research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of four dimeric manganese(II) bromide coordination complexes with various derivatives of pyridine N-oxide

CROSSMARK_Color_square_no_text.svg

aGeorgia Southern University, 11935 Abercorn St., Department of Chemistry and Biochemistry, Savannah GA 31419, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 July 2019; accepted 24 July 2019; online 30 July 2019)

Four manganese(II) bromide coordination complexes have been prepared with four pyridine N-oxides, viz. pyridine N-oxide (PNO), 2-methyl­pyridine N-oxide (2MePNO), 3-methyl­pyridine N-oxide (3MePNO), and 4-methyl­pyridine N-oxide (4MePNO). The compounds are bis­(μ-pyridine N-oxide)bis­[aqua­dibromido­(pyridine N-oxide)manganese(II)], [Mn2Br4(C5H5NO)4(H2O)2] (I), bis­(μ-2-methyl­pyridine N-oxide)bis­[di­aqua­dibromido­manganese(II)]–2-methyl­pyridine N-oxide (1/2), [Mn2Br4(C6H7NO)2(H2O)4]·2C6H7NO (II), bis­(μ-3-methyl­pyridine N-oxide)bis­[aqua­dibromido­(3-methyl­pyridine N-oxide)manganese(II)], [Mn2Br4(C6H7NO)4(H2O)2] (III), and bis­(μ-4-methyl­pyridine N-oxide)bis­[di­bromido­methanol(4-methyl­pyridine N-oxide)manganese(II)], [Mn2Br4(C6H7NO)4(CH3OH)2] (IV). All the compounds have one unique MnII atom and form a dimeric complex that contains two MnII atoms related by a crystallographic inversion center. Pseudo-octa­hedral six-coordinate manganese(II) centers are found in all four compounds. All four compounds form dimers of Mn atoms bridged by the oxygen atom of the PNO ligand. Compounds I, II and III exhibit a bound water of solvation, whereas compound IV contains a bound methanol mol­ecule of solvation. Compounds I, III and IV exhibit the same arrangement of mol­ecules around each manganese atom, ligated by two bromide ions, oxygen atoms of two PNO ligands and one solvent mol­ecule, whereas in compound II each manganese atom is ligated by two bromide ions, one O atom of a PNO ligand and two water mol­ecules with a second PNO mol­ecule inter­acting with the complex via hydrogen bonding through the bound water mol­ecules. All of the compounds form extended hydrogen-bonding networks, and compounds I, II, and IV exhibit offset π-stacking between PNO ligands of neighboring dimers.

1. Chemical context

N-oxides have inter­esting binding modes that facilitate the growth of unique coordination structures. Their utility to facilitate organic oxotransfer reactions has been well documented over the years (see, for example, Eppenson, 2003[Eppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157-202.]). Many of these reactions are actually catalyzed by transition-metal inter­actions with the N-oxide ligands (see, for example, Moustafa et al., 2014[Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402-5413.]). Herein, we report four coordination dimers; however, many of these types of structures extend to the formation of coordination polymers. A recent report shows the utility of pyridine N-oxide to facilitate coordination polymer formation with both zinc(II) and manganese(II) metal ions with a single bifunctional ligand containing an acetate and N-oxide moiety (Ren et al., 2018[Ren, X.-H., Wang, P., Cheng, J.-Y. & Dong, Y.-B. (2018). J. Mol. Struct. 1161, 145-151.]). These have been reported by us (Lynch et al., 2018[Lynch, W., Lynch, G., Sheriff, K. & Padgett, C. (2018). Acta Cryst. E74, 1405-1410.]; Kang et al., 2017[Kang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434-1438.]) and others (Sarma et al., 2008[Sarma, R., Karmakar, A. & Baruah, J. B. (2008). Inorg. Chim. Acta, 361, 2081-2086.], 2009[Sarma, R., Perumal, A. & Baruah, J. B. (2009). J. Coord. Chem. 62, 1513-1524.]; Sarma & Baruah, 2011[Sarma, R. & Baruah, J. B. (2011). Solid State Sci. 13, 1692-1700.]).

[Scheme 1]

Herein, we report the synthesis and solid-state structures of four pyridine N-oxide manganese(II) dimeric complexes, using pyridine N-oxide (PNO) and its mono-methyl-substituted forms, 2-methyl­pyridine N-oxide (2MePNO), 3-methyl­pyridine N-oxide (3MePNO), and 4-methyl­pyridine N-oxide (4MePNO). This was done to study the impact of substitution of the pyridine on the two- and three-dimensional solid-state structures, and to compare them to previous structures in which the bromide ions are replaced with chloride ions.

2. Structural commentary

General structural details

The pyridine N-oxide complexes form dimers consisting of two MnII atoms related by an inversion center; the dimer contains a six-coordinate metal center at each MnII ion with four donor oxygen atoms and two bromides. The Mn1⋯Mn1′ dimer is bound trans by two μ2-1,1-PNO ligands, and the octa­hedral environment is completed by a water mol­ecule of hydration or a solvent mol­ecule, non-bridging PNO ligands, and bromide ions. The dimer is constructed from symmetry-related atoms and mol­ecules using a crystallographic inversion center of the space group (P[\overline{1}] and P21/n). The mol­ecular structures of compounds I, II, III and IV are given in Figs. 1[link], 2[link], 3[link] and 4[link], respectively.

[Figure 1]
Figure 1
A view of compound I, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) −x + 1, −y + 1, −z + 1]
[Figure 2]
Figure 2
A view of compound II, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) −x + 2, −y + 1, −z + 1]
[Figure 3]
Figure 3
A view of compound III, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) −x, −y + 1, −z]
[Figure 4]
Figure 4
A view of compound IV, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) −x + 1, −y + 1, −z + 1]

Specific structural details

Compound I (Fig. 1[link]) crystallizes in the monoclinic space group P21/n. The Mn—O bond lengths in compound I for the bridging PNO ligand are 2.172 (2) and 2.235 (2) Å for Mn1—O1 and Mn1—O1i, respectively, which is unremarkable for compounds of MnII and pyridine N-oxide (Sniekers et al., 2017[Sniekers, J., Malaquias, J. C., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2017). Dalton Trans. 46, 2497-2509.]; Mondal et al., 2012[Mondal, S., Guha, A., Suresh, E., Jana, A. D. & Banerjee, A. (2012). J. Mol. Struct. 1029, 169-174.]). The non-bridging Mn1—O2 bond length is 2.099 (3) Å and the bound water Mn1—O3 bond length is 2.312 (3) Å. The bound bromide ions have bond lengths of Mn1—Br1 = 2.7212 (13) Å and Mn1—Br2 = 2.5813 (13) Å; the Mn1—Br1 bond length is significantly longer than Mn1—Br2 as a result of hydrogen-bonding inter­actions that exist with Br1 but not with Br2 (Table 1[link]). The bridging Mn1 to Mn1i distance is 3.617 (16) Å. The octa­hedral geometry around the Mn atoms is significantly distorted with the O1—Mn1—O1i bond angle measuring 69.66 (9)°; the other bond angles are within ca 9° of 90°. These bond angles and bond lengths are similar to those for other MnII halide PNO structures (Kang et al., 2017[Kang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434-1438.]). The dimer also forms an intra­molecular hydrogen bond involving the water O atom, O3, and atom Br1i, with a hydrogen bond distance of 2.58 (2) Å [Table 1[link]; symmetry code: (i) −x + 1, −y + 1, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯Br1i 0.83 (2) 2.58 (2) 3.372 (3) 159 (4)
O3—H3B⋯Br1ii 0.84 (4) 2.66 (4) 3.473 (4) 163 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Compound II (Fig. 2[link]) crystallizes in the triclinic space group P[\overline{1}]. The bond distances observed in compound II at Mn1 for the bridging 2MePNO are 2.214 (2) and 2.321 (2) Å for Mn1—O1 and Mn1—O1i, respectively. The two bound water mol­ecules have Mn—O bond lengths of 2.237 (3) and 2.157 (3) Å for Mn1—O3 and Mn1—O4, respectively, and are similar to those reported previously (Mondal, et al., 2012[Mondal, S., Guha, A., Suresh, E., Jana, A. D. & Banerjee, A. (2012). J. Mol. Struct. 1029, 169-174.]; Lynch, et al., 2018[Lynch, W., Lynch, G., Sheriff, K. & Padgett, C. (2018). Acta Cryst. E74, 1405-1410.]; Kang et al., 2017[Kang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434-1438.]). The bound bromide ions have bond distances of Mn1—Br1 = 2.7009 (7) Å and Mn1—Br2 = 2.6340 (7) Å. In compound II both bromide atoms are involved in hydrogen-bonding inter­actions (Table 2[link]). The Mn1 to Mn1i distance is 3.6128 (11) Å. Once again the octa­hedral geometry around the Mn atoms is significantly distorted with the O1—Mn1—O1i bond angle measuring 74.40 (9)°. The other bond angles are within ca 11° of 90°. The dimer forms an intra­molecular hydrogen bond between O3 and Br1i with a hydrogen-bond distance of 2.44 (2) Å [Table 2[link]; symmetry code: (i) −x + 2, −y + 1, −z + 1]. In the asymmetric unit there is a second PNO mol­ecule inter­acting with the complex via hydrogen bonding through the bound water mol­ecules (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.85 (2) 1.89 (2) 2.731 (4) 171 (4)
O3—H3B⋯Br1i 0.86 (2) 2.44 (2) 3.282 (3) 168 (4)
O4—H4A⋯O2ii 0.85 (2) 1.91 (3) 2.721 (4) 161 (5)
O4—H4B⋯Br2ii 0.83 (4) 2.59 (4) 3.403 (3) 167 (4)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Compound III (Fig. 3[link]) crystallizes in the triclinic space group P[\overline{1}] and is very similar to compound I. The bond distances observed in compound III at Mn1 for the bridging 3MePNO are 2.211 (3) and 2.219 (3) Å for Mn1—O2 and Mn1—O2i, respectively. The non-bridging Mn1—O1 bond is 2.129 (3) Å, and the bound water Mn1—O3 bond distance is 2.245 (3) Å. The bound bromide ions have bond distances of Mn1—Br1 = 2.7237 (7) Å and Mn1—Br2 = 2.5687 (7) Å; again the difference in Mn—Br bond distances can be attributed to the hydrogen-bonding inter­actions that exist with Br1 but not with Br2 (Table 3[link]). The Mn1 to Mn1i distance is 3.6497 (13) Å. The octa­hedral geometry around the Mn atoms is significantly distorted with the O2—Mn1—O2i bond angle measuring 69.05 (11)° the other bond angles are within ca 11° of 90°. The dimer forms an intra­molecular hydrogen bond between O3 and Br1ii with a hydrogen-bond distance of 2.55 (2) Å [Table 3[link]; symmetry code: (ii) −x, −y + 1, −z].

Table 3
Hydrogen-bond geometry (Å, °) for III[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯Br1i 0.83 (2) 2.60 (2) 3.410 (3) 164 (4)
O3—H3B⋯Br1ii 0.84 (2) 2.55 (2) 3.386 (3) 172 (5)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z.

Compound IV (Fig. 4[link]) crystallizes in the monoclinic space group P21/n. The bond distances observed in compound IV at Mn1 for the bridging 4MePNO are 2.201 (2) and 2.230 (3) Å for Mn1—O2 and Mn1—O2i, respectively. The non-bridging Mn1—O1 bond is 2.116 (3) Å, and the bound methanol Mn1—O3 bond distance is 2.225 (3) Å. The bound bromide ions have bond distances of Mn1—Br1 = 2.7181 (7) Å and Mn1—Br2 2.5806 (7) Å, again the difference in Mn—Br bond distance can be attributed to the hydrogen-bonding inter­actions (Table 4[link]). The Mn1 to Mn1i distance is 3.61254 (12) Å. The octa­hedral geometry around the Mn atoms is significantly distorted with the O2—Mn1—O2i bond angle measuring 70.77 (11)° the other bond angles are within 13° of 90°. The dimer forms an intra­molecular hydrogen bond between O3 and Br1i with a hydrogen-bond distance of 2.41 (2) Å [Table 4[link]; symmetry code: (i) −x + 1, −y + 1, −z + 1].

Table 4
Hydrogen-bond geometry (Å, °) for IV[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯Br1i 0.86 (1) 2.41 (2) 3.255 (3) 166 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

3. Supra­molecular features

In the crystal of compound I, the dimers are linked by Owater—H⋯Br hydrogen bonds, forming chains parallel to the [100] direction; see Table 1[link]. The chains are linked by offset ππ inter­actions between inversion-related non-bridging PNO ligands [ring N2/C6–C10; inter-centroid distance = 3.663 (5) Å; offset = 1.399 Å], forming layers parallel to the ac plane (Fig. 5[link]).

[Figure 5]
Figure 5
Crystal packing diagram of compound I, viewed down the a axis. C-bound H atoms have been omitted for clarity. Hydrogen-bonding inter­actions are indicated by dashed lines (Table 1[link]).

Compound II is a dimer with two water mol­ecules bound to each MnII atom and to only one 2MePNO ligand. The structure has a second 2MePNO mol­ecule not bound to an Mn atom. This unbound 2MePNO is hydrogen-bonded to the bound water mol­ecules of two different dimers, O3⋯O2 = 2.731 (4) Å and O4⋯O2ii = 2.721 (4) Å (Table 2[link]). Neighboring dimers also form hydrogen bonds between bound water mol­ecules and bromide ions, O3—H3B⋯Br1i with a distance of 2.44 (2) Å (Fig. 6[link]; see Table 2[link] for hydrogen-bond details and symmetry codes). Combined, these inter­actions form a hydrogen-bonded chain running parallel to the a axis. Neighboring chains are held together through offset π-stacking between the non-bonded 2MePNO ligands (ring N2/C7–C11), with an inter-centroid distance of the stacked aromatic rings of 3.516 (4) Å, so forming layers parallel to the ac plane (Fig. 6[link]).

[Figure 6]
Figure 6
Crystal packing diagram of compound II, viewed down the c axis. C-bound H atoms have been omitted for clarity. Hydrogen-bonding inter­actions are indicated by dashed lines (Table 2[link]).

The packing in III is similar to that for compound I; however, the aromatic inter-centroid distance is longer than in the other two compounds, 4.545 (5) Å, with a significant centroid shift of 3.221 (9) Å preventing π-stacking. Neighboring dimers are linked by O—H⋯Br hydrogen-bonds forming chains parallel to the a axis. There are two observed inter­actions, O3—H3A⋯Br1i with a distance of 2.60 (2) Å and O3—H3B⋯Br1ii with a distance of 2.55 (2) Å (Fig. 7[link]; see Table 3[link] for hydrogen-bond details and symmetry codes).

[Figure 7]
Figure 7
Crystal packing diagram of compound III, viewed looking down the b axis. C-bound H atoms have been omitted for clarity. Hydrogen-bonding inter­actions are indicated by dashed lines (Table 3[link]).

Compound IV, a dimeric structure with a bound mol­ecule of methanol replacing the bound water mol­ecule of compound I to each of the MnII atoms, packs very similarly to compound I (Fig. 8[link] and Table 4[link]). The inter-centroid distance of the offset π-stacked aromatic rings is 3.824 (5) Å between bridging 4MePNO mol­ecules and non-bridging 4MePNO mol­ecules. This results in the formation of chains running parallel to the b axis (Fig. 8[link]). There is no hydrogen-bonding observed between neighboring dimers in this structure.

[Figure 8]
Figure 8
Crystal packing diagram of compound IV, viewed along direction [111]. C-bound H atoms have been omitted for clarity. Hydrogen-bonding inter­actions are indicated by dashed lines (Table 4[link]).

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.40, November 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for aromatic N-oxides and halogen ligands bound to manganese returned six entries (five chlorides and one iodide). Five of these structures contain derivatives of pyridine N-oxides and one of them is a 4,4′-dipyridal N,N′-dioxide (CSD refcode PALYEH; Ghosh et al., 2005[Ghosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2005). Inorg. Chem. 44, 1786-1793.]). Three of these structures are the chloride analogs of compounds presented here, viz. [MnCl2(PNO)(H2O)]n, [MnCl2(2MPNO)(H2O)]n, and [MnCl2(3MPNO)(H2O)2]2 (VEJLUU, VEJMAB, and VEJMEF, respectively; Kang et al., 2017[Kang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434-1438.]), and one is an iodide analog [Mn2(PNO)2(H2O)6I2]I2 (GIWQAF; Shi et al., 2007[Shi, J.-M., Liu, Z., Li, W.-N., Zhao, H. Y. & Liu, L.-D. (2007). J. Coord. Chem. 60, 1077-1082.]). The other two involve functionalized pyridine N-oxides; 2-amino (MIRGID; Niu et al., 2001[Niu, D.-Z., Lu, Z.-S., Sun, B.-W. & Song, B.-L. (2001). Jiegou Huaxue, 20, 180.]) and 4-carb­oxy­lic acid (OROZUR; Liu et al., 2010[Liu, F.-C., Xue, M., Wang, H.-C. & Ou-Yang, J. (2010). J. Solid State Chem. 183, 1949-1954.]).

5. Synthesis and crystallization

Compound I: Manganese(II) bromide tetra­hydrate (0.320 g, 1.12 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of pyridine N-oxide (PNO; 0.212 g, 2.23 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce X-ray quality crystals (yield 0.219 g, 46.4%). Selected IR bands (ATR, FT–IR, KBr composite, cm−1) 3470 (m, br), 1471 (s), 1216 (s), 833 (s) 773 (m), 669 (m), 558 (m). Analysis calculated for C20H24N4Mn2Br4O6: C, 28.40; H, 2.86; N, 6.62%. Found: C, 28.13; H, 2.86; N, 6.50%.

Compound II: Manganese(II) bromide tetra­hydrate (0.302 g, 1.05 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of 2-methyl­pyridine N-oxide (2MPNO; 0.230 g, 2.11 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce X-ray quality crystals (yield: 0.212 g, 42.9%). Selected IR bands (ATR, FT–IR, KBr composite, cm−1) 3349 (m, br), 1600 (m), 1461 (s), 1195 (s) 842 (m), 772 (s), 557 (m). Analysis calculated for C24H36N4Mn2Br4O8: C, 30.73; H, 3.87; N, 5.97%. Found: C, 30.30; H, 3.62; N, 6.17%.

Compound III: Manganese(II) bromide tetra­hydrate (0.312 g, 1.09 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of 3-methyl­pyridine N-oxide (3MPNO; 0.230 g, 2.12 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce a powder (yield: 0.243 g, 49.5%). X-ray quality crystals were grown by recrystallizing a second time by slow evaporation from methanol. Selected IR bands (ATR, FT–IR, KBr composite, cm−1) 3373 (m, br), 1631 (s), 1492 (m), 1260 (m), 1163(s), 943 (m), 802 (m).

Compound IV: Manganese(II) bromide tetra­hydrate (0.302 g; 1.05 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of 4-methyl­pyridine N-oxide (4MPNO; 0.230 g, 2.11 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce a powder (yield: 0.215 g, 44.1%). X-ray quality crystals were grown by recrystallizing a second time from methanol with a slower evaporation rate. Selected IR bands (ATR, FT–IR, KBr composite, cm−1) 3227 (m, br), 3004 (m), 1670 (m), 1494(s), 1213 (s), 852(s), 763(s).

Compounds I and II have been reported analytically pure, whereas III and IV were not isolated analytically pure. The FT–IR spectra of the four N-oxide complexes all exhibit broad absorbances in the 3500–3100 cm−1 region characteristic of the ν(O—H) of the coordinated water or methanol mol­ecules. In addition, the ν(N—O) stretching frequency that is due to the N-oxide pyridyl moiety is observed in the region between 1260 and 1195 cm−1, as noted previously (Mautner et al., 2017[Mautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2017). Polyhedron, 134, 126-134.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. In order to ensure chemically meaningful O—H distances for the bound water mol­ecules in compounds IIII, the O—H distances were restrained to 0.84 (2) Å and refined with Uiso(H) = 1.5Ueq(O). In compound IV, the hydroxyl H atom was located in a difference-Fourier map and refined with O—H distance restrained to 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O). All carbon-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 5
Experimental details

  I II III IV
Crystal data
Chemical formula [Mn2Br4(C5H5NO)4(H2O)2] [Mn2Br4(C6H7NO)2(H2O)4]·2C6H7NO [Mn2Br4(C6H7NO)4(H2O)2] [Mn2Br4(C6H7NO)4(CH4O)2]
Mr 845.95 938.09 902.05 930.11
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 170 170 170 170
a, b, c (Å) 7.736 (4), 15.179 (7), 12.528 (6) 8.9560 (8), 9.7922 (9), 10.2945 (8) 7.6354 (5), 9.9700 (8), 11.898 (1) 13.5384 (7), 9.5354 (4), 13.7292 (7)
α, β, γ (°) 90, 100.055 (4), 90 110.048 (8), 90.336 (7), 98.052 (7) 111.980 (7), 100.360 (6), 97.737 (6) 90, 103.112 (5), 90
V3) 1448.5 (12) 838.34 (13) 805.71 (12) 1726.15 (15)
Z 2 1 1 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 6.43 5.57 5.79 5.40
Crystal size (mm) 0.5 × 0.5 × 0.2 0.2 × 0.2 × 0.1 0.45 × 0.4 × 0.2 0.4 × 0.4 × 0.4
 
Data collection
Diffractometer Rigaku Mini template Rigaku XtaLAB mini Rigaku XtaLAB mini Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2018[Rigaku Oxford Diffraction (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd., Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2018[Rigaku Oxford Diffraction (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd., Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2018[Rigaku Oxford Diffraction (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd., Yarnton, England.])
Tmin, Tmax 0.066, 0.114 0.580, 1.000 0.319, 1.000 0.659, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15117, 3305, 3024 8918, 3838, 2931 8460, 3672, 2875 17754, 3964, 3175
Rint 0.178 0.053 0.036 0.061
(sin θ/λ)max−1) 0.650 0.649 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.13 0.037, 0.080, 1.00 0.040, 0.098, 1.02 0.043, 0.112, 1.03
No. of reflections 3305 3838 3672 3964
No. of parameters 172 208 191 196
No. of restraints 2 4 2 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.43, −1.15 0.72, −0.62 1.66, −0.84 1.64, −0.74
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2018[Rigaku Oxford Diffraction (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd., Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2018); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2018); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(µ-pyridine N-oxide)bis[aquadibromido(pyridine N-oxide)manganese(II)] (I) top
Crystal data top
[Mn2Br4(C5H5NO)4(H2O)2]F(000) = 820
Mr = 845.95Dx = 1.940 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.736 (4) ÅCell parameters from 4250 reflections
b = 15.179 (7) Åθ = 2.1–27.5°
c = 12.528 (6) ŵ = 6.43 mm1
β = 100.055 (4)°T = 170 K
V = 1448.5 (12) Å3Prism, colorless
Z = 20.5 × 0.5 × 0.2 mm
Data collection top
Rigaku Mini template
diffractometer
3305 independent reflections
Radiation source: Sealed Tube3024 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.178
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.1°
profile data from ω–scansh = 1010
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1919
Tmin = 0.066, Tmax = 0.114l = 1616
15117 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0191P)2 + 0.4786P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.001
S = 1.13Δρmax = 1.43 e Å3
3305 reflectionsΔρmin = 1.15 e Å3
172 parametersExtinction correction: (SHELXL-2018/1; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0140 (11)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.88172 (4)0.48605 (2)0.66632 (3)0.02264 (14)
C10.4849 (5)0.3093 (3)0.3370 (3)0.0303 (8)
H10.3630280.3109970.3398330.036*
Mn10.54254 (7)0.43050 (3)0.61896 (4)0.01589 (16)
O10.5247 (3)0.43379 (14)0.44408 (17)0.0171 (5)
N10.5922 (4)0.36998 (16)0.3881 (2)0.0160 (5)
Br20.61302 (5)0.26431 (2)0.63521 (3)0.02396 (15)
N20.5951 (4)0.4668 (2)0.8619 (2)0.0250 (6)
O20.4813 (4)0.46894 (19)0.7689 (2)0.0296 (6)
C20.5520 (6)0.2438 (3)0.2796 (4)0.0403 (10)
H20.4767060.1994620.2437430.048*
C30.7280 (6)0.2428 (3)0.2744 (4)0.0377 (10)
H30.7749340.1983540.2343560.045*
O30.2446 (4)0.40522 (18)0.5691 (2)0.0260 (6)
C40.8354 (6)0.3068 (3)0.3280 (4)0.0440 (12)
H40.9573320.3074350.3253430.053*
C50.7628 (5)0.3702 (3)0.3855 (4)0.0339 (9)
H50.8357240.4143840.4237040.041*
C60.6494 (6)0.3886 (3)0.9054 (3)0.0385 (10)
H60.6109670.3356310.8683080.046*
C70.7611 (8)0.3855 (4)1.0040 (4)0.0570 (14)
H70.8003770.3301161.0344210.068*
C80.8162 (7)0.4620 (5)1.0588 (4)0.0627 (17)
H80.8920590.4601971.1271460.075*
C90.7581 (8)0.5413 (4)1.0116 (4)0.0600 (16)
H90.7927110.5949921.0480660.072*
C100.6498 (7)0.5426 (3)0.9116 (4)0.0396 (10)
H100.6139770.5973120.8778780.048*
H3A0.214 (6)0.418 (3)0.5042 (18)0.037 (13)*
H3B0.172 (5)0.424 (3)0.606 (4)0.042 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0170 (2)0.0266 (2)0.0235 (2)0.00262 (13)0.00117 (15)0.00210 (12)
C10.0210 (18)0.030 (2)0.038 (2)0.0009 (15)0.0002 (16)0.0156 (16)
Mn10.0175 (3)0.0151 (3)0.0155 (3)0.00165 (18)0.0039 (2)0.00189 (17)
O10.0237 (12)0.0126 (10)0.0161 (10)0.0056 (9)0.0062 (9)0.0010 (8)
N10.0210 (14)0.0101 (12)0.0172 (12)0.0016 (11)0.0046 (11)0.0037 (10)
Br20.0256 (2)0.0155 (2)0.0302 (2)0.00169 (13)0.00347 (16)0.00366 (12)
N20.0240 (16)0.0354 (17)0.0165 (13)0.0059 (13)0.0064 (12)0.0019 (12)
O20.0298 (15)0.0420 (16)0.0175 (11)0.0119 (12)0.0050 (11)0.0009 (11)
C20.032 (2)0.031 (2)0.054 (3)0.0001 (18)0.0029 (19)0.025 (2)
C30.038 (2)0.029 (2)0.047 (2)0.0010 (18)0.012 (2)0.0200 (18)
O30.0220 (13)0.0305 (14)0.0263 (13)0.0033 (11)0.0063 (11)0.0089 (11)
C40.026 (2)0.035 (2)0.077 (3)0.0021 (18)0.025 (2)0.023 (2)
C50.026 (2)0.0254 (19)0.053 (2)0.0056 (16)0.0161 (19)0.0176 (17)
C60.044 (3)0.039 (2)0.030 (2)0.016 (2)0.0008 (18)0.0047 (17)
C70.053 (3)0.084 (4)0.032 (2)0.029 (3)0.001 (2)0.012 (2)
C80.032 (3)0.127 (5)0.027 (2)0.003 (3)0.001 (2)0.013 (3)
C90.055 (3)0.085 (4)0.043 (3)0.030 (3)0.016 (3)0.031 (3)
C100.047 (3)0.038 (2)0.036 (2)0.011 (2)0.014 (2)0.0076 (18)
Geometric parameters (Å, º) top
Mn1—Br12.7212 (13)C3—H30.9500
C1—H10.9500C3—C41.375 (6)
C1—N11.327 (5)O3—H3A0.829 (19)
C1—C21.381 (5)O3—H3B0.829 (19)
Mn1—O12.172 (2)C4—H40.9500
Mn1—O1i2.235 (2)C4—C51.379 (5)
Mn1—Br22.5813 (13)C5—H50.9500
Mn1—O22.099 (3)C6—H60.9500
Mn1—O32.312 (3)C6—C71.380 (7)
O1—N11.353 (3)C7—H70.9500
N1—C51.326 (5)C7—C81.378 (8)
N2—O21.332 (4)C8—H80.9500
N2—C61.342 (5)C8—C91.381 (9)
N2—C101.342 (5)C9—H90.9500
C2—H20.9500C9—C101.381 (8)
C2—C31.374 (6)C10—H100.9500
N1—C1—H1120.3C3—C2—C1119.9 (4)
N1—C1—C2119.4 (4)C3—C2—H2120.1
C2—C1—H1120.3C2—C3—H3120.4
O1—Mn1—Br195.84 (7)C2—C3—C4119.2 (3)
O1i—Mn1—Br187.00 (7)C4—C3—H3120.4
O1—Mn1—O1i69.66 (9)Mn1—O3—H3A109 (3)
O1—Mn1—Br294.44 (6)Mn1—O3—H3B122 (4)
O1i—Mn1—Br2164.07 (6)H3A—O3—H3B111 (5)
O1i—Mn1—O384.14 (10)C3—C4—H4120.6
O1—Mn1—O381.19 (9)C3—C4—C5118.8 (4)
Br2—Mn1—Br195.93 (3)C5—C4—H4120.6
O2—Mn1—Br194.50 (9)N1—C5—C4120.6 (4)
O2—Mn1—O1i89.15 (10)N1—C5—H5119.7
O2—Mn1—O1155.81 (10)C4—C5—H5119.7
O2—Mn1—Br2106.17 (8)N2—C6—H6120.1
O2—Mn1—O385.28 (11)N2—C6—C7119.8 (5)
O3—Mn1—Br1171.14 (7)C7—C6—H6120.1
O3—Mn1—Br292.63 (7)C6—C7—H7119.7
Mn1—O1—Mn1i110.34 (9)C8—C7—C6120.5 (5)
N1—O1—Mn1122.99 (18)C8—C7—H7119.7
N1—O1—Mn1i124.32 (17)C7—C8—H8120.9
C1—N1—O1118.8 (3)C7—C8—C9118.2 (5)
C5—N1—C1122.1 (3)C9—C8—H8120.9
C5—N1—O1119.1 (3)C8—C9—H9119.9
O2—N2—C6119.2 (3)C10—C9—C8120.1 (5)
O2—N2—C10119.4 (4)C10—C9—H9119.9
C6—N2—C10121.3 (4)N2—C10—C9120.0 (5)
N2—O2—Mn1123.9 (2)N2—C10—H10120.0
C1—C2—H2120.1C9—C10—H10120.0
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···Br1i0.83 (2)2.58 (2)3.372 (3)159 (4)
O3—H3B···Br1ii0.84 (4)2.66 (4)3.473 (4)163 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
Bis(µ-2-methylpyridine N-oxide)bis[diaquadibromidomanganese(II)]–2-methylpyridine N-oxide (1/2) (II) top
Crystal data top
[Mn2Br4(C6H7NO)2(H2O)4]·2C6H7NOZ = 1
Mr = 938.09F(000) = 462
Triclinic, P1Dx = 1.858 Mg m3
a = 8.9560 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7922 (9) ÅCell parameters from 4291 reflections
c = 10.2945 (8) Åθ = 2.3–33.2°
α = 110.048 (8)°µ = 5.57 mm1
β = 90.336 (7)°T = 170 K
γ = 98.052 (7)°Block, clear light yellow
V = 838.34 (13) Å30.2 × 0.2 × 0.1 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
3838 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2931 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.1°
profile data from ω–scansh = 1111
Absorption correction: multi-scan
(CrysAlisPro; Rigaku Oxford Diffraction, 2018)
k = 1212
Tmin = 0.580, Tmax = 1.000l = 1313
8918 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0319P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3838 reflectionsΔρmax = 0.72 e Å3
208 parametersΔρmin = 0.61 e Å3
4 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.97900 (4)0.80035 (4)0.74971 (4)0.02737 (11)
O11.0009 (3)0.4219 (3)0.5880 (2)0.0216 (5)
C10.9673 (4)0.2520 (4)0.7046 (4)0.0271 (8)
Mn10.82268 (6)0.55061 (6)0.56887 (5)0.02123 (13)
N11.0302 (3)0.3845 (3)0.6999 (3)0.0219 (6)
Br20.62884 (4)0.49697 (4)0.74319 (4)0.03065 (11)
C21.0052 (4)0.2179 (4)0.8211 (4)0.0304 (9)
H20.9627870.1259200.8270650.037*
O30.7281 (3)0.3472 (3)0.3927 (3)0.0267 (6)
H3A0.647 (3)0.288 (4)0.388 (4)0.043 (13)*
H3B0.799 (3)0.297 (4)0.359 (4)0.036 (12)*
C31.1028 (5)0.3150 (4)0.9273 (4)0.0329 (9)
H31.1272020.2903511.0055960.039*
C41.1643 (5)0.4487 (5)0.9180 (4)0.0368 (10)
H41.2313150.5174770.9900120.044*
O40.6790 (3)0.6595 (3)0.4807 (3)0.0268 (6)
H4A0.642 (6)0.726 (4)0.542 (4)0.09 (2)*
H4B0.614 (5)0.614 (6)0.417 (4)0.10 (2)*
C51.1269 (4)0.4809 (4)0.8023 (4)0.0320 (9)
H51.1697780.5719960.7946120.038*
C60.8633 (5)0.1536 (4)0.5885 (4)0.0377 (10)
H6A0.7693950.1947400.5898900.057*
H6B0.8407250.0565450.5976180.057*
H6C0.9104700.1440600.5007940.057*
N20.4507 (3)0.0303 (3)0.2438 (3)0.0262 (7)
O20.4865 (3)0.1344 (3)0.3682 (3)0.0288 (6)
C70.5133 (4)0.0960 (4)0.2104 (4)0.0292 (9)
C80.4748 (6)0.2028 (5)0.0806 (4)0.0455 (12)
H80.5182130.2907830.0549190.055*
C90.3744 (6)0.1829 (6)0.0117 (5)0.0544 (14)
H90.3494990.2560460.1005150.065*
C100.3105 (5)0.0539 (6)0.0278 (5)0.0516 (13)
H100.2389850.0392270.0328300.062*
C110.3517 (4)0.0509 (5)0.1542 (4)0.0378 (10)
H110.3103410.1401250.1802010.045*
C120.6228 (5)0.1073 (4)0.3143 (4)0.0383 (10)
H12A0.7136970.0351070.3245040.057*
H12B0.6502040.2064920.2831560.057*
H12C0.5765980.0877820.4037030.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0266 (2)0.0235 (2)0.0261 (2)0.00076 (15)0.00103 (15)0.00222 (15)
O10.0243 (13)0.0249 (13)0.0179 (12)0.0027 (11)0.0006 (10)0.0110 (10)
C10.0272 (19)0.024 (2)0.028 (2)0.0024 (16)0.0022 (16)0.0072 (16)
Mn10.0213 (3)0.0217 (3)0.0198 (3)0.0016 (2)0.0009 (2)0.0067 (2)
N10.0236 (15)0.0223 (16)0.0203 (15)0.0014 (13)0.0008 (13)0.0088 (13)
Br20.0294 (2)0.0379 (2)0.0225 (2)0.00298 (17)0.00138 (16)0.01083 (17)
C20.040 (2)0.026 (2)0.031 (2)0.0067 (18)0.0077 (18)0.0170 (18)
O30.0247 (14)0.0246 (14)0.0269 (14)0.0001 (12)0.0010 (12)0.0055 (12)
C30.040 (2)0.039 (2)0.027 (2)0.0095 (19)0.0009 (18)0.0198 (19)
C40.041 (2)0.041 (2)0.025 (2)0.002 (2)0.0076 (18)0.0103 (19)
O40.0305 (15)0.0269 (15)0.0228 (15)0.0069 (13)0.0031 (13)0.0074 (12)
C50.035 (2)0.028 (2)0.030 (2)0.0046 (18)0.0073 (18)0.0099 (17)
C60.046 (3)0.029 (2)0.035 (2)0.0069 (19)0.003 (2)0.0126 (19)
N20.0229 (16)0.0293 (18)0.0237 (16)0.0054 (14)0.0025 (13)0.0096 (14)
O20.0316 (14)0.0243 (14)0.0255 (14)0.0036 (12)0.0051 (12)0.0024 (11)
C70.038 (2)0.024 (2)0.0230 (19)0.0034 (17)0.0049 (17)0.0080 (16)
C80.068 (3)0.028 (2)0.030 (2)0.012 (2)0.005 (2)0.0046 (19)
C90.062 (3)0.057 (3)0.027 (2)0.036 (3)0.005 (2)0.009 (2)
C100.032 (2)0.088 (4)0.036 (3)0.017 (3)0.008 (2)0.033 (3)
C110.0185 (19)0.059 (3)0.042 (3)0.0064 (19)0.0035 (18)0.024 (2)
C120.054 (3)0.035 (2)0.030 (2)0.018 (2)0.007 (2)0.0113 (19)
Geometric parameters (Å, º) top
Mn1—Br12.7009 (7)O4—H4B0.83 (2)
Mn1—O12.214 (2)C5—H50.9500
O1—Mn1i2.321 (2)C6—H6A0.9800
O1—N11.358 (3)C6—H6B0.9800
C1—N11.357 (4)C6—H6C0.9800
C1—C21.402 (5)N2—O21.338 (4)
C1—C61.473 (5)N2—C71.366 (5)
Mn1—Br22.6340 (7)N2—C111.359 (5)
Mn1—O32.237 (3)C7—C81.390 (5)
Mn1—O42.157 (3)C7—C121.490 (5)
N1—C51.353 (5)C8—H80.9500
C2—H20.9500C8—C91.384 (7)
C2—C31.381 (5)C9—H90.9500
O3—H3A0.852 (19)C9—C101.394 (7)
O3—H3B0.857 (19)C10—H100.9500
C3—H30.9500C10—C111.362 (6)
C3—C41.383 (5)C11—H110.9500
C4—H40.9500C12—H12A0.9800
C4—C51.382 (5)C12—H12B0.9800
O4—H4A0.846 (19)C12—H12C0.9800
O1—Mn1—O1i74.40 (9)Mn1—O4—H4A112 (4)
Mn1—O1—Mn1i105.60 (9)Mn1—O4—H4B123 (4)
N1—O1—Mn1125.53 (19)H4A—O4—H4B110 (5)
N1—O1—Mn1i124.62 (18)N1—C5—C4121.0 (3)
N1—C1—C2117.5 (3)N1—C5—H5119.5
N1—C1—C6118.5 (3)C4—C5—H5119.5
C2—C1—C6124.1 (3)C1—C6—H6A109.5
O1—Mn1—Br191.54 (6)C1—C6—H6B109.5
O1i—Mn1—Br185.90 (6)C1—C6—H6C109.5
O1—Mn1—Br2101.36 (6)H6A—C6—H6B109.5
O1i—Mn1—Br2175.09 (6)H6A—C6—H6C109.5
O1—Mn1—O384.60 (9)H6B—C6—H6C109.5
Br2—Mn1—Br196.79 (2)O2—N2—C7119.0 (3)
O3—Mn1—Br1169.21 (8)O2—N2—C11119.7 (3)
O3—Mn1—O1i83.36 (9)C11—N2—C7121.3 (3)
O3—Mn1—Br293.85 (7)N2—C7—C8118.2 (4)
O4—Mn1—Br195.42 (8)N2—C7—C12117.4 (3)
O4—Mn1—O1i87.70 (9)C8—C7—C12124.4 (4)
O4—Mn1—O1160.29 (10)C7—C8—H8119.5
O4—Mn1—Br296.11 (8)C9—C8—C7121.1 (5)
O4—Mn1—O385.19 (10)C9—C8—H8119.5
C1—N1—O1120.1 (3)C8—C9—H9120.5
C5—N1—O1117.8 (3)C8—C9—C10118.9 (4)
C5—N1—C1122.0 (3)C10—C9—H9120.5
C1—C2—H2119.2C9—C10—H10120.4
C3—C2—C1121.5 (3)C11—C10—C9119.3 (4)
C3—C2—H2119.2C11—C10—H10120.4
Mn1—O3—H3A128 (3)N2—C11—C10121.2 (4)
Mn1—O3—H3B110 (3)N2—C11—H11119.4
H3A—O3—H3B109 (4)C10—C11—H11119.4
C2—C3—H3120.5C7—C12—H12A109.5
C2—C3—C4119.0 (3)C7—C12—H12B109.5
C4—C3—H3120.5C7—C12—H12C109.5
C3—C4—H4120.5H12A—C12—H12B109.5
C5—C4—C3119.0 (4)H12A—C12—H12C109.5
C5—C4—H4120.5H12B—C12—H12C109.5
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.85 (2)1.89 (2)2.731 (4)171 (4)
O3—H3B···Br1i0.86 (2)2.44 (2)3.282 (3)168 (4)
O4—H4A···O2ii0.85 (2)1.91 (3)2.721 (4)161 (5)
O4—H4B···Br2ii0.83 (4)2.59 (4)3.403 (3)167 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Bis(µ-3-methylpyridine N-oxide)bis[aquadibromido(3-methylpyridine N-oxide)manganese(II)] (III) top
Crystal data top
[Mn2Br4(C6H7NO)4(H2O)2]Z = 1
Mr = 902.05F(000) = 442
Triclinic, P1Dx = 1.859 Mg m3
a = 7.6354 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9700 (8) ÅCell parameters from 4991 reflections
c = 11.898 (1) Åθ = 2.2–33.1°
α = 111.980 (7)°µ = 5.79 mm1
β = 100.360 (6)°T = 170 K
γ = 97.737 (6)°Plate, clear light yellow
V = 805.71 (12) Å30.45 × 0.4 × 0.2 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
3672 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2875 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.036
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 1.9°
profile data from ω–scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku Oxford Diffraction, 2018)
k = 1212
Tmin = 0.319, Tmax = 1.000l = 1515
8460 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.5922P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3672 reflectionsΔρmax = 1.66 e Å3
191 parametersΔρmin = 0.84 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36280 (5)0.42105 (5)0.13651 (4)0.03458 (13)
C10.4906 (7)0.7816 (7)0.4116 (5)0.0544 (14)
H10.5091320.8274350.3562860.065*
N10.3196 (5)0.7177 (4)0.4046 (3)0.0383 (9)
Mn10.04801 (8)0.51611 (7)0.16098 (5)0.02659 (16)
O10.1816 (4)0.7175 (4)0.3187 (3)0.0418 (8)
O20.0827 (3)0.6326 (3)0.0380 (3)0.0295 (6)
C20.6381 (7)0.7822 (7)0.4963 (5)0.0606 (16)
Br20.07392 (6)0.33641 (5)0.25163 (4)0.03571 (14)
N20.1876 (4)0.7681 (4)0.0757 (3)0.0254 (7)
C30.6062 (7)0.7148 (6)0.5770 (5)0.0520 (13)
H30.7054120.7100370.6352840.062*
O30.2115 (4)0.5986 (4)0.1560 (3)0.0360 (7)
H3A0.304 (4)0.546 (5)0.159 (4)0.045 (15)*
H3B0.237 (7)0.594 (6)0.082 (3)0.065 (18)*
C40.4293 (7)0.6553 (6)0.5712 (5)0.0489 (12)
H40.4066170.6125010.6277900.059*
C50.2857 (6)0.6573 (5)0.4846 (4)0.0391 (10)
H50.1639760.6166590.4811130.047*
C60.8283 (9)0.8554 (11)0.5025 (7)0.110 (3)
H6A0.8482060.9629780.5488070.165*
H6B0.8418820.8333050.4174050.165*
H6C0.9181460.8174900.5451840.165*
C70.3693 (5)0.7876 (4)0.1021 (4)0.0287 (9)
H70.4226980.7049720.0952170.034*
C80.4801 (5)0.9247 (5)0.1391 (4)0.0317 (9)
C90.3993 (6)1.0418 (5)0.1454 (4)0.0369 (10)
H90.4724061.1369630.1666420.044*
C100.2119 (6)1.0206 (5)0.1206 (5)0.0425 (11)
H100.1555191.1016790.1276900.051*
C110.1069 (6)0.8811 (5)0.0856 (4)0.0376 (10)
H110.0223120.8654620.0686300.045*
C120.6838 (6)0.9463 (6)0.1743 (6)0.0583 (15)
H12A0.7279820.9882710.2657020.087*
H12B0.7392821.0143070.1421490.087*
H12C0.7173560.8505530.1381420.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0214 (2)0.0436 (3)0.0499 (3)0.00744 (18)0.00730 (17)0.0319 (2)
C10.044 (3)0.076 (4)0.044 (3)0.004 (3)0.009 (2)0.031 (3)
N10.036 (2)0.043 (2)0.032 (2)0.0035 (18)0.0039 (16)0.0153 (18)
Mn10.0209 (3)0.0312 (3)0.0304 (3)0.0003 (2)0.0023 (2)0.0195 (3)
O10.0405 (18)0.0424 (19)0.0391 (18)0.0021 (15)0.0031 (14)0.0214 (16)
O20.0230 (13)0.0309 (15)0.0352 (16)0.0048 (12)0.0013 (11)0.0207 (13)
C20.041 (3)0.084 (4)0.044 (3)0.003 (3)0.006 (2)0.017 (3)
Br20.0330 (2)0.0405 (3)0.0419 (3)0.00105 (19)0.00990 (18)0.0280 (2)
N20.0225 (16)0.0287 (18)0.0282 (17)0.0018 (14)0.0054 (13)0.0169 (15)
C30.046 (3)0.064 (4)0.035 (3)0.012 (3)0.002 (2)0.011 (3)
O30.0261 (16)0.0437 (19)0.047 (2)0.0063 (14)0.0113 (14)0.0273 (17)
C40.051 (3)0.057 (3)0.039 (3)0.009 (3)0.008 (2)0.022 (3)
C50.041 (2)0.043 (3)0.032 (2)0.003 (2)0.0093 (19)0.015 (2)
C60.043 (4)0.180 (9)0.095 (6)0.025 (5)0.007 (3)0.064 (6)
C70.0226 (19)0.025 (2)0.040 (2)0.0041 (17)0.0054 (17)0.0168 (19)
C80.028 (2)0.029 (2)0.040 (2)0.0042 (18)0.0103 (18)0.017 (2)
C90.044 (3)0.026 (2)0.037 (2)0.000 (2)0.006 (2)0.014 (2)
C100.045 (3)0.028 (2)0.055 (3)0.013 (2)0.005 (2)0.019 (2)
C110.029 (2)0.043 (3)0.048 (3)0.016 (2)0.0118 (19)0.023 (2)
C120.029 (2)0.048 (3)0.100 (5)0.002 (2)0.017 (3)0.034 (3)
Geometric parameters (Å, º) top
Mn1—Br12.7237 (7)O3—H3B0.844 (19)
C1—H10.9500C4—H40.9500
C1—N11.347 (6)C4—C51.370 (6)
C1—C21.368 (7)C5—H50.9500
N1—O11.328 (4)C6—H6A0.9800
N1—C51.346 (6)C6—H6B0.9800
Mn1—O12.129 (3)C6—H6C0.9800
Mn1—O22.211 (3)C7—H70.9500
Mn1—O2i2.219 (3)C7—C81.372 (6)
Mn1—Br22.5687 (7)C8—C91.377 (6)
Mn1—O32.245 (3)C8—C121.499 (6)
O2—N21.339 (4)C9—H90.9500
C2—C31.399 (8)C9—C101.377 (6)
C2—C61.511 (8)C10—H100.9500
N2—C71.336 (5)C10—C111.377 (6)
N2—C111.332 (5)C11—H110.9500
C3—H30.9500C12—H12A0.9800
C3—C41.379 (7)C12—H12B0.9800
O3—H3A0.834 (19)C12—H12C0.9800
N1—C1—H1119.2Mn1—O3—H3B101 (4)
N1—C1—C2121.6 (5)H3A—O3—H3B104 (5)
C2—C1—H1119.2C3—C4—H4119.7
O1—N1—C1119.2 (4)C5—C4—C3120.7 (5)
O1—N1—C5119.5 (4)C5—C4—H4119.7
C5—N1—C1121.3 (4)N1—C5—C4119.1 (4)
O1—Mn1—Br193.86 (9)N1—C5—H5120.4
O1—Mn1—O2i157.76 (11)C4—C5—H5120.4
O1—Mn1—O288.94 (11)C2—C6—H6A109.5
O1—Mn1—Br2105.48 (9)C2—C6—H6B109.5
O1—Mn1—O388.95 (12)C2—C6—H6C109.5
O2—Mn1—Br191.19 (7)H6A—C6—H6B109.5
O2i—Mn1—Br189.84 (8)H6A—C6—H6C109.5
O2—Mn1—O2i69.05 (11)H6B—C6—H6C109.5
O2i—Mn1—Br295.91 (7)N2—C7—H7119.4
O2—Mn1—Br2163.39 (7)N2—C7—C8121.2 (4)
O2—Mn1—O381.25 (11)C8—C7—H7119.4
O2i—Mn1—O384.75 (11)C7—C8—C9118.3 (4)
Br2—Mn1—Br195.91 (2)C7—C8—C12120.6 (4)
O3—Mn1—Br1171.89 (8)C9—C8—C12121.1 (4)
O3—Mn1—Br290.65 (8)C8—C9—H9120.1
N1—O1—Mn1119.7 (3)C8—C9—C10119.8 (4)
Mn1—O2—Mn1i110.95 (11)C10—C9—H9120.1
N2—O2—Mn1i123.8 (2)C9—C10—H10120.2
N2—O2—Mn1124.7 (2)C11—C10—C9119.6 (4)
C1—C2—C3117.8 (5)C11—C10—H10120.2
C1—C2—C6120.5 (6)N2—C11—C10119.6 (4)
C3—C2—C6121.7 (5)N2—C11—H11120.2
C7—N2—O2119.9 (3)C10—C11—H11120.2
C11—N2—O2118.7 (3)C8—C12—H12A109.5
C11—N2—C7121.5 (4)C8—C12—H12B109.5
C2—C3—H3120.3C8—C12—H12C109.5
C4—C3—C2119.4 (5)H12A—C12—H12B109.5
C4—C3—H3120.3H12A—C12—H12C109.5
Mn1—O3—H3A118 (3)H12B—C12—H12C109.5
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···Br1ii0.83 (2)2.60 (2)3.410 (3)164 (4)
O3—H3B···Br1i0.84 (2)2.55 (2)3.386 (3)172 (5)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.
Bis(µ-4-methylpyridine N-oxide)bis[dibromidomethanol(4-methylpyridine N-oxide)manganese(II)] (IV) top
Crystal data top
[Mn2Br4(C6H7NO)4(CH4O)2]F(000) = 916
Mr = 930.11Dx = 1.790 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.5384 (7) ÅCell parameters from 9251 reflections
b = 9.5354 (4) Åθ = 2.0–33.1°
c = 13.7292 (7) ŵ = 5.40 mm1
β = 103.112 (5)°T = 170 K
V = 1726.15 (15) Å3Prism, clear light brown
Z = 20.4 × 0.4 × 0.4 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
3964 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3175 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.061
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 1.9°
profile data from ω–scansh = 1717
Absorption correction: multi-scan
(CrysAlisPro; Rigaku Oxford Diffraction, 2018)
k = 1212
Tmin = 0.659, Tmax = 1.000l = 1717
17754 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0665P)2 + 0.0317P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3964 reflectionsΔρmax = 1.64 e Å3
196 parametersΔρmin = 0.74 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.55122 (3)0.55895 (4)0.73950 (3)0.02951 (13)
Mn10.42974 (4)0.62247 (6)0.55858 (4)0.02011 (15)
N10.4741 (3)0.9181 (3)0.6510 (2)0.0243 (7)
C10.4328 (3)0.8828 (4)0.7272 (3)0.0266 (9)
H10.3903990.8024740.7223710.032*
O10.4550 (2)0.8416 (3)0.56661 (19)0.0283 (6)
O20.4393 (2)0.4023 (3)0.5134 (2)0.0219 (6)
N20.3727 (2)0.3013 (3)0.5239 (2)0.0209 (7)
C20.4519 (3)0.9632 (4)0.8130 (3)0.0275 (9)
H20.4225820.9371690.8669390.033*
Br20.25806 (3)0.60062 (4)0.60914 (3)0.03081 (13)
C30.5128 (3)1.0806 (4)0.8220 (3)0.0292 (9)
O30.3548 (2)0.6580 (3)0.3987 (2)0.0297 (6)
H30.3793 (18)0.613 (4)0.3550 (13)0.045*
C40.5541 (3)1.1132 (4)0.7408 (3)0.0279 (9)
H40.5966411.1930740.7438930.033*
C50.5341 (3)1.0312 (4)0.6560 (3)0.0269 (9)
H50.5628281.0546150.6011210.032*
C60.5321 (4)1.1692 (5)0.9149 (3)0.0417 (11)
H6A0.4762171.1573760.9486940.063*
H6B0.5368341.2679920.8967110.063*
H6C0.5958311.1400830.9597570.063*
C70.3259 (3)0.2277 (4)0.4442 (3)0.0256 (8)
H70.3396100.2468660.3806460.031*
C80.2582 (3)0.1247 (4)0.4535 (3)0.0305 (9)
H80.2264500.0714160.3964730.037*
C90.2353 (3)0.0971 (4)0.5451 (4)0.0318 (10)
C100.2848 (3)0.1774 (4)0.6253 (3)0.0294 (9)
H100.2704340.1626020.6890920.035*
C110.3542 (3)0.2781 (4)0.6148 (3)0.0255 (8)
H110.3887190.3306370.6710080.031*
C120.1594 (4)0.0123 (5)0.5565 (4)0.0475 (13)
H12A0.1056850.0166580.4953190.071*
H12B0.1298420.0118440.6132270.071*
H12C0.1931170.1036730.5685810.071*
C130.2496 (4)0.6767 (8)0.3550 (4)0.069 (2)
H13A0.2416260.7350750.2949990.103*
H13B0.2168680.7227970.4032540.103*
H13C0.2179040.5851240.3368280.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0332 (2)0.0303 (2)0.0229 (2)0.00096 (17)0.00200 (17)0.00194 (16)
Mn10.0218 (3)0.0170 (3)0.0229 (3)0.0003 (2)0.0080 (2)0.0004 (2)
N10.0301 (18)0.0184 (16)0.0254 (17)0.0024 (13)0.0085 (15)0.0013 (13)
C10.032 (2)0.021 (2)0.030 (2)0.0061 (16)0.0127 (19)0.0017 (16)
O10.0437 (17)0.0190 (14)0.0245 (14)0.0034 (12)0.0125 (13)0.0045 (11)
O20.0236 (13)0.0171 (13)0.0271 (14)0.0053 (10)0.0103 (12)0.0032 (11)
N20.0189 (15)0.0168 (16)0.0291 (17)0.0001 (12)0.0098 (14)0.0013 (13)
C20.031 (2)0.029 (2)0.025 (2)0.0034 (17)0.0130 (18)0.0010 (17)
Br20.0271 (2)0.0298 (2)0.0401 (3)0.00056 (16)0.01705 (19)0.00008 (18)
C30.027 (2)0.030 (2)0.030 (2)0.0036 (17)0.0038 (18)0.0032 (17)
O30.0291 (15)0.0340 (16)0.0247 (14)0.0083 (13)0.0035 (13)0.0007 (12)
C40.029 (2)0.024 (2)0.031 (2)0.0017 (16)0.0069 (18)0.0002 (16)
C50.030 (2)0.023 (2)0.029 (2)0.0012 (17)0.0090 (18)0.0051 (16)
C60.047 (3)0.043 (3)0.035 (2)0.010 (2)0.008 (2)0.009 (2)
C70.025 (2)0.027 (2)0.0239 (19)0.0003 (16)0.0035 (17)0.0041 (16)
C80.027 (2)0.024 (2)0.038 (2)0.0039 (17)0.0029 (19)0.0064 (18)
C90.023 (2)0.020 (2)0.052 (3)0.0039 (16)0.009 (2)0.0052 (19)
C100.034 (2)0.023 (2)0.033 (2)0.0035 (17)0.0102 (19)0.0090 (17)
C110.030 (2)0.023 (2)0.0239 (18)0.0032 (16)0.0065 (17)0.0020 (16)
C120.044 (3)0.031 (3)0.068 (4)0.009 (2)0.015 (3)0.010 (2)
C130.030 (3)0.136 (6)0.037 (3)0.012 (3)0.001 (2)0.014 (3)
Geometric parameters (Å, º) top
Mn1—Br12.7181 (7)C4—C51.377 (6)
Mn1—O12.116 (3)C5—H50.9500
Mn1—O22.201 (2)C6—H6A0.9800
Mn1—O2i2.230 (3)C6—H6B0.9800
Mn1—Br22.5806 (7)C6—H6C0.9800
Mn1—O32.225 (3)C7—H70.9500
N1—C11.336 (5)C7—C81.370 (6)
N1—O11.344 (4)C8—H80.9500
N1—C51.343 (5)C8—C91.387 (6)
C1—H10.9500C9—C101.382 (6)
C1—C21.379 (6)C9—C121.497 (6)
O2—N21.349 (4)C10—H100.9500
N2—C71.333 (5)C10—C111.373 (5)
N2—C111.345 (5)C11—H110.9500
C2—H20.9500C12—H12A0.9800
C2—C31.379 (6)C12—H12B0.9800
C3—C41.390 (6)C12—H12C0.9800
C3—C61.502 (6)C13—H13A0.9800
O3—H30.861 (9)C13—H13B0.9800
O3—C131.426 (6)C13—H13C0.9800
C4—H40.9500
O1—Mn1—Br196.62 (8)C5—C4—C3120.9 (4)
O1—Mn1—O2159.59 (11)C5—C4—H4119.6
O1—Mn1—O2i89.55 (10)N1—C5—C4120.0 (4)
O1—Mn1—Br2102.17 (8)N1—C5—H5120.0
O1—Mn1—O386.17 (11)C4—C5—H5120.0
O2i—Mn1—Br190.24 (7)C3—C6—H6A109.5
O2—Mn1—Br189.03 (7)C3—C6—H6B109.5
O2—Mn1—O2i70.77 (11)C3—C6—H6C109.5
O2—Mn1—Br296.47 (7)H6A—C6—H6B109.5
O2i—Mn1—Br2165.02 (7)H6A—C6—H6C109.5
O2—Mn1—O384.83 (10)H6B—C6—H6C109.5
Br2—Mn1—Br197.55 (2)N2—C7—H7119.8
O3—Mn1—Br1168.90 (8)N2—C7—C8120.3 (4)
O3—Mn1—O2i79.01 (10)C8—C7—H7119.8
O3—Mn1—Br292.34 (8)C7—C8—H8119.6
C1—N1—O1120.4 (3)C7—C8—C9120.8 (4)
C1—N1—C5121.2 (3)C9—C8—H8119.6
C5—N1—O1118.4 (3)C8—C9—C12121.8 (4)
N1—C1—H1120.1C10—C9—C8116.7 (4)
N1—C1—C2119.8 (4)C10—C9—C12121.5 (4)
C2—C1—H1120.1C9—C10—H10119.2
N1—O1—Mn1125.3 (2)C11—C10—C9121.5 (4)
Mn1—O2—Mn1i109.23 (11)C11—C10—H10119.2
N2—O2—Mn1i126.1 (2)N2—C11—C10119.2 (4)
N2—O2—Mn1124.6 (2)N2—C11—H11120.4
C7—N2—O2119.5 (3)C10—C11—H11120.4
C7—N2—C11121.4 (3)C9—C12—H12A109.5
C11—N2—O2119.1 (3)C9—C12—H12B109.5
C1—C2—H2119.3C9—C12—H12C109.5
C3—C2—C1121.4 (4)H12A—C12—H12B109.5
C3—C2—H2119.3H12A—C12—H12C109.5
C2—C3—C4116.8 (4)H12B—C12—H12C109.5
C2—C3—C6121.2 (4)O3—C13—H13A109.5
C4—C3—C6122.0 (4)O3—C13—H13B109.5
Mn1—O3—H3116.8 (15)O3—C13—H13C109.5
C13—O3—Mn1128.5 (3)H13A—C13—H13B109.5
C13—O3—H3105.9 (15)H13A—C13—H13C109.5
C3—C4—H4119.6H13B—C13—H13C109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···Br1i0.86 (1)2.41 (2)3.255 (3)166 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Funding information

The authors would like to thank Georgia Southern University, Department of Chemistry and Biochemistry for the financial support of this work.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157-202.  Google Scholar
First citationGhosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2005). Inorg. Chem. 44, 1786–1793.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434–1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, F.-C., Xue, M., Wang, H.-C. & Ou-Yang, J. (2010). J. Solid State Chem. 183, 1949–1954.  CrossRef CAS Google Scholar
First citationLynch, W., Lynch, G., Sheriff, K. & Padgett, C. (2018). Acta Cryst. E74, 1405–1410.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2017). Polyhedron, 134, 126–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationMondal, S., Guha, A., Suresh, E., Jana, A. D. & Banerjee, A. (2012). J. Mol. Struct. 1029, 169–174.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402–5413.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, D.-Z., Lu, Z.-S., Sun, B.-W. & Song, B.-L. (2001). Jiegou Huaxue, 20, 180.  Google Scholar
First citationRen, X.-H., Wang, P., Cheng, J.-Y. & Dong, Y.-B. (2018). J. Mol. Struct. 1161, 145–151.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Oxford Diffraction (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd., Yarnton, England.  Google Scholar
First citationSarma, R. & Baruah, J. B. (2011). Solid State Sci. 13, 1692–1700.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarma, R., Karmakar, A. & Baruah, J. B. (2008). Inorg. Chim. Acta, 361, 2081–2086.  Web of Science CSD CrossRef CAS Google Scholar
First citationSarma, R., Perumal, A. & Baruah, J. B. (2009). J. Coord. Chem. 62, 1513–1524.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J.-M., Liu, Z., Li, W.-N., Zhao, H. Y. & Liu, L.-D. (2007). J. Coord. Chem. 60, 1077–1082.  Web of Science CSD CrossRef CAS Google Scholar
First citationSniekers, J., Malaquias, J. C., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2017). Dalton Trans. 46, 2497–2509.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds