research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of a new family of hybrid perovskites: C5H14N2·ABr3·0.5H2O (A = K, Rb, Cs)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bDepartment of Chemistry, University of St Andrews, KY16 9ST, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by A. Van der Lee, Université de Montpellier II, France (Received 17 July 2019; accepted 19 July 2019; online 26 July 2019)

The syntheses and crystal structures of three hybrid perovskites, viz. poly[1-methyl­piperizine-1,4-diium [tri-μ-bromido-potassium] hemihydrate], {(C5H14N2)[KBr3]·0.5H2O}n, (I), poly[1-methyl­piperizine-1,4-diium [tri-μ-bromido-rubidium] hemihydrate], {(C5H14N2)[RbBr3]·0.5H2O}n, (II), and poly[1-methyl­piperizine-1,4-diium [tri-μ-bromido-caesium] hemihydrate], {(C5H14N2)[CsBr3]·0.5H2O}n, (III), are described. These isostructural (space group Amm2) phases contain a three-dimensional, corner-sharing network of distorted ABr6 octa­hedra (A = K, Rb, Cs) with the same topology as the classical perovskite structure. The doubly protonated C5H14N22+ cations occupy inter­stices bounded by eight octa­hedra and the water mol­ecules lie in square sites bounded by four octa­hedra. N—H⋯Br, N—H⋯(Br,Br), N—H⋯O and O—H⋯Br hydrogen bonds consolidate the structures.

1. Chemical context

Oxide perovskites of generic formula ABO3, where A and B are metal ions with a combined charge of +6, are probably the most-studied family of inorganic phases on account of their numerous physical properties and structural variety (Tilley, 2016[Tilley, R. J. D. (2016). Perovskites: Structure-Property Relationships. New York: Wiley.]). The aristotype (highest-possible symmetry) (Megaw, 1973[Megaw, H. D. (1973). Crystal Structures: a Working Approach. Philadelphia: Saunders.]) for this classic structure type is a three-dimensional network (space group Pm[\overline{3}]m) of undistorted, vertex-sharing, BO6 octa­hedra encapsulating the A cations in 12-coordinate dodeca­hedral cavities bounded by eight octa­hedra but lower symmetry (`hettotype') structures are very common, which can be systematically described in terms of tilting schemes of the octa­hedra (Woodward, 1997[Woodward, P. M. (1997). Acta Cryst. B53, 32-43.]).

`Hybrid' RMX3 perovskites containing both inorganic and organic (mol­ecular) components have been studied intensively in the last few years due to their remarkable photo-voltaic and other optical properties (Xu et al., 2019[Xu, W.-J., Kopyl, S., Kholkin, A. & Rocha, J. (2019). Coord. Chem. Rev. 387, 398-414.]; Stylianakis et al., 2019[Stylianakis, M. M., Maksuov, T., Panagiotopoulos, A., Kakavelakis, G. & Petridis, K. (2019). Materials, 12, article 859 (28 pages).]; Zuo et al., 2019[Zuo, T. T., He, X. X., Hu, P. & Jiang, H. (2019). Chemnanomat, 5, 278-289.]). The R+ or R2+ organic cation replaces the metallic A cation in an oxide perovskite and the MX3 (X = halide) octa­hedral network replaces the BO3 component of an oxide perovskite. Many of these studies have focused on lead halides [there are over 1400 papers on CH3NH3PbX3 (X = Br, I) alone as of July 2019] and tin halides as the inorganic component of the structure (Stoumpos et al., 2016[Stoumpos, C. C., Cao, D. H., Clark, D. J., Young, J., Rondinelli, J. M., Jang, J. I., Hupp, J. T. & Kanatzidis, M. G. (2016). Chem. Mater. 28, 2852-2867.]) but other compositions are possible: several years ago, we described a family of alkali-metal–chloride perovskites templated by C4H12N22+ piperizinium (or piperazin-1,4-diium) or C6H14N22+ `dabconium' (or 1,4-diazo­niabi­cyclo­[2.2.2]octa­ne) cations (Paton & Harrison, 2010[Paton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7684-7687.]). Notable features of these structures include the `inverse' charges of the cations (R2+ > M+) compared to oxide perovskites, the inclusion of water mol­ecules of hydration in the C4H12N2·ACl3·H2O (A = K, Rb, Cs) series and a novel chiral perovskite analogue (space group P3221) for C6H14N2·RbCl3. This family has recently been extended by a number of phases (see Database survey) including C6H14N2·RbBr3 and C7H16N2·RbI3 (C7H16N22+ = 1-methyl-1,4-di­aza­bicyclo­[2.2.2]octane-1,4-diium) (Zhang et al., 2017[Zhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897-10902.]), C4H12N2·RbBr3 (C4H12N22+ = 3-ammonio­pyrrolidinium) (Pan et al., 2017[Pan, Q., Liu, Z. B., Tang, Y. Y., Li, P. F., Ma, R. W., Wei, R. Y., Zhang, Y., You, Y. M., Ye, H. Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 3954-3957.]) and C4H12N2·NaI3 (Chen et al., 2018[Chen, X.-G., Gao, J.-X., Hua, X.-N. & Liao, W.-Q. (2018). Acta Cryst. C74, 728-733.]), some of which have significant physical properties such as ferroelectricity.

[Scheme 1]

In this paper we describe the syntheses and structures of a new family of isostructural hybrid perovskite hemihydrates of formula C5H14N2·ABr3·0.5H2O (C5H14N22+ = 1-methyl piperizinium cation) where A = K (I)[link], Rb (II)[link] and Cs (III)[link].

2. Structural commentary

Compounds (I)[link], (II)[link] and (III)[link] are isostructural as indicated by their ortho­rhom­bic unit cells, showing the expected trend of volume increase as a result of the increasing ionic radius (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) of the alkali-metal cation on going from potassium (r = 1.52) to rubidium (r = 1.66) to caesium (r = 1.81 Å). This description will focus on the structure of (I)[link] and note significant differences for (II)[link] and (III)[link] where applicable.

The asymmetric unit of (I)[link] (Fig. 1[link]) contains two methyl­ene groups (C1 and C2), an N1H2+ grouping, an N2H+ moiety and the carbon atom (C3) of a methyl group. N1, N2 and C3 lie on a (010) crystallographic mirror plane with y = ½ for the asymmetric atoms. The complete C5H14N22+ cation is generated by the mirror to result in a typical (Dennington & Weller, 2018[Dennington, A. J. & Weller, M. T. (2018). Dalton Trans. 47, 3469-3484.]) chair conformation for this species with N1 and N2 deviating from the C1/C2/C1i/C2i [symmetry code: (i) x, 1 – y, z] plane by −0.623 (7) and 0.708 (6) Å, respectively. The pendant C3 methyl group adopts an equatorial orientation with respect to the ring. A water mol­ecule with the O atom lying on the (½, ½, z) special position with mm2 symmetry (Wyckoff site 2a) is also present.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] expanded to show the complete C5H14N22+ cation, the complete potassium coordination polyhedra and the water mol­ecule (50% displacement ellipsoids). Symmetry codes: (i) x, 1 − y, z; (ii) 2 − x, [{3\over 2}] − y, [{1\over 2}] + z; (iii) x, y − [{1\over 2}], [{1\over 2}] + z; (iv) 2 − x, 1 − y, z; (v) 1 − x, 1 − y, z; (vi) 1 − x, [{3\over 2}] − y, [{1\over 2}] + z; (vii) x, y − [{1\over 2}], [{1\over 2}] + z.

The inorganic component of the structure consists of two potassium ions, K1 (site symmetry mm2; Wyckoff site 2b) and K2 (mm2; 2a) and three bromide ions: Br1 [m(100); 4e], Br2 [m(100); 4e] and Br3 [m(010); 4c], which gives an overall inorganic stoichiometry of KBr3. Crystal symmetry constructs Br6 octa­hedra around each potassium ion and the mean K1—Br and K2—Br separations are 3.4770 and 3.3825 Å, respect­ively (Table 1[link]); equivalent data for (II)[link] (Table 2[link]) are Rb1—Br = 3.4906 and Rb2—Br = 3.4194 Å; equivalent data for (III)[link] (Table 3[link]) are Cs1—Br = 3.5432 and Cs2—Br = 3.4780 Å. These data may be compared with the shortest K—Br and Rb—Br separations of 3.299 and 3.425 Å, respectively in the rocksalt-type KBr and RbBr structures and the Cs—Br separation of 3.716 Å in CsBr (eight-coordinate CsCl structure).

Table 1
Selected geometric parameters (Å, °) for (I)[link]

K1—Br1i 3.4184 (13) K2—Br2 3.4000 (16)
K1—Br1 3.5261 (18) K2—Br2ii 3.4179 (15)
K1—Br3 3.4865 (10) K2—Br3 3.3297 (10)
       
K1iii—Br1—K1 157.98 (5) K2—Br3—K1 179.19 (5)
K2—Br2—K2iii 177.85 (5)    
Symmetry codes: (i) [-x+2, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Selected geometric parameters (Å, °) for (II)[link]

Rb1—Br1i 3.4639 (8) Rb2—Br2 3.4326 (9)
Rb1—Br1 3.5323 (10) Rb2—Br2ii 3.4336 (9)
Rb1—Br3 3.4756 (9) Rb2—Br3 3.3919 (9)
       
Rb1iii—Br1—Rb1 157.67 (2) Rb2—Br3—Rb1 178.12 (3)
Rb2—Br2—Rb2iii 176.93 (2)    
Symmetry codes: (i) [-x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 3
Selected geometric parameters (Å, °) for (III)[link]

Cs1—Br1i 3.5319 (9) Cs2—Br2 3.4923 (10)
Cs1—Br1 3.5873 (10) Cs2—Br2ii 3.4790 (9)
Cs1—Br3 3.5105 (11) Cs2—Br3 3.4627 (11)
       
Cs1iii—Br1—Cs1 156.07 (2) Cs2—Br3—Cs1 175.99 (3)
Cs2iii—Br2—Cs2 174.97 (3)    
Symmetry codes: (i) [-x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

The K1 octa­hedron in (I)[link] is considerably distorted with the smallest and largest cis Br—K—Br angles being 66.53 (4) and 110.57 (6)°, respectively and the trans angles spanning the range 157.98 (5)–160.13 (7)°. The K2 octa­hedron is more regular, with cis angles varying from 82.17 (3) to 97.55 (2)°. Two of the trans angles for K2 are close to 180° but the other is much smaller at 158.51 (7)°. The octa­hedral volume for the K1 octa­hedron is 53.2 Å3 and its angular variance (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]) is 125.5°2. The equivalent data for the K2 octa­hedron are 50.7 Å3 and 45.0°2, respectively. The corresponding polyhedra in (II)[link] and (III)[link] are similarly distorted, with respective octa­hedral volumes and angular variances as follows: Rb1 53.7 Å3, 129.7°2; Rb2 52.1 Å3, 56.6°2; Cs1 55.8 Å3, 145.2°2; Cs2 54.2 Å3, 84.7°2.

Bond-valence-sum (BVS) calculations using the `extrapolated' formalism of Brese & O'Keeffe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) give the following values in valence units: K1 0.66, K2 0.86, Rb1 0.88 Rb2 1.07, Cs1 1.21, Cs2 1.44 (expected value = 1.00 in all cases). These data suggest that K1 in (I)[link] is considerably underbonded, which is consistent with the long mean K1—Br separation in (I)[link] compared to the separation in KBr. Conversely, Cs2 in (III)[link] is substanti­ally overbonded and must be a `tight fit' in its octa­hedral site.

3. Supra­molecular features

The linkage of the KBr6 octa­hedra in (I)[link] in the x, y and z directions through their bromide-ion vertices leads to an infinite network of corner-sharing KBr6 octa­hedra akin to the network of BO6 octa­hedra in the classical ABO3 perovskite structure. Key features of the inorganic network are the K—Br—K bond angles (Table 1[link]), with Br1 substanti­ally bent from the nominal linear bond [K1—Br1—K1ii = 157.98 (5)°; symmetry code (ii) x, [{1\over 2}] + y, z − [{1\over 2}]], but Br2 and Br3 far less so. When the structure of (I)[link] is viewed down [011], alternating (100) layers of K1- and K2-centred octa­hedra are apparent (Fig. 2[link]). Within these (100) planes, the K1 atoms are linked by the Br1 ions and the K2 atoms are liked by the Br2 ions. Finally, Br3 provides the inter-layer linkages in the [100] direction.

[Figure 2]
Figure 2
Polyhedral plot of the extended structure of (I)[link] viewed down [011] with the K1Br6 octa­hedra coloured lilac and K2Br6 blue.

The 1-methyl­piperizinium cations occupy the central regions of the cages formed by eight KBr6 octa­hedra, obviously equivalent to the A cation site in a classical perovskite. The water mol­ecules lie at the centres of square sites bounded by four octa­hedra and stack in the [100] direction with alternating occupied and empty sites (see Fig. 3[link] and the Database survey section). Hydrogen bonding involving the encapsulated species is an important feature of the structure of (I)[link]: the N1H2+ group forms one N—H⋯Br3 link and one N—H⋯O link to the water mol­ecule (Table 4[link], Fig. 1[link]) whereas the methyl­ated N2H+ group forms a rather long (and presumably weak) bifurcated N—H⋯(Br1,Br1) link. As just noted, the water mol­ecule accepts an N—H⋯O hydrogen bond from the organic cation and forms a pair of symmetry-equivalent O—H⋯Br2 hydrogen bonds. It is notable that all the C-bound H atoms in (I)[link] are also potential hydrogen-bond donors to bromide ions based on the H⋯Br separations being significantly less than the van der Waals' separation of 3.05 Å for these atoms. So far as the bromide ions are concerned, Br1 accepts one classical and three non-classical hydrogen bonds, Br2 accepts one classical and one non-classical and Br3 accepts one classical and two non-classical. The hydrogen-bonding schemes for (II)[link] (Table 5[link]) and (III)[link] (Table 6[link]) are essentially the same as that for (I)[link].

Table 4
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N⋯O1 0.91 1.89 2.799 (5) 172
N1—H1N⋯Br3 0.91 2.47 3.232 (5) 141
N2—H3N⋯Br1 1.00 2.67 3.438 (4) 133
N2—H3N⋯Br1iv 1.00 2.67 3.438 (4) 133
O1—H1O⋯Br2v 0.87 2.34 3.200 (3) 172
C1—H1A⋯Br2vi 0.99 2.88 3.614 (4) 131
C1—H1B⋯Br1iv 0.99 3.00 3.703 (4) 129
C2—H2B⋯Br1iv 0.99 3.05 3.517 (4) 111
C2—H2B⋯Br3v 0.99 2.82 3.525 (4) 129
C3—H3A⋯Br1vii 0.98 2.96 3.857 (4) 153
C3—H3B⋯Br3viii 0.98 2.75 3.615 (6) 148
Symmetry codes: (iv) -x+2, -y+1, z; (v) [x, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y+1, z; (vii) [-x+2, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (viii) x, y, z-1.

Table 5
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.91 1.91 2.816 (5) 173
N1—H2N⋯Br3 0.91 2.49 3.243 (4) 140
N2—H3N⋯Br1 1.00 2.68 3.448 (4) 134
N2—H3N⋯Br1iv 1.00 2.68 3.448 (4) 134
O1—H1O⋯Br2v 0.87 2.34 3.212 (3) 173
C1—H1A⋯Br1iv 0.99 3.01 3.717 (4) 129
C1—H1B⋯Br2vi 0.99 2.92 3.652 (4) 131
C2—H2B⋯Br1iv 0.99 3.06 3.531 (4) 111
C2—H2B⋯Br3v 0.99 2.85 3.560 (4) 130
C3—H3A⋯Br1vii 0.99 3.03 3.927 (4) 152
C3—H3B⋯Br3viii 0.99 2.79 3.653 (5) 146
Symmetry codes: (iv) -x, -y+1, z; (v) [x, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x+1, -y+1, z; (vii) [-x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) x, y, z+1.

Table 6
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N⋯O1 0.91 1.94 2.845 (7) 173
N1—H1N⋯Br3 0.91 2.51 3.259 (6) 140
N2—H3N⋯Br1 1.00 2.68 3.446 (5) 134
N2—H3N⋯Br1iv 1.00 2.68 3.446 (5) 134
O1—H1O⋯Br2v 0.89 2.36 3.242 (4) 175
C1—H1A⋯Br1iv 0.99 3.07 3.762 (5) 128
C1—H1B⋯Br2vi 0.99 2.99 3.712 (5) 131
C2—H2B⋯Br1iv 0.99 3.08 3.550 (5) 111
C2—H2B⋯Br3v 0.99 2.92 3.643 (4) 131
C3—H3B⋯Br3vii 1.00 2.86 3.726 (7) 145
Symmetry codes: (iv) -x, -y+1, z; (v) [x, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x+1, -y+1, z; (vii) x, y, z+1.
[Figure 3]
Figure 3
Comparison of the structures of (a) MEXMAG (redrawn from Chen et al., 2018[Chen, X.-G., Gao, J.-X., Hua, X.-N. & Liao, W.-Q. (2018). Acta Cryst. C74, 728-733.]), (b) (I)[link] and (c) GUYMIX (redrawn from Paton and Harrison, 2010[Paton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7684-7687.]). In MEXMAG, (I)[link] and GUYMIX, the two octa­hedral cages shown are stacked in the [001], [100] and [001] directions, respectively. Note the alternation of water mol­ecules and empty sites in (I)[link] with respect to the [100] direction whereas GUYMIX has a water mol­ecule in every square site in the [001] direction.

4. Database survey

The title compounds and their significant analogue structures with their space groups and CCDC refcodes (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) are listed in Table 7[link]. These compounds now represent a significant family of hybrid perovskites featuring several different cations – the protonated forms of piperazine, dabco, 1-methyl­piperazine, 3-amino­pyrrolidine and `methyl dabco' (1-methyl-1,4-di­aza­bicyclo­[2.2.2]octa­ne) – as well as different alkali metal cations and halide anions. The recently reported structure of MEXMAG (Chen et al., 2108) has added sodium to the list of cations that can form these structures. Some structures such as HEJGOV (Zhang et al., 2017[Zhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897-10902.]) show notable physical properties such as ferroelectricity, which is of course a classic characteristic of oxide perovskites.

Table 7
Summary of hybrid perovskite structures based on AX3 alkali-metal–halide octa­hedral networks

Code/refcode Formula Space group Reference
(I) C5H14N2·KBr3·0.5H2O Amm2 This work
(II) C5H14N2·RbBr3·0.5H2O Amm2 This work
(III) C5H14N2·CsBr3·0.5H2O Amm2 This work
GUYMIX C4H12N2·KCl3·H2O Pbcm Paton & Harrison (2010[Paton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7684-7687.])
GUYMOD C4H12N2·RbCl3·H2O Pbcm Paton & Harrison (2010[Paton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7684-7687.])
GUYMUJ C4H12N2·CsCl3·H2O Pbcm Paton & Harrison (2010[Paton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7684-7687.])
MOMLEI C4H12N2·KBr3·H2O Pbcm Harrison (2019a[Harrison, W. T. A. (2019a). Private communication (refcode MOMLEI). CCDC, Cambridge, England.])
MOMSEP C4H12N2·RbBr3·H2O Pbcm Harrison (2019b[Harrison, W. T. A. (2019b). Private communication (refcode MOMSEP). CCDC, Cambridge, England.])
FIZYIZ C6H14N2·KBr3 P3121 Hongzhang (2019[Hongzhang (2019). Private communication (refcode FIZYIZ). CCDC, Cambridge, England.])
GUYNEU C6H14N2·RbCl3 P3221 Paton & Harrison (2010[Paton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7684-7687.])
HEJGUB C6H14N2·RbBr3 P3221 Zhang et al. (2017[Zhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897-10902.])
GUYNEU02a C6H14N2·RbCl3 Pm[\overline{3}]m Zhang et al. (2017[Zhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897-10902.])
HEJGUB01a C6H14N2·RbBr3 Pm[\overline{3}]m Zhang et al. (2017[Zhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897-10902.])
GUYNIY C6H14N2·CsCl3 C2/c Paton & Harrison (2010[Paton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7684-7687.])
HEJGOV C7H16N2·RbI3 P432 Zhang et al. (2017[Zhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897-10902.])
HEJGOV01 C7H16N2·RbI3 R3 Zhang et al. (2017[Zhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897-10902.])
GEFLOV C4H12N2·RbBr3 Ia Pan et al. (2017[Pan, Q., Liu, Z. B., Tang, Y. Y., Li, P. F., Ma, R. W., Wei, R. Y., Zhang, Y., You, Y. M., Ye, H. Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 3954-3957.])
GEFLOV01a C4H12N2·RbBr3 Pm[\overline{3}]m Pan et al. (2017[Pan, Q., Liu, Z. B., Tang, Y. Y., Li, P. F., Ma, R. W., Wei, R. Y., Zhang, Y., You, Y. M., Ye, H. Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 3954-3957.])
MEXMAG C4H12N2·NaI3 C2/c Chen et al. (2018[Chen, X.-G., Gao, J.-X., Hua, X.-N. & Liao, W.-Q. (2018). Acta Cryst. C74, 728-733.])
Redetermined structures not included. Note: (a) high-temperature polymorph.

An inter­esting structural comparison may be made between MEXMAG (an `anhydrous' RAX3 hybrid perovskite), (I)[link] (an RAX3·0.5H2O hybrid perovskite hemihydrate) and GUYMIX (an RAX3·H2O hybrid perovskite hydrate) (Fig. 3[link]). It may be seen that the pendant methyl groups of the C5H14N22+ cations in (I)[link] both point towards an empty square site and their steric bulk presumably prevents water mol­ecules from occupying that site. It is notable that the empty square site in (I)[link] is associated with the reduced K1—Br1—K1 bond angles as noted above. Conversely, in MEXMAG, the iodide ions are perhaps too large to allow a water mol­ecule to fit between them and the piperazinium cation is forced to form long N—H⋯I hydrogen bonds (H⋯I = 3.14 Å) rather than N—H⋯Ow (w = water) links.

5. Synthesis and crystallization

To prepare (I)[link], 0.3673 g (3.67 mmol) of 1-methyl piperazine and 0.4068 g (3.42 mmol) of KBr were added to 15.0 ml of 1.0 M aqueous HBr solution to result in a clear solution, which was left in a Petri dish to evaporate. After two or three days, colourless blocks of (I)[link] were recovered, rinsed with acetone and dried in air. Compound (II)[link] was prepared in the same way, with 0.4042 g (2.44 mmol) of RbBr replacing the KBr in (I)[link] and (III)[link] was prepared by using 0.4479 g (2.10 mmol) of CsBr in place of the KBr.

ATR–FTIR (cm−1) for (I)[link] (selected): 3215m (NH2 asymmetric stretch), 2940s (NH2 symmetric stretch), 2692s (sp3 C—H stretch), 1585s (NH2 bend) (assignments from Heacock & Marion, 1956[Heacock, R. A. & Marion, L. (1956). Can. J. Chem. 34, 1782-1795.]); for (II)[link] 3217s, 2998s, 2681s, 1548s; for (III)[link] 3221m, 2995s, 2681s, 1548s. The IR spectra of (I)[link], (II)[link] and (III)[link] are available in the supporting information.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 8[link]. For each structure, the N- and C-bond hydrogen atoms were located geometrically (C—H = 0.98–0.99, N—H = 0.91–1.00Å) and refined as riding atoms. The water H atom was located in a difference map and refined as riding in its as-found relative position. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C) was applied in all cases.

Table 8
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula (C5H14N2)[KBr3]·0.5H2O (C5H14N2)[RbBr3]·0.5H2O (C5H14N2)[CsBr3]·0.5H2O
Mr 390.02 436.39 483.83
Crystal system, space group Orthorhombic, Amm2 Orthorhombic, Amm2 Orthorhombic, Amm2
Temperature (K) 93 93 93
a, b, c (Å) 13.411 (3), 9.488 (2), 9.790 (2) 13.477 (3), 9.5617 (19), 9.850 (2) 13.610 (3), 9.7201 (19), 9.977 (2)
V3) 1245.7 (5) 1269.3 (5) 1319.9 (5)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 10.01 13.31 11.85
Crystal size (mm) 0.10 × 0.08 × 0.08 0.15 × 0.10 × 0.10 0.10 × 0.10 × 0.10
 
Data collection
Diffractometer Rigaku Pilatus 200K CCD Rigaku Pilatus 200K CCD Rigaku Pilatus 200K CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.406, 1.000 0.347, 1.000 0.463, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3890, 1235, 1208 6851, 1264, 1244 3718, 1312, 1293
Rint 0.033 0.037 0.022
(sin θ/λ)max−1) 0.602 0.602 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.031, 0.90 0.013, 0.028, 1.01 0.013, 0.029, 0.94
No. of reflections 1235 1264 1312
No. of parameters 68 69 68
No. of restraints 1 1 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.36 0.27, −0.35 0.58, −0.70
Absolute structure Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.001 (11) −0.001 (13) 0.016 (7)
Computer programs: CrysAlis PRO (Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXS7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis PRO (Rigaku, 2017); cell refinement: CrysAlis PRO (Rigaku, 2017); data reduction: CrysAlis PRO (Rigaku, 2017); program(s) used to solve structure: SHELXS7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[1-methylpiperizine-1,4-diium [tri-µ-bromido-potassium] hemihydrate] (I) top
Crystal data top
(C5H14N2)[KBr3]·0.5H2ODx = 2.080 Mg m3
Mr = 390.02Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Amm2Cell parameters from 2257 reflections
a = 13.411 (3) Åθ = 3.0–27.2°
b = 9.488 (2) ŵ = 10.01 mm1
c = 9.790 (2) ÅT = 93 K
V = 1245.7 (5) Å3Prism, colourless
Z = 40.10 × 0.08 × 0.08 mm
F(000) = 748
Data collection top
Rigaku Pilatus 200K CCD
diffractometer
1208 reflections with I > 2σ(I)
ω scansRint = 0.033
Absorption correction: multi-scan
(CrysalisPro; Rigaku, 2017)
θmax = 25.3°, θmin = 3.0°
Tmin = 0.406, Tmax = 1.000h = 1616
3890 measured reflectionsk = 1111
1235 independent reflectionsl = 1111
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max < 0.001
wR(F2) = 0.031Δρmax = 0.41 e Å3
S = 0.90Δρmin = 0.36 e Å3
1235 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
68 parametersExtinction coefficient: 0.00195 (16)
1 restraintAbsolute structure: Parsons et al. (2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (11)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K11.00000.50000.9058 (2)0.0145 (4)
K20.50000.50001.0306 (2)0.0120 (3)
Br11.00000.70384 (5)0.60463 (6)0.01165 (14)
Br20.50000.74449 (6)0.77675 (6)0.01087 (14)
Br30.74393 (4)0.50000.96724 (6)0.01101 (14)
C10.7289 (3)0.3693 (4)0.6163 (5)0.0123 (9)
H1A0.68610.28590.63210.015*
H1B0.78780.36140.67670.015*
C20.7626 (3)0.3706 (4)0.4700 (5)0.0107 (8)
H2A0.70380.36960.40890.013*
H2B0.80270.28510.45100.013*
C30.8629 (4)0.50000.2985 (6)0.0145 (12)
H3A0.90280.58510.28310.022*
H3B0.80670.50000.23460.022*
N10.6720 (3)0.50000.6522 (5)0.0098 (10)
H1N0.65860.50000.74330.012*
H2N0.61280.50000.60670.012*
N20.8244 (3)0.50000.4421 (5)0.0091 (10)
H3N0.88270.50000.50590.011*
O10.50000.50000.4902 (5)0.0088 (12)
H1O0.50000.42510.43920.011*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0132 (9)0.0147 (8)0.0156 (10)0.0000.0000.000
K20.0105 (8)0.0138 (8)0.0117 (9)0.0000.0000.000
Br10.0086 (3)0.0111 (3)0.0152 (3)0.0000.0000.0018 (2)
Br20.0102 (3)0.0114 (3)0.0110 (3)0.0000.0000.0015 (2)
Br30.0119 (3)0.0102 (3)0.0110 (3)0.0000.0026 (2)0.000
C10.0105 (17)0.0092 (18)0.017 (2)0.0022 (14)0.0017 (18)0.0032 (19)
C20.0098 (18)0.0087 (17)0.014 (2)0.0005 (14)0.0021 (19)0.000 (2)
C30.017 (3)0.019 (3)0.008 (3)0.0000.005 (3)0.000
N10.007 (2)0.014 (2)0.008 (3)0.0000.0026 (19)0.000
N20.009 (2)0.009 (2)0.010 (3)0.0000.0003 (19)0.000
O10.012 (2)0.008 (2)0.007 (3)0.0000.0000.000
Geometric parameters (Å, º) top
K1—Br1i3.4184 (13)C1—C21.502 (6)
K1—Br1ii3.4184 (13)C1—H1A0.9900
K1—Br1iii3.5261 (18)C1—H1B0.9900
K1—Br13.5261 (18)C2—N21.506 (4)
K1—Br33.4865 (10)C2—H2A0.9900
K1—Br3iii3.4865 (10)C2—H2B0.9900
K2—Br2iv3.4000 (16)C3—N21.497 (7)
K2—Br23.4000 (16)C3—H3A0.9800
K2—Br2v3.4179 (15)C3—H3B0.9799
K2—Br2ii3.4179 (15)N1—C1vii1.498 (4)
K2—Br3iv3.3297 (10)N1—H1N0.9100
K2—Br33.3297 (10)N1—H2N0.9100
Br1—K1vi3.4183 (13)N2—C2vii1.506 (4)
Br2—K2vi3.4179 (15)N2—H3N1.0000
C1—N11.498 (4)O1—H1O0.8686
Br1i—K1—Br1ii110.57 (6)K1vi—Br1—K1157.98 (5)
Br1i—K1—Br384.36 (2)K2—Br2—K2vi177.85 (5)
Br1ii—K1—Br384.36 (2)K2—Br3—K1179.19 (5)
Br1i—K1—Br3iii84.36 (2)N1—C1—C2111.8 (3)
Br1ii—K1—Br3iii84.36 (2)N1—C1—H1A109.3
Br3—K1—Br3iii160.13 (7)C2—C1—H1A109.3
Br1i—K1—Br1iii157.98 (5)N1—C1—H1B109.3
Br1ii—K1—Br1iii91.449 (19)C2—C1—H1B109.3
Br3—K1—Br1iii98.30 (3)H1A—C1—H1B107.9
Br3iii—K1—Br1iii98.30 (3)C1—C2—N2110.2 (3)
Br1i—K1—Br191.449 (18)C1—C2—H2A109.6
Br1ii—K1—Br1157.98 (5)N2—C2—H2A109.6
Br3—K1—Br198.30 (3)C1—C2—H2B109.6
Br3iii—K1—Br198.30 (3)N2—C2—H2B109.6
Br1iii—K1—Br166.53 (4)H2A—C2—H2B108.1
Br3iv—K2—Br3158.51 (7)N2—C3—H3A109.4
Br3iv—K2—Br2iv82.17 (3)N2—C3—H3B109.5
Br3—K2—Br2iv82.17 (3)H3A—C3—H3B108.7
Br3iv—K2—Br282.17 (3)C1—N1—C1vii111.7 (4)
Br3—K2—Br282.17 (3)C1—N1—H1N109.3
Br2iv—K2—Br286.05 (5)C1vii—N1—H1N109.3
Br3iv—K2—Br2v97.55 (2)C1—N1—H2N109.3
Br3—K2—Br2v97.55 (2)C1vii—N1—H2N109.3
Br2iv—K2—Br2v177.85 (5)H1N—N1—H2N107.9
Br2—K2—Br2v91.800 (17)C3—N2—C2vii111.1 (3)
Br3iv—K2—Br2ii97.55 (2)C3—N2—C2111.1 (3)
Br3—K2—Br2ii97.55 (2)C2vii—N2—C2109.2 (4)
Br2iv—K2—Br2ii91.800 (17)C3—N2—H3N108.4
Br2—K2—Br2ii177.85 (5)C2vii—N2—H3N108.4
Br2v—K2—Br2ii90.35 (5)C2—N2—H3N108.4
N1—C1—C2—N256.6 (4)C1—C2—N2—C3177.3 (3)
C2—C1—N1—C1vii52.9 (5)C1—C2—N2—C2vii59.8 (5)
Symmetry codes: (i) x+2, y+3/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+2, y+1, z; (iv) x+1, y+1, z; (v) x+1, y+3/2, z+1/2; (vi) x, y+1/2, z1/2; (vii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N···O10.911.892.799 (5)172
N1—H1N···Br30.912.473.232 (5)141
N2—H3N···Br11.002.673.438 (4)133
N2—H3N···Br1iii1.002.673.438 (4)133
O1—H1O···Br2viii0.872.343.200 (3)172
C1—H1A···Br2iv0.992.883.614 (4)131
C1—H1B···Br1iii0.993.003.703 (4)129
C2—H2B···Br1iii0.993.053.517 (4)111
C2—H2B···Br3viii0.992.823.525 (4)129
C3—H3A···Br1ix0.982.963.857 (4)153
C3—H3B···Br3x0.982.753.615 (6)148
Symmetry codes: (iii) x+2, y+1, z; (iv) x+1, y+1, z; (viii) x, y1/2, z1/2; (ix) x+2, y+3/2, z1/2; (x) x, y, z1.
Poly[1-methylpiperizine-1,4-diium [tri-µ-bromido-rubidium] hemihydrate] (II) top
Crystal data top
(C5H14N2)[RbBr3]·0.5H2ODx = 2.284 Mg m3
Mr = 436.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Amm2Cell parameters from 2309 reflections
a = 13.477 (3) Åθ = 3.0–27.4°
b = 9.5617 (19) ŵ = 13.31 mm1
c = 9.850 (2) ÅT = 93 K
V = 1269.3 (5) Å3Prism, colourless
Z = 40.15 × 0.10 × 0.10 mm
F(000) = 820
Data collection top
Rigaku Pilatus 200K CCD
diffractometer
1244 reflections with I > 2σ(I)
ω scansRint = 0.037
Absorption correction: multi-scan
(CrysalisPro; Rigaku, 2017)
θmax = 25.3°, θmin = 3.0°
Tmin = 0.347, Tmax = 1.000h = 1616
6851 measured reflectionsk = 1111
1264 independent reflectionsl = 1111
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0076P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.013(Δ/σ)max < 0.001
wR(F2) = 0.028Δρmax = 0.27 e Å3
S = 1.01Δρmin = 0.35 e Å3
1264 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
69 parametersExtinction coefficient: 0.00327 (14)
1 restraintAbsolute structure: Parsons et al. (2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (13)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.00000.50000.09734 (7)0.01032 (18)
Rb20.50000.50000.03670 (8)0.00968 (16)
Br10.00000.29829 (5)0.39777 (6)0.01090 (14)
Br20.50000.25694 (6)0.21977 (6)0.01073 (13)
Br30.25385 (4)0.50000.03510 (6)0.01017 (13)
C10.2708 (3)0.6293 (4)0.3838 (4)0.0124 (8)
H1A0.21180.63660.32430.015*
H1B0.31300.71230.36740.015*
C20.2378 (3)0.6284 (4)0.5303 (5)0.0117 (8)
H2A0.29660.62930.59050.014*
H2B0.19800.71310.54950.014*
C30.1383 (4)0.50000.6996 (5)0.0149 (12)
H3A0.09850.41490.71500.022*
H3B0.19450.50000.76350.022*
N10.3274 (3)0.50000.3486 (5)0.0107 (10)
H1N0.38620.50000.39410.013*
H2N0.34100.50000.25810.013*
N20.1766 (3)0.50000.5584 (4)0.0087 (9)
H3N0.11870.50000.49500.010*
O10.50000.50000.5097 (5)0.0109 (12)
H1O0.50000.57490.56070.013*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0111 (4)0.0093 (4)0.0105 (4)0.0000.0000.000
Rb20.0114 (4)0.0091 (3)0.0086 (3)0.0000.0000.000
Br10.0122 (3)0.0083 (3)0.0122 (3)0.0000.0000.0006 (2)
Br20.0141 (3)0.0087 (3)0.0094 (3)0.0000.0000.0001 (2)
Br30.0112 (3)0.0092 (3)0.0101 (3)0.0000.0012 (2)0.000
C10.013 (2)0.0077 (19)0.017 (2)0.0003 (15)0.0003 (17)0.0023 (18)
C20.013 (2)0.0054 (18)0.017 (2)0.0009 (15)0.0016 (18)0.001 (2)
C30.019 (3)0.021 (3)0.005 (3)0.0000.004 (2)0.000
N10.011 (2)0.012 (2)0.009 (2)0.0000.0025 (19)0.000
N20.009 (2)0.010 (2)0.007 (2)0.0000.0010 (18)0.000
O10.016 (3)0.006 (2)0.011 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Rb1—Br1i3.4639 (8)C1—C21.510 (6)
Rb1—Br1ii3.4639 (8)C1—H1A0.9900
Rb1—Br1iii3.5323 (10)C1—H1B0.9900
Rb1—Br13.5323 (10)C2—N21.504 (4)
Rb1—Br3iii3.4756 (9)C2—H2A0.9900
Rb1—Br33.4756 (9)C2—H2B0.9900
Rb2—Br2iv3.4326 (9)C3—N21.484 (6)
Rb2—Br23.4326 (9)C3—H3A0.9868
Rb2—Br2v3.4336 (9)C3—H3B0.9852
Rb2—Br2ii3.4336 (9)N1—C1vii1.494 (4)
Rb2—Br33.3919 (9)N1—H1N0.9100
Rb2—Br3iv3.3920 (9)N1—H2N0.9100
Br1—Rb1vi3.4639 (8)N2—C2vii1.504 (4)
Br2—Rb2vi3.4336 (9)N2—H3N1.0000
C1—N11.494 (4)O1—H1O0.8748
Br1i—Rb1—Br1ii110.85 (3)Rb1vi—Br1—Rb1157.67 (2)
Br1i—Rb1—Br3iii84.255 (10)Rb2—Br2—Rb2vi176.93 (2)
Br1ii—Rb1—Br3iii84.255 (10)Rb2—Br3—Rb1178.12 (3)
Br1i—Rb1—Br384.255 (10)N1—C1—C2111.6 (3)
Br1ii—Rb1—Br384.255 (10)N1—C1—H1A109.3
Br3iii—Rb1—Br3159.68 (3)C2—C1—H1A109.3
Br1i—Rb1—Br1iii157.67 (2)N1—C1—H1B109.3
Br1ii—Rb1—Br1iii91.481 (16)C2—C1—H1B109.3
Br3iii—Rb1—Br1iii98.498 (12)H1A—C1—H1B108.0
Br3—Rb1—Br1iii98.498 (12)N2—C2—C1110.0 (3)
Br1i—Rb1—Br191.481 (15)N2—C2—H2A109.7
Br1ii—Rb1—Br1157.67 (2)C1—C2—H2A109.7
Br3iii—Rb1—Br198.498 (12)N2—C2—H2B109.7
Br3—Rb1—Br198.498 (12)C1—C2—H2B109.7
Br1iii—Rb1—Br166.19 (3)H2A—C2—H2B108.2
Br3—Rb2—Br3iv155.93 (3)N2—C3—H3A109.5
Br3—Rb2—Br2iv81.173 (14)N2—C3—H3B109.4
Br3iv—Rb2—Br2iv81.173 (13)H3A—C3—H3B108.6
Br3—Rb2—Br281.172 (13)C1—N1—C1vii111.7 (4)
Br3iv—Rb2—Br281.173 (14)C1—N1—H1N109.3
Br2iv—Rb2—Br285.22 (3)C1vii—N1—H1N109.3
Br3—Rb2—Br2v98.376 (11)C1—N1—H2N109.3
Br3iv—Rb2—Br2v98.376 (11)C1vii—N1—H2N109.3
Br2iv—Rb2—Br2v176.93 (2)H1N—N1—H2N107.9
Br2—Rb2—Br2v91.702 (16)C3—N2—C2111.3 (3)
Br3—Rb2—Br2ii98.376 (11)C3—N2—C2vii111.3 (3)
Br3iv—Rb2—Br2ii98.376 (11)C2—N2—C2vii109.4 (4)
Br2iv—Rb2—Br2ii91.702 (16)C3—N2—H3N108.3
Br2—Rb2—Br2ii176.93 (2)C2—N2—H3N108.3
Br2v—Rb2—Br2ii91.37 (3)C2vii—N2—H3N108.3
N1—C1—C2—N256.8 (4)C1—C2—N2—C3176.8 (3)
C2—C1—N1—C1vii53.6 (5)C1—C2—N2—C2vii59.8 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+1, y+1/2, z1/2; (vi) x, y1/2, z+1/2; (vii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.911.912.816 (5)173
N1—H2N···Br30.912.493.243 (4)140
N2—H3N···Br11.002.683.448 (4)134
N2—H3N···Br1iii1.002.683.448 (4)134
O1—H1O···Br2viii0.872.343.212 (3)173
C1—H1A···Br1iii0.993.013.717 (4)129
C1—H1B···Br2iv0.992.923.652 (4)131
C2—H2B···Br1iii0.993.063.531 (4)111
C2—H2B···Br3viii0.992.853.560 (4)130
C3—H3A···Br1ix0.993.033.927 (4)152
C3—H3B···Br3x0.992.793.653 (5)146
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z; (viii) x, y+1/2, z+1/2; (ix) x, y+1/2, z+1/2; (x) x, y, z+1.
Poly[1-methylpiperizine-1,4-diium [tri-µ-bromido-caesium] hemihydrate] (III) top
Crystal data top
(C5H14N2)[CsBr3]·0.5H2ODx = 2.435 Mg m3
Mr = 483.83Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Amm2Cell parameters from 2407 reflections
a = 13.610 (3) Åθ = 2.9–27.5°
b = 9.7201 (19) ŵ = 11.85 mm1
c = 9.977 (2) ÅT = 93 K
V = 1319.9 (5) Å3Block, colourless
Z = 40.10 × 0.10 × 0.10 mm
F(000) = 892
Data collection top
Rigaku Pilatus 200K CCD
diffractometer
1293 reflections with I > 2σ(I)
ω scansRint = 0.022
Absorption correction: multi-scan
(CrysalisPro; Rigaku, 2017)
θmax = 25.4°, θmin = 2.9°
Tmin = 0.463, Tmax = 1.000h = 1615
3718 measured reflectionsk = 1111
1312 independent reflectionsl = 1112
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0012P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.013(Δ/σ)max < 0.001
wR(F2) = 0.029Δρmax = 0.57 e Å3
S = 0.94Δρmin = 0.70 e Å3
1312 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
68 parametersExtinction coefficient: 0.00081 (7)
1 restraintAbsolute structure: Parsons et al. (2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (7)
Hydrogen site location: mixed
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.00000.50000.10292 (5)0.01104 (16)
Cs20.50000.50000.04771 (5)0.01285 (16)
Br10.00000.30234 (7)0.40657 (7)0.01341 (18)
Br20.50000.26080 (7)0.21347 (7)0.01513 (17)
Br30.25365 (6)0.50000.03902 (7)0.01354 (16)
C10.2714 (4)0.6276 (5)0.3848 (5)0.0140 (11)
H1A0.21280.63480.32630.017*
H1B0.31320.70930.36860.017*
C20.2391 (4)0.6259 (4)0.5301 (6)0.0138 (10)
H2A0.29770.62630.58900.017*
H2B0.20010.70950.54970.017*
C30.1412 (5)0.50000.6985 (7)0.0189 (16)
H3A0.10140.41490.71400.028*
H3B0.19740.50000.76250.028*
N10.3276 (4)0.50000.3497 (6)0.0125 (13)
H1N0.34080.50000.26030.015*
H2N0.38590.50000.39440.015*
N20.1782 (4)0.50000.5586 (6)0.0112 (12)
H3N0.12050.50000.49650.013*
O10.50000.50000.5110 (6)0.0149 (16)
H1O0.50000.57490.56200.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0133 (4)0.0096 (3)0.0102 (3)0.0000.0000.000
Cs20.0146 (3)0.0134 (3)0.0105 (3)0.0000.0000.000
Br10.0155 (4)0.0110 (3)0.0138 (3)0.0000.0000.0029 (3)
Br20.0193 (4)0.0128 (3)0.0133 (3)0.0000.0000.0001 (3)
Br30.0143 (3)0.0140 (3)0.0123 (4)0.0000.0017 (3)0.000
C10.015 (3)0.009 (2)0.018 (3)0.001 (2)0.001 (2)0.003 (2)
C20.017 (3)0.009 (2)0.016 (2)0.002 (2)0.000 (2)0.001 (3)
C30.021 (4)0.026 (4)0.009 (3)0.0000.003 (4)0.000
N10.010 (3)0.016 (3)0.012 (3)0.0000.001 (2)0.000
N20.012 (3)0.012 (3)0.010 (3)0.0000.001 (2)0.000
O10.022 (4)0.007 (3)0.016 (4)0.0000.0000.000
Geometric parameters (Å, º) top
Cs1—Br1i3.5319 (9)C1—C21.515 (7)
Cs1—Br1ii3.5319 (9)C1—H1A0.9900
Cs1—Br1iii3.5873 (10)C1—H1B0.9900
Cs1—Br13.5873 (10)C2—N21.505 (6)
Cs1—Br3iii3.5105 (11)C2—H2A0.9900
Cs1—Br33.5105 (11)C2—H2B0.9900
Cs2—Br2iv3.4923 (10)C3—N21.484 (9)
Cs2—Br23.4923 (10)C3—H3A1.0011
Cs2—Br2v3.4790 (9)C3—H3B0.9961
Cs2—Br2ii3.4790 (9)N1—C1vii1.499 (6)
Cs2—Br33.4627 (11)N1—H1N0.9100
Cs2—Br3iv3.4627 (11)N1—H2N0.9100
Br1—Cs1vi3.5319 (9)N2—C2vii1.505 (6)
Br2—Cs2vi3.4790 (9)N2—H3N1.0000
C1—N11.499 (6)O1—H1O0.8883
Br3iii—Cs1—Br3159.07 (3)Cs1vi—Br1—Cs1156.07 (2)
Br3iii—Cs1—Br1i84.218 (9)Cs2vi—Br2—Cs2174.97 (3)
Br3—Cs1—Br1i84.219 (9)Cs2—Br3—Cs1175.99 (3)
Br3iii—Cs1—Br1ii84.218 (9)N1—C1—C2111.3 (4)
Br3—Cs1—Br1ii84.219 (9)N1—C1—H1A109.4
Br1i—Cs1—Br1ii112.63 (3)C2—C1—H1A109.4
Br3iii—Cs1—Br1iii98.823 (12)N1—C1—H1B109.4
Br3—Cs1—Br1iii98.822 (12)C2—C1—H1B109.4
Br1i—Cs1—Br1iii156.07 (2)H1A—C1—H1B108.0
Br1ii—Cs1—Br1iii91.305 (15)N2—C2—C1110.4 (4)
Br3iii—Cs1—Br198.823 (12)N2—C2—H2A109.6
Br3—Cs1—Br198.822 (13)C1—C2—H2A109.6
Br1i—Cs1—Br191.305 (15)N2—C2—H2B109.6
Br1ii—Cs1—Br1156.07 (2)C1—C2—H2B109.6
Br1iii—Cs1—Br164.76 (3)H2A—C2—H2B108.1
Br3—Cs2—Br3iv151.06 (3)N2—C3—H3A109.2
Br3—Cs2—Br2v99.854 (11)N2—C3—H3B110.0
Br3iv—Cs2—Br2v99.854 (11)H3A—C3—H3B108.5
Br3—Cs2—Br2ii99.854 (11)C1vii—N1—C1111.7 (5)
Br3iv—Cs2—Br2ii99.854 (11)C1vii—N1—H1N109.3
Br2v—Cs2—Br2ii93.55 (3)C1—N1—H1N109.3
Br3—Cs2—Br2iv79.254 (13)C1vii—N1—H2N109.3
Br3iv—Cs2—Br2iv79.255 (13)C1—N1—H2N109.3
Br2v—Cs2—Br2iv174.97 (3)H1N—N1—H2N107.9
Br2ii—Cs2—Br2iv91.485 (16)C3—N2—C2111.4 (4)
Br3—Cs2—Br279.254 (13)C3—N2—C2vii111.4 (4)
Br3iv—Cs2—Br279.255 (13)C2—N2—C2vii108.8 (5)
Br2v—Cs2—Br291.485 (16)C3—N2—H3N108.4
Br2ii—Cs2—Br2174.97 (3)C2—N2—H3N108.4
Br2iv—Cs2—Br283.48 (3)C2vii—N2—H3N108.4
N1—C1—C2—N257.1 (6)C1—C2—N2—C3176.9 (4)
C2—C1—N1—C1vii53.6 (7)C1—C2—N2—C2vii60.0 (7)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x+1, y+1/2, z1/2; (vi) x, y1/2, z+1/2; (vii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N···O10.911.942.845 (7)173
N1—H1N···Br30.912.513.259 (6)140
N2—H3N···Br11.002.683.446 (5)134
N2—H3N···Br1iii1.002.683.446 (5)134
O1—H1O···Br2viii0.892.363.242 (4)175
C1—H1A···Br1iii0.993.073.762 (5)128
C1—H1B···Br2iv0.992.993.712 (5)131
C2—H2B···Br1iii0.993.083.550 (5)111
C2—H2B···Br3viii0.992.923.643 (4)131
C3—H3B···Br3ix1.002.863.726 (7)145
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z; (viii) x, y+1/2, z+1/2; (ix) x, y, z+1.
Summary of hybrid perovskite structures based on AX3 alkali-metal–halide octahedral networks top
Code/refcodeFormulaSpace groupReference
(I)C5H14N2·KBr3·0.5H2OAmm2This work
(II)C5H14N2·RbBr3·0.5H2OAmm2This work
(III)C5H14N2·CsBr3·0.5H2OAmm2This work
GUYMIXC4H12N2·KCl3·H2OPbcmPaton & Harrison (2010)
GUYMODC4H12N2·RbCl3·H2OPbcmPaton & Harrison (2010)
GUYMUJC4H12N2·CsCl3·H2OPbcmPaton & Harrison (2010)
MOMLEIC4H12N2·KBr3·H2OPbcmHarrison (2019a)
MOMSEPC4H12N2·RbBr3·H2OPbcmHarrison (2019b)
FIZYIZC6H14N2·KBr3P3121Hongzhang (2019)
GUYNEUC6H14N2·RbCl3P3221Paton & Harrison (2010)
HEJGUBC6H14N2·RbBr3P3221Zhang et al. (2017)
GUYNEU02aC6H14N2·RbCl3Pm3mZhang et al. (2017)
HEJGUB01aC6H14N2·RbBr3Pm3mZhang et al. (2017)
GUYNIYC6H14N2·CsCl3C2/cPaton & Harrison (2010)
HEJGOVC7H16N2·RbI3P432Zhang et al. (2017)
HEJGOV01C7H16N2.RbI3R3Zhang et al. (2017)
GEFLOVC4H12N2·RbBr3IaPan et al. (2017)
GEFLOV01aC4H12N2.RbBr3Pm3mPan et al. (2017)
MEXMAGC4H12N2·NaI3C2/cChen et al. (2018)
Redetermined structures not included. Note: (a) high-temperature polymorph.
 

References

First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChen, X.-G., Gao, J.-X., Hua, X.-N. & Liao, W.-Q. (2018). Acta Cryst. C74, 728–733.  CSD CrossRef IUCr Journals Google Scholar
First citationDennington, A. J. & Weller, M. T. (2018). Dalton Trans. 47, 3469–3484.  CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2019a). Private communication (refcode MOMLEI). CCDC, Cambridge, England.  Google Scholar
First citationHarrison, W. T. A. (2019b). Private communication (refcode MOMSEP). CCDC, Cambridge, England.  Google Scholar
First citationHeacock, R. A. & Marion, L. (1956). Can. J. Chem. 34, 1782–1795.  CrossRef CAS Google Scholar
First citationHongzhang (2019). Private communication (refcode FIZYIZ). CCDC, Cambridge, England.  Google Scholar
First citationMegaw, H. D. (1973). Crystal Structures: a Working Approach. Philadelphia: Saunders.  Google Scholar
First citationPan, Q., Liu, Z. B., Tang, Y. Y., Li, P. F., Ma, R. W., Wei, R. Y., Zhang, Y., You, Y. M., Ye, H. Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 3954–3957.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7684–7687.  CSD CrossRef CAS Google Scholar
First citationRigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoumpos, C. C., Cao, D. H., Clark, D. J., Young, J., Rondinelli, J. M., Jang, J. I., Hupp, J. T. & Kanatzidis, M. G. (2016). Chem. Mater. 28, 2852–2867.  CSD CrossRef CAS Google Scholar
First citationStylianakis, M. M., Maksuov, T., Panagiotopoulos, A., Kakavelakis, G. & Petridis, K. (2019). Materials, 12, article 859 (28 pages).  CrossRef Google Scholar
First citationTilley, R. J. D. (2016). Perovskites: Structure–Property Relationships. New York: Wiley.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoodward, P. M. (1997). Acta Cryst. B53, 32–43.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationXu, W.-J., Kopyl, S., Kholkin, A. & Rocha, J. (2019). Coord. Chem. Rev. 387, 398–414.  CrossRef CAS Google Scholar
First citationZhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897–10902.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZuo, T. T., He, X. X., Hu, P. & Jiang, H. (2019). Chemnanomat, 5, 278–289.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds