research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-[(2-oxo-2H-chromen-4-yl)­­oxy]acetic acid di­methyl sulfoxide monosolvate

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Physics, The New College (Autonomous), University of Madras, Chennai 600 014, Tamil Nadu, India, bDepartment of Biophysics, All India Institute of Medical Science, New Delhi 110 029, India, cDepartment of Chemistry, Anna University, Chennai 600 025, India, and dOrchid Chemicals & Pharmaceuticals Ltd, R&D Centre, Sholinganallur, Chennai 600 119, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 21 May 2019; accepted 1 July 2019; online 9 July 2019)

The title compound, C11H8O5·(CH3)2SO, is a new coumarin derivative. The asymmetric unit contains two coumarin mol­ecules (A and B) and two di­methyl­sulfoxide solvent mol­ecules (A and B). The dihedral angle between the pyran and benzene rings in the chromene moiety is 3.56 (2)° for mol­ecule A and 1.83 (2)° for mol­ecule B. In mol­ecule A, the dimethyl sulfoxide sulfur atom is disordered over two positions with a refined occupancy ratio of 0.782 (5):0.218 (5). In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. In addition, there are also C—H⋯π and ππ inter­actions present within the layers. The inter­molecular contacts in the crystal have been analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots, which indicate that the most important contributions to the packing are from H⋯H (33.9%) and O⋯H/H⋯O (41.2%) contacts.

1. Chemical context

Coumarin and its derivatives represent one of the most active classes of compounds, possessing a wide spectrum of biological activity. The synthesis, and pharmacological and other properties of coumarin derivatives have been studied intensively and reviewed (Syed Abuthahir et al., 2019[Syed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Govindhan, M. & Subramanian, K. (2019). Acta Cryst. E75, 482-488.]; Kumar et al., 2015[Kumar, K. A., Renuka, N., Pavithra, G. & Kumar, G. V. (2015). J. Chem. Pharma. Res. 7, 67-81.]; Kubrak et al., 2017[Kubrak, T., Podgórski, R. & Stompor, M. (2017). Eur. J. Clin. Exp. Med. 15, 169-175.]; Srikrishna et al., 2018[Srikrishna, D., Godugu, C. & Dubey, P. K. (2018). Mini Rev. Med. Chem. 18, 113-141.]; Venugopala et al., 2013[Venugopala, K. N., Rashmi, V. & Odhav, B. (2013). BioMed Res. Intl. Article ID 963248, 14 pages, https://dx.doi.org/10.1155/2013/963248.]). Many of these compounds have proven to be active as anti­bacterial, anti­fungal, anti-inflammatory, anti­coagulant, anti-HIV and anti­tumor agents (Govindhan, Subramanian, Chennakesava Rao et al., 2015[Govindhan, M., Subramanian, K., Chennakesava Rao, K., Easwaramoorthi, K., Senthilkumar, P. & Perumal, P. T. (2015). Med. Chem. Res. 24, 4181-4190.]; Govindhan, Subramanian, Sridharan et al., 2015[Govindhan, M., Subramanian, K., Sridharan, S., Chennakesava Rao, K. & Easwaramoothi, K. (2015). Int. J. ChemTech Res. 8, 1897-1904.]). Sulfur-containing isocoumarins (Henderson & Hill, 1982[Henderson, G. B. & Hill, R. A. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 1111-1176.]), fluorine-containing isocoumarins (Babar et al., 2008[Babar, T. M., Qadeer, G., Abid, O.-R., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2266.]) and chlorine-containing isocoumarins (Abid et al., 2008[Abid, O.-U.-R., Qadeer, G., Rama, N. H., Ruzicka, A. & Padelkova, Z. (2008). Acta Cryst. E64, o2018.]) have also been studied. In view of the importance of their natural occurrence, biological, pharmacological and medicinal activities, and their use as synthetic inter­mediates, we have synthesized the title derivative 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetic acid dimethyl sulfoxide monosolvate, and report herein on its crystal structure and Hirshfeld surface analysis.

2. Structural commentary

The mol­ecular structure and conformation of the two independent mol­ecules, A and B in the asymmetric unit, are shown in Fig. 1[link]. The bond lengths and angles in both mol­ecules are very similar. The normal probability plot analyses (Inter­national Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) for both bond lengths and angles show that the differences between the two symmetry-independent mol­ecules are of a statistical nature. The structural overlay of the two mol­ecules is shown in Fig. 2[link] (r.m.s. deviation = 0.098 Å).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A view of the mol­ecule overlay of inverted mol­ecule B (red) on mol­ecule A (blue), with an r.m.s. deviation of 0.126 Å.

The 1H-isochromene moiety is planar (r.m.s. deviation = 0.001 Å for mol­ecule A and 0.015 Å for mol­ecule B) and atoms O2A and O2B deviate from this mean plane by 0.007 (3) and 0.039 (3) Å, respectively. The dihedral angle between the pyran and benzene rings in the chromene moiety is 3.56 (16)° for mol­ecule A and 1.83 (16)° for mol­ecule B; this value is in agreement with those found in analogous coumarin derivatives (Dobson & Gerkin, 1996[Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 3081-3083.]; Kokila et al., 1996[Kokila, M. K., Puttaraja, Kulkarni, M. V. & Shivaprakash, N. C. (1996). Acta Cryst. C52, 2078-2081.]). In mol­ecule A, the dimethyl sulfoxide sulfur atom is disordered over two positions with refined occupancies of 0.782 (5) and 0.218 (5).

The title compound exhibits structural similarities with those of two new coumarin derivatives: 2-(4-{2-[(2-oxo-2H-chromen-4-yl)­oxy]acet­yl}piperazin-1-yl)acetamide (Govin­d­han, Subramanian, Chennakesava Rao et al., 2015[Govindhan, M., Subramanian, K., Chennakesava Rao, K., Easwaramoorthi, K., Senthilkumar, P. & Perumal, P. T. (2015). Med. Chem. Res. 24, 4181-4190.]) and N-(2,4-di­meth­oxy­benz­yl)-2-[(2-oxo-2H-chromen-4-yl)­oxy]acetamide (Syed Abuthahir et al., 2019[Syed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Govindhan, M. & Subramanian, K. (2019). Acta Cryst. E75, 482-488.]).

3. Supra­molecular features

The crystal structure features O—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]; Fig. 3[link]). In the crystal, the A and B mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. C—H⋯π (Table 1[link]) and ππ inter­actions are present within the layers. The observed ππ inter­actions involve the pyran ring of the chromene ring system and the benzene ring [Cg1⋯Cg3iv = 3.864 (2), Cg1⋯Cg4iv = 3.509 (2) and Cg2⋯Cg3iv 3.572 (2) Å where Cg1, Cg2, Cg3 and Cg4 are the centroids of rings O1A/C1A/C6A–C9A, C1A–C6A, O1B/C1B/C6B–C9B, and C1B–C6B, respectively; symmetry code: (iv) x, 1 + y, z].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1A–C6A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4A—H4A1⋯O6A 0.82 1.82 2.621 (5) 167
O4B—H4B1⋯S1Bi 0.82 2.70 3.479 (3) 159
O4B—H4B1⋯O6Bi 0.82 1.78 2.595 (4) 169
C10B—H10A⋯O2A 0.97 2.49 3.423 (4) 161
C10B—H10B⋯O6Bii 0.97 2.37 3.266 (4) 153
C10A—H10C⋯O6Aiii 0.97 2.38 3.330 (5) 165
C10A—H10D⋯O2B 0.97 2.40 3.324 (4) 159
C4B—H4BCg2i 0.93 2.88 3.552 (3) 130
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+2, -z+1.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds (Table 1[link]) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

4. Hirshfeld surface analysis

A recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) reviews and describes the uses and utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), to analyse inter­molecular contacts in crystals. The various calculations for the title compound were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]).

The Hirshfeld surface of the title compound mapped over dnorm is shown in Fig. 4[link], and the inter­molecular contacts are illustrated in Fig. 5[link]. They are colour-mapped with the normalized contact distance, dnorm, ranging from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The dnorm surface was mapped over a fixed colour scale of 0.774 (red) to 1.381 (blue) for the title compound, where the red spots indicate the inter­molecular contacts involved in the hydrogen bonding.

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound, mapped over dnorm.
[Figure 5]
Figure 5
A view of the Hirshfeld surface mapped over dnorm, showing the various inter­molecular contacts in the crystal of the title compound.

The fingerprint plots are given in Fig. 6[link]. They reveal that the principal inter­molecular contacts are H⋯H at 33.9% (Fig. 6[link]b) and O⋯H/H⋯O at 41.2% (Fig. 6[link]c), followed by the C⋯H/H⋯C contacts at 9.6% (Fig. 6[link]d), C⋯C contacts at 6.3% (Fig. 6[link]e) and S⋯H/H⋯S contacts at 3.9% (Fig. 6[link]f).

[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for the title compound, and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) C⋯C and (f) S⋯H/H⋯S contacts.

5. Database survey

A search of the Cambridge Structural Database (Web CSD version 5.39; March 9, 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave more than 35 hits for both linear and angular pyran­ocoumarin (psoralene class) structures. They include seselin (amyrolin) [refcodes AMYROL (Kato, 1970[Kato, K. (1970). Acta Cryst. B26, 2022-2029.]) and AMYROL01 (Bauri et al., 2006[Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340-o1341.])], 2,3-dihy­droxy-9-hy­droxy-2(1-hy­droxy-1-methyl­eth­yl)-7H-furo-[3,2-g][1]-benzo­pyran-7-one monohydrate (FUGVOS; Thailambal & Pattabhi, 1987[Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369-2372.]), bromo­hydroxy­seselin (XARQAL; Bauri et al., 2017a[Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 453-455.]), di­bromo­mometh­oxy­seselin (VAPKOP; Bauri et al., 2017b[Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774-776.]), and a number of structures with various substituents at C3 and C4, many of which are natural products.

Intra­molecular C—H⋯O short contacts similar to those in the title compound are found in five compounds in the CSD: 1-(1-pyrrolidinylcarbon­yl)cyclo­propyl sulfamate (LISLAB; Morin et al., 2007[Morin, M. S. T., Toumieux, S., Compain, P., Peyrat, S. & Kalinowska-Tluscik, J. (2007). Tetrahedron Lett. 48, 8531-8535.]), 2-[3′-(4"-chloro­phen­yl)-4′,6′-di­meth­oxy­indol-7′-yl]glyoxyl-1-pyrrolidine (PEQHAU; Black et al., 1997[Black, D. St C., Craig, D. C. & McConnell, D. B. (1997). Tetrahedron Lett. 38, 4287-4290.]), [2-hy­droxy-5-(2-hy­droxy­benzo­yl)phen­yl](pyrrolidin-1-yl)methanone (QIBBEJ; Holtz et al., 2007[Holtz, E., Albrecht, U. & Langer, P. (2007). Tetrahedron, 63, 3293-3301.]), 2-meth­oxy-1-(1-pyrrolidinylcarbon­yl)naphthalene (SIHNAZ; Sakamoto et al., 2007[Sakamoto, M., Unosawa, A., Kobaru, S., Fujita, K., Mino, T. & Fujita, T. (2007). Chem. Commun. pp. 3586-3588.]) and (4S,5S)-4,5-bis­(pyrrolidinylcarbon­yl)-2,2-dimethyl-1,3-dioxolane (TAJDIR; Garcia et al., 1991[Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Acta Cryst. C47, 202-204.]).

6. Synthesis and crystallization

A solution of lithium hydroxide (0.24 g, 1.2 mol eq.) in water (4 mL) was added to ethyl 2-(2-oxo-2H-chromen-4-yl­oxy) acetate (2.0 g, 1.0 mol eq.) in THF (10 mL) at 273 K and stirred at 273 K for 1 h. Completion of the reaction was confirmed by TLC (mobile phase ethyl acetate/hexa­ne) and THF was distilled off using a rotavapor. The obtained solution was washed with ethyl acetate (20 mL). The aqueous layer was acidified with 2N HCl (pH 1.0–2.0) and the obtained solid was filtered, washed with hexane and dried under vacuum to give as white solid. The purified compound was recrystallized using dimethyl sulfoxide as solvent.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.93–0.97Å with Uiso(H) = 1.5Ueq(C-meth­yl) or 1.2Ueq(C) for other H atoms. In mol­ecule A, the sulfur atom of the sulfinyldi­methane group is disordered over two positions with refined occupancies of 0.782 (5) and 0.218 (5). In the final cycles of refinement, five outliers were omitted.

Table 2
Experimental details

Crystal data
Chemical formula C11H8O5·C2H6OS
Mr 298.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 23.1461 (12), 8.2631 (4), 14.6374 (8)
β (°) 97.687 (4)
V3) 2774.4 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.25 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.742, 0.852
No. of measured, independent and observed [I > 2σ(I)] reflections 25798, 6824, 2743
Rint 0.119
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.208, 0.87
No. of reflections 6824
No. of parameters 376
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −0.42
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2018 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

2-[(2-Oxo-2H-chromen-4-yl)oxy]acetic acid dimethyl sulfoxide monosolvate top
Crystal data top
C11H8O5·C2H6OSF(000) = 1248
Mr = 298.30Dx = 1.428 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 23.1461 (12) ÅCell parameters from 6824 reflections
b = 8.2631 (4) Åθ = 1.8–28.3°
c = 14.6374 (8) ŵ = 0.26 mm1
β = 97.687 (4)°T = 293 K
V = 2774.4 (2) Å3Block, colourless
Z = 80.25 × 0.18 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2743 reflections with I > 2σ(I)
ω and φ scansRint = 0.119
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.3°, θmin = 1.8°
Tmin = 0.742, Tmax = 0.852h = 3030
25798 measured reflectionsk = 1010
6824 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.208 w = 1/[σ2(Fo2) + (0.1053P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
6824 reflectionsΔρmax = 0.69 e Å3
376 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C13A0.04399 (18)0.4312 (5)0.3443 (3)0.0728 (13)
H13A0.0702920.4637770.3863810.109*
H13B0.0392260.3158490.3468330.109*
H13C0.0595770.4629370.2828720.109*
C13B0.4520 (2)0.3039 (6)0.5340 (4)0.0918 (16)
H13D0.4913050.2650540.5469530.138*
H13E0.4274300.2433830.5695140.138*
H13F0.4507670.4163860.5500580.138*
C12B0.4320 (2)0.0677 (5)0.4079 (4)0.0834 (15)
H12A0.4193310.0332760.3458500.125*
H12B0.4078470.0188390.4486830.125*
H12C0.4717950.0352360.4255740.125*
S1B0.42683 (4)0.27960 (14)0.41469 (9)0.0666 (4)
C8B0.27020 (14)0.7563 (4)0.6754 (2)0.0410 (9)
H8B0.2863140.8522570.6573090.049*
C8A0.22217 (14)1.1613 (4)0.5296 (2)0.0388 (8)
H8A0.2064271.0626200.5443400.047*
C1A0.21016 (13)1.4456 (4)0.4892 (2)0.0343 (8)
C1B0.28007 (13)0.4732 (4)0.7173 (2)0.0365 (8)
C9A0.18699 (13)1.2921 (4)0.5157 (2)0.0356 (8)
C6B0.22279 (14)0.4729 (4)0.7336 (2)0.0374 (8)
C7B0.21038 (14)0.7526 (4)0.6883 (3)0.0408 (9)
C6A0.26854 (14)1.4507 (4)0.4786 (2)0.0374 (8)
C9B0.30397 (13)0.6232 (4)0.6888 (2)0.0350 (8)
C10B0.39088 (14)0.7553 (4)0.6567 (3)0.0450 (9)
H10A0.3658420.8211700.6130630.054*
H10B0.4250390.7262910.6284360.054*
C7A0.28261 (15)1.1714 (4)0.5224 (3)0.0425 (9)
C3A0.20154 (16)1.7230 (4)0.4385 (3)0.0486 (10)
H3A0.1790561.8153090.4248150.058*
C4A0.25956 (17)1.7231 (4)0.4274 (3)0.0502 (10)
H4A0.2759751.8157590.4055860.060*
C5A0.29396 (15)1.5876 (4)0.4480 (3)0.0451 (9)
H5A0.3333551.5889210.4413460.054*
C11B0.40938 (15)0.8519 (4)0.7420 (3)0.0484 (10)
C5B0.19577 (16)0.3353 (4)0.7620 (3)0.0469 (9)
H5B0.1570870.3382870.7727860.056*
C3B0.28513 (17)0.1906 (4)0.7585 (3)0.0496 (10)
H3B0.3062360.0948000.7670830.060*
C11A0.08288 (14)1.0434 (4)0.4690 (3)0.0436 (9)
C4B0.22748 (17)0.1949 (4)0.7737 (3)0.0501 (10)
H4B0.2099650.1012480.7922020.060*
C2A0.17680 (15)1.5856 (4)0.4699 (2)0.0423 (9)
H2A0.1376841.5860330.4783870.051*
C2B0.31131 (15)0.3286 (4)0.7305 (2)0.0429 (9)
H2B0.3500990.3253590.7202470.052*
C12A0.05788 (19)0.4705 (5)0.2783 (3)0.0771 (14)
H12D0.0636120.3554850.2780540.116*
H12E0.0333420.5022750.2231380.116*
H12F0.0948870.5240540.2810720.116*
C10A0.10247 (14)1.1508 (4)0.5512 (3)0.0421 (9)
H10C0.0689641.1792680.5811900.050*
H10D0.1295891.0914550.5951620.050*
O2B0.17604 (10)0.8632 (3)0.6759 (2)0.0583 (7)
O2A0.30431 (9)1.3180 (3)0.49654 (17)0.0443 (6)
O3B0.36054 (9)0.6118 (3)0.67566 (17)0.0447 (6)
O1A0.31786 (11)1.0636 (3)0.5349 (2)0.0623 (8)
O1B0.18850 (9)0.6100 (3)0.71963 (17)0.0455 (6)
O3A0.13002 (9)1.2960 (2)0.52488 (17)0.0422 (6)
O4A0.06268 (12)0.9068 (3)0.49773 (19)0.0586 (8)
H4A10.0502950.8506210.4531940.088*
O4B0.43802 (13)0.9821 (3)0.7219 (2)0.0710 (9)
H4B10.4454251.0381840.7682360.106*
O7B0.47513 (11)0.3440 (3)0.3654 (2)0.0764 (10)
O6A0.01623 (13)0.6980 (4)0.3745 (3)0.0979 (13)
O5B0.39977 (12)0.8143 (4)0.8178 (2)0.0682 (9)
O5A0.08491 (13)1.0796 (4)0.3906 (2)0.0718 (9)
S1A0.02436 (6)0.52545 (19)0.37557 (13)0.0507 (6)0.782 (5)
S1'A0.0025 (3)0.5829 (7)0.3230 (5)0.057 (2)0.218 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C13A0.067 (3)0.069 (3)0.085 (4)0.020 (2)0.016 (2)0.009 (3)
C13B0.086 (3)0.094 (4)0.090 (4)0.016 (3)0.010 (3)0.007 (3)
C12B0.088 (3)0.070 (3)0.090 (4)0.011 (3)0.001 (3)0.004 (3)
S1B0.0449 (6)0.0689 (7)0.0854 (10)0.0084 (5)0.0070 (6)0.0063 (6)
C8B0.0393 (18)0.0338 (18)0.051 (3)0.0033 (15)0.0085 (16)0.0001 (17)
C8A0.0399 (18)0.0315 (17)0.045 (2)0.0033 (14)0.0075 (16)0.0018 (16)
C1A0.0360 (17)0.0355 (18)0.032 (2)0.0010 (14)0.0049 (15)0.0044 (15)
C1B0.0380 (18)0.0345 (18)0.036 (2)0.0004 (15)0.0007 (15)0.0001 (16)
C9A0.0353 (17)0.0366 (19)0.035 (2)0.0010 (14)0.0033 (15)0.0007 (15)
C6B0.0432 (19)0.0366 (18)0.032 (2)0.0007 (15)0.0052 (16)0.0041 (16)
C7B0.0416 (19)0.039 (2)0.042 (2)0.0008 (16)0.0051 (16)0.0021 (17)
C6A0.0445 (19)0.0345 (18)0.033 (2)0.0015 (15)0.0059 (16)0.0057 (16)
C9B0.0328 (16)0.0382 (18)0.033 (2)0.0004 (14)0.0028 (15)0.0073 (16)
C10B0.0347 (17)0.043 (2)0.059 (3)0.0011 (16)0.0159 (17)0.0030 (19)
C7A0.0432 (19)0.040 (2)0.044 (2)0.0032 (16)0.0033 (17)0.0044 (17)
C3A0.057 (2)0.041 (2)0.048 (3)0.0097 (18)0.0062 (19)0.0031 (18)
C4A0.071 (3)0.039 (2)0.041 (3)0.0134 (19)0.011 (2)0.0038 (18)
C5A0.047 (2)0.045 (2)0.045 (3)0.0090 (17)0.0108 (18)0.0043 (18)
C11B0.0358 (19)0.042 (2)0.069 (3)0.0054 (16)0.014 (2)0.004 (2)
C5B0.050 (2)0.051 (2)0.040 (3)0.0126 (18)0.0074 (17)0.0001 (18)
C3B0.066 (3)0.038 (2)0.042 (3)0.0018 (18)0.0043 (19)0.0061 (18)
C11A0.0343 (18)0.044 (2)0.053 (3)0.0022 (16)0.0095 (18)0.000 (2)
C4B0.070 (3)0.041 (2)0.038 (3)0.0132 (19)0.0029 (19)0.0051 (17)
C2A0.0445 (19)0.041 (2)0.041 (2)0.0018 (16)0.0038 (17)0.0004 (17)
C2B0.0436 (19)0.042 (2)0.042 (2)0.0022 (16)0.0001 (17)0.0009 (17)
C12A0.070 (3)0.076 (3)0.092 (4)0.003 (2)0.034 (3)0.030 (3)
C10A0.0368 (18)0.0411 (19)0.050 (3)0.0006 (15)0.0109 (17)0.0002 (18)
O2B0.0477 (15)0.0467 (15)0.081 (2)0.0112 (12)0.0088 (14)0.0038 (14)
O2A0.0367 (12)0.0435 (14)0.0539 (18)0.0010 (10)0.0101 (11)0.0052 (12)
O3B0.0342 (13)0.0378 (13)0.0629 (19)0.0018 (10)0.0094 (12)0.0006 (12)
O1A0.0475 (15)0.0520 (16)0.088 (2)0.0149 (13)0.0105 (14)0.0099 (15)
O1B0.0392 (13)0.0430 (14)0.0561 (18)0.0005 (11)0.0123 (12)0.0030 (12)
O3A0.0340 (12)0.0348 (13)0.0583 (18)0.0003 (10)0.0085 (11)0.0034 (11)
O4A0.0630 (17)0.0405 (15)0.072 (2)0.0125 (13)0.0081 (15)0.0035 (14)
O4B0.0748 (19)0.0550 (17)0.085 (2)0.0232 (15)0.0173 (18)0.0107 (16)
O7B0.0494 (16)0.074 (2)0.110 (3)0.0176 (14)0.0238 (16)0.0302 (18)
O6A0.074 (2)0.073 (2)0.153 (4)0.0240 (17)0.040 (2)0.065 (2)
O5B0.074 (2)0.074 (2)0.058 (2)0.0207 (15)0.0138 (16)0.0042 (17)
O5A0.089 (2)0.079 (2)0.049 (2)0.0262 (17)0.0148 (17)0.0035 (17)
S1A0.0455 (8)0.0497 (9)0.0550 (13)0.0045 (6)0.0008 (7)0.0059 (8)
S1'A0.059 (3)0.049 (3)0.061 (5)0.004 (3)0.002 (3)0.007 (3)
Geometric parameters (Å, º) top
C13A—S1'A1.708 (6)C10B—H10A0.9700
C13A—S1A1.768 (4)C10B—H10B0.9700
C13A—H13A0.9600C7A—O1A1.205 (4)
C13A—H13B0.9600C7A—O2A1.384 (4)
C13A—H13C0.9600C3A—C2A1.378 (5)
C13B—S1B1.777 (5)C3A—C4A1.374 (5)
C13B—H13D0.9600C3A—H3A0.9300
C13B—H13E0.9600C4A—C5A1.384 (5)
C13B—H13F0.9600C4A—H4A0.9300
C12B—S1B1.759 (5)C5A—H5A0.9300
C12B—H12A0.9600C11B—O5B1.201 (5)
C12B—H12B0.9600C11B—O4B1.317 (4)
C12B—H12C0.9600C5B—C4B1.372 (5)
S1B—O7B1.506 (3)C5B—H5B0.9300
C8B—C9B1.348 (4)C3B—C2B1.379 (5)
C8B—C7B1.423 (4)C3B—C4B1.383 (5)
C8B—H8B0.9300C3B—H3B0.9300
C8A—C9A1.352 (4)C11A—O5A1.193 (4)
C8A—C7A1.420 (4)C11A—O4A1.312 (4)
C8A—H8A0.9300C11A—C10A1.515 (5)
C1A—C6A1.382 (4)C4B—H4B0.9300
C1A—C2A1.399 (4)C2A—H2A0.9300
C1A—C9A1.449 (4)C2B—H2B0.9300
C1B—C6B1.378 (4)C12A—S1'A1.776 (7)
C1B—C2B1.396 (4)C12A—S1A1.769 (4)
C1B—C9B1.441 (5)C12A—H12D0.9600
C9A—O3A1.344 (4)C12A—H12E0.9600
C6B—C5B1.388 (5)C12A—H12F0.9600
C6B—O1B1.383 (4)C10A—O3A1.436 (4)
C7B—O2B1.209 (4)C10A—H10C0.9700
C7B—O1B1.384 (4)C10A—H10D0.9700
C6A—C5A1.377 (5)O4A—H4A10.8200
C6A—O2A1.378 (4)O4B—H4B10.8200
C9B—O3B1.352 (3)O6A—S1'A1.229 (6)
C10B—O3B1.424 (4)O6A—S1A1.438 (3)
C10B—C11B1.496 (5)
S1A—C13A—H13A109.5O2A—C7A—C8A118.0 (3)
S1A—C13A—H13B109.5C2A—C3A—C4A119.8 (3)
H13A—C13A—H13B109.5C2A—C3A—H3A120.1
S1A—C13A—H13C109.5C4A—C3A—H3A120.1
H13A—C13A—H13C109.5C3A—C4A—C5A121.1 (3)
H13B—C13A—H13C109.5C3A—C4A—H4A119.4
S1B—C13B—H13D109.5C5A—C4A—H4A119.4
S1B—C13B—H13E109.5C6A—C5A—C4A118.5 (3)
H13D—C13B—H13E109.5C6A—C5A—H5A120.8
S1B—C13B—H13F109.5C4A—C5A—H5A120.8
H13D—C13B—H13F109.5O5B—C11B—O4B125.3 (4)
H13E—C13B—H13F109.5O5B—C11B—C10B124.4 (3)
S1B—C12B—H12A109.5O4B—C11B—C10B110.3 (4)
S1B—C12B—H12B109.5C4B—C5B—C6B118.4 (3)
H12A—C12B—H12B109.5C4B—C5B—H5B120.8
S1B—C12B—H12C109.5C6B—C5B—H5B120.8
H12A—C12B—H12C109.5C2B—C3B—C4B119.9 (3)
H12B—C12B—H12C109.5C2B—C3B—H3B120.0
O7B—S1B—C12B105.3 (2)C4B—C3B—H3B120.0
O7B—S1B—C13B105.3 (2)O5A—C11A—O4A125.8 (4)
C12B—S1B—C13B98.7 (2)O5A—C11A—C10A124.8 (3)
C9B—C8B—C7B121.3 (3)O4A—C11A—C10A109.3 (4)
C9B—C8B—H8B119.4C5B—C4B—C3B120.9 (3)
C7B—C8B—H8B119.4C5B—C4B—H4B119.6
C9A—C8A—C7A121.4 (3)C3B—C4B—H4B119.6
C9A—C8A—H8A119.3C3A—C2A—C1A120.4 (3)
C7A—C8A—H8A119.3C3A—C2A—H2A119.8
C6A—C1A—C2A118.3 (3)C1A—C2A—H2A119.8
C6A—C1A—C9A117.4 (3)C3B—C2B—C1B120.6 (3)
C2A—C1A—C9A124.3 (3)C3B—C2B—H2B119.7
C6B—C1B—C2B117.8 (3)C1B—C2B—H2B119.7
C6B—C1B—C9B117.8 (3)S1A—C12A—H12D109.5
C2B—C1B—C9B124.3 (3)S1A—C12A—H12E109.5
O3A—C9A—C8A125.7 (3)H12D—C12A—H12E109.5
O3A—C9A—C1A114.1 (3)S1A—C12A—H12F109.5
C8A—C9A—C1A120.2 (3)H12D—C12A—H12F109.5
C1B—C6B—C5B122.4 (3)H12E—C12A—H12F109.5
C1B—C6B—O1B121.3 (3)O3A—C10A—C11A111.9 (3)
C5B—C6B—O1B116.3 (3)O3A—C10A—H10C109.2
O2B—C7B—O1B115.5 (3)C11A—C10A—H10C109.2
O2B—C7B—C8B126.6 (3)O3A—C10A—H10D109.2
O1B—C7B—C8B117.9 (3)C11A—C10A—H10D109.2
C5A—C6A—O2A116.3 (3)H10C—C10A—H10D107.9
C5A—C6A—C1A121.9 (3)C6A—O2A—C7A121.2 (3)
O2A—C6A—C1A121.7 (3)C9B—O3B—C10B118.8 (2)
C8B—C9B—O3B126.1 (3)C7B—O1B—C6B121.2 (3)
C8B—C9B—C1B120.4 (3)C9A—O3A—C10A118.9 (2)
O3B—C9B—C1B113.4 (3)C11A—O4A—H4A1109.5
O3B—C10B—C11B112.0 (3)C11B—O4B—H4B1109.5
O3B—C10B—H10A109.2O6A—S1A—C12A108.5 (2)
C11B—C10B—H10A109.2O6A—S1A—C13A108.8 (2)
O3B—C10B—H10B109.2C12A—S1A—C13A98.8 (2)
C11B—C10B—H10B109.2O6A—S1'A—C13A124.9 (5)
H10A—C10B—H10B107.9O6A—S1'A—C12A119.4 (5)
O1A—C7A—O2A115.2 (3)C13A—S1'A—C12A100.8 (3)
O1A—C7A—C8A126.8 (3)
C7A—C8A—C9A—O3A177.0 (3)O3B—C10B—C11B—O5B0.3 (5)
C7A—C8A—C9A—C1A2.4 (5)O3B—C10B—C11B—O4B179.0 (3)
C6A—C1A—C9A—O3A179.9 (3)C1B—C6B—C5B—C4B0.2 (5)
C2A—C1A—C9A—O3A3.1 (5)O1B—C6B—C5B—C4B177.8 (3)
C6A—C1A—C9A—C8A0.5 (5)C6B—C5B—C4B—C3B0.6 (6)
C2A—C1A—C9A—C8A177.5 (3)C2B—C3B—C4B—C5B0.4 (6)
C2B—C1B—C6B—C5B0.2 (5)C4A—C3A—C2A—C1A1.0 (6)
C9B—C1B—C6B—C5B179.4 (3)C6A—C1A—C2A—C3A1.9 (5)
C2B—C1B—C6B—O1B178.2 (3)C9A—C1A—C2A—C3A175.0 (3)
C9B—C1B—C6B—O1B2.6 (5)C4B—C3B—C2B—C1B0.0 (5)
C9B—C8B—C7B—O2B178.0 (4)C6B—C1B—C2B—C3B0.3 (5)
C9B—C8B—C7B—O1B3.1 (5)C9B—C1B—C2B—C3B179.5 (3)
C2A—C1A—C6A—C5A1.4 (5)O5A—C11A—C10A—O3A6.4 (5)
C9A—C1A—C6A—C5A175.8 (3)O4A—C11A—C10A—O3A174.6 (3)
C2A—C1A—C6A—O2A179.8 (3)C5A—C6A—O2A—C7A176.2 (3)
C9A—C1A—C6A—O2A3.1 (5)C1A—C6A—O2A—C7A2.8 (5)
C7B—C8B—C9B—O3B177.7 (3)O1A—C7A—O2A—C6A179.0 (3)
C7B—C8B—C9B—C1B0.3 (5)C8A—C7A—O2A—C6A0.2 (5)
C6B—C1B—C9B—C8B2.6 (5)C8B—C9B—O3B—C10B8.3 (5)
C2B—C1B—C9B—C8B178.2 (3)C1B—C9B—O3B—C10B173.6 (3)
C6B—C1B—C9B—O3B179.2 (3)C11B—C10B—O3B—C9B78.5 (4)
C2B—C1B—C9B—O3B0.0 (5)O2B—C7B—O1B—C6B177.8 (3)
C9A—C8A—C7A—O1A178.7 (4)C8B—C7B—O1B—C6B3.1 (5)
C9A—C8A—C7A—O2A2.7 (5)C1B—C6B—O1B—C7B0.3 (5)
C2A—C3A—C4A—C5A0.6 (6)C5B—C6B—O1B—C7B177.8 (3)
O2A—C6A—C5A—C4A178.8 (3)C8A—C9A—O3A—C10A0.4 (5)
C1A—C6A—C5A—C4A0.1 (5)C1A—C9A—O3A—C10A179.8 (3)
C3A—C4A—C5A—C6A1.1 (6)C11A—C10A—O3A—C9A84.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1A–C6A ring.
D—H···AD—HH···AD···AD—H···A
O4A—H4A1···O6A0.821.822.621 (5)167
O4B—H4B1···S1Bi0.822.703.479 (3)159
O4B—H4B1···O7Bi0.821.782.595 (4)169
C10B—H10A···O1A0.972.493.423 (4)161
C10B—H10B···O7Bii0.972.373.266 (4)153
C10A—H10C···O6Aiii0.972.383.330 (5)165
C10A—H10D···O2B0.972.403.324 (4)159
C4B—H4B···Cg1i0.932.883.552 (3)130
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+2, z+1.
 

Acknowledgements

The authors are grateful to the SAIF, IIT Madras, for the data collection.

References

First citationAbid, O.-U.-R., Qadeer, G., Rama, N. H., Ruzicka, A. & Padelkova, Z. (2008). Acta Cryst. E64, o2018.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBabar, T. M., Qadeer, G., Abid, O.-R., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340–o1341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 453–455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774–776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlack, D. St C., Craig, D. C. & McConnell, D. B. (1997). Tetrahedron Lett. 38, 4287–4290.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 3081–3083.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Acta Cryst. C47, 202–204.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGovindhan, M., Subramanian, K., Chennakesava Rao, K., Easwaramoorthi, K., Senthilkumar, P. & Perumal, P. T. (2015). Med. Chem. Res. 24, 4181–4190.  Web of Science CSD CrossRef CAS Google Scholar
First citationGovindhan, M., Subramanian, K., Sridharan, S., Chennakesava Rao, K. & Easwaramoothi, K. (2015). Int. J. ChemTech Res. 8, 1897–1904.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHenderson, G. B. & Hill, R. A. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 1111–1176.  CrossRef Web of Science Google Scholar
First citationHoltz, E., Albrecht, U. & Langer, P. (2007). Tetrahedron, 63, 3293–3301.  Web of Science CSD CrossRef CAS Google Scholar
First citationKato, K. (1970). Acta Cryst. B26, 2022–2029.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKokila, M. K., Puttaraja, Kulkarni, M. V. & Shivaprakash, N. C. (1996). Acta Cryst. C52, 2078–2081.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKubrak, T., Podgórski, R. & Stompor, M. (2017). Eur. J. Clin. Exp. Med. 15, 169–175.  CrossRef Google Scholar
First citationKumar, K. A., Renuka, N., Pavithra, G. & Kumar, G. V. (2015). J. Chem. Pharma. Res. 7, 67–81.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMorin, M. S. T., Toumieux, S., Compain, P., Peyrat, S. & Kalinowska-Tluscik, J. (2007). Tetrahedron Lett. 48, 8531–8535.  Web of Science CSD CrossRef CAS Google Scholar
First citationSakamoto, M., Unosawa, A., Kobaru, S., Fujita, K., Mino, T. & Fujita, T. (2007). Chem. Commun. pp. 3586–3588.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrikrishna, D., Godugu, C. & Dubey, P. K. (2018). Mini Rev. Med. Chem. 18, 113–141.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSyed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Govindhan, M. & Subramanian, K. (2019). Acta Cryst. E75, 482–488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369–2372.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVenugopala, K. N., Rashmi, V. & Odhav, B. (2013). BioMed Res. Intl. Article ID 963248, 14 pages, https://dx.doi.org/10.1155/2013/963248Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds