research communications
H-indole-2,3-dione
DFT study and Hirshfeld surface analysis of 1-nonyl-2,3-dihydro-1aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bOrganic Chemistry Department, Faculty of Science, RUDN University, Miklukho-Maklaya St. 6, 117198 Moscow, Russian Federation, cDepartment of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan, dDepartment of Medical Education, Chung Shan Medical University Hospital, 402 Taichung, Taiwan, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: yns.elbakri@gmail.com
In the title molecule, C17H23NO2, the dihydroindole portion is planar (r.m.s. deviation = 0.0157 Å) and the nonyl substituent is in an `extended' conformation. In the crystal, the nonyl chains intercalate and the dihydroindoledione units are associated through C—H⋯O hydrogen bonds to form micellar blocks. Based on the Hirshfeld surface analysis, the most important intermolecular interaction is the H⋯H interaction.
Keywords: crystal structure; dihydroindoledione; hydrogen bond; micelle; π-stacking.
CCDC reference: 1938997
1. Chemical context
Indoline-2,3-dione or indole-1H-2,3-dione, commonly known as isatin, is a well-known natural product found in plants of genus Isatis and in Couropita guianancis aubl (Da Silva et al., 2001). It has also been isolated as a metabolic derivative of adrenaline in humans (Almeida et al., 2010). It was first obtained as an oxidation product of indigo in the early 19th century, and its current structure was proposed by Kekulé (1869). Isatin is a core constituent of many (Trost et al., 2009) and drugs (Aboul-Fadl et al., 2010) as well as dyes (Doménech et al., 2009), pesticides and analytical reagents. Isatin derivatives possess diverse activities such as antibacterial (Kassab et al., 2010), antiviral (Jarrahpour et al., 2007), anti-HIV (Sriram et al., 2006), anticancer (Gürsoy et al., 2003) and anti-inflammatory (Sridhar et al., 2001) activities. As a continuation of our research work devoted to the development of isatin derivatives (Ben-Yahia et al., 2018; Rayni et al., 2019), we report in this work the synthesis and the Hirshfeld surface analysis of a new indoline-2,3-dione derivative obtained by the action of nonyl bromide on isatin under conditions.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The dihydroindole skeleton is planar to within 0.0286 (8) Å (r.m.s. deviation of the fitted atoms = 0.0157 Å) with Cl being the furthest from the mean plane. The nonyl chain is in an `extended' conformation and is well out of the mean plane of the dihydroindole unit, as indicated by the C1—N1—C9—C10 torsion angle of −69.94 (12)°.
3. Supramolecular features
In the crystal, the molecules pack in a typical micellar manner with the dihydroindoldione head groups associated through C2—H2⋯O2i, C3—H3⋯O1ii and C9—H9B⋯O1i hydrogen bonds (Table 1) and the nonyl `tails' intercalating and aided by paired C17—H17B⋯O2iii hydrogen bonds (Table 1 and Fig. 2). The micellar blocks are associated through π-stacking interactions between inversion-related C1–C6 rings [centroid–centroid distance = 3.6470 (7) Å; Figs. 2 and 3].
4. Database survey
A search of the Cambridge Crystallographic Database (Version 5.40 updated to April 2019; Groom et al., 2016) provided structures of 11 derivatives of the dihydroindole-2,3-dione skeleton having a saturated carbon chain of at least three atoms bound to nitrogen. Thus, in place of the n-nonyl chain (R) in the title compound, there are ones with R = 3-bromopropyl (AKOBIN; Qachchachi et al., 2016a), n-propyl (AKOCOU; Qachchachi et al., 2016b), n-octyl (CIQDOX; Qachchachi et al., 2013), 2,3-dibenzoylethane (FUBLIZ; Žari et al., 2015), n-dodecyl (GITTEK; Qachchachi et al., 2014a), cyclopentyl (JOWSOF; Mironova et al., 2015), 3-carboxymethylpropane (JOWSUL; Mironova et al., 2015), 2-cyanoethane (LIVSIU; Qachchachi et al., 2014b), n-tetradecyl (TUPSIH; Mamari et al., 2010a) and n-decyl (TUPSON; Mamari et al., 2010b). In addition, there is one structure with two dihydroindole-2,3-dione moieties connected by a –(CH2)6– linkage (OJIGOF; Qachchachi et al., 2016c). In all of these compounds, the dihydroindole-2,3-dione skeleton is planar and the first two carbon atoms from the nitrogen are rotated so that the N–C–C plane is nearly perpendicular to the plane of the dihydroindole-2,3-dione. Additionally, the C—C distances corresponding to the C7—C8 distance in the title structure [1.5554 (15) Å] are in the range 1.543 (4)–1.563 (6) Å. Generally, the carbon chains are in an `extended' conformation.
5. Calculation of the electronic structure
The structure in the gas phase of the title compound was optimized by means of density functional theory. The DFT calculation was performed using the hybrid B3LYP method, which is based on the idea of Becke and considers a mixture of the exact (HF) and DFT exchange utilizing the B3 functional, together with the LYP correlation functional (Becke, 1993; Lee et al., 1988; Miehlich et al., 1989). The B3LYP calculation was performed in conjunction with the def2-SVP basis set (Weigend & Ahlrichs, 2005). After obtaining the converged geometry, the harmonic vibrational frequencies were calculated on the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and the harmonic vibrational frequency analysis of the title compound were performed using the Gaussian 16 program (Frisch et al., 2016). The result of the B3LYP geometry optimization for the title compound (shown in Fig. 4) was compared to that of the crystallographic study with selected geometric parameters for the gas-phase and solid-phase structures summarized in Table 2. This shows that there is a clear discrepancy between the B3LYP-optimized geometry and the X-ray geometry. To quantify this, the openBabel program was then used to convert the experimental file to a Gaussian .gjf input file (O'Boyle et al., 2011). The structure compared built in the ChemCraft program (graphical software for visualization of quantum chemistry computations; https://www.chemcraftprog.com) was finally used to obtain a weighted r.m.s. deviation of 0.5808 Å with r.m.s.d. values of of 0.6297, 0.5213, 0.2231, and 0.5977 Å, respectively, for the H, C, N and O atoms.
|
6. Hirshfeld surface analysis
Both the definition of a molecule in a condensed phase and the recognition of distinct entities in molecular liquids and crystals are fundamental concepts in chemistry. Based on Hirshfeld's partitioning scheme, Spackman et al. (1997) proposed a method to divide the electron distribution in a crystalline phase into molecular fragments (Spackman & Byrom, 1997; McKinnon et al., 2004; Spackman & Jayatilaka, 2009). Their proposed method partitioned the crystal into regions where the electron distribution of a sum of spherical atoms for the molecule dominates over the corresponding sum of the crystal. In this study, the Hirshfeld surface analysis of the title compound was performed utilizing the CrystalExplorer program (Turner et al., 2017). The standard resolution molecular Hirshfeld surface (dnorm) of the title compound is depicted in Fig. 5. This surface can be used to identify very close intermolecular interactions. The value of dnorm is negative (positive) when intermolecular contacts are shorter (longer) than the van der Waals radii. The dnorm value is mapped onto the Hirshfeld surface using red, white or blue colours. The red regions represent closer contacts with a negative dnorm value while the blue regions represent longer contacts with a positive dnorm value. The white regions represent contacts equal to the van der Waals separation and have a dnorm value of zero. As depicted in Fig. 5, important interactions in the title compound are H⋯O and H⋯N hydrogen bonds. The two-dimensional fingerprint plots (Fig. 6) highlight particular atom-pair contacts and enable the separation of contributions from different interaction types that overlap in the full fingerprint. The most important interactions involving the hydrogen atoms in the title compound are the H⋯H contactso. The H⋯H, H⋯O/O⋯H and H⋯N/N⋯H contacts make contribututions of 61.9, 21.8 and 0.9%, respectively, to the Hirshfeld surface.
7. Synthesis and crystallization
To a solution of isatin (0.5 g, 3.4 mmol) dissolved in 25 ml of N,N-dimethylformamide, 1-bromooctane (0.7 ml, 3.4 mmol), potassium carbonate (0.61 g, 4.4 mmol) and a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) were added. The mixture was stirred for 48 h and the reaction monitored by thin layer The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange–red crystals.
8. Refinement
Crystal data, data collection and structure .
details are summarized in Table 3Supporting information
CCDC reference: 1938997
https://doi.org/10.1107/S2056989019009691/vm2219sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019009691/vm2219Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019009691/vm2219Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019009691/vm2219Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H23NO2 | F(000) = 592 |
Mr = 273.36 | Dx = 1.158 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 16.2512 (4) Å | Cell parameters from 9962 reflections |
b = 7.6859 (2) Å | θ = 5.1–74.4° |
c = 13.0989 (3) Å | µ = 0.59 mm−1 |
β = 106.640 (1)° | T = 150 K |
V = 1567.60 (7) Å3 | Block, orange-red |
Z = 4 | 0.24 × 0.20 × 0.14 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3128 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2879 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.4°, θmin = 6.4° |
ω scans | h = −18→19 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −9→8 |
Tmin = 0.82, Tmax = 0.92 | l = −16→15 |
11594 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | All H-atom parameters refined |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0474P)2 + 0.2775P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3128 reflections | Δρmax = 0.22 e Å−3 |
274 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0114 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.08032 (5) | 0.55941 (11) | 0.77294 (5) | 0.0450 (2) | |
O2 | 0.17619 (6) | 0.85773 (11) | 0.72453 (7) | 0.0545 (3) | |
N1 | 0.16664 (5) | 0.69895 (11) | 0.57210 (6) | 0.0326 (2) | |
C1 | 0.13290 (6) | 0.53470 (13) | 0.53302 (7) | 0.0295 (2) | |
C2 | 0.13301 (6) | 0.45892 (14) | 0.43750 (8) | 0.0351 (2) | |
H2 | 0.1570 (8) | 0.5200 (17) | 0.3857 (10) | 0.045 (3)* | |
C3 | 0.09707 (7) | 0.29390 (15) | 0.41701 (9) | 0.0418 (3) | |
H3 | 0.0954 (9) | 0.2350 (19) | 0.3486 (11) | 0.052 (4)* | |
C4 | 0.06188 (8) | 0.20883 (15) | 0.48797 (10) | 0.0443 (3) | |
H4 | 0.0372 (9) | 0.094 (2) | 0.4688 (11) | 0.059 (4)* | |
C5 | 0.05985 (7) | 0.28781 (14) | 0.58244 (9) | 0.0389 (3) | |
H5 | 0.0330 (9) | 0.2317 (19) | 0.6319 (11) | 0.052 (4)* | |
C6 | 0.09576 (6) | 0.45211 (13) | 0.60433 (7) | 0.0314 (2) | |
C7 | 0.10401 (6) | 0.57137 (14) | 0.69345 (7) | 0.0341 (2) | |
C8 | 0.15339 (7) | 0.73151 (14) | 0.66825 (8) | 0.0365 (2) | |
C9 | 0.21591 (7) | 0.80831 (14) | 0.51971 (9) | 0.0363 (2) | |
H9A | 0.2192 (8) | 0.9233 (18) | 0.5546 (10) | 0.046 (3)* | |
H9B | 0.1825 (8) | 0.8201 (16) | 0.4435 (10) | 0.039 (3)* | |
C10 | 0.30417 (7) | 0.73223 (15) | 0.52814 (9) | 0.0373 (2) | |
H10A | 0.3406 (9) | 0.7374 (18) | 0.6044 (12) | 0.051 (4)* | |
H10B | 0.2979 (8) | 0.6044 (19) | 0.5107 (10) | 0.044 (3)* | |
C11 | 0.34813 (7) | 0.82187 (15) | 0.45444 (9) | 0.0386 (3) | |
H11A | 0.3578 (9) | 0.946 (2) | 0.4751 (11) | 0.051 (4)* | |
H11B | 0.3094 (8) | 0.8199 (17) | 0.3812 (11) | 0.046 (3)* | |
C12 | 0.43166 (7) | 0.73437 (15) | 0.45297 (9) | 0.0395 (3) | |
H12A | 0.4735 (9) | 0.7357 (19) | 0.5258 (11) | 0.052 (4)* | |
H12B | 0.4207 (9) | 0.611 (2) | 0.4372 (11) | 0.052 (4)* | |
C13 | 0.47345 (7) | 0.81285 (16) | 0.37372 (9) | 0.0405 (3) | |
H13A | 0.4834 (9) | 0.940 (2) | 0.3898 (11) | 0.056 (4)* | |
H13B | 0.4323 (9) | 0.8053 (17) | 0.3010 (11) | 0.049 (4)* | |
C14 | 0.55597 (7) | 0.72275 (16) | 0.37127 (9) | 0.0405 (3) | |
H14A | 0.5991 (9) | 0.7303 (19) | 0.4437 (12) | 0.056 (4)* | |
H14B | 0.5448 (9) | 0.595 (2) | 0.3575 (12) | 0.057 (4)* | |
C15 | 0.59615 (7) | 0.79507 (16) | 0.28902 (9) | 0.0403 (3) | |
H15A | 0.6056 (9) | 0.921 (2) | 0.3018 (11) | 0.059 (4)* | |
H15B | 0.5542 (9) | 0.7861 (17) | 0.2165 (11) | 0.048 (3)* | |
C16 | 0.67845 (8) | 0.70487 (17) | 0.28662 (10) | 0.0448 (3) | |
H16A | 0.7217 (10) | 0.725 (2) | 0.3567 (13) | 0.064 (4)* | |
H16B | 0.6688 (10) | 0.575 (2) | 0.2808 (13) | 0.068 (4)* | |
C17 | 0.71335 (9) | 0.76729 (19) | 0.19762 (11) | 0.0494 (3) | |
H17A | 0.6695 (11) | 0.753 (2) | 0.1291 (14) | 0.070 (5)* | |
H17B | 0.7272 (12) | 0.892 (3) | 0.2051 (14) | 0.081 (5)* | |
H17C | 0.7687 (12) | 0.699 (2) | 0.1952 (14) | 0.076 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0578 (5) | 0.0554 (5) | 0.0250 (4) | 0.0034 (4) | 0.0169 (3) | 0.0028 (3) |
O2 | 0.0739 (6) | 0.0483 (5) | 0.0427 (5) | −0.0124 (4) | 0.0191 (4) | −0.0180 (4) |
N1 | 0.0383 (5) | 0.0331 (4) | 0.0272 (4) | −0.0027 (3) | 0.0110 (3) | −0.0016 (3) |
C1 | 0.0299 (5) | 0.0327 (5) | 0.0254 (4) | 0.0014 (4) | 0.0072 (3) | −0.0003 (3) |
C2 | 0.0360 (5) | 0.0430 (6) | 0.0286 (5) | −0.0006 (4) | 0.0129 (4) | −0.0041 (4) |
C3 | 0.0421 (6) | 0.0468 (6) | 0.0384 (6) | −0.0016 (5) | 0.0148 (4) | −0.0141 (5) |
C4 | 0.0477 (6) | 0.0365 (6) | 0.0510 (7) | −0.0068 (5) | 0.0178 (5) | −0.0096 (5) |
C5 | 0.0418 (6) | 0.0376 (6) | 0.0394 (6) | −0.0019 (4) | 0.0149 (4) | 0.0029 (4) |
C6 | 0.0338 (5) | 0.0353 (5) | 0.0251 (4) | 0.0021 (4) | 0.0086 (3) | 0.0016 (4) |
C7 | 0.0385 (5) | 0.0408 (5) | 0.0222 (4) | 0.0039 (4) | 0.0076 (4) | 0.0020 (4) |
C8 | 0.0426 (6) | 0.0390 (5) | 0.0270 (5) | 0.0006 (4) | 0.0083 (4) | −0.0035 (4) |
C9 | 0.0394 (6) | 0.0341 (5) | 0.0360 (5) | −0.0014 (4) | 0.0113 (4) | 0.0058 (4) |
C10 | 0.0365 (5) | 0.0390 (6) | 0.0357 (5) | −0.0010 (4) | 0.0092 (4) | 0.0072 (4) |
C11 | 0.0375 (5) | 0.0393 (6) | 0.0381 (5) | −0.0022 (4) | 0.0095 (4) | 0.0080 (4) |
C12 | 0.0367 (6) | 0.0422 (6) | 0.0387 (6) | −0.0016 (4) | 0.0094 (4) | 0.0068 (4) |
C13 | 0.0371 (6) | 0.0461 (6) | 0.0370 (6) | −0.0011 (4) | 0.0086 (4) | 0.0070 (5) |
C14 | 0.0368 (6) | 0.0457 (6) | 0.0378 (6) | −0.0014 (4) | 0.0088 (4) | 0.0058 (4) |
C15 | 0.0384 (6) | 0.0450 (6) | 0.0364 (5) | −0.0016 (4) | 0.0090 (4) | 0.0052 (4) |
C16 | 0.0388 (6) | 0.0523 (7) | 0.0435 (6) | −0.0006 (5) | 0.0118 (5) | 0.0066 (5) |
C17 | 0.0496 (7) | 0.0541 (7) | 0.0486 (7) | −0.0067 (6) | 0.0205 (6) | −0.0001 (6) |
O1—C7 | 1.2126 (12) | C10—H10B | 1.007 (14) |
O2—C8 | 1.2106 (13) | C11—C12 | 1.5200 (16) |
N1—C8 | 1.3603 (13) | C11—H11A | 0.989 (15) |
N1—C1 | 1.4127 (13) | C11—H11B | 0.986 (14) |
N1—C9 | 1.4606 (13) | C12—C13 | 1.5186 (15) |
C1—C2 | 1.3806 (13) | C12—H12A | 1.000 (14) |
C1—C6 | 1.4009 (13) | C12—H12B | 0.979 (16) |
C2—C3 | 1.3899 (16) | C13—C14 | 1.5178 (16) |
C2—H2 | 0.992 (13) | C13—H13A | 1.007 (16) |
C3—C4 | 1.3868 (16) | C13—H13B | 0.997 (14) |
C3—H3 | 0.997 (14) | C14—C15 | 1.5163 (15) |
C4—C5 | 1.3871 (16) | C14—H14A | 1.007 (15) |
C4—H4 | 0.971 (16) | C14—H14B | 1.002 (16) |
C5—C6 | 1.3862 (15) | C15—C16 | 1.5147 (17) |
C5—H5 | 0.980 (14) | C15—H15A | 0.986 (17) |
C6—C7 | 1.4599 (13) | C15—H15B | 1.000 (14) |
C7—C8 | 1.5554 (15) | C16—C17 | 1.5132 (16) |
C9—C10 | 1.5233 (15) | C16—H16A | 0.995 (17) |
C9—H9A | 0.989 (14) | C16—H16B | 1.011 (18) |
C9—H9B | 0.994 (13) | C17—H17A | 0.979 (18) |
C10—C11 | 1.5204 (14) | C17—H17B | 0.98 (2) |
C10—H10A | 1.006 (15) | C17—H17C | 1.050 (18) |
C8—N1—C1 | 110.61 (8) | C10—C11—H11A | 109.2 (8) |
C8—N1—C9 | 125.63 (9) | C12—C11—H11B | 107.8 (8) |
C1—N1—C9 | 123.52 (8) | C10—C11—H11B | 109.0 (8) |
C2—C1—C6 | 121.72 (9) | H11A—C11—H11B | 106.7 (11) |
C2—C1—N1 | 127.18 (9) | C13—C12—C11 | 114.13 (9) |
C6—C1—N1 | 111.09 (8) | C13—C12—H12A | 109.5 (8) |
C1—C2—C3 | 116.77 (9) | C11—C12—H12A | 110.4 (8) |
C1—C2—H2 | 121.5 (8) | C13—C12—H12B | 109.4 (8) |
C3—C2—H2 | 121.7 (8) | C11—C12—H12B | 108.8 (8) |
C4—C3—C2 | 122.14 (10) | H12A—C12—H12B | 104.1 (12) |
C4—C3—H3 | 118.6 (8) | C14—C13—C12 | 113.83 (9) |
C2—C3—H3 | 119.3 (8) | C14—C13—H13A | 111.1 (8) |
C3—C4—C5 | 120.75 (10) | C12—C13—H13A | 108.6 (8) |
C3—C4—H4 | 118.3 (8) | C14—C13—H13B | 108.0 (8) |
C5—C4—H4 | 120.9 (8) | C12—C13—H13B | 108.7 (8) |
C6—C5—C4 | 117.84 (10) | H13A—C13—H13B | 106.3 (11) |
C6—C5—H5 | 120.4 (8) | C15—C14—C13 | 114.24 (9) |
C4—C5—H5 | 121.8 (9) | C15—C14—H14A | 108.8 (8) |
C5—C6—C1 | 120.73 (9) | C13—C14—H14A | 109.6 (8) |
C5—C6—C7 | 132.39 (9) | C15—C14—H14B | 108.9 (8) |
C1—C6—C7 | 106.87 (8) | C13—C14—H14B | 109.5 (8) |
O1—C7—C6 | 131.29 (10) | H14A—C14—H14B | 105.5 (12) |
O1—C7—C8 | 123.52 (9) | C16—C15—C14 | 114.17 (10) |
C6—C7—C8 | 105.19 (8) | C16—C15—H15A | 110.9 (9) |
O2—C8—N1 | 127.53 (10) | C14—C15—H15A | 108.5 (8) |
O2—C8—C7 | 126.26 (9) | C16—C15—H15B | 108.3 (8) |
N1—C8—C7 | 106.20 (8) | C14—C15—H15B | 109.5 (8) |
N1—C9—C10 | 112.12 (8) | H15A—C15—H15B | 105.0 (11) |
N1—C9—H9A | 105.1 (8) | C17—C16—C15 | 113.51 (10) |
C10—C9—H9A | 112.6 (8) | C17—C16—H16A | 109.9 (9) |
N1—C9—H9B | 108.0 (7) | C15—C16—H16A | 107.7 (9) |
C10—C9—H9B | 109.9 (7) | C17—C16—H16B | 109.9 (9) |
H9A—C9—H9B | 108.9 (10) | C15—C16—H16B | 109.6 (9) |
C11—C10—C9 | 112.57 (9) | H16A—C16—H16B | 105.9 (13) |
C11—C10—H10A | 111.3 (8) | C16—C17—H17A | 109.7 (10) |
C9—C10—H10A | 109.3 (8) | C16—C17—H17B | 111.0 (10) |
C11—C10—H10B | 109.4 (7) | H17A—C17—H17B | 106.5 (15) |
C9—C10—H10B | 109.0 (7) | C16—C17—H17C | 112.2 (9) |
H10A—C10—H10B | 104.9 (11) | H17A—C17—H17C | 108.7 (14) |
C12—C11—C10 | 113.04 (9) | H17B—C17—H17C | 108.6 (14) |
C12—C11—H11A | 110.9 (8) | ||
C8—N1—C1—C2 | 178.81 (10) | C1—C6—C7—C8 | −1.98 (10) |
C9—N1—C1—C2 | −6.62 (15) | C1—N1—C8—O2 | 177.89 (11) |
C8—N1—C1—C6 | −0.19 (11) | C9—N1—C8—O2 | 3.47 (18) |
C9—N1—C1—C6 | 174.37 (9) | C1—N1—C8—C7 | −1.07 (11) |
C6—C1—C2—C3 | −2.13 (15) | C9—N1—C8—C7 | −175.49 (9) |
N1—C1—C2—C3 | 178.96 (9) | O1—C7—C8—O2 | 2.55 (17) |
C1—C2—C3—C4 | 0.59 (16) | C6—C7—C8—O2 | −177.09 (11) |
C2—C3—C4—C5 | 1.19 (18) | O1—C7—C8—N1 | −178.47 (10) |
C3—C4—C5—C6 | −1.41 (17) | C6—C7—C8—N1 | 1.89 (11) |
C4—C5—C6—C1 | −0.11 (15) | C8—N1—C9—C10 | 103.80 (12) |
C4—C5—C6—C7 | 179.33 (11) | C1—N1—C9—C10 | −69.94 (12) |
C2—C1—C6—C5 | 1.95 (15) | N1—C9—C10—C11 | 167.45 (9) |
N1—C1—C6—C5 | −178.98 (9) | C9—C10—C11—C12 | −173.60 (9) |
C2—C1—C6—C7 | −177.62 (9) | C10—C11—C12—C13 | 175.57 (9) |
N1—C1—C6—C7 | 1.45 (11) | C11—C12—C13—C14 | −178.95 (10) |
C5—C6—C7—O1 | −1.08 (19) | C12—C13—C14—C15 | 177.47 (10) |
C1—C6—C7—O1 | 178.42 (11) | C13—C14—C15—C16 | −179.94 (10) |
C5—C6—C7—C8 | 178.52 (11) | C14—C15—C16—C17 | 174.71 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.992 (13) | 2.412 (13) | 3.3737 (13) | 163.3 (10) |
C3—H3···O1ii | 0.997 (14) | 2.454 (15) | 3.2734 (14) | 139.0 (11) |
C9—H9B···O1i | 0.994 (13) | 2.546 (13) | 3.5012 (13) | 161.0 (10) |
C17—H17B···O2iii | 0.98 (2) | 2.49 (2) | 3.3941 (17) | 153.3 (15) |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y+2, −z+1. |
B3LYP | X-ray | |
C1—C2 | 1.394 | 1.3806 (13) |
C2—C3 | 1.404 | 1.3899 (16) |
C3—C4 | 1.402 | 1.3868 (16) |
C4—C5 | 1.400 | 1.3871 (16) |
C5—C6 | 1.393 | 1.3862 (15) |
C6—C7 | 1.473 | 1.4599 (13) |
C6—C1 | 1.413 | 1.4009 (13) |
C7—C8 | 1.568 | 1.5554 (15) |
C8—N1 | 1.390 | 1.3603 (13) |
N1—C1 | 1.404 | 1.4127 (13) |
C7—O1 | 1.206 | 1.2126 (12) |
C8—O2 | 1.206 | 1.2106 (13) |
N1—C9 | 1.454 | 1.4606 (13) |
N1—C8—C7 | 105.9 | 106.20 (8) |
Acknowledgements
We thank the National Center for High-performance Computing (Taiwan) for providing computing time.
Funding information
This publication was prepared with the support of the RUDN University Program 5–100. The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586. Web of Science CAS PubMed Google Scholar
Almeida, M. R., Leitão, G. G., Silva, B. V., Barbosa, J. P. & Pinto, A. C. J. (2010). J. Braz. Chem. Soc. 21, 764–769. Web of Science CrossRef CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Ben-Yahia, A., El Bakri, Y. E., Lai, C.-H., Essassi, E. M. & Mague, J. T. (2018). Acta Cryst. E74, 1857–1861. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Doménech, A., Doménech-Carbó, M. T., Sánchez del Río, M., Vázquez de Agredos Pascual, M. L. & Lima, E. (2009). New J. Chem. 33, 2371–2379. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E. Jr, Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16, Revision A. 03. Gaussian, Inc., Wallingford CT. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gürsoy, A. & Karalí, N. (2003). Eur. J. Med. Chem. 38, 633–643. Web of Science PubMed Google Scholar
Jarrahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720–1730. Web of Science CrossRef PubMed CAS Google Scholar
Kassab, S., Hegazy, G., Eid, N., Amin, K. & El-Gendy, A. (2010). Nucleosides Nucleotides Nucleic Acids, 29, 72–80. Web of Science CrossRef CAS PubMed Google Scholar
Kekulé, A. (1869). Ber. Dtsch. Chem. Ges. 2, 748–749. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Mamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o1410. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mamari, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o1411. Web of Science CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200–206. CrossRef CAS Web of Science Google Scholar
Mironova, E. V., Bogdanov, A. V., Krivolapov, D. B., Musin, L. I., Litvinov, I. A. & Mironov, V. F. (2015). J. Mol. Struct. 1079, 87–93. Web of Science CSD CrossRef CAS Google Scholar
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T. & Hutchison, G. R. (2011). J. Cheminform, 3, 33. Web of Science PubMed Google Scholar
Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014b). Acta Cryst. E70, o361–o362. CSD CrossRef IUCr Journals Google Scholar
Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801. CSD CrossRef IUCr Journals Google Scholar
Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016a). IUCrData, 1, x160593. Google Scholar
Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016b). IUCrData, 1, x160609. Google Scholar
Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, A., Essassi, E. M., Capet, F. & Zouihri, H. (2016c). IUCrData, 1, x160542. Google Scholar
Qachchachi, F.-Z., Ouazzani Chahdi, F., Misbahi, H., Bodensteiner, M. & El Ammari, L. (2014a). Acta Cryst. E70, o229. CSD CrossRef IUCr Journals Google Scholar
Rayni, I., El Bakri, Y., Lai, C.-H., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2019). Acta Cryst. E75, 21–25. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. J. (2001). J. Braz. Chem. Soc. 12, 273–324. Web of Science CrossRef Google Scholar
Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220. CrossRef CAS Web of Science Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Sridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149–1152. Web of Science CrossRef PubMed CAS Google Scholar
Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129. Web of Science CrossRef PubMed CAS Google Scholar
Trost, B. & Brennan, M. (2009). Synthesis, pp. 3003–3025. Web of Science CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Weigend, F. & Ahlrichs, R. (2005). Phys. Chem. Chem. Phys. 7, 3297–3305. Web of Science CrossRef PubMed CAS Google Scholar
Žari, S., Metsala, A., Kudrjashova, M., Kaabel, S., Järving, I. & Kanger, T. (2015). Synthesis, 47, 875–886. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.