research communications
Crystal structures of four dimeric manganese(II) bromide coordination complexes with various derivatives of pyridine N-oxide
aGeorgia Southern University, 11935 Abercorn St., Department of Chemistry and Biochemistry, Savannah GA 31419, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu
Four manganese(II) bromide coordination complexes have been prepared with four pyridine N-oxides, viz. pyridine N-oxide (PNO), 2-methylpyridine N-oxide (2MePNO), 3-methylpyridine N-oxide (3MePNO), and 4-methylpyridine N-oxide (4MePNO). The compounds are bis(μ-pyridine N-oxide)bis[aquadibromido(pyridine N-oxide)manganese(II)], [Mn2Br4(C5H5NO)4(H2O)2] (I), bis(μ-2-methylpyridine N-oxide)bis[diaquadibromidomanganese(II)]–2-methylpyridine N-oxide (1/2), [Mn2Br4(C6H7NO)2(H2O)4]·2C6H7NO (II), bis(μ-3-methylpyridine N-oxide)bis[aquadibromido(3-methylpyridine N-oxide)manganese(II)], [Mn2Br4(C6H7NO)4(H2O)2] (III), and bis(μ-4-methylpyridine N-oxide)bis[dibromidomethanol(4-methylpyridine N-oxide)manganese(II)], [Mn2Br4(C6H7NO)4(CH3OH)2] (IV). All the compounds have one unique MnII atom and form a dimeric complex that contains two MnII atoms related by a crystallographic inversion center. Pseudo-octahedral six-coordinate manganese(II) centers are found in all four compounds. All four compounds form dimers of Mn atoms bridged by the oxygen atom of the PNO ligand. Compounds I, II and III exhibit a bound water of solvation, whereas compound IV contains a bound methanol molecule of solvation. Compounds I, III and IV exhibit the same arrangement of molecules around each manganese atom, ligated by two bromide ions, oxygen atoms of two PNO ligands and one solvent molecule, whereas in compound II each manganese atom is ligated by two bromide ions, one O atom of a PNO ligand and two water molecules with a second PNO molecule interacting with the complex via hydrogen bonding through the bound water molecules. All of the compounds form extended hydrogen-bonding networks, and compounds I, II, and IV exhibit offset π-stacking between PNO ligands of neighboring dimers.
1. Chemical context
N-oxides have interesting binding modes that facilitate the growth of unique coordination structures. Their utility to facilitate organic oxotransfer reactions has been well documented over the years (see, for example, Eppenson, 2003). Many of these reactions are actually catalyzed by transition-metal interactions with the N-oxide ligands (see, for example, Moustafa et al., 2014). Herein, we report four coordination dimers; however, many of these types of structures extend to the formation of coordination polymers. A recent report shows the utility of pyridine N-oxide to facilitate coordination polymer formation with both zinc(II) and manganese(II) metal ions with a single bifunctional ligand containing an acetate and N-oxide moiety (Ren et al., 2018). These have been reported by us (Lynch et al., 2018; Kang et al., 2017) and others (Sarma et al., 2008, 2009; Sarma & Baruah, 2011).
Herein, we report the synthesis and solid-state structures of four pyridine N-oxide manganese(II) dimeric complexes, using pyridine N-oxide (PNO) and its mono-methyl-substituted forms, 2-methylpyridine N-oxide (2MePNO), 3-methylpyridine N-oxide (3MePNO), and 4-methylpyridine N-oxide (4MePNO). This was done to study the impact of substitution of the pyridine on the two- and three-dimensional solid-state structures, and to compare them to previous structures in which the bromide ions are replaced with chloride ions.
2. Structural commentary
General structural details
The pyridine N-oxide complexes form dimers consisting of two MnII atoms related by an inversion center; the dimer contains a six-coordinate metal center at each MnII ion with four donor oxygen atoms and two bromides. The Mn1⋯Mn1′ dimer is bound trans by two μ2-1,1-PNO ligands, and the octahedral environment is completed by a water molecule of hydration or a solvent molecule, non-bridging PNO ligands, and bromide ions. The dimer is constructed from symmetry-related atoms and molecules using a crystallographic inversion center of the (P and P21/n). The molecular structures of compounds I, II, III and IV are given in Figs. 1, 2, 3 and 4, respectively.
Specific structural details
Compound I (Fig. 1) crystallizes in the monoclinic P21/n. The Mn—O bond lengths in compound I for the bridging PNO ligand are 2.172 (2) and 2.235 (2) Å for Mn1—O1 and Mn1—O1i, respectively, which is unremarkable for compounds of MnII and pyridine N-oxide (Sniekers et al., 2017; Mondal et al., 2012). The non-bridging Mn1—O2 bond length is 2.099 (3) Å and the bound water Mn1—O3 bond length is 2.312 (3) Å. The bound bromide ions have bond lengths of Mn1—Br1 = 2.7212 (13) Å and Mn1—Br2 = 2.5813 (13) Å; the Mn1—Br1 bond length is significantly longer than Mn1—Br2 as a result of hydrogen-bonding interactions that exist with Br1 but not with Br2 (Table 1). The bridging Mn1 to Mn1i distance is 3.617 (16) Å. The octahedral geometry around the Mn atoms is significantly distorted with the O1—Mn1—O1i bond angle measuring 69.66 (9)°; the other bond angles are within ca 9° of 90°. These bond angles and bond lengths are similar to those for other MnII halide PNO structures (Kang et al., 2017). The dimer also forms an intramolecular hydrogen bond involving the water O atom, O3, and atom Br1i, with a hydrogen bond distance of 2.58 (2) Å [Table 1; symmetry code: (i) −x + 1, −y + 1, −z + 1].
|
Compound II (Fig. 2) crystallizes in the triclinic P. The bond distances observed in compound II at Mn1 for the bridging 2MePNO are 2.214 (2) and 2.321 (2) Å for Mn1—O1 and Mn1—O1i, respectively. The two bound water molecules have Mn—O bond lengths of 2.237 (3) and 2.157 (3) Å for Mn1—O3 and Mn1—O4, respectively, and are similar to those reported previously (Mondal, et al., 2012; Lynch, et al., 2018; Kang et al., 2017). The bound bromide ions have bond distances of Mn1—Br1 = 2.7009 (7) Å and Mn1—Br2 = 2.6340 (7) Å. In compound II both bromide atoms are involved in hydrogen-bonding interactions (Table 2). The Mn1 to Mn1i distance is 3.6128 (11) Å. Once again the octahedral geometry around the Mn atoms is significantly distorted with the O1—Mn1—O1i bond angle measuring 74.40 (9)°. The other bond angles are within ca 11° of 90°. The dimer forms an intramolecular hydrogen bond between O3 and Br1i with a hydrogen-bond distance of 2.44 (2) Å [Table 2; symmetry code: (i) −x + 2, −y + 1, −z + 1]. In the there is a second PNO molecule interacting with the complex via hydrogen bonding through the bound water molecules (Table 2).
Compound III (Fig. 3) crystallizes in the triclinic P and is very similar to compound I. The bond distances observed in compound III at Mn1 for the bridging 3MePNO are 2.211 (3) and 2.219 (3) Å for Mn1—O2 and Mn1—O2i, respectively. The non-bridging Mn1—O1 bond is 2.129 (3) Å, and the bound water Mn1—O3 bond distance is 2.245 (3) Å. The bound bromide ions have bond distances of Mn1—Br1 = 2.7237 (7) Å and Mn1—Br2 = 2.5687 (7) Å; again the difference in Mn—Br bond distances can be attributed to the hydrogen-bonding interactions that exist with Br1 but not with Br2 (Table 3). The Mn1 to Mn1i distance is 3.6497 (13) Å. The octahedral geometry around the Mn atoms is significantly distorted with the O2—Mn1—O2i bond angle measuring 69.05 (11)° the other bond angles are within ca 11° of 90°. The dimer forms an intramolecular hydrogen bond between O3 and Br1ii with a hydrogen-bond distance of 2.55 (2) Å [Table 3; symmetry code: (ii) −x, −y + 1, −z].
|
Compound IV (Fig. 4) crystallizes in the monoclinic P21/n. The bond distances observed in compound IV at Mn1 for the bridging 4MePNO are 2.201 (2) and 2.230 (3) Å for Mn1—O2 and Mn1—O2i, respectively. The non-bridging Mn1—O1 bond is 2.116 (3) Å, and the bound methanol Mn1—O3 bond distance is 2.225 (3) Å. The bound bromide ions have bond distances of Mn1—Br1 = 2.7181 (7) Å and Mn1—Br2 2.5806 (7) Å, again the difference in Mn—Br bond distance can be attributed to the hydrogen-bonding interactions (Table 4). The Mn1 to Mn1i distance is 3.61254 (12) Å. The octahedral geometry around the Mn atoms is significantly distorted with the O2—Mn1—O2i bond angle measuring 70.77 (11)° the other bond angles are within 13° of 90°. The dimer forms an intramolecular hydrogen bond between O3 and Br1i with a hydrogen-bond distance of 2.41 (2) Å [Table 4; symmetry code: (i) −x + 1, −y + 1, −z + 1].
3. Supramolecular features
In the crystal of compound I, the dimers are linked by Owater—H⋯Br hydrogen bonds, forming chains parallel to the [100] direction; see Table 1. The chains are linked by offset π–π interactions between inversion-related non-bridging PNO ligands [ring N2/C6–C10; inter-centroid distance = 3.663 (5) Å; offset = 1.399 Å], forming layers parallel to the ac plane (Fig. 5).
Compound II is a dimer with two water molecules bound to each MnII atom and to only one 2MePNO ligand. The structure has a second 2MePNO molecule not bound to an Mn atom. This unbound 2MePNO is hydrogen-bonded to the bound water molecules of two different dimers, O3⋯O2 = 2.731 (4) Å and O4⋯O2ii = 2.721 (4) Å (Table 2). Neighboring dimers also form hydrogen bonds between bound water molecules and bromide ions, O3—H3B⋯Br1i with a distance of 2.44 (2) Å (Fig. 6; see Table 2 for hydrogen-bond details and symmetry codes). Combined, these interactions form a hydrogen-bonded chain running parallel to the a axis. Neighboring chains are held together through offset π-stacking between the non-bonded 2MePNO ligands (ring N2/C7–C11), with an inter-centroid distance of the stacked aromatic rings of 3.516 (4) Å, so forming layers parallel to the ac plane (Fig. 6).
The packing in III is similar to that for compound I; however, the aromatic inter-centroid distance is longer than in the other two compounds, 4.545 (5) Å, with a significant centroid shift of 3.221 (9) Å preventing π-stacking. Neighboring dimers are linked by O—H⋯Br hydrogen-bonds forming chains parallel to the a axis. There are two observed interactions, O3—H3A⋯Br1i with a distance of 2.60 (2) Å and O3—H3B⋯Br1ii with a distance of 2.55 (2) Å (Fig. 7; see Table 3 for hydrogen-bond details and symmetry codes).
Compound IV, a dimeric structure with a bound molecule of methanol replacing the bound water molecule of compound I to each of the MnII atoms, packs very similarly to compound I (Fig. 8 and Table 4). The inter-centroid distance of the offset π-stacked aromatic rings is 3.824 (5) Å between bridging 4MePNO molecules and non-bridging 4MePNO molecules. This results in the formation of chains running parallel to the b axis (Fig. 8). There is no hydrogen-bonding observed between neighboring dimers in this structure.
4. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.40, November 2018 update; Groom et al., 2016) for aromatic N-oxides and halogen ligands bound to manganese returned six entries (five chlorides and one iodide). Five of these structures contain derivatives of pyridine N-oxides and one of them is a 4,4′-dipyridal N,N′-dioxide (CSD refcode PALYEH; Ghosh et al., 2005). Three of these structures are the chloride analogs of compounds presented here, viz. [MnCl2(PNO)(H2O)]n, [MnCl2(2MPNO)(H2O)]n, and [MnCl2(3MPNO)(H2O)2]2 (VEJLUU, VEJMAB, and VEJMEF, respectively; Kang et al., 2017), and one is an iodide analog [Mn2(PNO)2(H2O)6I2]I2 (GIWQAF; Shi et al., 2007). The other two involve functionalized pyridine N-oxides; 2-amino (MIRGID; Niu et al., 2001) and 4-carboxylic acid (OROZUR; Liu et al., 2010).
5. Synthesis and crystallization
Compound I: Manganese(II) bromide tetrahydrate (0.320 g, 1.12 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of pyridine N-oxide (PNO; 0.212 g, 2.23 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce X-ray quality crystals (yield 0.219 g, 46.4%). Selected IR bands (ATR, FT–IR, KBr composite, cm−1) 3470 (m, br), 1471 (s), 1216 (s), 833 (s) 773 (m), 669 (m), 558 (m). Analysis calculated for C20H24N4Mn2Br4O6: C, 28.40; H, 2.86; N, 6.62%. Found: C, 28.13; H, 2.86; N, 6.50%.
Compound II: Manganese(II) bromide tetrahydrate (0.302 g, 1.05 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of 2-methylpyridine N-oxide (2MPNO; 0.230 g, 2.11 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce X-ray quality crystals (yield: 0.212 g, 42.9%). Selected IR bands (ATR, FT–IR, KBr composite, cm−1) 3349 (m, br), 1600 (m), 1461 (s), 1195 (s) 842 (m), 772 (s), 557 (m). Analysis calculated for C24H36N4Mn2Br4O8: C, 30.73; H, 3.87; N, 5.97%. Found: C, 30.30; H, 3.62; N, 6.17%.
Compound III: Manganese(II) bromide tetrahydrate (0.312 g, 1.09 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of 3-methylpyridine N-oxide (3MPNO; 0.230 g, 2.12 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce a powder (yield: 0.243 g, 49.5%). X-ray quality crystals were grown by recrystallizing a second time by slow evaporation from methanol. Selected IR bands (ATR, FT–IR, KBr composite, cm−1) 3373 (m, br), 1631 (s), 1492 (m), 1260 (m), 1163(s), 943 (m), 802 (m).
Compound IV: Manganese(II) bromide tetrahydrate (0.302 g; 1.05 mmol) was dissolved in a minimal amount (20 ml) of methanol. Two molar equivalents of 4-methylpyridine N-oxide (4MPNO; 0.230 g, 2.11 mmol) were also dissolved in methanol. The solutions were mixed and stirred for 10 min and the solvent was allowed to evaporate to produce a powder (yield: 0.215 g, 44.1%). X-ray quality crystals were grown by recrystallizing a second time from methanol with a slower evaporation rate. Selected IR bands (ATR, FT–IR, KBr composite, cm−1) 3227 (m, br), 3004 (m), 1670 (m), 1494(s), 1213 (s), 852(s), 763(s).
Compounds I and II have been reported analytically pure, whereas III and IV were not isolated analytically pure. The FT–IR spectra of the four N-oxide complexes all exhibit broad absorbances in the 3500–3100 cm−1 region characteristic of the ν(O—H) of the coordinated water or methanol molecules. In addition, the ν(N—O) stretching frequency that is due to the N-oxide pyridyl moiety is observed in the region between 1260 and 1195 cm−1, as noted previously (Mautner et al., 2017).
6. Refinement
Crystal data, data collection and structure . In order to ensure chemically meaningful O—H distances for the bound water molecules in compounds I–III, the O—H distances were restrained to 0.84 (2) Å and refined with Uiso(H) = 1.5Ueq(O). In compound IV, the hydroxyl H atom was located in a difference-Fourier map and refined with O—H distance restrained to 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O). All carbon-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989019010557/su5505sup1.cif
contains datablocks Global, II, III, IV, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019010557/su5505Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019010557/su5505IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989019010557/su5505IIIsup4.hkl
Structure factors: contains datablock IV. DOI: https://doi.org/10.1107/S2056989019010557/su5505IVsup5.hkl
For all structures, data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2018); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2018); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Mn2Br4(C5H5NO)4(H2O)2] | F(000) = 820 |
Mr = 845.95 | Dx = 1.940 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.736 (4) Å | Cell parameters from 4250 reflections |
b = 15.179 (7) Å | θ = 2.1–27.5° |
c = 12.528 (6) Å | µ = 6.43 mm−1 |
β = 100.055 (4)° | T = 170 K |
V = 1448.5 (12) Å3 | Prism, colorless |
Z = 2 | 0.5 × 0.5 × 0.2 mm |
Rigaku Mini template diffractometer | 3305 independent reflections |
Radiation source: Sealed Tube | 3024 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.178 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 2.1° |
profile data from ω–scans | h = −10→10 |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | k = −19→19 |
Tmin = 0.066, Tmax = 0.114 | l = −16→16 |
15117 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0191P)2 + 0.4786P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.110 | (Δ/σ)max = 0.001 |
S = 1.13 | Δρmax = 1.43 e Å−3 |
3305 reflections | Δρmin = −1.15 e Å−3 |
172 parameters | Extinction correction: (SHELXL-2018/1; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.0140 (11) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.88172 (4) | 0.48605 (2) | 0.66632 (3) | 0.02264 (14) | |
C1 | 0.4849 (5) | 0.3093 (3) | 0.3370 (3) | 0.0303 (8) | |
H1 | 0.363028 | 0.310997 | 0.339833 | 0.036* | |
Mn1 | 0.54254 (7) | 0.43050 (3) | 0.61896 (4) | 0.01589 (16) | |
O1 | 0.5247 (3) | 0.43379 (14) | 0.44408 (17) | 0.0171 (5) | |
N1 | 0.5922 (4) | 0.36998 (16) | 0.3881 (2) | 0.0160 (5) | |
Br2 | 0.61302 (5) | 0.26431 (2) | 0.63521 (3) | 0.02396 (15) | |
N2 | 0.5951 (4) | 0.4668 (2) | 0.8619 (2) | 0.0250 (6) | |
O2 | 0.4813 (4) | 0.46894 (19) | 0.7689 (2) | 0.0296 (6) | |
C2 | 0.5520 (6) | 0.2438 (3) | 0.2796 (4) | 0.0403 (10) | |
H2 | 0.476706 | 0.199462 | 0.243743 | 0.048* | |
C3 | 0.7280 (6) | 0.2428 (3) | 0.2744 (4) | 0.0377 (10) | |
H3 | 0.774934 | 0.198354 | 0.234356 | 0.045* | |
O3 | 0.2446 (4) | 0.40522 (18) | 0.5691 (2) | 0.0260 (6) | |
C4 | 0.8354 (6) | 0.3068 (3) | 0.3280 (4) | 0.0440 (12) | |
H4 | 0.957332 | 0.307435 | 0.325343 | 0.053* | |
C5 | 0.7628 (5) | 0.3702 (3) | 0.3855 (4) | 0.0339 (9) | |
H5 | 0.835724 | 0.414384 | 0.423704 | 0.041* | |
C6 | 0.6494 (6) | 0.3886 (3) | 0.9054 (3) | 0.0385 (10) | |
H6 | 0.610967 | 0.335631 | 0.868308 | 0.046* | |
C7 | 0.7611 (8) | 0.3855 (4) | 1.0040 (4) | 0.0570 (14) | |
H7 | 0.800377 | 0.330116 | 1.034421 | 0.068* | |
C8 | 0.8162 (7) | 0.4620 (5) | 1.0588 (4) | 0.0627 (17) | |
H8 | 0.892059 | 0.460197 | 1.127146 | 0.075* | |
C9 | 0.7581 (8) | 0.5413 (4) | 1.0116 (4) | 0.0600 (16) | |
H9 | 0.792711 | 0.594992 | 1.048066 | 0.072* | |
C10 | 0.6498 (7) | 0.5426 (3) | 0.9116 (4) | 0.0396 (10) | |
H10 | 0.613977 | 0.597312 | 0.877878 | 0.048* | |
H3A | 0.214 (6) | 0.418 (3) | 0.5042 (18) | 0.037 (13)* | |
H3B | 0.172 (5) | 0.424 (3) | 0.606 (4) | 0.042 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0170 (2) | 0.0266 (2) | 0.0235 (2) | −0.00262 (13) | 0.00117 (15) | 0.00210 (12) |
C1 | 0.0210 (18) | 0.030 (2) | 0.038 (2) | −0.0009 (15) | −0.0002 (16) | −0.0156 (16) |
Mn1 | 0.0175 (3) | 0.0151 (3) | 0.0155 (3) | 0.00165 (18) | 0.0039 (2) | 0.00189 (17) |
O1 | 0.0237 (12) | 0.0126 (10) | 0.0161 (10) | 0.0056 (9) | 0.0062 (9) | −0.0010 (8) |
N1 | 0.0210 (14) | 0.0101 (12) | 0.0172 (12) | 0.0016 (11) | 0.0046 (11) | −0.0037 (10) |
Br2 | 0.0256 (2) | 0.0155 (2) | 0.0302 (2) | 0.00169 (13) | 0.00347 (16) | 0.00366 (12) |
N2 | 0.0240 (16) | 0.0354 (17) | 0.0165 (13) | 0.0059 (13) | 0.0064 (12) | −0.0019 (12) |
O2 | 0.0298 (15) | 0.0420 (16) | 0.0175 (11) | 0.0119 (12) | 0.0050 (11) | 0.0009 (11) |
C2 | 0.032 (2) | 0.031 (2) | 0.054 (3) | 0.0001 (18) | −0.0029 (19) | −0.025 (2) |
C3 | 0.038 (2) | 0.029 (2) | 0.047 (2) | 0.0010 (18) | 0.012 (2) | −0.0200 (18) |
O3 | 0.0220 (13) | 0.0305 (14) | 0.0263 (13) | 0.0033 (11) | 0.0063 (11) | 0.0089 (11) |
C4 | 0.026 (2) | 0.035 (2) | 0.077 (3) | −0.0021 (18) | 0.025 (2) | −0.023 (2) |
C5 | 0.026 (2) | 0.0254 (19) | 0.053 (2) | −0.0056 (16) | 0.0161 (19) | −0.0176 (17) |
C6 | 0.044 (3) | 0.039 (2) | 0.030 (2) | 0.016 (2) | 0.0008 (18) | 0.0047 (17) |
C7 | 0.053 (3) | 0.084 (4) | 0.032 (2) | 0.029 (3) | −0.001 (2) | 0.012 (2) |
C8 | 0.032 (3) | 0.127 (5) | 0.027 (2) | 0.003 (3) | −0.001 (2) | −0.013 (3) |
C9 | 0.055 (3) | 0.085 (4) | 0.043 (3) | −0.030 (3) | 0.016 (3) | −0.031 (3) |
C10 | 0.047 (3) | 0.038 (2) | 0.036 (2) | −0.011 (2) | 0.014 (2) | −0.0076 (18) |
Mn1—Br1 | 2.7212 (13) | C3—H3 | 0.9500 |
C1—H1 | 0.9500 | C3—C4 | 1.375 (6) |
C1—N1 | 1.327 (5) | O3—H3A | 0.829 (19) |
C1—C2 | 1.381 (5) | O3—H3B | 0.829 (19) |
Mn1—O1 | 2.172 (2) | C4—H4 | 0.9500 |
Mn1—O1i | 2.235 (2) | C4—C5 | 1.379 (5) |
Mn1—Br2 | 2.5813 (13) | C5—H5 | 0.9500 |
Mn1—O2 | 2.099 (3) | C6—H6 | 0.9500 |
Mn1—O3 | 2.312 (3) | C6—C7 | 1.380 (7) |
O1—N1 | 1.353 (3) | C7—H7 | 0.9500 |
N1—C5 | 1.326 (5) | C7—C8 | 1.378 (8) |
N2—O2 | 1.332 (4) | C8—H8 | 0.9500 |
N2—C6 | 1.342 (5) | C8—C9 | 1.381 (9) |
N2—C10 | 1.342 (5) | C9—H9 | 0.9500 |
C2—H2 | 0.9500 | C9—C10 | 1.381 (8) |
C2—C3 | 1.374 (6) | C10—H10 | 0.9500 |
N1—C1—H1 | 120.3 | C3—C2—C1 | 119.9 (4) |
N1—C1—C2 | 119.4 (4) | C3—C2—H2 | 120.1 |
C2—C1—H1 | 120.3 | C2—C3—H3 | 120.4 |
O1—Mn1—Br1 | 95.84 (7) | C2—C3—C4 | 119.2 (3) |
O1i—Mn1—Br1 | 87.00 (7) | C4—C3—H3 | 120.4 |
O1—Mn1—O1i | 69.66 (9) | Mn1—O3—H3A | 109 (3) |
O1—Mn1—Br2 | 94.44 (6) | Mn1—O3—H3B | 122 (4) |
O1i—Mn1—Br2 | 164.07 (6) | H3A—O3—H3B | 111 (5) |
O1i—Mn1—O3 | 84.14 (10) | C3—C4—H4 | 120.6 |
O1—Mn1—O3 | 81.19 (9) | C3—C4—C5 | 118.8 (4) |
Br2—Mn1—Br1 | 95.93 (3) | C5—C4—H4 | 120.6 |
O2—Mn1—Br1 | 94.50 (9) | N1—C5—C4 | 120.6 (4) |
O2—Mn1—O1i | 89.15 (10) | N1—C5—H5 | 119.7 |
O2—Mn1—O1 | 155.81 (10) | C4—C5—H5 | 119.7 |
O2—Mn1—Br2 | 106.17 (8) | N2—C6—H6 | 120.1 |
O2—Mn1—O3 | 85.28 (11) | N2—C6—C7 | 119.8 (5) |
O3—Mn1—Br1 | 171.14 (7) | C7—C6—H6 | 120.1 |
O3—Mn1—Br2 | 92.63 (7) | C6—C7—H7 | 119.7 |
Mn1—O1—Mn1i | 110.34 (9) | C8—C7—C6 | 120.5 (5) |
N1—O1—Mn1 | 122.99 (18) | C8—C7—H7 | 119.7 |
N1—O1—Mn1i | 124.32 (17) | C7—C8—H8 | 120.9 |
C1—N1—O1 | 118.8 (3) | C7—C8—C9 | 118.2 (5) |
C5—N1—C1 | 122.1 (3) | C9—C8—H8 | 120.9 |
C5—N1—O1 | 119.1 (3) | C8—C9—H9 | 119.9 |
O2—N2—C6 | 119.2 (3) | C10—C9—C8 | 120.1 (5) |
O2—N2—C10 | 119.4 (4) | C10—C9—H9 | 119.9 |
C6—N2—C10 | 121.3 (4) | N2—C10—C9 | 120.0 (5) |
N2—O2—Mn1 | 123.9 (2) | N2—C10—H10 | 120.0 |
C1—C2—H2 | 120.1 | C9—C10—H10 | 120.0 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···Br1i | 0.83 (2) | 2.58 (2) | 3.372 (3) | 159 (4) |
O3—H3B···Br1ii | 0.84 (4) | 2.66 (4) | 3.473 (4) | 163 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z. |
[Mn2Br4(C6H7NO)2(H2O)4]·2C6H7NO | Z = 1 |
Mr = 938.09 | F(000) = 462 |
Triclinic, P1 | Dx = 1.858 Mg m−3 |
a = 8.9560 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7922 (9) Å | Cell parameters from 4291 reflections |
c = 10.2945 (8) Å | θ = 2.3–33.2° |
α = 110.048 (8)° | µ = 5.57 mm−1 |
β = 90.336 (7)° | T = 170 K |
γ = 98.052 (7)° | Block, clear light yellow |
V = 838.34 (13) Å3 | 0.2 × 0.2 × 0.1 mm |
Rigaku XtaLAB mini diffractometer | 3838 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2931 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.053 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 2.1° |
profile data from ω–scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku Oxford Diffraction, 2018) | k = −12→12 |
Tmin = 0.580, Tmax = 1.000 | l = −13→13 |
8918 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0319P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
3838 reflections | Δρmax = 0.72 e Å−3 |
208 parameters | Δρmin = −0.61 e Å−3 |
4 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.97900 (4) | 0.80035 (4) | 0.74971 (4) | 0.02737 (11) | |
O1 | 1.0009 (3) | 0.4219 (3) | 0.5880 (2) | 0.0216 (5) | |
C1 | 0.9673 (4) | 0.2520 (4) | 0.7046 (4) | 0.0271 (8) | |
Mn1 | 0.82268 (6) | 0.55061 (6) | 0.56887 (5) | 0.02123 (13) | |
N1 | 1.0302 (3) | 0.3845 (3) | 0.6999 (3) | 0.0219 (6) | |
Br2 | 0.62884 (4) | 0.49697 (4) | 0.74319 (4) | 0.03065 (11) | |
C2 | 1.0052 (4) | 0.2179 (4) | 0.8211 (4) | 0.0304 (9) | |
H2 | 0.962787 | 0.125920 | 0.827065 | 0.037* | |
O3 | 0.7281 (3) | 0.3472 (3) | 0.3927 (3) | 0.0267 (6) | |
H3A | 0.647 (3) | 0.288 (4) | 0.388 (4) | 0.043 (13)* | |
H3B | 0.799 (3) | 0.297 (4) | 0.359 (4) | 0.036 (12)* | |
C3 | 1.1028 (5) | 0.3150 (4) | 0.9273 (4) | 0.0329 (9) | |
H3 | 1.127202 | 0.290351 | 1.005596 | 0.039* | |
C4 | 1.1643 (5) | 0.4487 (5) | 0.9180 (4) | 0.0368 (10) | |
H4 | 1.231315 | 0.517477 | 0.990012 | 0.044* | |
O4 | 0.6790 (3) | 0.6595 (3) | 0.4807 (3) | 0.0268 (6) | |
H4A | 0.642 (6) | 0.726 (4) | 0.542 (4) | 0.09 (2)* | |
H4B | 0.614 (5) | 0.614 (6) | 0.417 (4) | 0.10 (2)* | |
C5 | 1.1269 (4) | 0.4809 (4) | 0.8023 (4) | 0.0320 (9) | |
H5 | 1.169778 | 0.571996 | 0.794612 | 0.038* | |
C6 | 0.8633 (5) | 0.1536 (4) | 0.5885 (4) | 0.0377 (10) | |
H6A | 0.769395 | 0.194740 | 0.589890 | 0.057* | |
H6B | 0.840725 | 0.056545 | 0.597618 | 0.057* | |
H6C | 0.910470 | 0.144060 | 0.500794 | 0.057* | |
N2 | 0.4507 (3) | 0.0303 (3) | 0.2438 (3) | 0.0262 (7) | |
O2 | 0.4865 (3) | 0.1344 (3) | 0.3682 (3) | 0.0288 (6) | |
C7 | 0.5133 (4) | −0.0960 (4) | 0.2104 (4) | 0.0292 (9) | |
C8 | 0.4748 (6) | −0.2028 (5) | 0.0806 (4) | 0.0455 (12) | |
H8 | 0.518213 | −0.290783 | 0.054919 | 0.055* | |
C9 | 0.3744 (6) | −0.1829 (6) | −0.0117 (5) | 0.0544 (14) | |
H9 | 0.349499 | −0.256046 | −0.100515 | 0.065* | |
C10 | 0.3105 (5) | −0.0539 (6) | 0.0278 (5) | 0.0516 (13) | |
H10 | 0.238985 | −0.039227 | −0.032830 | 0.062* | |
C11 | 0.3517 (4) | 0.0509 (5) | 0.1542 (4) | 0.0378 (10) | |
H11 | 0.310341 | 0.140125 | 0.180201 | 0.045* | |
C12 | 0.6228 (5) | −0.1073 (4) | 0.3143 (4) | 0.0383 (10) | |
H12A | 0.713697 | −0.035107 | 0.324504 | 0.057* | |
H12B | 0.650204 | −0.206492 | 0.283156 | 0.057* | |
H12C | 0.576598 | −0.087782 | 0.403703 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0266 (2) | 0.0235 (2) | 0.0261 (2) | 0.00076 (15) | 0.00103 (15) | 0.00222 (15) |
O1 | 0.0243 (13) | 0.0249 (13) | 0.0179 (12) | 0.0027 (11) | −0.0006 (10) | 0.0110 (10) |
C1 | 0.0272 (19) | 0.024 (2) | 0.028 (2) | 0.0024 (16) | 0.0022 (16) | 0.0072 (16) |
Mn1 | 0.0213 (3) | 0.0217 (3) | 0.0198 (3) | 0.0016 (2) | −0.0009 (2) | 0.0067 (2) |
N1 | 0.0236 (15) | 0.0223 (16) | 0.0203 (15) | 0.0014 (13) | 0.0008 (13) | 0.0088 (13) |
Br2 | 0.0294 (2) | 0.0379 (2) | 0.0225 (2) | −0.00298 (17) | 0.00138 (16) | 0.01083 (17) |
C2 | 0.040 (2) | 0.026 (2) | 0.031 (2) | 0.0067 (18) | 0.0077 (18) | 0.0170 (18) |
O3 | 0.0247 (14) | 0.0246 (14) | 0.0269 (14) | −0.0001 (12) | 0.0010 (12) | 0.0055 (12) |
C3 | 0.040 (2) | 0.039 (2) | 0.027 (2) | 0.0095 (19) | 0.0009 (18) | 0.0198 (19) |
C4 | 0.041 (2) | 0.041 (2) | 0.025 (2) | −0.002 (2) | −0.0076 (18) | 0.0103 (19) |
O4 | 0.0305 (15) | 0.0269 (15) | 0.0228 (15) | 0.0069 (13) | −0.0031 (13) | 0.0074 (12) |
C5 | 0.035 (2) | 0.028 (2) | 0.030 (2) | −0.0046 (18) | −0.0073 (18) | 0.0099 (17) |
C6 | 0.046 (3) | 0.029 (2) | 0.035 (2) | −0.0069 (19) | −0.003 (2) | 0.0126 (19) |
N2 | 0.0229 (16) | 0.0293 (18) | 0.0237 (16) | −0.0054 (14) | 0.0025 (13) | 0.0096 (14) |
O2 | 0.0316 (14) | 0.0243 (14) | 0.0255 (14) | 0.0036 (12) | 0.0051 (12) | 0.0024 (11) |
C7 | 0.038 (2) | 0.024 (2) | 0.0230 (19) | −0.0034 (17) | 0.0049 (17) | 0.0080 (16) |
C8 | 0.068 (3) | 0.028 (2) | 0.030 (2) | −0.012 (2) | 0.005 (2) | 0.0046 (19) |
C9 | 0.062 (3) | 0.057 (3) | 0.027 (2) | −0.036 (3) | −0.005 (2) | 0.009 (2) |
C10 | 0.032 (2) | 0.088 (4) | 0.036 (3) | −0.017 (3) | −0.008 (2) | 0.033 (3) |
C11 | 0.0185 (19) | 0.059 (3) | 0.042 (3) | 0.0064 (19) | 0.0035 (18) | 0.024 (2) |
C12 | 0.054 (3) | 0.035 (2) | 0.030 (2) | 0.018 (2) | 0.007 (2) | 0.0113 (19) |
Mn1—Br1 | 2.7009 (7) | O4—H4B | 0.83 (2) |
Mn1—O1 | 2.214 (2) | C5—H5 | 0.9500 |
O1—Mn1i | 2.321 (2) | C6—H6A | 0.9800 |
O1—N1 | 1.358 (3) | C6—H6B | 0.9800 |
C1—N1 | 1.357 (4) | C6—H6C | 0.9800 |
C1—C2 | 1.402 (5) | N2—O2 | 1.338 (4) |
C1—C6 | 1.473 (5) | N2—C7 | 1.366 (5) |
Mn1—Br2 | 2.6340 (7) | N2—C11 | 1.359 (5) |
Mn1—O3 | 2.237 (3) | C7—C8 | 1.390 (5) |
Mn1—O4 | 2.157 (3) | C7—C12 | 1.490 (5) |
N1—C5 | 1.353 (5) | C8—H8 | 0.9500 |
C2—H2 | 0.9500 | C8—C9 | 1.384 (7) |
C2—C3 | 1.381 (5) | C9—H9 | 0.9500 |
O3—H3A | 0.852 (19) | C9—C10 | 1.394 (7) |
O3—H3B | 0.857 (19) | C10—H10 | 0.9500 |
C3—H3 | 0.9500 | C10—C11 | 1.362 (6) |
C3—C4 | 1.383 (5) | C11—H11 | 0.9500 |
C4—H4 | 0.9500 | C12—H12A | 0.9800 |
C4—C5 | 1.382 (5) | C12—H12B | 0.9800 |
O4—H4A | 0.846 (19) | C12—H12C | 0.9800 |
O1—Mn1—O1i | 74.40 (9) | Mn1—O4—H4A | 112 (4) |
Mn1—O1—Mn1i | 105.60 (9) | Mn1—O4—H4B | 123 (4) |
N1—O1—Mn1 | 125.53 (19) | H4A—O4—H4B | 110 (5) |
N1—O1—Mn1i | 124.62 (18) | N1—C5—C4 | 121.0 (3) |
N1—C1—C2 | 117.5 (3) | N1—C5—H5 | 119.5 |
N1—C1—C6 | 118.5 (3) | C4—C5—H5 | 119.5 |
C2—C1—C6 | 124.1 (3) | C1—C6—H6A | 109.5 |
O1—Mn1—Br1 | 91.54 (6) | C1—C6—H6B | 109.5 |
O1i—Mn1—Br1 | 85.90 (6) | C1—C6—H6C | 109.5 |
O1—Mn1—Br2 | 101.36 (6) | H6A—C6—H6B | 109.5 |
O1i—Mn1—Br2 | 175.09 (6) | H6A—C6—H6C | 109.5 |
O1—Mn1—O3 | 84.60 (9) | H6B—C6—H6C | 109.5 |
Br2—Mn1—Br1 | 96.79 (2) | O2—N2—C7 | 119.0 (3) |
O3—Mn1—Br1 | 169.21 (8) | O2—N2—C11 | 119.7 (3) |
O3—Mn1—O1i | 83.36 (9) | C11—N2—C7 | 121.3 (3) |
O3—Mn1—Br2 | 93.85 (7) | N2—C7—C8 | 118.2 (4) |
O4—Mn1—Br1 | 95.42 (8) | N2—C7—C12 | 117.4 (3) |
O4—Mn1—O1i | 87.70 (9) | C8—C7—C12 | 124.4 (4) |
O4—Mn1—O1 | 160.29 (10) | C7—C8—H8 | 119.5 |
O4—Mn1—Br2 | 96.11 (8) | C9—C8—C7 | 121.1 (5) |
O4—Mn1—O3 | 85.19 (10) | C9—C8—H8 | 119.5 |
C1—N1—O1 | 120.1 (3) | C8—C9—H9 | 120.5 |
C5—N1—O1 | 117.8 (3) | C8—C9—C10 | 118.9 (4) |
C5—N1—C1 | 122.0 (3) | C10—C9—H9 | 120.5 |
C1—C2—H2 | 119.2 | C9—C10—H10 | 120.4 |
C3—C2—C1 | 121.5 (3) | C11—C10—C9 | 119.3 (4) |
C3—C2—H2 | 119.2 | C11—C10—H10 | 120.4 |
Mn1—O3—H3A | 128 (3) | N2—C11—C10 | 121.2 (4) |
Mn1—O3—H3B | 110 (3) | N2—C11—H11 | 119.4 |
H3A—O3—H3B | 109 (4) | C10—C11—H11 | 119.4 |
C2—C3—H3 | 120.5 | C7—C12—H12A | 109.5 |
C2—C3—C4 | 119.0 (3) | C7—C12—H12B | 109.5 |
C4—C3—H3 | 120.5 | C7—C12—H12C | 109.5 |
C3—C4—H4 | 120.5 | H12A—C12—H12B | 109.5 |
C5—C4—C3 | 119.0 (4) | H12A—C12—H12C | 109.5 |
C5—C4—H4 | 120.5 | H12B—C12—H12C | 109.5 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O2 | 0.85 (2) | 1.89 (2) | 2.731 (4) | 171 (4) |
O3—H3B···Br1i | 0.86 (2) | 2.44 (2) | 3.282 (3) | 168 (4) |
O4—H4A···O2ii | 0.85 (2) | 1.91 (3) | 2.721 (4) | 161 (5) |
O4—H4B···Br2ii | 0.83 (4) | 2.59 (4) | 3.403 (3) | 167 (4) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
[Mn2Br4(C6H7NO)4(H2O)2] | Z = 1 |
Mr = 902.05 | F(000) = 442 |
Triclinic, P1 | Dx = 1.859 Mg m−3 |
a = 7.6354 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.9700 (8) Å | Cell parameters from 4991 reflections |
c = 11.898 (1) Å | θ = 2.2–33.1° |
α = 111.980 (7)° | µ = 5.79 mm−1 |
β = 100.360 (6)° | T = 170 K |
γ = 97.737 (6)° | Plate, clear light yellow |
V = 805.71 (12) Å3 | 0.45 × 0.4 × 0.2 mm |
Rigaku XtaLAB mini diffractometer | 3672 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2875 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.036 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 1.9° |
profile data from ω–scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku Oxford Diffraction, 2018) | k = −12→12 |
Tmin = 0.319, Tmax = 1.000 | l = −15→15 |
8460 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0461P)2 + 0.5922P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
3672 reflections | Δρmax = 1.66 e Å−3 |
191 parameters | Δρmin = −0.84 e Å−3 |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.36280 (5) | 0.42105 (5) | 0.13651 (4) | 0.03458 (13) | |
C1 | 0.4906 (7) | 0.7816 (7) | 0.4116 (5) | 0.0544 (14) | |
H1 | 0.509132 | 0.827435 | 0.356286 | 0.065* | |
N1 | 0.3196 (5) | 0.7177 (4) | 0.4046 (3) | 0.0383 (9) | |
Mn1 | 0.04801 (8) | 0.51611 (7) | 0.16098 (5) | 0.02659 (16) | |
O1 | 0.1816 (4) | 0.7175 (4) | 0.3187 (3) | 0.0418 (8) | |
O2 | 0.0827 (3) | 0.6326 (3) | 0.0380 (3) | 0.0295 (6) | |
C2 | 0.6381 (7) | 0.7822 (7) | 0.4963 (5) | 0.0606 (16) | |
Br2 | −0.07392 (6) | 0.33641 (5) | 0.25163 (4) | 0.03571 (14) | |
N2 | 0.1876 (4) | 0.7681 (4) | 0.0757 (3) | 0.0254 (7) | |
C3 | 0.6062 (7) | 0.7148 (6) | 0.5770 (5) | 0.0520 (13) | |
H3 | 0.705412 | 0.710037 | 0.635284 | 0.062* | |
O3 | −0.2115 (4) | 0.5986 (4) | 0.1560 (3) | 0.0360 (7) | |
H3A | −0.304 (4) | 0.546 (5) | 0.159 (4) | 0.045 (15)* | |
H3B | −0.237 (7) | 0.594 (6) | 0.082 (3) | 0.065 (18)* | |
C4 | 0.4293 (7) | 0.6553 (6) | 0.5712 (5) | 0.0489 (12) | |
H4 | 0.406617 | 0.612501 | 0.627790 | 0.059* | |
C5 | 0.2857 (6) | 0.6573 (5) | 0.4846 (4) | 0.0391 (10) | |
H5 | 0.163976 | 0.616659 | 0.481113 | 0.047* | |
C6 | 0.8283 (9) | 0.8554 (11) | 0.5025 (7) | 0.110 (3) | |
H6A | 0.848206 | 0.962978 | 0.548807 | 0.165* | |
H6B | 0.841882 | 0.833305 | 0.417405 | 0.165* | |
H6C | 0.918146 | 0.817490 | 0.545184 | 0.165* | |
C7 | 0.3693 (5) | 0.7876 (4) | 0.1021 (4) | 0.0287 (9) | |
H7 | 0.422698 | 0.704972 | 0.095217 | 0.034* | |
C8 | 0.4801 (5) | 0.9247 (5) | 0.1391 (4) | 0.0317 (9) | |
C9 | 0.3993 (6) | 1.0418 (5) | 0.1454 (4) | 0.0369 (10) | |
H9 | 0.472406 | 1.136963 | 0.166642 | 0.044* | |
C10 | 0.2119 (6) | 1.0206 (5) | 0.1206 (5) | 0.0425 (11) | |
H10 | 0.155519 | 1.101679 | 0.127690 | 0.051* | |
C11 | 0.1069 (6) | 0.8811 (5) | 0.0856 (4) | 0.0376 (10) | |
H11 | −0.022312 | 0.865462 | 0.068630 | 0.045* | |
C12 | 0.6838 (6) | 0.9463 (6) | 0.1743 (6) | 0.0583 (15) | |
H12A | 0.727982 | 0.988271 | 0.265702 | 0.087* | |
H12B | 0.739282 | 1.014307 | 0.142149 | 0.087* | |
H12C | 0.717356 | 0.850553 | 0.138142 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0214 (2) | 0.0436 (3) | 0.0499 (3) | 0.00744 (18) | 0.00730 (17) | 0.0319 (2) |
C1 | 0.044 (3) | 0.076 (4) | 0.044 (3) | −0.004 (3) | 0.009 (2) | 0.031 (3) |
N1 | 0.036 (2) | 0.043 (2) | 0.032 (2) | 0.0035 (18) | 0.0039 (16) | 0.0153 (18) |
Mn1 | 0.0209 (3) | 0.0312 (3) | 0.0304 (3) | −0.0003 (2) | 0.0023 (2) | 0.0195 (3) |
O1 | 0.0405 (18) | 0.0424 (19) | 0.0391 (18) | 0.0021 (15) | −0.0031 (14) | 0.0214 (16) |
O2 | 0.0230 (13) | 0.0309 (15) | 0.0352 (16) | −0.0048 (12) | 0.0013 (11) | 0.0207 (13) |
C2 | 0.041 (3) | 0.084 (4) | 0.044 (3) | 0.003 (3) | 0.006 (2) | 0.017 (3) |
Br2 | 0.0330 (2) | 0.0405 (3) | 0.0419 (3) | 0.00105 (19) | 0.00990 (18) | 0.0280 (2) |
N2 | 0.0225 (16) | 0.0287 (18) | 0.0282 (17) | 0.0018 (14) | 0.0054 (13) | 0.0169 (15) |
C3 | 0.046 (3) | 0.064 (4) | 0.035 (3) | 0.012 (3) | 0.002 (2) | 0.011 (3) |
O3 | 0.0261 (16) | 0.0437 (19) | 0.047 (2) | 0.0063 (14) | 0.0113 (14) | 0.0273 (17) |
C4 | 0.051 (3) | 0.057 (3) | 0.039 (3) | 0.009 (3) | 0.008 (2) | 0.022 (3) |
C5 | 0.041 (2) | 0.043 (3) | 0.032 (2) | 0.003 (2) | 0.0093 (19) | 0.015 (2) |
C6 | 0.043 (4) | 0.180 (9) | 0.095 (6) | −0.025 (5) | 0.007 (3) | 0.064 (6) |
C7 | 0.0226 (19) | 0.025 (2) | 0.040 (2) | 0.0041 (17) | 0.0054 (17) | 0.0168 (19) |
C8 | 0.028 (2) | 0.029 (2) | 0.040 (2) | 0.0042 (18) | 0.0103 (18) | 0.017 (2) |
C9 | 0.044 (3) | 0.026 (2) | 0.037 (2) | 0.000 (2) | 0.006 (2) | 0.014 (2) |
C10 | 0.045 (3) | 0.028 (2) | 0.055 (3) | 0.013 (2) | 0.005 (2) | 0.019 (2) |
C11 | 0.029 (2) | 0.043 (3) | 0.048 (3) | 0.016 (2) | 0.0118 (19) | 0.023 (2) |
C12 | 0.029 (2) | 0.048 (3) | 0.100 (5) | 0.002 (2) | 0.017 (3) | 0.034 (3) |
Mn1—Br1 | 2.7237 (7) | O3—H3B | 0.844 (19) |
C1—H1 | 0.9500 | C4—H4 | 0.9500 |
C1—N1 | 1.347 (6) | C4—C5 | 1.370 (6) |
C1—C2 | 1.368 (7) | C5—H5 | 0.9500 |
N1—O1 | 1.328 (4) | C6—H6A | 0.9800 |
N1—C5 | 1.346 (6) | C6—H6B | 0.9800 |
Mn1—O1 | 2.129 (3) | C6—H6C | 0.9800 |
Mn1—O2 | 2.211 (3) | C7—H7 | 0.9500 |
Mn1—O2i | 2.219 (3) | C7—C8 | 1.372 (6) |
Mn1—Br2 | 2.5687 (7) | C8—C9 | 1.377 (6) |
Mn1—O3 | 2.245 (3) | C8—C12 | 1.499 (6) |
O2—N2 | 1.339 (4) | C9—H9 | 0.9500 |
C2—C3 | 1.399 (8) | C9—C10 | 1.377 (6) |
C2—C6 | 1.511 (8) | C10—H10 | 0.9500 |
N2—C7 | 1.336 (5) | C10—C11 | 1.377 (6) |
N2—C11 | 1.332 (5) | C11—H11 | 0.9500 |
C3—H3 | 0.9500 | C12—H12A | 0.9800 |
C3—C4 | 1.379 (7) | C12—H12B | 0.9800 |
O3—H3A | 0.834 (19) | C12—H12C | 0.9800 |
N1—C1—H1 | 119.2 | Mn1—O3—H3B | 101 (4) |
N1—C1—C2 | 121.6 (5) | H3A—O3—H3B | 104 (5) |
C2—C1—H1 | 119.2 | C3—C4—H4 | 119.7 |
O1—N1—C1 | 119.2 (4) | C5—C4—C3 | 120.7 (5) |
O1—N1—C5 | 119.5 (4) | C5—C4—H4 | 119.7 |
C5—N1—C1 | 121.3 (4) | N1—C5—C4 | 119.1 (4) |
O1—Mn1—Br1 | 93.86 (9) | N1—C5—H5 | 120.4 |
O1—Mn1—O2i | 157.76 (11) | C4—C5—H5 | 120.4 |
O1—Mn1—O2 | 88.94 (11) | C2—C6—H6A | 109.5 |
O1—Mn1—Br2 | 105.48 (9) | C2—C6—H6B | 109.5 |
O1—Mn1—O3 | 88.95 (12) | C2—C6—H6C | 109.5 |
O2—Mn1—Br1 | 91.19 (7) | H6A—C6—H6B | 109.5 |
O2i—Mn1—Br1 | 89.84 (8) | H6A—C6—H6C | 109.5 |
O2—Mn1—O2i | 69.05 (11) | H6B—C6—H6C | 109.5 |
O2i—Mn1—Br2 | 95.91 (7) | N2—C7—H7 | 119.4 |
O2—Mn1—Br2 | 163.39 (7) | N2—C7—C8 | 121.2 (4) |
O2—Mn1—O3 | 81.25 (11) | C8—C7—H7 | 119.4 |
O2i—Mn1—O3 | 84.75 (11) | C7—C8—C9 | 118.3 (4) |
Br2—Mn1—Br1 | 95.91 (2) | C7—C8—C12 | 120.6 (4) |
O3—Mn1—Br1 | 171.89 (8) | C9—C8—C12 | 121.1 (4) |
O3—Mn1—Br2 | 90.65 (8) | C8—C9—H9 | 120.1 |
N1—O1—Mn1 | 119.7 (3) | C8—C9—C10 | 119.8 (4) |
Mn1—O2—Mn1i | 110.95 (11) | C10—C9—H9 | 120.1 |
N2—O2—Mn1i | 123.8 (2) | C9—C10—H10 | 120.2 |
N2—O2—Mn1 | 124.7 (2) | C11—C10—C9 | 119.6 (4) |
C1—C2—C3 | 117.8 (5) | C11—C10—H10 | 120.2 |
C1—C2—C6 | 120.5 (6) | N2—C11—C10 | 119.6 (4) |
C3—C2—C6 | 121.7 (5) | N2—C11—H11 | 120.2 |
C7—N2—O2 | 119.9 (3) | C10—C11—H11 | 120.2 |
C11—N2—O2 | 118.7 (3) | C8—C12—H12A | 109.5 |
C11—N2—C7 | 121.5 (4) | C8—C12—H12B | 109.5 |
C2—C3—H3 | 120.3 | C8—C12—H12C | 109.5 |
C4—C3—C2 | 119.4 (5) | H12A—C12—H12B | 109.5 |
C4—C3—H3 | 120.3 | H12A—C12—H12C | 109.5 |
Mn1—O3—H3A | 118 (3) | H12B—C12—H12C | 109.5 |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···Br1ii | 0.83 (2) | 2.60 (2) | 3.410 (3) | 164 (4) |
O3—H3B···Br1i | 0.84 (2) | 2.55 (2) | 3.386 (3) | 172 (5) |
Symmetry codes: (i) −x, −y+1, −z; (ii) x−1, y, z. |
[Mn2Br4(C6H7NO)4(CH4O)2] | F(000) = 916 |
Mr = 930.11 | Dx = 1.790 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.5384 (7) Å | Cell parameters from 9251 reflections |
b = 9.5354 (4) Å | θ = 2.0–33.1° |
c = 13.7292 (7) Å | µ = 5.40 mm−1 |
β = 103.112 (5)° | T = 170 K |
V = 1726.15 (15) Å3 | Prism, clear light brown |
Z = 2 | 0.4 × 0.4 × 0.4 mm |
Rigaku XtaLAB mini diffractometer | 3964 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 3175 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.061 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 1.9° |
profile data from ω–scans | h = −17→17 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku Oxford Diffraction, 2018) | k = −12→12 |
Tmin = 0.659, Tmax = 1.000 | l = −17→17 |
17754 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.112 | w = 1/[σ2(Fo2) + (0.0665P)2 + 0.0317P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3964 reflections | Δρmax = 1.64 e Å−3 |
196 parameters | Δρmin = −0.74 e Å−3 |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.55122 (3) | 0.55895 (4) | 0.73950 (3) | 0.02951 (13) | |
Mn1 | 0.42974 (4) | 0.62247 (6) | 0.55858 (4) | 0.02011 (15) | |
N1 | 0.4741 (3) | 0.9181 (3) | 0.6510 (2) | 0.0243 (7) | |
C1 | 0.4328 (3) | 0.8828 (4) | 0.7272 (3) | 0.0266 (9) | |
H1 | 0.390399 | 0.802474 | 0.722371 | 0.032* | |
O1 | 0.4550 (2) | 0.8416 (3) | 0.56661 (19) | 0.0283 (6) | |
O2 | 0.4393 (2) | 0.4023 (3) | 0.5134 (2) | 0.0219 (6) | |
N2 | 0.3727 (2) | 0.3013 (3) | 0.5239 (2) | 0.0209 (7) | |
C2 | 0.4519 (3) | 0.9632 (4) | 0.8130 (3) | 0.0275 (9) | |
H2 | 0.422582 | 0.937169 | 0.866939 | 0.033* | |
Br2 | 0.25806 (3) | 0.60062 (4) | 0.60914 (3) | 0.03081 (13) | |
C3 | 0.5128 (3) | 1.0806 (4) | 0.8220 (3) | 0.0292 (9) | |
O3 | 0.3548 (2) | 0.6580 (3) | 0.3987 (2) | 0.0297 (6) | |
H3 | 0.3793 (18) | 0.613 (4) | 0.3550 (13) | 0.045* | |
C4 | 0.5541 (3) | 1.1132 (4) | 0.7408 (3) | 0.0279 (9) | |
H4 | 0.596641 | 1.193074 | 0.743893 | 0.033* | |
C5 | 0.5341 (3) | 1.0312 (4) | 0.6560 (3) | 0.0269 (9) | |
H5 | 0.562828 | 1.054615 | 0.601121 | 0.032* | |
C6 | 0.5321 (4) | 1.1692 (5) | 0.9149 (3) | 0.0417 (11) | |
H6A | 0.476217 | 1.157376 | 0.948694 | 0.063* | |
H6B | 0.536834 | 1.267992 | 0.896711 | 0.063* | |
H6C | 0.595831 | 1.140083 | 0.959757 | 0.063* | |
C7 | 0.3259 (3) | 0.2277 (4) | 0.4442 (3) | 0.0256 (8) | |
H7 | 0.339610 | 0.246866 | 0.380646 | 0.031* | |
C8 | 0.2582 (3) | 0.1247 (4) | 0.4535 (3) | 0.0305 (9) | |
H8 | 0.226450 | 0.071416 | 0.396473 | 0.037* | |
C9 | 0.2353 (3) | 0.0971 (4) | 0.5451 (4) | 0.0318 (10) | |
C10 | 0.2848 (3) | 0.1774 (4) | 0.6253 (3) | 0.0294 (9) | |
H10 | 0.270434 | 0.162602 | 0.689092 | 0.035* | |
C11 | 0.3542 (3) | 0.2781 (4) | 0.6148 (3) | 0.0255 (8) | |
H11 | 0.388719 | 0.330637 | 0.671008 | 0.031* | |
C12 | 0.1594 (4) | −0.0123 (5) | 0.5565 (4) | 0.0475 (13) | |
H12A | 0.105685 | −0.016658 | 0.495319 | 0.071* | |
H12B | 0.129842 | 0.011844 | 0.613227 | 0.071* | |
H12C | 0.193117 | −0.103673 | 0.568581 | 0.071* | |
C13 | 0.2496 (4) | 0.6767 (8) | 0.3550 (4) | 0.069 (2) | |
H13A | 0.241626 | 0.735075 | 0.294999 | 0.103* | |
H13B | 0.216868 | 0.722797 | 0.403254 | 0.103* | |
H13C | 0.217904 | 0.585124 | 0.336828 | 0.103* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0332 (2) | 0.0303 (2) | 0.0229 (2) | 0.00096 (17) | 0.00200 (17) | −0.00194 (16) |
Mn1 | 0.0218 (3) | 0.0170 (3) | 0.0229 (3) | −0.0003 (2) | 0.0080 (2) | −0.0004 (2) |
N1 | 0.0301 (18) | 0.0184 (16) | 0.0254 (17) | 0.0024 (13) | 0.0085 (15) | −0.0013 (13) |
C1 | 0.032 (2) | 0.021 (2) | 0.030 (2) | −0.0061 (16) | 0.0127 (19) | −0.0017 (16) |
O1 | 0.0437 (17) | 0.0190 (14) | 0.0245 (14) | −0.0034 (12) | 0.0125 (13) | −0.0045 (11) |
O2 | 0.0236 (13) | 0.0171 (13) | 0.0271 (14) | −0.0053 (10) | 0.0103 (12) | −0.0032 (11) |
N2 | 0.0189 (15) | 0.0168 (16) | 0.0291 (17) | 0.0001 (12) | 0.0098 (14) | 0.0013 (13) |
C2 | 0.031 (2) | 0.029 (2) | 0.025 (2) | 0.0034 (17) | 0.0130 (18) | 0.0010 (17) |
Br2 | 0.0271 (2) | 0.0298 (2) | 0.0401 (3) | −0.00056 (16) | 0.01705 (19) | −0.00008 (18) |
C3 | 0.027 (2) | 0.030 (2) | 0.030 (2) | 0.0036 (17) | 0.0038 (18) | −0.0032 (17) |
O3 | 0.0291 (15) | 0.0340 (16) | 0.0247 (14) | 0.0083 (13) | 0.0035 (13) | −0.0007 (12) |
C4 | 0.029 (2) | 0.024 (2) | 0.031 (2) | −0.0017 (16) | 0.0069 (18) | 0.0002 (16) |
C5 | 0.030 (2) | 0.023 (2) | 0.029 (2) | 0.0012 (17) | 0.0090 (18) | 0.0051 (16) |
C6 | 0.047 (3) | 0.043 (3) | 0.035 (2) | −0.010 (2) | 0.008 (2) | −0.009 (2) |
C7 | 0.025 (2) | 0.027 (2) | 0.0239 (19) | −0.0003 (16) | 0.0035 (17) | −0.0041 (16) |
C8 | 0.027 (2) | 0.024 (2) | 0.038 (2) | −0.0039 (17) | 0.0029 (19) | −0.0064 (18) |
C9 | 0.023 (2) | 0.020 (2) | 0.052 (3) | 0.0039 (16) | 0.009 (2) | 0.0052 (19) |
C10 | 0.034 (2) | 0.023 (2) | 0.033 (2) | 0.0035 (17) | 0.0102 (19) | 0.0090 (17) |
C11 | 0.030 (2) | 0.023 (2) | 0.0239 (18) | 0.0032 (16) | 0.0065 (17) | 0.0020 (16) |
C12 | 0.044 (3) | 0.031 (3) | 0.068 (4) | −0.009 (2) | 0.015 (3) | 0.010 (2) |
C13 | 0.030 (3) | 0.136 (6) | 0.037 (3) | 0.012 (3) | −0.001 (2) | 0.014 (3) |
Mn1—Br1 | 2.7181 (7) | C4—C5 | 1.377 (6) |
Mn1—O1 | 2.116 (3) | C5—H5 | 0.9500 |
Mn1—O2 | 2.201 (2) | C6—H6A | 0.9800 |
Mn1—O2i | 2.230 (3) | C6—H6B | 0.9800 |
Mn1—Br2 | 2.5806 (7) | C6—H6C | 0.9800 |
Mn1—O3 | 2.225 (3) | C7—H7 | 0.9500 |
N1—C1 | 1.336 (5) | C7—C8 | 1.370 (6) |
N1—O1 | 1.344 (4) | C8—H8 | 0.9500 |
N1—C5 | 1.343 (5) | C8—C9 | 1.387 (6) |
C1—H1 | 0.9500 | C9—C10 | 1.382 (6) |
C1—C2 | 1.379 (6) | C9—C12 | 1.497 (6) |
O2—N2 | 1.349 (4) | C10—H10 | 0.9500 |
N2—C7 | 1.333 (5) | C10—C11 | 1.373 (5) |
N2—C11 | 1.345 (5) | C11—H11 | 0.9500 |
C2—H2 | 0.9500 | C12—H12A | 0.9800 |
C2—C3 | 1.379 (6) | C12—H12B | 0.9800 |
C3—C4 | 1.390 (6) | C12—H12C | 0.9800 |
C3—C6 | 1.502 (6) | C13—H13A | 0.9800 |
O3—H3 | 0.861 (9) | C13—H13B | 0.9800 |
O3—C13 | 1.426 (6) | C13—H13C | 0.9800 |
C4—H4 | 0.9500 | ||
O1—Mn1—Br1 | 96.62 (8) | C5—C4—C3 | 120.9 (4) |
O1—Mn1—O2 | 159.59 (11) | C5—C4—H4 | 119.6 |
O1—Mn1—O2i | 89.55 (10) | N1—C5—C4 | 120.0 (4) |
O1—Mn1—Br2 | 102.17 (8) | N1—C5—H5 | 120.0 |
O1—Mn1—O3 | 86.17 (11) | C4—C5—H5 | 120.0 |
O2i—Mn1—Br1 | 90.24 (7) | C3—C6—H6A | 109.5 |
O2—Mn1—Br1 | 89.03 (7) | C3—C6—H6B | 109.5 |
O2—Mn1—O2i | 70.77 (11) | C3—C6—H6C | 109.5 |
O2—Mn1—Br2 | 96.47 (7) | H6A—C6—H6B | 109.5 |
O2i—Mn1—Br2 | 165.02 (7) | H6A—C6—H6C | 109.5 |
O2—Mn1—O3 | 84.83 (10) | H6B—C6—H6C | 109.5 |
Br2—Mn1—Br1 | 97.55 (2) | N2—C7—H7 | 119.8 |
O3—Mn1—Br1 | 168.90 (8) | N2—C7—C8 | 120.3 (4) |
O3—Mn1—O2i | 79.01 (10) | C8—C7—H7 | 119.8 |
O3—Mn1—Br2 | 92.34 (8) | C7—C8—H8 | 119.6 |
C1—N1—O1 | 120.4 (3) | C7—C8—C9 | 120.8 (4) |
C1—N1—C5 | 121.2 (3) | C9—C8—H8 | 119.6 |
C5—N1—O1 | 118.4 (3) | C8—C9—C12 | 121.8 (4) |
N1—C1—H1 | 120.1 | C10—C9—C8 | 116.7 (4) |
N1—C1—C2 | 119.8 (4) | C10—C9—C12 | 121.5 (4) |
C2—C1—H1 | 120.1 | C9—C10—H10 | 119.2 |
N1—O1—Mn1 | 125.3 (2) | C11—C10—C9 | 121.5 (4) |
Mn1—O2—Mn1i | 109.23 (11) | C11—C10—H10 | 119.2 |
N2—O2—Mn1i | 126.1 (2) | N2—C11—C10 | 119.2 (4) |
N2—O2—Mn1 | 124.6 (2) | N2—C11—H11 | 120.4 |
C7—N2—O2 | 119.5 (3) | C10—C11—H11 | 120.4 |
C7—N2—C11 | 121.4 (3) | C9—C12—H12A | 109.5 |
C11—N2—O2 | 119.1 (3) | C9—C12—H12B | 109.5 |
C1—C2—H2 | 119.3 | C9—C12—H12C | 109.5 |
C3—C2—C1 | 121.4 (4) | H12A—C12—H12B | 109.5 |
C3—C2—H2 | 119.3 | H12A—C12—H12C | 109.5 |
C2—C3—C4 | 116.8 (4) | H12B—C12—H12C | 109.5 |
C2—C3—C6 | 121.2 (4) | O3—C13—H13A | 109.5 |
C4—C3—C6 | 122.0 (4) | O3—C13—H13B | 109.5 |
Mn1—O3—H3 | 116.8 (15) | O3—C13—H13C | 109.5 |
C13—O3—Mn1 | 128.5 (3) | H13A—C13—H13B | 109.5 |
C13—O3—H3 | 105.9 (15) | H13A—C13—H13C | 109.5 |
C3—C4—H4 | 119.6 | H13B—C13—H13C | 109.5 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···Br1i | 0.86 (1) | 2.41 (2) | 3.255 (3) | 166 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Funding information
The authors would like to thank Georgia Southern University, Department of Chemistry and Biochemistry for the financial support of this work.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157-202. Google Scholar
Ghosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2005). Inorg. Chem. 44, 1786–1793. CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434–1438. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, F.-C., Xue, M., Wang, H.-C. & Ou-Yang, J. (2010). J. Solid State Chem. 183, 1949–1954. CrossRef CAS Google Scholar
Lynch, W., Lynch, G., Sheriff, K. & Padgett, C. (2018). Acta Cryst. E74, 1405–1410. CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mautner, F. A., Berger, C., Fischer, R. C., Massoud, S. S. & Vicente, R. (2017). Polyhedron, 134, 126–134. Web of Science CSD CrossRef CAS Google Scholar
Mondal, S., Guha, A., Suresh, E., Jana, A. D. & Banerjee, A. (2012). J. Mol. Struct. 1029, 169–174. Web of Science CSD CrossRef CAS Google Scholar
Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402–5413. Web of Science CSD CrossRef CAS Google Scholar
Niu, D.-Z., Lu, Z.-S., Sun, B.-W. & Song, B.-L. (2001). Jiegou Huaxue, 20, 180. Google Scholar
Ren, X.-H., Wang, P., Cheng, J.-Y. & Dong, Y.-B. (2018). J. Mol. Struct. 1161, 145–151. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku Oxford Diffraction (2018). CrysAlis PRO. Oxford Diffraction/Agilent Technologies UK Ltd., Yarnton, England. Google Scholar
Sarma, R. & Baruah, J. B. (2011). Solid State Sci. 13, 1692–1700. Web of Science CSD CrossRef CAS Google Scholar
Sarma, R., Karmakar, A. & Baruah, J. B. (2008). Inorg. Chim. Acta, 361, 2081–2086. Web of Science CSD CrossRef CAS Google Scholar
Sarma, R., Perumal, A. & Baruah, J. B. (2009). J. Coord. Chem. 62, 1513–1524. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, J.-M., Liu, Z., Li, W.-N., Zhao, H. Y. & Liu, L.-D. (2007). J. Coord. Chem. 60, 1077–1082. Web of Science CSD CrossRef CAS Google Scholar
Sniekers, J., Malaquias, J. C., Van Meervelt, L., Fransaer, J. & Binnemans, K. (2017). Dalton Trans. 46, 2497–2509. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.