research communications
H-chromen-4-yl)oxy]acetic acid dimethyl sulfoxide monosolvate
and Hirshfeld surface analysis of 2-[(2-oxo-2aPG & Research Department of Physics, The New College (Autonomous), University of Madras, Chennai 600 014, Tamil Nadu, India, bDepartment of Biophysics, All India Institute of Medical Science, New Delhi 110 029, India, cDepartment of Chemistry, Anna University, Chennai 600 025, India, and dOrchid Chemicals & Pharmaceuticals Ltd, R&D Centre, Sholinganallur, Chennai 600 119, India
*Correspondence e-mail: mnizam.new@gmail.com
The title compound, C11H8O5·(CH3)2SO, is a new coumarin derivative. The contains two coumarin molecules (A and B) and two dimethylsulfoxide solvent molecules (A and B). The dihedral angle between the pyran and benzene rings in the chromene moiety is 3.56 (2)° for molecule A and 1.83 (2)° for molecule B. In molecule A, the dimethyl sulfoxide sulfur atom is disordered over two positions with a refined occupancy ratio of 0.782 (5):0.218 (5). In the crystal, molecules are linked by O—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. In addition, there are also C—H⋯π and π–π interactions present within the layers. The intermolecular contacts in the crystal have been analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots, which indicate that the most important contributions to the packing are from H⋯H (33.9%) and O⋯H/H⋯O (41.2%) contacts.
Keywords: crystal structure; chromen; acetamide; pyran; dimethyl sulfoxide; hydrogen bonding; C—H⋯π interactions; offset π–π interactions; Hirshfeld surface analysis.
CCDC reference: 1891495
1. Chemical context
Coumarin and its derivatives represent one of the most active classes of compounds, possessing a wide spectrum of biological activity. The synthesis, and pharmacological and other properties of coumarin derivatives have been studied intensively and reviewed (Syed Abuthahir et al., 2019; Kumar et al., 2015; Kubrak et al., 2017; Srikrishna et al., 2018; Venugopala et al., 2013). Many of these compounds have proven to be active as antibacterial, antifungal, anti-inflammatory, anticoagulant, anti-HIV and antitumor agents (Govindhan, Subramanian, Chennakesava Rao et al., 2015; Govindhan, Subramanian, Sridharan et al., 2015). Sulfur-containing (Henderson & Hill, 1982), fluorine-containing (Babar et al., 2008) and chlorine-containing (Abid et al., 2008) have also been studied. In view of the importance of their natural occurrence, biological, pharmacological and medicinal activities, and their use as synthetic intermediates, we have synthesized the title derivative 2-[(2-oxo-2H-chromen-4-yl)oxy]acetic acid dimethyl sulfoxide monosolvate, and report herein on its and Hirshfeld surface analysis.
2. Structural commentary
The molecular structure and conformation of the two independent molecules, A and B in the are shown in Fig. 1. The bond lengths and angles in both molecules are very similar. The normal probability plot analyses (International Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) for both bond lengths and angles show that the differences between the two symmetry-independent molecules are of a statistical nature. The structural overlay of the two molecules is shown in Fig. 2 (r.m.s. deviation = 0.098 Å).
The 1H-isochromene moiety is planar (r.m.s. deviation = 0.001 Å for molecule A and 0.015 Å for molecule B) and atoms O2A and O2B deviate from this mean plane by 0.007 (3) and 0.039 (3) Å, respectively. The dihedral angle between the pyran and benzene rings in the chromene moiety is 3.56 (16)° for molecule A and 1.83 (16)° for molecule B; this value is in agreement with those found in analogous coumarin derivatives (Dobson & Gerkin, 1996; Kokila et al., 1996). In molecule A, the dimethyl sulfoxide sulfur atom is disordered over two positions with refined occupancies of 0.782 (5) and 0.218 (5).
The title compound exhibits structural similarities with those of two new coumarin derivatives: 2-(4-{2-[(2-oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide (Govindhan, Subramanian, Chennakesava Rao et al., 2015) and N-(2,4-dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide (Syed Abuthahir et al., 2019).
3. Supramolecular features
The ; Fig. 3). In the crystal, the A and B molecules are linked by O—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. C—H⋯π (Table 1) and π–π interactions are present within the layers. The observed π–π interactions involve the pyran ring of the chromene ring system and the benzene ring [Cg1⋯Cg3iv = 3.864 (2), Cg1⋯Cg4iv = 3.509 (2) and Cg2⋯Cg3iv 3.572 (2) Å where Cg1, Cg2, Cg3 and Cg4 are the centroids of rings O1A/C1A/C6A–C9A, C1A–C6A, O1B/C1B/C6B–C9B, and C1B–C6B, respectively; symmetry code: (iv) x, 1 + y, z].
features O—H⋯O and C—H⋯O hydrogen bonds (Table 14. Hirshfeld surface analysis
A recent article by Tiekink and collaborators (Tan et al., 2019) reviews and describes the uses and utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007), to analyse intermolecular contacts in crystals. The various calculations for the title compound were performed with CrystalExplorer17 (Turner et al., 2017).
The Hirshfeld surface of the title compound mapped over dnorm is shown in Fig. 4, and the intermolecular contacts are illustrated in Fig. 5. They are colour-mapped with the normalized contact distance, dnorm, ranging from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The dnorm surface was mapped over a fixed colour scale of 0.774 (red) to 1.381 (blue) for the title compound, where the red spots indicate the intermolecular contacts involved in the hydrogen bonding.
The fingerprint plots are given in Fig. 6. They reveal that the principal intermolecular contacts are H⋯H at 33.9% (Fig. 6b) and O⋯H/H⋯O at 41.2% (Fig. 6c), followed by the C⋯H/H⋯C contacts at 9.6% (Fig. 6d), C⋯C contacts at 6.3% (Fig. 6e) and S⋯H/H⋯S contacts at 3.9% (Fig. 6f).
5. Database survey
A search of the Cambridge Structural Database (Web CSD version 5.39; March 9, 2018; Groom et al., 2016) gave more than 35 hits for both linear and angular pyranocoumarin (psoralene class) structures. They include seselin (amyrolin) [refcodes AMYROL (Kato, 1970) and AMYROL01 (Bauri et al., 2006)], 2,3-dihydroxy-9-hydroxy-2(1-hydroxy-1-methylethyl)-7H-furo-[3,2-g][1]-benzopyran-7-one monohydrate (FUGVOS; Thailambal & Pattabhi, 1987), bromohydroxyseselin (XARQAL; Bauri et al., 2017a), dibromomomethoxyseselin (VAPKOP; Bauri et al., 2017b), and a number of structures with various substituents at C3 and C4, many of which are natural products.
Intramolecular C—H⋯O short contacts similar to those in the title compound are found in five compounds in the CSD: 1-(1-pyrrolidinylcarbonyl)cyclopropyl sulfamate (LISLAB; Morin et al., 2007), 2-[3′-(4"-chlorophenyl)-4′,6′-dimethoxyindol-7′-yl]glyoxyl-1-pyrrolidine (PEQHAU; Black et al., 1997), [2-hydroxy-5-(2-hydroxybenzoyl)phenyl](pyrrolidin-1-yl)methanone (QIBBEJ; Holtz et al., 2007), 2-methoxy-1-(1-pyrrolidinylcarbonyl)naphthalene (SIHNAZ; Sakamoto et al., 2007) and (4S,5S)-4,5-bis(pyrrolidinylcarbonyl)-2,2-dimethyl-1,3-dioxolane (TAJDIR; Garcia et al., 1991).
6. Synthesis and crystallization
A solution of lithium hydroxide (0.24 g, 1.2 mol eq.) in water (4 mL) was added to ethyl 2-(2-oxo-2H-chromen-4-yloxy) acetate (2.0 g, 1.0 mol eq.) in THF (10 mL) at 273 K and stirred at 273 K for 1 h. Completion of the reaction was confirmed by TLC (mobile phase ethyl acetate/hexane) and THF was distilled off using a rotavapor. The obtained solution was washed with ethyl acetate (20 mL). The aqueous layer was acidified with 2N HCl (pH 1.0–2.0) and the obtained solid was filtered, washed with hexane and dried under vacuum to give as white solid. The purified compound was recrystallized using dimethyl sulfoxide as solvent.
7. Refinement
Crystal data, data collection and structure . The H atoms were positioned geometrically and constrained to ride on their parent atoms: C—H = 0.93–0.97Å with Uiso(H) = 1.5Ueq(C-methyl) or 1.2Ueq(C) for other H atoms. In molecule A, the sulfur atom of the sulfinyldimethane group is disordered over two positions with refined occupancies of 0.782 (5) and 0.218 (5). In the final cycles of five outliers were omitted.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1891495
https://doi.org/10.1107/S2056989019009447/vm2218sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019009447/vm2218Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019009447/vm2218Isup3.cml
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2009).C11H8O5·C2H6OS | F(000) = 1248 |
Mr = 298.30 | Dx = 1.428 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 23.1461 (12) Å | Cell parameters from 6824 reflections |
b = 8.2631 (4) Å | θ = 1.8–28.3° |
c = 14.6374 (8) Å | µ = 0.26 mm−1 |
β = 97.687 (4)° | T = 293 K |
V = 2774.4 (2) Å3 | Block, colourless |
Z = 8 | 0.25 × 0.18 × 0.12 mm |
Bruker Kappa APEXII CCD diffractometer | 2743 reflections with I > 2σ(I) |
ω and φ scans | Rint = 0.119 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 28.3°, θmin = 1.8° |
Tmin = 0.742, Tmax = 0.852 | h = −30→30 |
25798 measured reflections | k = −10→10 |
6824 independent reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.208 | w = 1/[σ2(Fo2) + (0.1053P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.87 | (Δ/σ)max < 0.001 |
6824 reflections | Δρmax = 0.69 e Å−3 |
376 parameters | Δρmin = −0.41 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C13A | −0.04399 (18) | 0.4312 (5) | 0.3443 (3) | 0.0728 (13) | |
H13A | −0.070292 | 0.463777 | 0.386381 | 0.109* | |
H13B | −0.039226 | 0.315849 | 0.346833 | 0.109* | |
H13C | −0.059577 | 0.462937 | 0.282872 | 0.109* | |
C13B | 0.4520 (2) | 0.3039 (6) | 0.5340 (4) | 0.0918 (16) | |
H13D | 0.491305 | 0.265054 | 0.546953 | 0.138* | |
H13E | 0.427430 | 0.243383 | 0.569514 | 0.138* | |
H13F | 0.450767 | 0.416386 | 0.550058 | 0.138* | |
C12B | 0.4320 (2) | 0.0677 (5) | 0.4079 (4) | 0.0834 (15) | |
H12A | 0.419331 | 0.033276 | 0.345850 | 0.125* | |
H12B | 0.407847 | 0.018839 | 0.448683 | 0.125* | |
H12C | 0.471795 | 0.035236 | 0.425574 | 0.125* | |
S1B | 0.42683 (4) | 0.27960 (14) | 0.41469 (9) | 0.0666 (4) | |
C8B | 0.27020 (14) | 0.7563 (4) | 0.6754 (2) | 0.0410 (9) | |
H8B | 0.286314 | 0.852257 | 0.657309 | 0.049* | |
C8A | 0.22217 (14) | 1.1613 (4) | 0.5296 (2) | 0.0388 (8) | |
H8A | 0.206427 | 1.062620 | 0.544340 | 0.047* | |
C1A | 0.21016 (13) | 1.4456 (4) | 0.4892 (2) | 0.0343 (8) | |
C1B | 0.28007 (13) | 0.4732 (4) | 0.7173 (2) | 0.0365 (8) | |
C9A | 0.18699 (13) | 1.2921 (4) | 0.5157 (2) | 0.0356 (8) | |
C6B | 0.22279 (14) | 0.4729 (4) | 0.7336 (2) | 0.0374 (8) | |
C7B | 0.21038 (14) | 0.7526 (4) | 0.6883 (3) | 0.0408 (9) | |
C6A | 0.26854 (14) | 1.4507 (4) | 0.4786 (2) | 0.0374 (8) | |
C9B | 0.30397 (13) | 0.6232 (4) | 0.6888 (2) | 0.0350 (8) | |
C10B | 0.39088 (14) | 0.7553 (4) | 0.6567 (3) | 0.0450 (9) | |
H10A | 0.365842 | 0.821170 | 0.613063 | 0.054* | |
H10B | 0.425039 | 0.726291 | 0.628436 | 0.054* | |
C7A | 0.28261 (15) | 1.1714 (4) | 0.5224 (3) | 0.0425 (9) | |
C3A | 0.20154 (16) | 1.7230 (4) | 0.4385 (3) | 0.0486 (10) | |
H3A | 0.179056 | 1.815309 | 0.424815 | 0.058* | |
C4A | 0.25956 (17) | 1.7231 (4) | 0.4274 (3) | 0.0502 (10) | |
H4A | 0.275975 | 1.815759 | 0.405586 | 0.060* | |
C5A | 0.29396 (15) | 1.5876 (4) | 0.4480 (3) | 0.0451 (9) | |
H5A | 0.333355 | 1.588921 | 0.441346 | 0.054* | |
C11B | 0.40938 (15) | 0.8519 (4) | 0.7420 (3) | 0.0484 (10) | |
C5B | 0.19577 (16) | 0.3353 (4) | 0.7620 (3) | 0.0469 (9) | |
H5B | 0.157087 | 0.338287 | 0.772786 | 0.056* | |
C3B | 0.28513 (17) | 0.1906 (4) | 0.7585 (3) | 0.0496 (10) | |
H3B | 0.306236 | 0.094800 | 0.767083 | 0.060* | |
C11A | 0.08288 (14) | 1.0434 (4) | 0.4690 (3) | 0.0436 (9) | |
C4B | 0.22748 (17) | 0.1949 (4) | 0.7737 (3) | 0.0501 (10) | |
H4B | 0.209965 | 0.101248 | 0.792202 | 0.060* | |
C2A | 0.17680 (15) | 1.5856 (4) | 0.4699 (2) | 0.0423 (9) | |
H2A | 0.137684 | 1.586033 | 0.478387 | 0.051* | |
C2B | 0.31131 (15) | 0.3286 (4) | 0.7305 (2) | 0.0429 (9) | |
H2B | 0.350099 | 0.325359 | 0.720247 | 0.052* | |
C12A | 0.05788 (19) | 0.4705 (5) | 0.2783 (3) | 0.0771 (14) | |
H12D | 0.063612 | 0.355485 | 0.278054 | 0.116* | |
H12E | 0.033342 | 0.502275 | 0.223138 | 0.116* | |
H12F | 0.094887 | 0.524054 | 0.281072 | 0.116* | |
C10A | 0.10247 (14) | 1.1508 (4) | 0.5512 (3) | 0.0421 (9) | |
H10C | 0.068964 | 1.179268 | 0.581190 | 0.050* | |
H10D | 0.129589 | 1.091455 | 0.595162 | 0.050* | |
O2B | 0.17604 (10) | 0.8632 (3) | 0.6759 (2) | 0.0583 (7) | |
O2A | 0.30431 (9) | 1.3180 (3) | 0.49654 (17) | 0.0443 (6) | |
O3B | 0.36054 (9) | 0.6118 (3) | 0.67566 (17) | 0.0447 (6) | |
O1A | 0.31786 (11) | 1.0636 (3) | 0.5349 (2) | 0.0623 (8) | |
O1B | 0.18850 (9) | 0.6100 (3) | 0.71963 (17) | 0.0455 (6) | |
O3A | 0.13002 (9) | 1.2960 (2) | 0.52488 (17) | 0.0422 (6) | |
O4A | 0.06268 (12) | 0.9068 (3) | 0.49773 (19) | 0.0586 (8) | |
H4A1 | 0.050295 | 0.850621 | 0.453194 | 0.088* | |
O4B | 0.43802 (13) | 0.9821 (3) | 0.7219 (2) | 0.0710 (9) | |
H4B1 | 0.445425 | 1.038184 | 0.768236 | 0.106* | |
O7B | 0.47513 (11) | 0.3440 (3) | 0.3654 (2) | 0.0764 (10) | |
O6A | 0.01623 (13) | 0.6980 (4) | 0.3745 (3) | 0.0979 (13) | |
O5B | 0.39977 (12) | 0.8143 (4) | 0.8178 (2) | 0.0682 (9) | |
O5A | 0.08491 (13) | 1.0796 (4) | 0.3906 (2) | 0.0718 (9) | |
S1A | 0.02436 (6) | 0.52545 (19) | 0.37557 (13) | 0.0507 (6) | 0.782 (5) |
S1'A | 0.0025 (3) | 0.5829 (7) | 0.3230 (5) | 0.057 (2) | 0.218 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C13A | 0.067 (3) | 0.069 (3) | 0.085 (4) | −0.020 (2) | 0.016 (2) | −0.009 (3) |
C13B | 0.086 (3) | 0.094 (4) | 0.090 (4) | −0.016 (3) | −0.010 (3) | −0.007 (3) |
C12B | 0.088 (3) | 0.070 (3) | 0.090 (4) | −0.011 (3) | 0.001 (3) | 0.004 (3) |
S1B | 0.0449 (6) | 0.0689 (7) | 0.0854 (10) | 0.0084 (5) | 0.0070 (6) | 0.0063 (6) |
C8B | 0.0393 (18) | 0.0338 (18) | 0.051 (3) | −0.0033 (15) | 0.0085 (16) | 0.0001 (17) |
C8A | 0.0399 (18) | 0.0315 (17) | 0.045 (2) | −0.0033 (14) | 0.0075 (16) | 0.0018 (16) |
C1A | 0.0360 (17) | 0.0355 (18) | 0.032 (2) | 0.0010 (14) | 0.0049 (15) | −0.0044 (15) |
C1B | 0.0380 (18) | 0.0345 (18) | 0.036 (2) | −0.0004 (15) | 0.0007 (15) | −0.0001 (16) |
C9A | 0.0353 (17) | 0.0366 (19) | 0.035 (2) | −0.0010 (14) | 0.0033 (15) | −0.0007 (15) |
C6B | 0.0432 (19) | 0.0366 (18) | 0.032 (2) | −0.0007 (15) | 0.0052 (16) | −0.0041 (16) |
C7B | 0.0416 (19) | 0.039 (2) | 0.042 (2) | −0.0008 (16) | 0.0051 (16) | −0.0021 (17) |
C6A | 0.0445 (19) | 0.0345 (18) | 0.033 (2) | −0.0015 (15) | 0.0059 (16) | −0.0057 (16) |
C9B | 0.0328 (16) | 0.0382 (18) | 0.033 (2) | 0.0004 (14) | 0.0028 (15) | −0.0073 (16) |
C10B | 0.0347 (17) | 0.043 (2) | 0.059 (3) | −0.0011 (16) | 0.0159 (17) | 0.0030 (19) |
C7A | 0.0432 (19) | 0.040 (2) | 0.044 (2) | 0.0032 (16) | 0.0033 (17) | −0.0044 (17) |
C3A | 0.057 (2) | 0.041 (2) | 0.048 (3) | 0.0097 (18) | 0.0062 (19) | 0.0031 (18) |
C4A | 0.071 (3) | 0.039 (2) | 0.041 (3) | −0.0134 (19) | 0.011 (2) | 0.0038 (18) |
C5A | 0.047 (2) | 0.045 (2) | 0.045 (3) | −0.0090 (17) | 0.0108 (18) | −0.0043 (18) |
C11B | 0.0358 (19) | 0.042 (2) | 0.069 (3) | −0.0054 (16) | 0.014 (2) | −0.004 (2) |
C5B | 0.050 (2) | 0.051 (2) | 0.040 (3) | −0.0126 (18) | 0.0074 (17) | 0.0001 (18) |
C3B | 0.066 (3) | 0.038 (2) | 0.042 (3) | 0.0018 (18) | −0.0043 (19) | 0.0061 (18) |
C11A | 0.0343 (18) | 0.044 (2) | 0.053 (3) | −0.0022 (16) | 0.0095 (18) | 0.000 (2) |
C4B | 0.070 (3) | 0.041 (2) | 0.038 (3) | −0.0132 (19) | 0.0029 (19) | 0.0051 (17) |
C2A | 0.0445 (19) | 0.041 (2) | 0.041 (2) | 0.0018 (16) | 0.0038 (17) | 0.0004 (17) |
C2B | 0.0436 (19) | 0.042 (2) | 0.042 (2) | 0.0022 (16) | 0.0001 (17) | −0.0009 (17) |
C12A | 0.070 (3) | 0.076 (3) | 0.092 (4) | −0.003 (2) | 0.034 (3) | −0.030 (3) |
C10A | 0.0368 (18) | 0.0411 (19) | 0.050 (3) | −0.0006 (15) | 0.0109 (17) | 0.0002 (18) |
O2B | 0.0477 (15) | 0.0467 (15) | 0.081 (2) | 0.0112 (12) | 0.0088 (14) | 0.0038 (14) |
O2A | 0.0367 (12) | 0.0435 (14) | 0.0539 (18) | 0.0010 (10) | 0.0101 (11) | 0.0052 (12) |
O3B | 0.0342 (13) | 0.0378 (13) | 0.0629 (19) | −0.0018 (10) | 0.0094 (12) | 0.0006 (12) |
O1A | 0.0475 (15) | 0.0520 (16) | 0.088 (2) | 0.0149 (13) | 0.0105 (14) | 0.0099 (15) |
O1B | 0.0392 (13) | 0.0430 (14) | 0.0561 (18) | 0.0005 (11) | 0.0123 (12) | 0.0030 (12) |
O3A | 0.0340 (12) | 0.0348 (13) | 0.0583 (18) | 0.0003 (10) | 0.0085 (11) | 0.0034 (11) |
O4A | 0.0630 (17) | 0.0405 (15) | 0.072 (2) | −0.0125 (13) | 0.0081 (15) | −0.0035 (14) |
O4B | 0.0748 (19) | 0.0550 (17) | 0.085 (2) | −0.0232 (15) | 0.0173 (18) | −0.0107 (16) |
O7B | 0.0494 (16) | 0.074 (2) | 0.110 (3) | 0.0176 (14) | 0.0238 (16) | 0.0302 (18) |
O6A | 0.074 (2) | 0.073 (2) | 0.153 (4) | −0.0240 (17) | 0.040 (2) | −0.065 (2) |
O5B | 0.074 (2) | 0.074 (2) | 0.058 (2) | −0.0207 (15) | 0.0138 (16) | −0.0042 (17) |
O5A | 0.089 (2) | 0.079 (2) | 0.049 (2) | −0.0262 (17) | 0.0148 (17) | −0.0035 (17) |
S1A | 0.0455 (8) | 0.0497 (9) | 0.0550 (13) | 0.0045 (6) | −0.0008 (7) | −0.0059 (8) |
S1'A | 0.059 (3) | 0.049 (3) | 0.061 (5) | 0.004 (3) | 0.002 (3) | 0.007 (3) |
C13A—S1'A | 1.708 (6) | C10B—H10A | 0.9700 |
C13A—S1A | 1.768 (4) | C10B—H10B | 0.9700 |
C13A—H13A | 0.9600 | C7A—O1A | 1.205 (4) |
C13A—H13B | 0.9600 | C7A—O2A | 1.384 (4) |
C13A—H13C | 0.9600 | C3A—C2A | 1.378 (5) |
C13B—S1B | 1.777 (5) | C3A—C4A | 1.374 (5) |
C13B—H13D | 0.9600 | C3A—H3A | 0.9300 |
C13B—H13E | 0.9600 | C4A—C5A | 1.384 (5) |
C13B—H13F | 0.9600 | C4A—H4A | 0.9300 |
C12B—S1B | 1.759 (5) | C5A—H5A | 0.9300 |
C12B—H12A | 0.9600 | C11B—O5B | 1.201 (5) |
C12B—H12B | 0.9600 | C11B—O4B | 1.317 (4) |
C12B—H12C | 0.9600 | C5B—C4B | 1.372 (5) |
S1B—O7B | 1.506 (3) | C5B—H5B | 0.9300 |
C8B—C9B | 1.348 (4) | C3B—C2B | 1.379 (5) |
C8B—C7B | 1.423 (4) | C3B—C4B | 1.383 (5) |
C8B—H8B | 0.9300 | C3B—H3B | 0.9300 |
C8A—C9A | 1.352 (4) | C11A—O5A | 1.193 (4) |
C8A—C7A | 1.420 (4) | C11A—O4A | 1.312 (4) |
C8A—H8A | 0.9300 | C11A—C10A | 1.515 (5) |
C1A—C6A | 1.382 (4) | C4B—H4B | 0.9300 |
C1A—C2A | 1.399 (4) | C2A—H2A | 0.9300 |
C1A—C9A | 1.449 (4) | C2B—H2B | 0.9300 |
C1B—C6B | 1.378 (4) | C12A—S1'A | 1.776 (7) |
C1B—C2B | 1.396 (4) | C12A—S1A | 1.769 (4) |
C1B—C9B | 1.441 (5) | C12A—H12D | 0.9600 |
C9A—O3A | 1.344 (4) | C12A—H12E | 0.9600 |
C6B—C5B | 1.388 (5) | C12A—H12F | 0.9600 |
C6B—O1B | 1.383 (4) | C10A—O3A | 1.436 (4) |
C7B—O2B | 1.209 (4) | C10A—H10C | 0.9700 |
C7B—O1B | 1.384 (4) | C10A—H10D | 0.9700 |
C6A—C5A | 1.377 (5) | O4A—H4A1 | 0.8200 |
C6A—O2A | 1.378 (4) | O4B—H4B1 | 0.8200 |
C9B—O3B | 1.352 (3) | O6A—S1'A | 1.229 (6) |
C10B—O3B | 1.424 (4) | O6A—S1A | 1.438 (3) |
C10B—C11B | 1.496 (5) | ||
S1A—C13A—H13A | 109.5 | O2A—C7A—C8A | 118.0 (3) |
S1A—C13A—H13B | 109.5 | C2A—C3A—C4A | 119.8 (3) |
H13A—C13A—H13B | 109.5 | C2A—C3A—H3A | 120.1 |
S1A—C13A—H13C | 109.5 | C4A—C3A—H3A | 120.1 |
H13A—C13A—H13C | 109.5 | C3A—C4A—C5A | 121.1 (3) |
H13B—C13A—H13C | 109.5 | C3A—C4A—H4A | 119.4 |
S1B—C13B—H13D | 109.5 | C5A—C4A—H4A | 119.4 |
S1B—C13B—H13E | 109.5 | C6A—C5A—C4A | 118.5 (3) |
H13D—C13B—H13E | 109.5 | C6A—C5A—H5A | 120.8 |
S1B—C13B—H13F | 109.5 | C4A—C5A—H5A | 120.8 |
H13D—C13B—H13F | 109.5 | O5B—C11B—O4B | 125.3 (4) |
H13E—C13B—H13F | 109.5 | O5B—C11B—C10B | 124.4 (3) |
S1B—C12B—H12A | 109.5 | O4B—C11B—C10B | 110.3 (4) |
S1B—C12B—H12B | 109.5 | C4B—C5B—C6B | 118.4 (3) |
H12A—C12B—H12B | 109.5 | C4B—C5B—H5B | 120.8 |
S1B—C12B—H12C | 109.5 | C6B—C5B—H5B | 120.8 |
H12A—C12B—H12C | 109.5 | C2B—C3B—C4B | 119.9 (3) |
H12B—C12B—H12C | 109.5 | C2B—C3B—H3B | 120.0 |
O7B—S1B—C12B | 105.3 (2) | C4B—C3B—H3B | 120.0 |
O7B—S1B—C13B | 105.3 (2) | O5A—C11A—O4A | 125.8 (4) |
C12B—S1B—C13B | 98.7 (2) | O5A—C11A—C10A | 124.8 (3) |
C9B—C8B—C7B | 121.3 (3) | O4A—C11A—C10A | 109.3 (4) |
C9B—C8B—H8B | 119.4 | C5B—C4B—C3B | 120.9 (3) |
C7B—C8B—H8B | 119.4 | C5B—C4B—H4B | 119.6 |
C9A—C8A—C7A | 121.4 (3) | C3B—C4B—H4B | 119.6 |
C9A—C8A—H8A | 119.3 | C3A—C2A—C1A | 120.4 (3) |
C7A—C8A—H8A | 119.3 | C3A—C2A—H2A | 119.8 |
C6A—C1A—C2A | 118.3 (3) | C1A—C2A—H2A | 119.8 |
C6A—C1A—C9A | 117.4 (3) | C3B—C2B—C1B | 120.6 (3) |
C2A—C1A—C9A | 124.3 (3) | C3B—C2B—H2B | 119.7 |
C6B—C1B—C2B | 117.8 (3) | C1B—C2B—H2B | 119.7 |
C6B—C1B—C9B | 117.8 (3) | S1A—C12A—H12D | 109.5 |
C2B—C1B—C9B | 124.3 (3) | S1A—C12A—H12E | 109.5 |
O3A—C9A—C8A | 125.7 (3) | H12D—C12A—H12E | 109.5 |
O3A—C9A—C1A | 114.1 (3) | S1A—C12A—H12F | 109.5 |
C8A—C9A—C1A | 120.2 (3) | H12D—C12A—H12F | 109.5 |
C1B—C6B—C5B | 122.4 (3) | H12E—C12A—H12F | 109.5 |
C1B—C6B—O1B | 121.3 (3) | O3A—C10A—C11A | 111.9 (3) |
C5B—C6B—O1B | 116.3 (3) | O3A—C10A—H10C | 109.2 |
O2B—C7B—O1B | 115.5 (3) | C11A—C10A—H10C | 109.2 |
O2B—C7B—C8B | 126.6 (3) | O3A—C10A—H10D | 109.2 |
O1B—C7B—C8B | 117.9 (3) | C11A—C10A—H10D | 109.2 |
C5A—C6A—O2A | 116.3 (3) | H10C—C10A—H10D | 107.9 |
C5A—C6A—C1A | 121.9 (3) | C6A—O2A—C7A | 121.2 (3) |
O2A—C6A—C1A | 121.7 (3) | C9B—O3B—C10B | 118.8 (2) |
C8B—C9B—O3B | 126.1 (3) | C7B—O1B—C6B | 121.2 (3) |
C8B—C9B—C1B | 120.4 (3) | C9A—O3A—C10A | 118.9 (2) |
O3B—C9B—C1B | 113.4 (3) | C11A—O4A—H4A1 | 109.5 |
O3B—C10B—C11B | 112.0 (3) | C11B—O4B—H4B1 | 109.5 |
O3B—C10B—H10A | 109.2 | O6A—S1A—C12A | 108.5 (2) |
C11B—C10B—H10A | 109.2 | O6A—S1A—C13A | 108.8 (2) |
O3B—C10B—H10B | 109.2 | C12A—S1A—C13A | 98.8 (2) |
C11B—C10B—H10B | 109.2 | O6A—S1'A—C13A | 124.9 (5) |
H10A—C10B—H10B | 107.9 | O6A—S1'A—C12A | 119.4 (5) |
O1A—C7A—O2A | 115.2 (3) | C13A—S1'A—C12A | 100.8 (3) |
O1A—C7A—C8A | 126.8 (3) | ||
C7A—C8A—C9A—O3A | −177.0 (3) | O3B—C10B—C11B—O5B | −0.3 (5) |
C7A—C8A—C9A—C1A | 2.4 (5) | O3B—C10B—C11B—O4B | 179.0 (3) |
C6A—C1A—C9A—O3A | 179.9 (3) | C1B—C6B—C5B—C4B | −0.2 (5) |
C2A—C1A—C9A—O3A | −3.1 (5) | O1B—C6B—C5B—C4B | 177.8 (3) |
C6A—C1A—C9A—C8A | 0.5 (5) | C6B—C5B—C4B—C3B | 0.6 (6) |
C2A—C1A—C9A—C8A | 177.5 (3) | C2B—C3B—C4B—C5B | −0.4 (6) |
C2B—C1B—C6B—C5B | −0.2 (5) | C4A—C3A—C2A—C1A | −1.0 (6) |
C9B—C1B—C6B—C5B | −179.4 (3) | C6A—C1A—C2A—C3A | 1.9 (5) |
C2B—C1B—C6B—O1B | −178.2 (3) | C9A—C1A—C2A—C3A | −175.0 (3) |
C9B—C1B—C6B—O1B | 2.6 (5) | C4B—C3B—C2B—C1B | 0.0 (5) |
C9B—C8B—C7B—O2B | −178.0 (4) | C6B—C1B—C2B—C3B | 0.3 (5) |
C9B—C8B—C7B—O1B | 3.1 (5) | C9B—C1B—C2B—C3B | 179.5 (3) |
C2A—C1A—C6A—C5A | −1.4 (5) | O5A—C11A—C10A—O3A | −6.4 (5) |
C9A—C1A—C6A—C5A | 175.8 (3) | O4A—C11A—C10A—O3A | 174.6 (3) |
C2A—C1A—C6A—O2A | 179.8 (3) | C5A—C6A—O2A—C7A | −176.2 (3) |
C9A—C1A—C6A—O2A | −3.1 (5) | C1A—C6A—O2A—C7A | 2.8 (5) |
C7B—C8B—C9B—O3B | 177.7 (3) | O1A—C7A—O2A—C6A | 179.0 (3) |
C7B—C8B—C9B—C1B | −0.3 (5) | C8A—C7A—O2A—C6A | 0.2 (5) |
C6B—C1B—C9B—C8B | −2.6 (5) | C8B—C9B—O3B—C10B | 8.3 (5) |
C2B—C1B—C9B—C8B | 178.2 (3) | C1B—C9B—O3B—C10B | −173.6 (3) |
C6B—C1B—C9B—O3B | 179.2 (3) | C11B—C10B—O3B—C9B | 78.5 (4) |
C2B—C1B—C9B—O3B | 0.0 (5) | O2B—C7B—O1B—C6B | 177.8 (3) |
C9A—C8A—C7A—O1A | 178.7 (4) | C8B—C7B—O1B—C6B | −3.1 (5) |
C9A—C8A—C7A—O2A | −2.7 (5) | C1B—C6B—O1B—C7B | 0.3 (5) |
C2A—C3A—C4A—C5A | −0.6 (6) | C5B—C6B—O1B—C7B | −177.8 (3) |
O2A—C6A—C5A—C4A | 178.8 (3) | C8A—C9A—O3A—C10A | −0.4 (5) |
C1A—C6A—C5A—C4A | −0.1 (5) | C1A—C9A—O3A—C10A | −179.8 (3) |
C3A—C4A—C5A—C6A | 1.1 (6) | C11A—C10A—O3A—C9A | −84.3 (3) |
Cg1 is the centroid of the C1A–C6A ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4A—H4A1···O6A | 0.82 | 1.82 | 2.621 (5) | 167 |
O4B—H4B1···S1Bi | 0.82 | 2.70 | 3.479 (3) | 159 |
O4B—H4B1···O7Bi | 0.82 | 1.78 | 2.595 (4) | 169 |
C10B—H10A···O1A | 0.97 | 2.49 | 3.423 (4) | 161 |
C10B—H10B···O7Bii | 0.97 | 2.37 | 3.266 (4) | 153 |
C10A—H10C···O6Aiii | 0.97 | 2.38 | 3.330 (5) | 165 |
C10A—H10D···O2B | 0.97 | 2.40 | 3.324 (4) | 159 |
C4B—H4B···Cg1i | 0.93 | 2.88 | 3.552 (3) | 130 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+2, −z+1. |
Acknowledgements
The authors are grateful to the SAIF, IIT Madras, for the data collection.
References
Abid, O.-U.-R., Qadeer, G., Rama, N. H., Ruzicka, A. & Padelkova, Z. (2008). Acta Cryst. E64, o2018. Web of Science CSD CrossRef IUCr Journals Google Scholar
Babar, T. M., Qadeer, G., Abid, O.-R., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2266. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340–o1341. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 453–455. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774–776. Web of Science CSD CrossRef IUCr Journals Google Scholar
Black, D. St C., Craig, D. C. & McConnell, D. B. (1997). Tetrahedron Lett. 38, 4287–4290. CSD CrossRef Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dobson, A. J. & Gerkin, R. E. (1996). Acta Cryst. C52, 3081–3083. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Acta Cryst. C47, 202–204. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Govindhan, M., Subramanian, K., Chennakesava Rao, K., Easwaramoorthi, K., Senthilkumar, P. & Perumal, P. T. (2015). Med. Chem. Res. 24, 4181–4190. Web of Science CSD CrossRef CAS Google Scholar
Govindhan, M., Subramanian, K., Sridharan, S., Chennakesava Rao, K. & Easwaramoothi, K. (2015). Int. J. ChemTech Res. 8, 1897–1904. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Henderson, G. B. & Hill, R. A. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 1111–1176. CrossRef Web of Science Google Scholar
Holtz, E., Albrecht, U. & Langer, P. (2007). Tetrahedron, 63, 3293–3301. Web of Science CSD CrossRef CAS Google Scholar
Kato, K. (1970). Acta Cryst. B26, 2022–2029. CSD CrossRef IUCr Journals Web of Science Google Scholar
Kokila, M. K., Puttaraja, Kulkarni, M. V. & Shivaprakash, N. C. (1996). Acta Cryst. C52, 2078–2081. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kubrak, T., Podgórski, R. & Stompor, M. (2017). Eur. J. Clin. Exp. Med. 15, 169–175. CrossRef Google Scholar
Kumar, K. A., Renuka, N., Pavithra, G. & Kumar, G. V. (2015). J. Chem. Pharma. Res. 7, 67–81. CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Morin, M. S. T., Toumieux, S., Compain, P., Peyrat, S. & Kalinowska-Tluscik, J. (2007). Tetrahedron Lett. 48, 8531–8535. Web of Science CSD CrossRef CAS Google Scholar
Sakamoto, M., Unosawa, A., Kobaru, S., Fujita, K., Mino, T. & Fujita, T. (2007). Chem. Commun. pp. 3586–3588. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srikrishna, D., Godugu, C. & Dubey, P. K. (2018). Mini Rev. Med. Chem. 18, 113–141. Web of Science CrossRef CAS PubMed Google Scholar
Syed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Govindhan, M. & Subramanian, K. (2019). Acta Cryst. E75, 482–488. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369–2372. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Venugopala, K. N., Rashmi, V. & Odhav, B. (2013). BioMed Res. Intl. Article ID 963248, 14 pages, https://dx.doi.org/10.1155/2013/963248. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.