e-mail: lesya.kucheriv@gmail.com
In the title polymeric complex, {[Fe(CN)2(C10H8N2)2(H2O)2][Au(CN)2]}n, the FeII ion, which is located on a twofold rotation axis, has a slightly distorted FeN4O2 octahedral geometry. It is coordinated by two phenylpyrazine molecules, two water molecules and two dicyanoaurate anions, the Au atom also being located on a second twofold rotation axis. In the crystal, the coordinated dicyanoaurate anions bridge the FeII ions to form polymeric chains propagating along the b-axis direction. In the crystal, the chains are linked by Owater—H⋯Ndicyanoaurate anions hydrogen bonds and aurophillic interactions [Au⋯Au = 3.5661 (3) Å], forming layers parallel to the bc plane. The layers are linked by offset π–π stacking interactions [intercentroid distance = 3.643 (3) Å], forming a supramolecular metal–organic framework.
Keywords: crystal structure; polymeric complex; iron(II) complex; 2-phenylpyrazine; dicyanoaurate; aurophillic interactions; offset π–π interactions; supramolecular metal–organic framework.
CCDC reference: 1938914
1. Chemical context
The design of functional materials based on coordination compounds is an important area of current scientific research. For example, metal–organic frameworks (MOFs), which consist of metal ions and organic ligand linkers, are studied intensively. Fe-based coordination polymers with N-donor bridging ligands are well known as compounds with switchable spin states (Niel et al., 2003; Gural'skiy et al., 2016; Kucheriv et al., 2016). This phenomenon is called spin crossover and can be observed in complexes of 3d4–3d7 metal ions. Applying external stimuli, such as temperature, pressure, magnetic field, light irradiation or adding a guest can affect this kind of the compound and change their properties significantly (Gütlich & Goodwin, 2004). The synthesis and crystallographic characterization of these complexes are of current interest because of the bistability of their magnetic, electrical, mechanical and optical properties (Senthil Kumar & Ruben, 2017). The parameters of these transitions could be controlled through a wide variety of available organic ligands and co-ligands. Complexes with metallocyanate bridges as co-ligands to N-bridging ligands form one of the largest family of spin-crossover compounds (Muñoz & Real, 2011). Here we report on a new one-dimensional polymeric compound that is similar in its structure to switchable cyanometallates. It employs 2-phenylpyrazine as a ligand and Au(CN)2− as co-ligands, while coordinated H2O molecules stabilize the FeII ions in the high-spin state.
2. Structural commentary
The structure of the title compound features a one-dimensional chain motif that runs parallel to the crystallographic b axis (Figs. 1 and 2). The compound crystallizes in the monoclinic C2/c. Selected bond distances and bond angles are given in Table 1. The coordination sphere of the FeII cation, atom Fe1, which is located on a twofold rotation axis, has a distorted octahedral environment [FeN4O2]. It includes two 2-phenylpyrazine N atoms [Fe1—N3 = 2.223 (5) Å] in axial positions, and two N atoms of cyano bridges and two water O atoms of water molecules [Fe1—O1 = 2.122 (4) Å] in equatorial positions. The two CN− anions bridge the FeII and AuI cations [Fe1⋯Au1 = 5.244 (3) Å] to form a one-dimensional polymeric structure with bond lengths Fe1—N1 = 2.107 (5) Å and Fe1—–N2 = 2.117 (6) Å (Fig. 1 and Table 1). The FeII octahedral distortion parameter (the sum of the moduli of the deviations from 90° for all cis-bond angles) is Σ|90 - Θ| = 8.53°, where Θ are the cis-N—Fe—O and cis-N—Fe—N angles in the coordination environment of the FeII atom.
3. Supramolecular features
The crystal packing features different types of weak interactions (see Table 2 and Figs. 2 and 3). The free dicyanoaurate anions are linked to the polymeric chains by Owater—H⋯N hydrogen bonds [O1—H1A⋯N5v = 2.02 Å and O1—H1B⋯N5vi = 2.18 Å; Table 2], and by aurophillic interactions [Au1⋯Au2 = 3.566 (2) Å], forming layers parallel to the bc plane. The layers are then linked via offset π–π interactions involving a pyrazine ring as an acceptor and a phenyl ring as a donor of electron density, forming a supramolecular metal–organic framework [Cg1⋯Cg2 = 3.643 (3) Å, where Cg1 and Cg2 are the centroids of the N3/N4/C3–C6 and C7–C12 rings, respectively; α = 3.8 (3)°, interplanar distances = 3.466 (2) and 3.510 (2) Å, offset = 0.976 Å, symmetry code (i): −x + , −y + , −z + 1].
4. Database survey
A survey of the Cambridge Structural Database (Version 5.38; Groom et al., 2016) confirmed that the structure of the title complex has not been reported previously and revealed 41 Fe–Au CN-bridged frameworks supported axially by different co-ligands. There are 37 compounds with an octahedral FeN6 environment. The coordination spheres of such compounds are formed by pyridine-azine ligands, substituted pyridines, saturated and substituted pyrazines, and pyrimidine (Clements et al., 2016; Arcís-Castillo et al., 2013; Agustí et al., 2008; Clements et al., 2014, Kosone & Kitazawa, 2016; Niel et al., 2003). Nine such compounds have a stable low- or high-spin state and another 28 are complexes with a switchable spin state. There are also four compounds with an environment formed by the N atoms of organic ligands and water O atoms. The only compound with an FeN5O environment contains a pyridine-based N-donor ligand (Xu et al., 2014), while three compounds have an FeN4O2 octahedral geometry. The bidentate bridging organoselenium triazole ligand and two different pyridine-based ligands were used to obtain these latter complexes (Seredyuk et al., 2007; Xu et al., 2014).
5. Synthesis and crystallization
Crystals of the title compound were prepared by the slow diffusion method between three layers in a 10 ml tube. The first layer was a solution of K[Au(CN)2] (0.0058 g, 0.02 mmol) in water (2.5 ml), the second was a mixture of water/acetonitrile (1:2, 5 ml) and the third layer was a solution of 2-phenylpyrazine (0.0078 g, 0.05 mmol) and [Fe(OTs)2]·6H2O (0.0101 g, 0.02 mmol) (OTs = p-toluenesulfonate) in acetonitrile (2.5 ml) with 0.3 ml of water. After two weeks, yellow crystals grew in the second layer; these were collected and maintained under the mother solution until measured.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms were placed in their expected calculated positions (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Uiso(C). The idealized OH2 group was fixed using an AFIX 7 command that allowed the H atoms to ride on the O atom and rotate around the bond.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1938914
https://doi.org/10.1107/S2056989019009678/su5503sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019009678/su5503Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELX2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).[AuFe(CN)2(C10H8N2)2(H2O)2][Au(CN)2] | F(000) = 1680 |
Mr = 902.26 | Dx = 2.276 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.5306 (13) Å | Cell parameters from 2258 reflections |
b = 10.4541 (3) Å | θ = 2.3–30.8° |
c = 14.2522 (9) Å | µ = 11.70 mm−1 |
β = 107.509 (7)° | T = 293 K |
V = 2633.0 (3) Å3 | Plate, clear light yellow |
Z = 4 | 0.3 × 0.3 × 0.1 mm |
Rigaku Xcalibur Eos diffractometer | 3265 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2410 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 8.0797 pixels mm-1 | θmax = 28.3°, θmin = 2.3° |
ω scans | h = −17→24 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −7→13 |
Tmin = 0.292, Tmax = 1.000 | l = −18→16 |
7203 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: mixed |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0308P)2 + 0.2566P] where P = (Fo2 + 2Fc2)/3 |
3265 reflections | (Δ/σ)max = 0.001 |
173 parameters | Δρmax = 1.37 e Å−3 |
0 restraints | Δρmin = −1.45 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Au1 | 0.500000 | 0.51420 (2) | 0.750000 | 0.03916 (11) | |
Au2 | 0.500000 | 0.500000 | 0.500000 | 0.04886 (13) | |
Fe1 | 0.500000 | 1.01389 (8) | 0.750000 | 0.0304 (3) | |
O1 | 0.4511 (3) | 1.0197 (3) | 0.8669 (2) | 0.0440 (10) | |
H1A | 0.461953 | 0.949471 | 0.898996 | 0.066* | |
H1B | 0.474896 | 1.072647 | 0.910236 | 0.066* | |
C12 | 0.2099 (3) | 0.8548 (6) | 0.3359 (4) | 0.0498 (16) | |
H12 | 0.177175 | 0.921680 | 0.337514 | 0.060* | |
N3 | 0.3852 (3) | 1.0154 (3) | 0.6414 (3) | 0.0372 (11) | |
N1 | 0.500000 | 0.8124 (5) | 0.750000 | 0.0381 (16) | |
C1 | 0.500000 | 0.7031 (6) | 0.750000 | 0.0347 (18) | |
N4 | 0.2472 (3) | 1.0277 (4) | 0.4918 (3) | 0.0487 (13) | |
C3 | 0.3652 (3) | 0.9310 (4) | 0.5669 (4) | 0.0366 (13) | |
H3 | 0.398880 | 0.865572 | 0.565374 | 0.044* | |
C9 | 0.3032 (4) | 0.6538 (5) | 0.3300 (4) | 0.0556 (17) | |
H9 | 0.335120 | 0.585689 | 0.328588 | 0.067* | |
C13 | 0.4723 (4) | 0.3157 (6) | 0.4880 (4) | 0.0519 (17) | |
C7 | 0.2772 (3) | 0.8418 (5) | 0.4104 (4) | 0.0355 (12) | |
C6 | 0.3334 (3) | 1.1041 (5) | 0.6411 (4) | 0.0453 (15) | |
H6 | 0.343207 | 1.163949 | 0.691614 | 0.054* | |
N5 | 0.4606 (3) | 0.2077 (5) | 0.4804 (3) | 0.0572 (15) | |
N2 | 0.500000 | 1.2164 (5) | 0.750000 | 0.0465 (19) | |
C10 | 0.2365 (4) | 0.6684 (6) | 0.2558 (4) | 0.0558 (18) | |
H10 | 0.222790 | 0.609994 | 0.204193 | 0.067* | |
C8 | 0.3230 (3) | 0.7399 (5) | 0.4067 (4) | 0.0448 (15) | |
H8 | 0.368242 | 0.728887 | 0.456743 | 0.054* | |
C5 | 0.2662 (4) | 1.1083 (5) | 0.5674 (4) | 0.0518 (16) | |
H5 | 0.231568 | 1.171427 | 0.570352 | 0.062* | |
C11 | 0.1910 (4) | 0.7682 (6) | 0.2584 (4) | 0.0553 (17) | |
H11 | 0.146242 | 0.779119 | 0.207499 | 0.066* | |
C4 | 0.2977 (3) | 0.9364 (4) | 0.4927 (4) | 0.0336 (12) | |
C2 | 0.500000 | 1.3240 (7) | 0.750000 | 0.045 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Au1 | 0.0509 (2) | 0.01133 (13) | 0.0543 (2) | 0.000 | 0.01452 (16) | 0.000 |
Au2 | 0.0638 (3) | 0.02992 (17) | 0.0467 (2) | 0.00972 (13) | 0.00732 (17) | −0.00062 (12) |
Fe1 | 0.0484 (7) | 0.0125 (4) | 0.0289 (5) | 0.000 | 0.0094 (5) | 0.000 |
O1 | 0.069 (3) | 0.0265 (17) | 0.035 (2) | 0.0036 (17) | 0.0132 (19) | −0.0003 (15) |
C12 | 0.041 (4) | 0.062 (4) | 0.045 (4) | −0.003 (3) | 0.011 (3) | −0.002 (3) |
N3 | 0.045 (3) | 0.025 (2) | 0.041 (3) | 0.0041 (18) | 0.011 (2) | 0.0012 (18) |
N1 | 0.055 (5) | 0.010 (2) | 0.045 (4) | 0.000 | 0.010 (3) | 0.000 |
C1 | 0.038 (5) | 0.026 (4) | 0.041 (4) | 0.000 | 0.013 (3) | 0.000 |
N4 | 0.052 (3) | 0.044 (2) | 0.047 (3) | 0.012 (2) | 0.011 (2) | 0.001 (2) |
C3 | 0.043 (4) | 0.023 (2) | 0.042 (3) | −0.001 (2) | 0.010 (3) | −0.003 (2) |
C9 | 0.070 (5) | 0.045 (3) | 0.051 (4) | −0.004 (3) | 0.018 (3) | −0.010 (3) |
C13 | 0.071 (5) | 0.041 (3) | 0.040 (3) | 0.012 (3) | 0.011 (3) | −0.001 (3) |
C7 | 0.036 (3) | 0.034 (3) | 0.037 (3) | −0.002 (2) | 0.013 (2) | 0.003 (2) |
C6 | 0.058 (4) | 0.034 (3) | 0.044 (3) | 0.011 (3) | 0.015 (3) | −0.003 (2) |
N5 | 0.083 (4) | 0.040 (3) | 0.047 (3) | 0.006 (3) | 0.017 (3) | −0.002 (2) |
N2 | 0.075 (6) | 0.018 (3) | 0.041 (4) | 0.000 | 0.010 (4) | 0.000 |
C10 | 0.065 (5) | 0.055 (4) | 0.047 (4) | −0.023 (3) | 0.016 (3) | −0.015 (3) |
C8 | 0.045 (4) | 0.043 (3) | 0.041 (3) | −0.004 (2) | 0.005 (3) | −0.008 (2) |
C5 | 0.060 (4) | 0.037 (3) | 0.060 (4) | 0.019 (3) | 0.021 (3) | 0.004 (3) |
C11 | 0.042 (4) | 0.079 (5) | 0.037 (4) | −0.016 (3) | 0.001 (3) | −0.006 (3) |
C4 | 0.037 (3) | 0.029 (2) | 0.036 (3) | 0.000 (2) | 0.012 (2) | 0.008 (2) |
C2 | 0.067 (6) | 0.019 (3) | 0.046 (5) | 0.000 | 0.014 (4) | 0.000 |
Au1—C1 | 1.975 (7) | N4—C5 | 1.329 (7) |
Au1—C2i | 1.988 (7) | N4—C4 | 1.333 (7) |
Au2—C13ii | 1.988 (6) | C3—C4 | 1.376 (7) |
Au2—C13 | 1.988 (6) | C3—H3 | 0.9300 |
Fe1—N1 | 2.107 (5) | C9—C10 | 1.373 (7) |
Fe1—N2 | 2.117 (6) | C9—C8 | 1.377 (7) |
Fe1—O1 | 2.122 (4) | C9—H9 | 0.9300 |
Fe1—O1iii | 2.122 (4) | C13—N5 | 1.149 (7) |
Fe1—N3 | 2.223 (5) | C7—C8 | 1.374 (7) |
Fe1—N3iii | 2.223 (5) | C7—C4 | 1.492 (7) |
O1—H1A | 0.8564 | C6—C5 | 1.368 (7) |
O1—H1B | 0.8479 | C6—H6 | 0.9300 |
C12—C7 | 1.380 (6) | N2—C2 | 1.125 (8) |
C12—C11 | 1.390 (7) | C10—C11 | 1.349 (8) |
C12—H12 | 0.9300 | C10—H10 | 0.9300 |
N3—C6 | 1.333 (6) | C8—H8 | 0.9300 |
N3—C3 | 1.344 (6) | C5—H5 | 0.9300 |
N1—C1 | 1.143 (8) | C11—H11 | 0.9300 |
C1—Au1—C2i | 180 | N3—C3—C4 | 123.4 (5) |
C13ii—Au2—C13 | 180 | N3—C3—H3 | 118.3 |
N1—Fe1—N2 | 180 | C4—C3—H3 | 118.3 |
O1—Fe1—O1iii | 176.73 (19) | C10—C9—C8 | 120.2 (6) |
N3—Fe1—N3iii | 179.19 (19) | C10—C9—H9 | 119.9 |
N1—Fe1—O1 | 91.63 (9) | C8—C9—H9 | 119.9 |
N2—Fe1—O1 | 88.37 (9) | N2—C2—Au1iv | 180 |
N1—Fe1—O1iii | 91.63 (9) | N5—C13—Au2 | 175.8 (7) |
N2—Fe1—O1iii | 88.37 (9) | C8—C7—C12 | 118.2 (5) |
N1—Fe1—N3 | 90.40 (10) | C8—C7—C4 | 122.0 (5) |
N2—Fe1—N3 | 89.60 (10) | C12—C7—C4 | 119.8 (5) |
O1—Fe1—N3 | 90.09 (16) | N3—C6—C5 | 120.9 (5) |
O1iii—Fe1—N3 | 89.89 (16) | N3—C6—H6 | 119.6 |
N1—Fe1—N3iii | 90.40 (10) | C5—C6—H6 | 119.6 |
N2—Fe1—N3iii | 89.60 (10) | C11—C10—C9 | 119.3 (6) |
O1—Fe1—N3iii | 89.89 (16) | C11—C10—H10 | 120.3 |
O1iii—Fe1—N3iii | 90.09 (16) | C9—C10—H10 | 120.3 |
Fe1—O1—H1A | 108.0 | C7—C8—C9 | 121.2 (5) |
Fe1—O1—H1B | 109.9 | C7—C8—H8 | 119.4 |
H1A—O1—H1B | 100.6 | C9—C8—H8 | 119.4 |
C7—C12—C11 | 120.1 (6) | N4—C5—C6 | 124.0 (5) |
C7—C12—H12 | 120.0 | N4—C5—H5 | 118.0 |
C11—C12—H12 | 120.0 | C6—C5—H5 | 118.0 |
C6—N3—C3 | 115.3 (5) | C10—C11—C12 | 121.1 (6) |
C6—N3—Fe1 | 123.0 (4) | C10—C11—H11 | 119.5 |
C3—N3—Fe1 | 121.6 (4) | C12—C11—H11 | 119.5 |
C1—N1—Fe1 | 180 | N4—C4—C3 | 120.7 (5) |
C2—N2—Fe1 | 180 | N4—C4—C7 | 117.1 (5) |
N1—C1—Au1 | 180 | C3—C4—C7 | 122.3 (5) |
C5—N4—C4 | 115.6 (5) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y, −z+3/2; (iv) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N5v | 0.86 | 2.02 | 2.851 (6) | 165 |
O1—H1B···N5vi | 0.85 | 2.18 | 3.023 (6) | 178 |
Symmetry codes: (v) x, −y+1, z+1/2; (vi) −x+1, y+1, −z+3/2. |
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant Nos. 19BF037-01M, DZ/55-2018); H2020-MSCA-RISE-2016 (grant No. 73422).
References
Agustí, G., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2008). Inorg. Chem. 47, 2552–2561. Web of Science PubMed Google Scholar
Arcís-Castillo, Z., Muñoz, M. C., Molnár, G., Bousseksou, A. & Real, J. A. (2013). Chem. Eur. J. 19, 6851–6861. Web of Science PubMed Google Scholar
Clements, J. E., Price, J. R., Neville, S. M. & Kepert, C. J. (2014). Angew. Chem. Int. Ed. 53, 10164–10168. Web of Science CSD CrossRef CAS Google Scholar
Clements, J. E., Price, J. R., Neville, S. M. & Kepert, C. J. (2016). Angew. Chem. Int. Ed. 55, 15105–15109. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gural'skiy, I. A., Golub, B. O., Shylin, S. I., Ksenofontov, V., Shepherd, H. J., Raithby, P. R., Tremel, W. & Fritsky, I. O. (2016). Eur. J. Inorg. Chem. pp. 3191–3195. Google Scholar
Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. Vol. 234, pp. 233–235. Berlin, Heidelberg, New York: Springer. Google Scholar
Kosone, T. & Kitazawa, T. (2016). Inorg. Chim. Acta, 439, 159–163. Web of Science CSD CrossRef CAS Google Scholar
Kucheriv, O. I., Shylin, S. I., Ksenofontov, V., Dechert, S., Haukka, M., Fritsky, I. O. & Gural'skiy, I. A. (2016). Inorg. Chem. 55, 4906–4914. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Muñoz, M. C. & Real, J. A. (2011). Coord. Chem. Rev. 255, 2068–2093. Google Scholar
Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E. & Real, J. A. (2003). Angew. Chem. Int. Ed. 42, 3760–3763. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Senthil Kumar, K. & Ruben, M. (2017). Coord. Chem. Rev. 346, 176–205. Web of Science CrossRef CAS Google Scholar
Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194. Web of Science CSD CrossRef PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, H., Xu, Z. & Sato, O. (2014). Microporous Mesoporous Mater. 197, 72–76. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.