research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, DFT study and Hirshfeld surface analysis of 1-nonyl-2,3-di­hydro-1H-indole-2,3-dione

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bOrganic Chemistry Department, Faculty of Science, RUDN University, Miklukho-Maklaya St. 6, 117198 Moscow, Russian Federation, cDepartment of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan, dDepartment of Medical Education, Chung Shan Medical University Hospital, 402 Taichung, Taiwan, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: yns.elbakri@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 3 June 2019; accepted 8 July 2019; online 12 July 2019)

In the title mol­ecule, C17H23NO2, the di­hydro­indole portion is planar (r.m.s. deviation = 0.0157 Å) and the nonyl substituent is in an `extended' conformation. In the crystal, the nonyl chains inter­calate and the di­hydro­indole­dione units are associated through C—H⋯O hydrogen bonds to form micellar blocks. Based on the Hirshfeld surface analysis, the most important inter­molecular inter­action is the H⋯H inter­action.

1. Chemical context

Indoline-2,3-dione or indole-1H-2,3-dione, commonly known as isatin, is a well-known natural product found in plants of genus Isatis and in Couropita guianancis aubl (Da Silva et al., 2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. J. (2001). J. Braz. Chem. Soc. 12, 273-324.]). It has also been isolated as a metabolic derivative of adrenaline in humans (Almeida et al., 2010[Almeida, M. R., Leitão, G. G., Silva, B. V., Barbosa, J. P. & Pinto, A. C. J. (2010). J. Braz. Chem. Soc. 21, 764-769.]). It was first obtained as an oxidation product of indigo in the early 19th century, and its current structure was proposed by Kekulé (1869[Kekulé, A. (1869). Ber. Dtsch. Chem. Ges. 2, 748-749.]). Isatin is a core constituent of many alkaloids (Trost et al., 2009[Trost, B. & Brennan, M. (2009). Synthesis, pp. 3003-3025.]) and drugs (Aboul-Fadl et al., 2010[Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578-4586.]) as well as dyes (Doménech et al., 2009[Doménech, A., Doménech-Carbó, M. T., Sánchez del Río, M., Vázquez de Agredos Pascual, M. L. & Lima, E. (2009). New J. Chem. 33, 2371-2379.]), pesticides and analytical reagents. Isatin derivatives possess diverse activities such as anti­bacterial (Kassab et al., 2010[Kassab, S., Hegazy, G., Eid, N., Amin, K. & El-Gendy, A. (2010). Nucleosides Nucleotides Nucleic Acids, 29, 72-80.]), anti­viral (Jarrahpour et al., 2007[Jarrahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720-1730.]), anti-HIV (Sriram et al., 2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]), anti­cancer (Gürsoy et al., 2003[Gürsoy, A. & Karalí, N. (2003). Eur. J. Med. Chem. 38, 633-643.]) and anti-inflammatory (Sridhar et al., 2001[Sridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149-1152.]) activities. As a continuation of our research work devoted to the development of isatin derivatives (Ben-Yahia et al., 2018[Ben-Yahia, A., El Bakri, Y. E., Lai, C.-H., Essassi, E. M. & Mague, J. T. (2018). Acta Cryst. E74, 1857-1861.]; Rayni et al., 2019[Rayni, I., El Bakri, Y., Lai, C.-H., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2019). Acta Cryst. E75, 21-25.]), we report in this work the synthesis and the Hirshfeld surface analysis of a new indoline-2,3-dione derivative obtained by the action of nonyl bromide on isatin under phase-transfer catalysis conditions.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The di­hydro­indole skeleton is planar to within 0.0286 (8) Å (r.m.s. deviation of the fitted atoms = 0.0157 Å) with Cl being the furthest from the mean plane. The nonyl chain is in an `extended' conformation and is well out of the mean plane of the di­hydro­indole unit, as indicated by the C1—N1—C9—C10 torsion angle of −69.94 (12)°.

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, the mol­ecules pack in a typical micellar manner with the di­hydro­indoldione head groups associated through C2—H2⋯O2i, C3—H3⋯O1ii and C9—H9B⋯O1i hydrogen bonds (Table 1[link]) and the nonyl `tails' inter­calating and aided by paired C17—H17B⋯O2iii hydrogen bonds (Table 1[link] and Fig. 2[link]). The micellar blocks are associated through π-stacking inter­actions between inversion-related C1–C6 rings [centroid–centroid distance = 3.6470 (7) Å; Figs. 2[link] and 3[link]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.992 (13) 2.412 (13) 3.3737 (13) 163.3 (10)
C3—H3⋯O1ii 0.997 (14) 2.454 (15) 3.2734 (14) 139.0 (11)
C9—H9B⋯O1i 0.994 (13) 2.546 (13) 3.5012 (13) 161.0 (10)
C17—H17B⋯O2iii 0.98 (2) 2.49 (2) 3.3941 (17) 153.3 (15)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions. C—H⋯O hydrogen bonds and π-stacking inter­actions are shown, respectively, by black and orange dashed lines. H atoms not involved in hydrogen bonds are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link]. H atoms not involved in hydrogen bonds are omitted for clarity.

4. Database survey

A search of the Cambridge Crystallographic Database (Version 5.40 updated to April 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) provided structures of 11 derivatives of the di­hydro­indole-2,3-dione skeleton having a saturated carbon chain of at least three atoms bound to nitro­gen. Thus, in place of the n-nonyl chain (R) in the title compound, there are ones with R = 3-bromo­propyl (AKOBIN; Qachchachi et al., 2016a[Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016a). IUCrData, 1, x160593.]), n-propyl (AKOCOU; Qachchachi et al., 2016b[Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016b). IUCrData, 1, x160609.]), n-octyl (CIQDOX; Qachchachi et al., 2013[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.]), 2,3-di­benzoyl­ethane (FUBLIZ; Žari et al., 2015[Žari, S., Metsala, A., Kudrjashova, M., Kaabel, S., Järving, I. & Kanger, T. (2015). Synthesis, 47, 875-886.]), n-dodecyl (GITTEK; Qachchachi et al., 2014a[Qachchachi, F.-Z., Ouazzani Chahdi, F., Misbahi, H., Bodensteiner, M. & El Ammari, L. (2014a). Acta Cryst. E70, o229.]), cyclo­pentyl (JOWSOF; Mironova et al., 2015[Mironova, E. V., Bogdanov, A. V., Krivolapov, D. B., Musin, L. I., Litvinov, I. A. & Mironov, V. F. (2015). J. Mol. Struct. 1079, 87-93.]), 3-carb­oxy­methyl­propane (JOWSUL; Mironova et al., 2015[Mironova, E. V., Bogdanov, A. V., Krivolapov, D. B., Musin, L. I., Litvinov, I. A. & Mironov, V. F. (2015). J. Mol. Struct. 1079, 87-93.]), 2-cyano­ethane (LIVSIU; Qachchachi et al., 2014b[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014b). Acta Cryst. E70, o361-o362.]), n-tetra­decyl (TUPSIH; Mamari et al., 2010a[Mamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o1410.]) and n-decyl (TUPSON; Mamari et al., 2010b[Mamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o1411.]). In addition, there is one structure with two di­hydro­indole-2,3-dione moieties connected by a –(CH2)6– linkage (OJIGOF; Qachchachi et al., 2016c[Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016c). IUCrData, 1, x160542.]). In all of these compounds, the di­hydro­indole-2,3-dione skeleton is planar and the first two carbon atoms from the nitro­gen are rotated so that the N–C–C plane is nearly perpendicular to the plane of the di­hydro­indole-2,3-dione. Additionally, the C—C distances corresponding to the C7—C8 distance in the title structure [1.5554 (15) Å] are in the range 1.543 (4)–1.563 (6) Å. Generally, the carbon chains are in an `extended' conformation.

5. Calculation of the electronic structure

The structure in the gas phase of the title compound was optimized by means of density functional theory. The DFT calculation was performed using the hybrid B3LYP method, which is based on the idea of Becke and considers a mixture of the exact (HF) and DFT exchange utilizing the B3 functional, together with the LYP correlation functional (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]; Miehlich et al., 1989[Miehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200-206.]). The B3LYP calculation was performed in conjunction with the def2-SVP basis set (Weigend & Ahlrichs, 2005[Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297-3305.]). After obtaining the converged geometry, the harmonic vibrational frequencies were calculated on the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and the harmonic vibrational frequency analysis of the title compound were performed using the Gaussian 16 program (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E. Jr, Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16, Revision A. 03. Gaussian, Inc., Wallingford CT.]). The result of the B3LYP geometry optimization for the title compound (shown in Fig. 4[link]) was compared to that of the crystallographic study with selected geometric parameters for the gas-phase and solid-phase structures summarized in Table 2[link]. This shows that there is a clear discrepancy between the B3LYP-optimized geometry and the X-ray geometry. To qu­antify this, the openBabel program was then used to convert the experimental CIF file to a Gaussian .gjf input file (O'Boyle et al., 2011[O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. & Hutchison, G. R. (2011). J. Cheminform, 3, 33.]). The structure compared built in the ChemCraft program (graphical software for visualization of quantum chemistry computations; https://www.chemcraftprog.com) was finally used to obtain a weighted r.m.s. deviation of 0.5808 Å with r.m.s.d. values of of 0.6297, 0.5213, 0.2231, and 0.5977 Å, respectively, for the H, C, N and O atoms.

Table 2
The B3LYP-optimized and X-ray structural parameters (Å, °) for the title compound

  B3LYP X-ray
C1—C2 1.394 1.3806 (13)
C2—C3 1.404 1.3899 (16)
C3—C4 1.402 1.3868 (16)
C4—C5 1.400 1.3871 (16)
C5—C6 1.393 1.3862 (15)
C6—C7 1.473 1.4599 (13)
C6—C1 1.413 1.4009 (13)
C7—C8 1.568 1.5554 (15)
C8—N1 1.390 1.3603 (13)
N1—C1 1.404 1.4127 (13)
C7—O1 1.206 1.2126 (12)
C8—O2 1.206 1.2106 (13)
N1—C9 1.454 1.4606 (13)
N1—C8—C7 105.9 106.20 (8)
[Figure 4]
Figure 4
The B3LYP-optimized geometry of the title compound (bond lengths in Å, bond angles in °; carbon in gray, nitro­gen in blue, oxygen in red and hydrogen in white). please improve resolution

6. Hirshfeld surface analysis

Both the definition of a mol­ecule in a condensed phase and the recognition of distinct entities in mol­ecular liquids and crystals are fundamental concepts in chemistry. Based on Hirshfeld's partitioning scheme, Spackman et al. (1997[Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215-220.]) proposed a method to divide the electron distribution in a crystalline phase into mol­ecular fragments (Spackman & Byrom, 1997[Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215-220.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). Their proposed method partitioned the crystal into regions where the electron distribution of a sum of spherical atoms for the mol­ecule dominates over the corresponding sum of the crystal. In this study, the Hirshfeld surface analysis of the title compound was performed utilizing the CrystalExplorer program (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The standard resolution mol­ecular Hirshfeld surface (dnorm) of the title compound is depicted in Fig. 5[link]. This surface can be used to identify very close inter­molecular inter­actions. The value of dnorm is negative (positive) when inter­molecular contacts are shorter (longer) than the van der Waals radii. The dnorm value is mapped onto the Hirshfeld surface using red, white or blue colours. The red regions represent closer contacts with a negative dnorm value while the blue regions represent longer contacts with a positive dnorm value. The white regions represent contacts equal to the van der Waals separation and have a dnorm value of zero. As depicted in Fig. 5[link], important inter­actions in the title compound are H⋯O and H⋯N hydrogen bonds. The two-dimensional fingerprint plots (Fig. 6[link]) highlight particular atom-pair contacts and enable the separation of contributions from different inter­action types that overlap in the full fingerprint. The most important inter­actions involving the hydrogen atoms in the title compound are the H⋯H contactso. The H⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts make contribututions of 61.9, 21.8 and 0.9%, respectively, to the Hirshfeld surface.

[Figure 5]
Figure 5
The dnorm Hirshfeld surface of the title compound (red: negative, white: zero, blue: positive; scale: −0.2101 to 1.3375 a.u.).
[Figure 6]
Figure 6
Fingerprint plots for the title compound: (a) full and delineated into (b) H⋯O/O⋯H, (c) H⋯N/N⋯H and (d) H⋯H contacts.

7. Synthesis and crystallization

To a solution of isatin (0.5 g, 3.4 mmol) dissolved in 25 ml of N,N-di­methyl­formamide, 1-bromo­octane (0.7 ml, 3.4 mmol), potassium carbonate (0.61 g, 4.4 mmol) and a catalytic amount of tetra-n-butyl­ammonium bromide (0.1 g, 0.4 mmol) were added. The mixture was stirred for 48 h and the reaction monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange–red crystals.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C17H23NO2
Mr 273.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 16.2512 (4), 7.6859 (2), 13.0989 (3)
β (°) 106.640 (1)
V3) 1567.60 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.59
Crystal size (mm) 0.24 × 0.20 × 0.14
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.82, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 11594, 3128, 2879
Rint 0.029
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.05
No. of reflections 3128
No. of parameters 274
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.22, −0.14
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-Nonyl-2,3-dihydro-1H-indole-2,3-dione top
Crystal data top
C17H23NO2F(000) = 592
Mr = 273.36Dx = 1.158 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 16.2512 (4) ÅCell parameters from 9962 reflections
b = 7.6859 (2) Åθ = 5.1–74.4°
c = 13.0989 (3) ŵ = 0.59 mm1
β = 106.640 (1)°T = 150 K
V = 1567.60 (7) Å3Block, orange-red
Z = 40.24 × 0.20 × 0.14 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3128 independent reflections
Radiation source: INCOATEC IµS micro–focus source2879 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4167 pixels mm-1θmax = 74.4°, θmin = 6.4°
ω scansh = 1819
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 98
Tmin = 0.82, Tmax = 0.92l = 1615
11594 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.2775P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3128 reflectionsΔρmax = 0.22 e Å3
274 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0114 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08032 (5)0.55941 (11)0.77294 (5)0.0450 (2)
O20.17619 (6)0.85773 (11)0.72453 (7)0.0545 (3)
N10.16664 (5)0.69895 (11)0.57210 (6)0.0326 (2)
C10.13290 (6)0.53470 (13)0.53302 (7)0.0295 (2)
C20.13301 (6)0.45892 (14)0.43750 (8)0.0351 (2)
H20.1570 (8)0.5200 (17)0.3857 (10)0.045 (3)*
C30.09707 (7)0.29390 (15)0.41701 (9)0.0418 (3)
H30.0954 (9)0.2350 (19)0.3486 (11)0.052 (4)*
C40.06188 (8)0.20883 (15)0.48797 (10)0.0443 (3)
H40.0372 (9)0.094 (2)0.4688 (11)0.059 (4)*
C50.05985 (7)0.28781 (14)0.58244 (9)0.0389 (3)
H50.0330 (9)0.2317 (19)0.6319 (11)0.052 (4)*
C60.09576 (6)0.45211 (13)0.60433 (7)0.0314 (2)
C70.10401 (6)0.57137 (14)0.69345 (7)0.0341 (2)
C80.15339 (7)0.73151 (14)0.66825 (8)0.0365 (2)
C90.21591 (7)0.80831 (14)0.51971 (9)0.0363 (2)
H9A0.2192 (8)0.9233 (18)0.5546 (10)0.046 (3)*
H9B0.1825 (8)0.8201 (16)0.4435 (10)0.039 (3)*
C100.30417 (7)0.73223 (15)0.52814 (9)0.0373 (2)
H10A0.3406 (9)0.7374 (18)0.6044 (12)0.051 (4)*
H10B0.2979 (8)0.6044 (19)0.5107 (10)0.044 (3)*
C110.34813 (7)0.82187 (15)0.45444 (9)0.0386 (3)
H11A0.3578 (9)0.946 (2)0.4751 (11)0.051 (4)*
H11B0.3094 (8)0.8199 (17)0.3812 (11)0.046 (3)*
C120.43166 (7)0.73437 (15)0.45297 (9)0.0395 (3)
H12A0.4735 (9)0.7357 (19)0.5258 (11)0.052 (4)*
H12B0.4207 (9)0.611 (2)0.4372 (11)0.052 (4)*
C130.47345 (7)0.81285 (16)0.37372 (9)0.0405 (3)
H13A0.4834 (9)0.940 (2)0.3898 (11)0.056 (4)*
H13B0.4323 (9)0.8053 (17)0.3010 (11)0.049 (4)*
C140.55597 (7)0.72275 (16)0.37127 (9)0.0405 (3)
H14A0.5991 (9)0.7303 (19)0.4437 (12)0.056 (4)*
H14B0.5448 (9)0.595 (2)0.3575 (12)0.057 (4)*
C150.59615 (7)0.79507 (16)0.28902 (9)0.0403 (3)
H15A0.6056 (9)0.921 (2)0.3018 (11)0.059 (4)*
H15B0.5542 (9)0.7861 (17)0.2165 (11)0.048 (3)*
C160.67845 (8)0.70487 (17)0.28662 (10)0.0448 (3)
H16A0.7217 (10)0.725 (2)0.3567 (13)0.064 (4)*
H16B0.6688 (10)0.575 (2)0.2808 (13)0.068 (4)*
C170.71335 (9)0.76729 (19)0.19762 (11)0.0494 (3)
H17A0.6695 (11)0.753 (2)0.1291 (14)0.070 (5)*
H17B0.7272 (12)0.892 (3)0.2051 (14)0.081 (5)*
H17C0.7687 (12)0.699 (2)0.1952 (14)0.076 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0578 (5)0.0554 (5)0.0250 (4)0.0034 (4)0.0169 (3)0.0028 (3)
O20.0739 (6)0.0483 (5)0.0427 (5)0.0124 (4)0.0191 (4)0.0180 (4)
N10.0383 (5)0.0331 (4)0.0272 (4)0.0027 (3)0.0110 (3)0.0016 (3)
C10.0299 (5)0.0327 (5)0.0254 (4)0.0014 (4)0.0072 (3)0.0003 (3)
C20.0360 (5)0.0430 (6)0.0286 (5)0.0006 (4)0.0129 (4)0.0041 (4)
C30.0421 (6)0.0468 (6)0.0384 (6)0.0016 (5)0.0148 (4)0.0141 (5)
C40.0477 (6)0.0365 (6)0.0510 (7)0.0068 (5)0.0178 (5)0.0096 (5)
C50.0418 (6)0.0376 (6)0.0394 (6)0.0019 (4)0.0149 (4)0.0029 (4)
C60.0338 (5)0.0353 (5)0.0251 (4)0.0021 (4)0.0086 (3)0.0016 (4)
C70.0385 (5)0.0408 (5)0.0222 (4)0.0039 (4)0.0076 (4)0.0020 (4)
C80.0426 (6)0.0390 (5)0.0270 (5)0.0006 (4)0.0083 (4)0.0035 (4)
C90.0394 (6)0.0341 (5)0.0360 (5)0.0014 (4)0.0113 (4)0.0058 (4)
C100.0365 (5)0.0390 (6)0.0357 (5)0.0010 (4)0.0092 (4)0.0072 (4)
C110.0375 (5)0.0393 (6)0.0381 (5)0.0022 (4)0.0095 (4)0.0080 (4)
C120.0367 (6)0.0422 (6)0.0387 (6)0.0016 (4)0.0094 (4)0.0068 (4)
C130.0371 (6)0.0461 (6)0.0370 (6)0.0011 (4)0.0086 (4)0.0070 (5)
C140.0368 (6)0.0457 (6)0.0378 (6)0.0014 (4)0.0088 (4)0.0058 (4)
C150.0384 (6)0.0450 (6)0.0364 (5)0.0016 (4)0.0090 (4)0.0052 (4)
C160.0388 (6)0.0523 (7)0.0435 (6)0.0006 (5)0.0118 (5)0.0066 (5)
C170.0496 (7)0.0541 (7)0.0486 (7)0.0067 (6)0.0205 (6)0.0001 (6)
Geometric parameters (Å, º) top
O1—C71.2126 (12)C10—H10B1.007 (14)
O2—C81.2106 (13)C11—C121.5200 (16)
N1—C81.3603 (13)C11—H11A0.989 (15)
N1—C11.4127 (13)C11—H11B0.986 (14)
N1—C91.4606 (13)C12—C131.5186 (15)
C1—C21.3806 (13)C12—H12A1.000 (14)
C1—C61.4009 (13)C12—H12B0.979 (16)
C2—C31.3899 (16)C13—C141.5178 (16)
C2—H20.992 (13)C13—H13A1.007 (16)
C3—C41.3868 (16)C13—H13B0.997 (14)
C3—H30.997 (14)C14—C151.5163 (15)
C4—C51.3871 (16)C14—H14A1.007 (15)
C4—H40.971 (16)C14—H14B1.002 (16)
C5—C61.3862 (15)C15—C161.5147 (17)
C5—H50.980 (14)C15—H15A0.986 (17)
C6—C71.4599 (13)C15—H15B1.000 (14)
C7—C81.5554 (15)C16—C171.5132 (16)
C9—C101.5233 (15)C16—H16A0.995 (17)
C9—H9A0.989 (14)C16—H16B1.011 (18)
C9—H9B0.994 (13)C17—H17A0.979 (18)
C10—C111.5204 (14)C17—H17B0.98 (2)
C10—H10A1.006 (15)C17—H17C1.050 (18)
C8—N1—C1110.61 (8)C10—C11—H11A109.2 (8)
C8—N1—C9125.63 (9)C12—C11—H11B107.8 (8)
C1—N1—C9123.52 (8)C10—C11—H11B109.0 (8)
C2—C1—C6121.72 (9)H11A—C11—H11B106.7 (11)
C2—C1—N1127.18 (9)C13—C12—C11114.13 (9)
C6—C1—N1111.09 (8)C13—C12—H12A109.5 (8)
C1—C2—C3116.77 (9)C11—C12—H12A110.4 (8)
C1—C2—H2121.5 (8)C13—C12—H12B109.4 (8)
C3—C2—H2121.7 (8)C11—C12—H12B108.8 (8)
C4—C3—C2122.14 (10)H12A—C12—H12B104.1 (12)
C4—C3—H3118.6 (8)C14—C13—C12113.83 (9)
C2—C3—H3119.3 (8)C14—C13—H13A111.1 (8)
C3—C4—C5120.75 (10)C12—C13—H13A108.6 (8)
C3—C4—H4118.3 (8)C14—C13—H13B108.0 (8)
C5—C4—H4120.9 (8)C12—C13—H13B108.7 (8)
C6—C5—C4117.84 (10)H13A—C13—H13B106.3 (11)
C6—C5—H5120.4 (8)C15—C14—C13114.24 (9)
C4—C5—H5121.8 (9)C15—C14—H14A108.8 (8)
C5—C6—C1120.73 (9)C13—C14—H14A109.6 (8)
C5—C6—C7132.39 (9)C15—C14—H14B108.9 (8)
C1—C6—C7106.87 (8)C13—C14—H14B109.5 (8)
O1—C7—C6131.29 (10)H14A—C14—H14B105.5 (12)
O1—C7—C8123.52 (9)C16—C15—C14114.17 (10)
C6—C7—C8105.19 (8)C16—C15—H15A110.9 (9)
O2—C8—N1127.53 (10)C14—C15—H15A108.5 (8)
O2—C8—C7126.26 (9)C16—C15—H15B108.3 (8)
N1—C8—C7106.20 (8)C14—C15—H15B109.5 (8)
N1—C9—C10112.12 (8)H15A—C15—H15B105.0 (11)
N1—C9—H9A105.1 (8)C17—C16—C15113.51 (10)
C10—C9—H9A112.6 (8)C17—C16—H16A109.9 (9)
N1—C9—H9B108.0 (7)C15—C16—H16A107.7 (9)
C10—C9—H9B109.9 (7)C17—C16—H16B109.9 (9)
H9A—C9—H9B108.9 (10)C15—C16—H16B109.6 (9)
C11—C10—C9112.57 (9)H16A—C16—H16B105.9 (13)
C11—C10—H10A111.3 (8)C16—C17—H17A109.7 (10)
C9—C10—H10A109.3 (8)C16—C17—H17B111.0 (10)
C11—C10—H10B109.4 (7)H17A—C17—H17B106.5 (15)
C9—C10—H10B109.0 (7)C16—C17—H17C112.2 (9)
H10A—C10—H10B104.9 (11)H17A—C17—H17C108.7 (14)
C12—C11—C10113.04 (9)H17B—C17—H17C108.6 (14)
C12—C11—H11A110.9 (8)
C8—N1—C1—C2178.81 (10)C1—C6—C7—C81.98 (10)
C9—N1—C1—C26.62 (15)C1—N1—C8—O2177.89 (11)
C8—N1—C1—C60.19 (11)C9—N1—C8—O23.47 (18)
C9—N1—C1—C6174.37 (9)C1—N1—C8—C71.07 (11)
C6—C1—C2—C32.13 (15)C9—N1—C8—C7175.49 (9)
N1—C1—C2—C3178.96 (9)O1—C7—C8—O22.55 (17)
C1—C2—C3—C40.59 (16)C6—C7—C8—O2177.09 (11)
C2—C3—C4—C51.19 (18)O1—C7—C8—N1178.47 (10)
C3—C4—C5—C61.41 (17)C6—C7—C8—N11.89 (11)
C4—C5—C6—C10.11 (15)C8—N1—C9—C10103.80 (12)
C4—C5—C6—C7179.33 (11)C1—N1—C9—C1069.94 (12)
C2—C1—C6—C51.95 (15)N1—C9—C10—C11167.45 (9)
N1—C1—C6—C5178.98 (9)C9—C10—C11—C12173.60 (9)
C2—C1—C6—C7177.62 (9)C10—C11—C12—C13175.57 (9)
N1—C1—C6—C71.45 (11)C11—C12—C13—C14178.95 (10)
C5—C6—C7—O11.08 (19)C12—C13—C14—C15177.47 (10)
C1—C6—C7—O1178.42 (11)C13—C14—C15—C16179.94 (10)
C5—C6—C7—C8178.52 (11)C14—C15—C16—C17174.71 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.992 (13)2.412 (13)3.3737 (13)163.3 (10)
C3—H3···O1ii0.997 (14)2.454 (15)3.2734 (14)139.0 (11)
C9—H9B···O1i0.994 (13)2.546 (13)3.5012 (13)161.0 (10)
C17—H17B···O2iii0.98 (2)2.49 (2)3.3941 (17)153.3 (15)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y+2, z+1.
The B3LYP-optimized and X-ray structural parameters (Å, °) for the title compound top
B3LYPX-ray
C1—C21.3941.3806 (13)
C2—C31.4041.3899 (16)
C3—C41.4021.3868 (16)
C4—C51.4001.3871 (16)
C5—C61.3931.3862 (15)
C6—C71.4731.4599 (13)
C6—C11.4131.4009 (13)
C7—C81.5681.5554 (15)
C8—N11.3901.3603 (13)
N1—C11.4041.4127 (13)
C7—O11.2061.2126 (12)
C8—O21.2061.2106 (13)
N1—C91.4541.4606 (13)
N1—C8—C7105.9106.20 (8)
 

Acknowledgements

We thank the National Center for High-performance Computing (Taiwan) for providing computing time.

Funding information

This publication was prepared with the support of the RUDN University Program 5–100. The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586.  Web of Science CAS PubMed Google Scholar
First citationAlmeida, M. R., Leitão, G. G., Silva, B. V., Barbosa, J. P. & Pinto, A. C. J. (2010). J. Braz. Chem. Soc. 21, 764–769.  Web of Science CrossRef CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBen-Yahia, A., El Bakri, Y. E., Lai, C.-H., Essassi, E. M. & Mague, J. T. (2018). Acta Cryst. E74, 1857–1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoménech, A., Doménech-Carbó, M. T., Sánchez del Río, M., Vázquez de Agredos Pascual, M. L. & Lima, E. (2009). New J. Chem. 33, 2371–2379.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E. Jr, Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16, Revision A. 03. Gaussian, Inc., Wallingford CT.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGürsoy, A. & Karalí, N. (2003). Eur. J. Med. Chem. 38, 633–643.  Web of Science PubMed Google Scholar
First citationJarrahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKassab, S., Hegazy, G., Eid, N., Amin, K. & El-Gendy, A. (2010). Nucleosides Nucleotides Nucleic Acids, 29, 72–80.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKekulé, A. (1869). Ber. Dtsch. Chem. Ges. 2, 748–749.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o1411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200–206.  CrossRef CAS Web of Science Google Scholar
First citationMironova, E. V., Bogdanov, A. V., Krivolapov, D. B., Musin, L. I., Litvinov, I. A. & Mironov, V. F. (2015). J. Mol. Struct. 1079, 87–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. & Hutchison, G. R. (2011). J. Cheminform, 3, 33.  Web of Science PubMed Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014b). Acta Cryst. E70, o361–o362.  CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.  CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016a). IUCrData, 1, x160593.  Google Scholar
First citationQachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016b). IUCrData, 1, x160609.  Google Scholar
First citationQachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016c). IUCrData, 1, x160542.  Google Scholar
First citationQachchachi, F.-Z., Ouazzani Chahdi, F., Misbahi, H., Bodensteiner, M. & El Ammari, L. (2014a). Acta Cryst. E70, o229.  CSD CrossRef IUCr Journals Google Scholar
First citationRayni, I., El Bakri, Y., Lai, C.-H., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2019). Acta Cryst. E75, 21–25.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. J. (2001). J. Braz. Chem. Soc. 12, 273–324.  Web of Science CrossRef Google Scholar
First citationSpackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149–1152.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTrost, B. & Brennan, M. (2009). Synthesis, pp. 3003–3025.  Web of Science CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWeigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305.  Web of Science CrossRef PubMed CAS Google Scholar
First citationŽari, S., Metsala, A., Kudrjashova, M., Kaabel, S., Järving, I. & Kanger, T. (2015). Synthesis, 47, 875–886.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds