1. Chemical context
Oxide perovskites of generic formula ABO3, where A and B are metal ions with a combined charge of +6, are probably the most-studied family of inorganic phases on account of their numerous physical properties and structural variety (Tilley, 2016). The aristotype (highest-possible symmetry) (Megaw, 1973) for this classic structure type is a three-dimensional network (space group Pmm) of undistorted, vertex-sharing, BO6 octahedra encapsulating the A cations in 12-coordinate dodecahedral cavities bounded by eight octahedra but lower symmetry (`hettotype') structures are very common, which can be systematically described in terms of tilting schemes of the octahedra (Woodward, 1997).
`Hybrid' RMX3 perovskites containing both inorganic and organic (molecular) components have been studied intensively in the last few years due to their remarkable photo-voltaic and other optical properties (Xu et al., 2019; Stylianakis et al., 2019; Zuo et al., 2019). The R+ or R2+ organic cation replaces the metallic A cation in an oxide perovskite and the MX3 (X = halide) octahedral network replaces the BO3 component of an oxide perovskite. Many of these studies have focused on lead halides [there are over 1400 papers on CH3NH3PbX3 (X = Br, I) alone as of July 2019] and tin halides as the inorganic component of the structure (Stoumpos et al., 2016) but other compositions are possible: several years ago, we described a family of alkali-metal–chloride perovskites templated by C4H12N22+ piperizinium (or piperazin-1,4-diium) or C6H14N22+ `dabconium' (or 1,4-diazoniabicyclo[2.2.2]octane) cations (Paton & Harrison, 2010). Notable features of these structures include the `inverse' charges of the cations (R2+ > M+) compared to oxide perovskites, the inclusion of water molecules of hydration in the C4H12N2·ACl3·H2O (A = K, Rb, Cs) series and a novel chiral perovskite analogue (space group P3221) for C6H14N2·RbCl3. This family has recently been extended by a number of phases (see Database survey) including C6H14N2·RbBr3 and C7H16N2·RbI3 (C7H16N22+ = 1-methyl-1,4-diazabicyclo[2.2.2]octane-1,4-diium) (Zhang et al., 2017), C4H12N2·RbBr3 (C4H12N22+ = 3-ammoniopyrrolidinium) (Pan et al., 2017) and C4H12N2·NaI3 (Chen et al., 2018), some of which have significant physical properties such as ferroelectricity.
In this paper we describe the syntheses and structures of a new family of isostructural hybrid perovskite hemihydrates of formula C5H14N2·ABr3·0.5H2O (C5H14N22+ = 1-methyl piperizinium cation) where A = K (I), Rb (II) and Cs (III).
2. Structural commentary
Compounds (I), (II) and (III) are isostructural as indicated by their orthorhombic unit cells, showing the expected trend of volume increase as a result of the increasing ionic radius (Shannon, 1976) of the alkali-metal cation on going from potassium (r = 1.52) to rubidium (r = 1.66) to caesium (r = 1.81 Å). This description will focus on the structure of (I) and note significant differences for (II) and (III) where applicable.
The asymmetric unit of (I) (Fig. 1) contains two methylene groups (C1 and C2), an N1H2+ grouping, an N2H+ moiety and the carbon atom (C3) of a methyl group. N1, N2 and C3 lie on a (010) crystallographic mirror plane with y = ½ for the asymmetric atoms. The complete C5H14N22+ cation is generated by the mirror to result in a typical (Dennington & Weller, 2018) chair conformation for this species with N1 and N2 deviating from the C1/C2/C1i/C2i [symmetry code: (i) x, 1 – y, z] plane by −0.623 (7) and 0.708 (6) Å, respectively. The pendant C3 methyl group adopts an equatorial orientation with respect to the ring. A water molecule with the O atom lying on the (½, ½, z) special position with mm2 symmetry (Wyckoff site 2a) is also present.
| Figure 1 The asymmetric unit of (I) expanded to show the complete C5H14N22+ cation, the complete potassium coordination polyhedra and the water molecule (50% displacement ellipsoids). Symmetry codes: (i) x, 1 − y, z; (ii) 2 − x, − y, + z; (iii) x, y − , + z; (iv) 2 − x, 1 − y, z; (v) 1 − x, 1 − y, z; (vi) 1 − x, − y, + z; (vii) x, y − , + z. |
The inorganic component of the structure consists of two potassium ions, K1 (site symmetry mm2; Wyckoff site 2b) and K2 (mm2; 2a) and three bromide ions: Br1 [m(100); 4e], Br2 [m(100); 4e] and Br3 [m(010); 4c], which gives an overall inorganic stoichiometry of KBr3. Crystal symmetry constructs Br6 octahedra around each potassium ion and the mean K1—Br and K2—Br separations are 3.4770 and 3.3825 Å, respectively (Table 1); equivalent data for (II) (Table 2) are Rb1—Br = 3.4906 and Rb2—Br = 3.4194 Å; equivalent data for (III) (Table 3) are Cs1—Br = 3.5432 and Cs2—Br = 3.4780 Å. These data may be compared with the shortest K—Br and Rb—Br separations of 3.299 and 3.425 Å, respectively in the rocksalt-type KBr and RbBr structures and the Cs—Br separation of 3.716 Å in CsBr (eight-coordinate CsCl structure).
K1—Br1i | 3.4184 (13) | K2—Br2 | 3.4000 (16) | K1—Br1 | 3.5261 (18) | K2—Br2ii | 3.4179 (15) | K1—Br3 | 3.4865 (10) | K2—Br3 | 3.3297 (10) | | | | | K1iii—Br1—K1 | 157.98 (5) | K2—Br3—K1 | 179.19 (5) | K2—Br2—K2iii | 177.85 (5) | | | Symmetry codes: (i) ; (ii) ; (iii) . | |
Rb1—Br1i | 3.4639 (8) | Rb2—Br2 | 3.4326 (9) | Rb1—Br1 | 3.5323 (10) | Rb2—Br2ii | 3.4336 (9) | Rb1—Br3 | 3.4756 (9) | Rb2—Br3 | 3.3919 (9) | | | | | Rb1iii—Br1—Rb1 | 157.67 (2) | Rb2—Br3—Rb1 | 178.12 (3) | Rb2—Br2—Rb2iii | 176.93 (2) | | | Symmetry codes: (i) ; (ii) ; (iii) . | |
Cs1—Br1i | 3.5319 (9) | Cs2—Br2 | 3.4923 (10) | Cs1—Br1 | 3.5873 (10) | Cs2—Br2ii | 3.4790 (9) | Cs1—Br3 | 3.5105 (11) | Cs2—Br3 | 3.4627 (11) | | | | | Cs1iii—Br1—Cs1 | 156.07 (2) | Cs2—Br3—Cs1 | 175.99 (3) | Cs2iii—Br2—Cs2 | 174.97 (3) | | | Symmetry codes: (i) ; (ii) ; (iii) . | |
The K1 octahedron in (I) is considerably distorted with the smallest and largest cis Br—K—Br angles being 66.53 (4) and 110.57 (6)°, respectively and the trans angles spanning the range 157.98 (5)–160.13 (7)°. The K2 octahedron is more regular, with cis angles varying from 82.17 (3) to 97.55 (2)°. Two of the trans angles for K2 are close to 180° but the other is much smaller at 158.51 (7)°. The octahedral volume for the K1 octahedron is 53.2 Å3 and its angular variance (Robinson et al., 1971) is 125.5°2. The equivalent data for the K2 octahedron are 50.7 Å3 and 45.0°2, respectively. The corresponding polyhedra in (II) and (III) are similarly distorted, with respective octahedral volumes and angular variances as follows: Rb1 53.7 Å3, 129.7°2; Rb2 52.1 Å3, 56.6°2; Cs1 55.8 Å3, 145.2°2; Cs2 54.2 Å3, 84.7°2.
Bond-valence-sum (BVS) calculations using the `extrapolated' formalism of Brese & O'Keeffe (1991) give the following values in valence units: K1 0.66, K2 0.86, Rb1 0.88 Rb2 1.07, Cs1 1.21, Cs2 1.44 (expected value = 1.00 in all cases). These data suggest that K1 in (I) is considerably underbonded, which is consistent with the long mean K1—Br separation in (I) compared to the separation in KBr. Conversely, Cs2 in (III) is substantially overbonded and must be a `tight fit' in its octahedral site.
3. Supramolecular features
The linkage of the KBr6 octahedra in (I) in the x, y and z directions through their bromide-ion vertices leads to an infinite network of corner-sharing KBr6 octahedra akin to the network of BO6 octahedra in the classical ABO3 perovskite structure. Key features of the inorganic network are the K—Br—K bond angles (Table 1), with Br1 substantially bent from the nominal linear bond [K1—Br1—K1ii = 157.98 (5)°; symmetry code (ii) x, + y, z − ], but Br2 and Br3 far less so. When the structure of (I) is viewed down [011], alternating (100) layers of K1- and K2-centred octahedra are apparent (Fig. 2). Within these (100) planes, the K1 atoms are linked by the Br1 ions and the K2 atoms are liked by the Br2 ions. Finally, Br3 provides the inter-layer linkages in the [100] direction.
| Figure 2 Polyhedral plot of the extended structure of (I) viewed down [011] with the K1Br6 octahedra coloured lilac and K2Br6 blue. |
The 1-methylpiperizinium cations occupy the central regions of the cages formed by eight KBr6 octahedra, obviously equivalent to the A cation site in a classical perovskite. The water molecules lie at the centres of square sites bounded by four octahedra and stack in the [100] direction with alternating occupied and empty sites (see Fig. 3 and the Database survey section). Hydrogen bonding involving the encapsulated species is an important feature of the structure of (I): the N1H2+ group forms one N—H⋯Br3 link and one N—H⋯O link to the water molecule (Table 4, Fig. 1) whereas the methylated N2H+ group forms a rather long (and presumably weak) bifurcated N—H⋯(Br1,Br1) link. As just noted, the water molecule accepts an N—H⋯O hydrogen bond from the organic cation and forms a pair of symmetry-equivalent O—H⋯Br2 hydrogen bonds. It is notable that all the C-bound H atoms in (I) are also potential hydrogen-bond donors to bromide ions based on the H⋯Br separations being significantly less than the van der Waals' separation of 3.05 Å for these atoms. So far as the bromide ions are concerned, Br1 accepts one classical and three non-classical hydrogen bonds, Br2 accepts one classical and one non-classical and Br3 accepts one classical and two non-classical. The hydrogen-bonding schemes for (II) (Table 5) and (III) (Table 6) are essentially the same as that for (I).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H2N⋯O1 | 0.91 | 1.89 | 2.799 (5) | 172 | N1—H1N⋯Br3 | 0.91 | 2.47 | 3.232 (5) | 141 | N2—H3N⋯Br1 | 1.00 | 2.67 | 3.438 (4) | 133 | N2—H3N⋯Br1iv | 1.00 | 2.67 | 3.438 (4) | 133 | O1—H1O⋯Br2v | 0.87 | 2.34 | 3.200 (3) | 172 | C1—H1A⋯Br2vi | 0.99 | 2.88 | 3.614 (4) | 131 | C1—H1B⋯Br1iv | 0.99 | 3.00 | 3.703 (4) | 129 | C2—H2B⋯Br1iv | 0.99 | 3.05 | 3.517 (4) | 111 | C2—H2B⋯Br3v | 0.99 | 2.82 | 3.525 (4) | 129 | C3—H3A⋯Br1vii | 0.98 | 2.96 | 3.857 (4) | 153 | C3—H3B⋯Br3viii | 0.98 | 2.75 | 3.615 (6) | 148 | Symmetry codes: (iv) -x+2, -y+1, z; (v) ; (vi) -x+1, -y+1, z; (vii) ; (viii) x, y, z-1. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H1N⋯O1 | 0.91 | 1.91 | 2.816 (5) | 173 | N1—H2N⋯Br3 | 0.91 | 2.49 | 3.243 (4) | 140 | N2—H3N⋯Br1 | 1.00 | 2.68 | 3.448 (4) | 134 | N2—H3N⋯Br1iv | 1.00 | 2.68 | 3.448 (4) | 134 | O1—H1O⋯Br2v | 0.87 | 2.34 | 3.212 (3) | 173 | C1—H1A⋯Br1iv | 0.99 | 3.01 | 3.717 (4) | 129 | C1—H1B⋯Br2vi | 0.99 | 2.92 | 3.652 (4) | 131 | C2—H2B⋯Br1iv | 0.99 | 3.06 | 3.531 (4) | 111 | C2—H2B⋯Br3v | 0.99 | 2.85 | 3.560 (4) | 130 | C3—H3A⋯Br1vii | 0.99 | 3.03 | 3.927 (4) | 152 | C3—H3B⋯Br3viii | 0.99 | 2.79 | 3.653 (5) | 146 | Symmetry codes: (iv) -x, -y+1, z; (v) ; (vi) -x+1, -y+1, z; (vii) ; (viii) x, y, z+1. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | N1—H2N⋯O1 | 0.91 | 1.94 | 2.845 (7) | 173 | N1—H1N⋯Br3 | 0.91 | 2.51 | 3.259 (6) | 140 | N2—H3N⋯Br1 | 1.00 | 2.68 | 3.446 (5) | 134 | N2—H3N⋯Br1iv | 1.00 | 2.68 | 3.446 (5) | 134 | O1—H1O⋯Br2v | 0.89 | 2.36 | 3.242 (4) | 175 | C1—H1A⋯Br1iv | 0.99 | 3.07 | 3.762 (5) | 128 | C1—H1B⋯Br2vi | 0.99 | 2.99 | 3.712 (5) | 131 | C2—H2B⋯Br1iv | 0.99 | 3.08 | 3.550 (5) | 111 | C2—H2B⋯Br3v | 0.99 | 2.92 | 3.643 (4) | 131 | C3—H3B⋯Br3vii | 1.00 | 2.86 | 3.726 (7) | 145 | Symmetry codes: (iv) -x, -y+1, z; (v) ; (vi) -x+1, -y+1, z; (vii) x, y, z+1. | |
| Figure 3 Comparison of the structures of (a) MEXMAG (redrawn from Chen et al., 2018), (b) (I) and (c) GUYMIX (redrawn from Paton and Harrison, 2010). In MEXMAG, (I) and GUYMIX, the two octahedral cages shown are stacked in the [001], [100] and [001] directions, respectively. Note the alternation of water molecules and empty sites in (I) with respect to the [100] direction whereas GUYMIX has a water molecule in every square site in the [001] direction. |
4. Database survey
The title compounds and their significant analogue structures with their space groups and CCDC refcodes (Groom et al., 2016) are listed in Table 7. These compounds now represent a significant family of hybrid perovskites featuring several different cations – the protonated forms of piperazine, dabco, 1-methylpiperazine, 3-aminopyrrolidine and `methyl dabco' (1-methyl-1,4-diazabicyclo[2.2.2]octane) – as well as different alkali metal cations and halide anions. The recently reported structure of MEXMAG (Chen et al., 2108) has added sodium to the list of cations that can form these structures. Some structures such as HEJGOV (Zhang et al., 2017) show notable physical properties such as ferroelectricity, which is of course a classic characteristic of oxide perovskites.
Code/refcode | Formula | Space group | Reference | (I) | C5H14N2·KBr3·0.5H2O | Amm2 | This work | (II) | C5H14N2·RbBr3·0.5H2O | Amm2 | This work | (III) | C5H14N2·CsBr3·0.5H2O | Amm2 | This work | GUYMIX | C4H12N2·KCl3·H2O | Pbcm | Paton & Harrison (2010) | GUYMOD | C4H12N2·RbCl3·H2O | Pbcm | Paton & Harrison (2010) | GUYMUJ | C4H12N2·CsCl3·H2O | Pbcm | Paton & Harrison (2010) | MOMLEI | C4H12N2·KBr3·H2O | Pbcm | Harrison (2019a) | MOMSEP | C4H12N2·RbBr3·H2O | Pbcm | Harrison (2019b) | FIZYIZ | C6H14N2·KBr3 | P3121 | Hongzhang (2019) | GUYNEU | C6H14N2·RbCl3 | P3221 | Paton & Harrison (2010) | HEJGUB | C6H14N2·RbBr3 | P3221 | Zhang et al. (2017) | GUYNEU02a | C6H14N2·RbCl3 | Pmm | Zhang et al. (2017) | HEJGUB01a | C6H14N2·RbBr3 | Pmm | Zhang et al. (2017) | GUYNIY | C6H14N2·CsCl3 | C2/c | Paton & Harrison (2010) | HEJGOV | C7H16N2·RbI3 | P432 | Zhang et al. (2017) | HEJGOV01 | C7H16N2·RbI3 | R3 | Zhang et al. (2017) | GEFLOV | C4H12N2·RbBr3 | Ia | Pan et al. (2017) | GEFLOV01a | C4H12N2·RbBr3 | Pmm | Pan et al. (2017) | MEXMAG | C4H12N2·NaI3 | C2/c | Chen et al. (2018) | Redetermined structures not included. Note: (a) high-temperature polymorph. | |
An interesting structural comparison may be made between MEXMAG (an `anhydrous' RAX3 hybrid perovskite), (I) (an RAX3·0.5H2O hybrid perovskite hemihydrate) and GUYMIX (an RAX3·H2O hybrid perovskite hydrate) (Fig. 3). It may be seen that the pendant methyl groups of the C5H14N22+ cations in (I) both point towards an empty square site and their steric bulk presumably prevents water molecules from occupying that site. It is notable that the empty square site in (I) is associated with the reduced K1—Br1—K1 bond angles as noted above. Conversely, in MEXMAG, the iodide ions are perhaps too large to allow a water molecule to fit between them and the piperazinium cation is forced to form long N—H⋯I hydrogen bonds (H⋯I = 3.14 Å) rather than N—H⋯Ow (w = water) links.
5. Synthesis and crystallization
To prepare (I), 0.3673 g (3.67 mmol) of 1-methyl piperazine and 0.4068 g (3.42 mmol) of KBr were added to 15.0 ml of 1.0 M aqueous HBr solution to result in a clear solution, which was left in a Petri dish to evaporate. After two or three days, colourless blocks of (I) were recovered, rinsed with acetone and dried in air. Compound (II) was prepared in the same way, with 0.4042 g (2.44 mmol) of RbBr replacing the KBr in (I) and (III) was prepared by using 0.4479 g (2.10 mmol) of CsBr in place of the KBr.
ATR–FTIR (cm−1) for (I) (selected): 3215m (NH2 asymmetric stretch), 2940s (NH2 symmetric stretch), 2692s (sp3 C—H stretch), 1585s (NH2 bend) (assignments from Heacock & Marion, 1956); for (II) 3217s, 2998s, 2681s, 1548s; for (III) 3221m, 2995s, 2681s, 1548s. The IR spectra of (I), (II) and (III) are available in the supporting information.
6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 8. For each structure, the N- and C-bond hydrogen atoms were located geometrically (C—H = 0.98–0.99, N—H = 0.91–1.00Å) and refined as riding atoms. The water H atom was located in a difference map and refined as riding in its as-found relative position. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C) was applied in all cases.
| (I) | (II) | (III) | Crystal data | Chemical formula | (C5H14N2)[KBr3]·0.5H2O | (C5H14N2)[RbBr3]·0.5H2O | (C5H14N2)[CsBr3]·0.5H2O | Mr | 390.02 | 436.39 | 483.83 | Crystal system, space group | Orthorhombic, Amm2 | Orthorhombic, Amm2 | Orthorhombic, Amm2 | Temperature (K) | 93 | 93 | 93 | a, b, c (Å) | 13.411 (3), 9.488 (2), 9.790 (2) | 13.477 (3), 9.5617 (19), 9.850 (2) | 13.610 (3), 9.7201 (19), 9.977 (2) | V (Å3) | 1245.7 (5) | 1269.3 (5) | 1319.9 (5) | Z | 4 | 4 | 4 | Radiation type | Mo Kα | Mo Kα | Mo Kα | μ (mm−1) | 10.01 | 13.31 | 11.85 | Crystal size (mm) | 0.10 × 0.08 × 0.08 | 0.15 × 0.10 × 0.10 | 0.10 × 0.10 × 0.10 | | Data collection | Diffractometer | Rigaku Pilatus 200K CCD | Rigaku Pilatus 200K CCD | Rigaku Pilatus 200K CCD | Absorption correction | Multi-scan (CrysAlis PRO; Rigaku, 2017) | Multi-scan (CrysAlis PRO; Rigaku, 2017) | Multi-scan (CrysAlis PRO; Rigaku, 2017) | Tmin, Tmax | 0.406, 1.000 | 0.347, 1.000 | 0.463, 1.000 | No. of measured, independent and observed [I > 2σ(I)] reflections | 3890, 1235, 1208 | 6851, 1264, 1244 | 3718, 1312, 1293 | Rint | 0.033 | 0.037 | 0.022 | (sin θ/λ)max (Å−1) | 0.602 | 0.602 | 0.603 | | Refinement | R[F2 > 2σ(F2)], wR(F2), S | 0.015, 0.031, 0.90 | 0.013, 0.028, 1.01 | 0.013, 0.029, 0.94 | No. of reflections | 1235 | 1264 | 1312 | No. of parameters | 68 | 69 | 68 | No. of restraints | 1 | 1 | 1 | H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained | Δρmax, Δρmin (e Å−3) | 0.41, −0.36 | 0.27, −0.35 | 0.58, −0.70 | Absolute structure | Parsons et al. (2013) | Parsons et al. (2013) | Parsons et al. (2013) | Absolute structure parameter | −0.001 (11) | −0.001 (13) | 0.016 (7) | Computer programs: CrysAlis PRO (Rigaku, 2017), SHELXS7 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010). | |
Supporting information
For all structures, data collection: CrysAlis PRO (Rigaku, 2017); cell refinement: CrysAlis PRO (Rigaku, 2017); data reduction: CrysAlis PRO (Rigaku, 2017); program(s) used to solve structure: SHELXS7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Poly[1-methylpiperizine-1,4-diium [tri-µ-bromido-potassium] hemihydrate] (I)
top Crystal data top (C5H14N2)[KBr3]·0.5H2O | Dx = 2.080 Mg m−3 |
Mr = 390.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Amm2 | Cell parameters from 2257 reflections |
a = 13.411 (3) Å | θ = 3.0–27.2° |
b = 9.488 (2) Å | µ = 10.01 mm−1 |
c = 9.790 (2) Å | T = 93 K |
V = 1245.7 (5) Å3 | Prism, colourless |
Z = 4 | 0.10 × 0.08 × 0.08 mm |
F(000) = 748 | |
Data collection top Rigaku Pilatus 200K CCD diffractometer | 1208 reflections with I > 2σ(I) |
ω scans | Rint = 0.033 |
Absorption correction: multi-scan (CrysalisPro; Rigaku, 2017) | θmax = 25.3°, θmin = 3.0° |
Tmin = 0.406, Tmax = 1.000 | h = −16→16 |
3890 measured reflections | k = −11→11 |
1235 independent reflections | l = −11→11 |
Refinement top Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.015 | (Δ/σ)max < 0.001 |
wR(F2) = 0.031 | Δρmax = 0.41 e Å−3 |
S = 0.90 | Δρmin = −0.36 e Å−3 |
1235 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
68 parameters | Extinction coefficient: 0.00195 (16) |
1 restraint | Absolute structure: Parsons et al. (2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.001 (11) |
Hydrogen site location: mixed | |
Special details top Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
K1 | 1.0000 | 0.5000 | 0.9058 (2) | 0.0145 (4) | |
K2 | 0.5000 | 0.5000 | 1.0306 (2) | 0.0120 (3) | |
Br1 | 1.0000 | 0.70384 (5) | 0.60463 (6) | 0.01165 (14) | |
Br2 | 0.5000 | 0.74449 (6) | 0.77675 (6) | 0.01087 (14) | |
Br3 | 0.74393 (4) | 0.5000 | 0.96724 (6) | 0.01101 (14) | |
C1 | 0.7289 (3) | 0.3693 (4) | 0.6163 (5) | 0.0123 (9) | |
H1A | 0.6861 | 0.2859 | 0.6321 | 0.015* | |
H1B | 0.7878 | 0.3614 | 0.6767 | 0.015* | |
C2 | 0.7626 (3) | 0.3706 (4) | 0.4700 (5) | 0.0107 (8) | |
H2A | 0.7038 | 0.3696 | 0.4089 | 0.013* | |
H2B | 0.8027 | 0.2851 | 0.4510 | 0.013* | |
C3 | 0.8629 (4) | 0.5000 | 0.2985 (6) | 0.0145 (12) | |
H3A | 0.9028 | 0.5851 | 0.2831 | 0.022* | |
H3B | 0.8067 | 0.5000 | 0.2346 | 0.022* | |
N1 | 0.6720 (3) | 0.5000 | 0.6522 (5) | 0.0098 (10) | |
H1N | 0.6586 | 0.5000 | 0.7433 | 0.012* | |
H2N | 0.6128 | 0.5000 | 0.6067 | 0.012* | |
N2 | 0.8244 (3) | 0.5000 | 0.4421 (5) | 0.0091 (10) | |
H3N | 0.8827 | 0.5000 | 0.5059 | 0.011* | |
O1 | 0.5000 | 0.5000 | 0.4902 (5) | 0.0088 (12) | |
H1O | 0.5000 | 0.4251 | 0.4392 | 0.011* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
K1 | 0.0132 (9) | 0.0147 (8) | 0.0156 (10) | 0.000 | 0.000 | 0.000 |
K2 | 0.0105 (8) | 0.0138 (8) | 0.0117 (9) | 0.000 | 0.000 | 0.000 |
Br1 | 0.0086 (3) | 0.0111 (3) | 0.0152 (3) | 0.000 | 0.000 | −0.0018 (2) |
Br2 | 0.0102 (3) | 0.0114 (3) | 0.0110 (3) | 0.000 | 0.000 | −0.0015 (2) |
Br3 | 0.0119 (3) | 0.0102 (3) | 0.0110 (3) | 0.000 | −0.0026 (2) | 0.000 |
C1 | 0.0105 (17) | 0.0092 (18) | 0.017 (2) | 0.0022 (14) | 0.0017 (18) | 0.0032 (19) |
C2 | 0.0098 (18) | 0.0087 (17) | 0.014 (2) | −0.0005 (14) | 0.0021 (19) | 0.000 (2) |
C3 | 0.017 (3) | 0.019 (3) | 0.008 (3) | 0.000 | 0.005 (3) | 0.000 |
N1 | 0.007 (2) | 0.014 (2) | 0.008 (3) | 0.000 | 0.0026 (19) | 0.000 |
N2 | 0.009 (2) | 0.009 (2) | 0.010 (3) | 0.000 | 0.0003 (19) | 0.000 |
O1 | 0.012 (2) | 0.008 (2) | 0.007 (3) | 0.000 | 0.000 | 0.000 |
Geometric parameters (Å, º) top K1—Br1i | 3.4184 (13) | C1—C2 | 1.502 (6) |
K1—Br1ii | 3.4184 (13) | C1—H1A | 0.9900 |
K1—Br1iii | 3.5261 (18) | C1—H1B | 0.9900 |
K1—Br1 | 3.5261 (18) | C2—N2 | 1.506 (4) |
K1—Br3 | 3.4865 (10) | C2—H2A | 0.9900 |
K1—Br3iii | 3.4865 (10) | C2—H2B | 0.9900 |
K2—Br2iv | 3.4000 (16) | C3—N2 | 1.497 (7) |
K2—Br2 | 3.4000 (16) | C3—H3A | 0.9800 |
K2—Br2v | 3.4179 (15) | C3—H3B | 0.9799 |
K2—Br2ii | 3.4179 (15) | N1—C1vii | 1.498 (4) |
K2—Br3iv | 3.3297 (10) | N1—H1N | 0.9100 |
K2—Br3 | 3.3297 (10) | N1—H2N | 0.9100 |
Br1—K1vi | 3.4183 (13) | N2—C2vii | 1.506 (4) |
Br2—K2vi | 3.4179 (15) | N2—H3N | 1.0000 |
C1—N1 | 1.498 (4) | O1—H1O | 0.8686 |
| | | |
Br1i—K1—Br1ii | 110.57 (6) | K1vi—Br1—K1 | 157.98 (5) |
Br1i—K1—Br3 | 84.36 (2) | K2—Br2—K2vi | 177.85 (5) |
Br1ii—K1—Br3 | 84.36 (2) | K2—Br3—K1 | 179.19 (5) |
Br1i—K1—Br3iii | 84.36 (2) | N1—C1—C2 | 111.8 (3) |
Br1ii—K1—Br3iii | 84.36 (2) | N1—C1—H1A | 109.3 |
Br3—K1—Br3iii | 160.13 (7) | C2—C1—H1A | 109.3 |
Br1i—K1—Br1iii | 157.98 (5) | N1—C1—H1B | 109.3 |
Br1ii—K1—Br1iii | 91.449 (19) | C2—C1—H1B | 109.3 |
Br3—K1—Br1iii | 98.30 (3) | H1A—C1—H1B | 107.9 |
Br3iii—K1—Br1iii | 98.30 (3) | C1—C2—N2 | 110.2 (3) |
Br1i—K1—Br1 | 91.449 (18) | C1—C2—H2A | 109.6 |
Br1ii—K1—Br1 | 157.98 (5) | N2—C2—H2A | 109.6 |
Br3—K1—Br1 | 98.30 (3) | C1—C2—H2B | 109.6 |
Br3iii—K1—Br1 | 98.30 (3) | N2—C2—H2B | 109.6 |
Br1iii—K1—Br1 | 66.53 (4) | H2A—C2—H2B | 108.1 |
Br3iv—K2—Br3 | 158.51 (7) | N2—C3—H3A | 109.4 |
Br3iv—K2—Br2iv | 82.17 (3) | N2—C3—H3B | 109.5 |
Br3—K2—Br2iv | 82.17 (3) | H3A—C3—H3B | 108.7 |
Br3iv—K2—Br2 | 82.17 (3) | C1—N1—C1vii | 111.7 (4) |
Br3—K2—Br2 | 82.17 (3) | C1—N1—H1N | 109.3 |
Br2iv—K2—Br2 | 86.05 (5) | C1vii—N1—H1N | 109.3 |
Br3iv—K2—Br2v | 97.55 (2) | C1—N1—H2N | 109.3 |
Br3—K2—Br2v | 97.55 (2) | C1vii—N1—H2N | 109.3 |
Br2iv—K2—Br2v | 177.85 (5) | H1N—N1—H2N | 107.9 |
Br2—K2—Br2v | 91.800 (17) | C3—N2—C2vii | 111.1 (3) |
Br3iv—K2—Br2ii | 97.55 (2) | C3—N2—C2 | 111.1 (3) |
Br3—K2—Br2ii | 97.55 (2) | C2vii—N2—C2 | 109.2 (4) |
Br2iv—K2—Br2ii | 91.800 (17) | C3—N2—H3N | 108.4 |
Br2—K2—Br2ii | 177.85 (5) | C2vii—N2—H3N | 108.4 |
Br2v—K2—Br2ii | 90.35 (5) | C2—N2—H3N | 108.4 |
| | | |
N1—C1—C2—N2 | 56.6 (4) | C1—C2—N2—C3 | 177.3 (3) |
C2—C1—N1—C1vii | −52.9 (5) | C1—C2—N2—C2vii | −59.8 (5) |
Symmetry codes: (i) −x+2, −y+3/2, z+1/2; (ii) x, y−1/2, z+1/2; (iii) −x+2, −y+1, z; (iv) −x+1, −y+1, z; (v) −x+1, −y+3/2, z+1/2; (vi) x, y+1/2, z−1/2; (vii) x, −y+1, z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H2N···O1 | 0.91 | 1.89 | 2.799 (5) | 172 |
N1—H1N···Br3 | 0.91 | 2.47 | 3.232 (5) | 141 |
N2—H3N···Br1 | 1.00 | 2.67 | 3.438 (4) | 133 |
N2—H3N···Br1iii | 1.00 | 2.67 | 3.438 (4) | 133 |
O1—H1O···Br2viii | 0.87 | 2.34 | 3.200 (3) | 172 |
C1—H1A···Br2iv | 0.99 | 2.88 | 3.614 (4) | 131 |
C1—H1B···Br1iii | 0.99 | 3.00 | 3.703 (4) | 129 |
C2—H2B···Br1iii | 0.99 | 3.05 | 3.517 (4) | 111 |
C2—H2B···Br3viii | 0.99 | 2.82 | 3.525 (4) | 129 |
C3—H3A···Br1ix | 0.98 | 2.96 | 3.857 (4) | 153 |
C3—H3B···Br3x | 0.98 | 2.75 | 3.615 (6) | 148 |
Symmetry codes: (iii) −x+2, −y+1, z; (iv) −x+1, −y+1, z; (viii) x, y−1/2, z−1/2; (ix) −x+2, −y+3/2, z−1/2; (x) x, y, z−1. |
Poly[1-methylpiperizine-1,4-diium [tri-µ-bromido-rubidium] hemihydrate] (II)
top Crystal data top (C5H14N2)[RbBr3]·0.5H2O | Dx = 2.284 Mg m−3 |
Mr = 436.39 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Amm2 | Cell parameters from 2309 reflections |
a = 13.477 (3) Å | θ = 3.0–27.4° |
b = 9.5617 (19) Å | µ = 13.31 mm−1 |
c = 9.850 (2) Å | T = 93 K |
V = 1269.3 (5) Å3 | Prism, colourless |
Z = 4 | 0.15 × 0.10 × 0.10 mm |
F(000) = 820 | |
Data collection top Rigaku Pilatus 200K CCD diffractometer | 1244 reflections with I > 2σ(I) |
ω scans | Rint = 0.037 |
Absorption correction: multi-scan (CrysalisPro; Rigaku, 2017) | θmax = 25.3°, θmin = 3.0° |
Tmin = 0.347, Tmax = 1.000 | h = −16→16 |
6851 measured reflections | k = −11→11 |
1264 independent reflections | l = −11→11 |
Refinement top Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0076P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.013 | (Δ/σ)max < 0.001 |
wR(F2) = 0.028 | Δρmax = 0.27 e Å−3 |
S = 1.01 | Δρmin = −0.35 e Å−3 |
1264 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
69 parameters | Extinction coefficient: 0.00327 (14) |
1 restraint | Absolute structure: Parsons et al. (2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.001 (13) |
Hydrogen site location: mixed | |
Special details top Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Rb1 | 0.0000 | 0.5000 | 0.09734 (7) | 0.01032 (18) | |
Rb2 | 0.5000 | 0.5000 | −0.03670 (8) | 0.00968 (16) | |
Br1 | 0.0000 | 0.29829 (5) | 0.39777 (6) | 0.01090 (14) | |
Br2 | 0.5000 | 0.25694 (6) | 0.21977 (6) | 0.01073 (13) | |
Br3 | 0.25385 (4) | 0.5000 | 0.03510 (6) | 0.01017 (13) | |
C1 | 0.2708 (3) | 0.6293 (4) | 0.3838 (4) | 0.0124 (8) | |
H1A | 0.2118 | 0.6366 | 0.3243 | 0.015* | |
H1B | 0.3130 | 0.7123 | 0.3674 | 0.015* | |
C2 | 0.2378 (3) | 0.6284 (4) | 0.5303 (5) | 0.0117 (8) | |
H2A | 0.2966 | 0.6293 | 0.5905 | 0.014* | |
H2B | 0.1980 | 0.7131 | 0.5495 | 0.014* | |
C3 | 0.1383 (4) | 0.5000 | 0.6996 (5) | 0.0149 (12) | |
H3A | 0.0985 | 0.4149 | 0.7150 | 0.022* | |
H3B | 0.1945 | 0.5000 | 0.7635 | 0.022* | |
N1 | 0.3274 (3) | 0.5000 | 0.3486 (5) | 0.0107 (10) | |
H1N | 0.3862 | 0.5000 | 0.3941 | 0.013* | |
H2N | 0.3410 | 0.5000 | 0.2581 | 0.013* | |
N2 | 0.1766 (3) | 0.5000 | 0.5584 (4) | 0.0087 (9) | |
H3N | 0.1187 | 0.5000 | 0.4950 | 0.010* | |
O1 | 0.5000 | 0.5000 | 0.5097 (5) | 0.0109 (12) | |
H1O | 0.5000 | 0.5749 | 0.5607 | 0.013* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Rb1 | 0.0111 (4) | 0.0093 (4) | 0.0105 (4) | 0.000 | 0.000 | 0.000 |
Rb2 | 0.0114 (4) | 0.0091 (3) | 0.0086 (3) | 0.000 | 0.000 | 0.000 |
Br1 | 0.0122 (3) | 0.0083 (3) | 0.0122 (3) | 0.000 | 0.000 | 0.0006 (2) |
Br2 | 0.0141 (3) | 0.0087 (3) | 0.0094 (3) | 0.000 | 0.000 | 0.0001 (2) |
Br3 | 0.0112 (3) | 0.0092 (3) | 0.0101 (3) | 0.000 | −0.0012 (2) | 0.000 |
C1 | 0.013 (2) | 0.0077 (19) | 0.017 (2) | −0.0003 (15) | −0.0003 (17) | 0.0023 (18) |
C2 | 0.013 (2) | 0.0054 (18) | 0.017 (2) | 0.0009 (15) | 0.0016 (18) | −0.001 (2) |
C3 | 0.019 (3) | 0.021 (3) | 0.005 (3) | 0.000 | 0.004 (2) | 0.000 |
N1 | 0.011 (2) | 0.012 (2) | 0.009 (2) | 0.000 | 0.0025 (19) | 0.000 |
N2 | 0.009 (2) | 0.010 (2) | 0.007 (2) | 0.000 | −0.0010 (18) | 0.000 |
O1 | 0.016 (3) | 0.006 (2) | 0.011 (3) | 0.000 | 0.000 | 0.000 |
Geometric parameters (Å, º) top Rb1—Br1i | 3.4639 (8) | C1—C2 | 1.510 (6) |
Rb1—Br1ii | 3.4639 (8) | C1—H1A | 0.9900 |
Rb1—Br1iii | 3.5323 (10) | C1—H1B | 0.9900 |
Rb1—Br1 | 3.5323 (10) | C2—N2 | 1.504 (4) |
Rb1—Br3iii | 3.4756 (9) | C2—H2A | 0.9900 |
Rb1—Br3 | 3.4756 (9) | C2—H2B | 0.9900 |
Rb2—Br2iv | 3.4326 (9) | C3—N2 | 1.484 (6) |
Rb2—Br2 | 3.4326 (9) | C3—H3A | 0.9868 |
Rb2—Br2v | 3.4336 (9) | C3—H3B | 0.9852 |
Rb2—Br2ii | 3.4336 (9) | N1—C1vii | 1.494 (4) |
Rb2—Br3 | 3.3919 (9) | N1—H1N | 0.9100 |
Rb2—Br3iv | 3.3920 (9) | N1—H2N | 0.9100 |
Br1—Rb1vi | 3.4639 (8) | N2—C2vii | 1.504 (4) |
Br2—Rb2vi | 3.4336 (9) | N2—H3N | 1.0000 |
C1—N1 | 1.494 (4) | O1—H1O | 0.8748 |
| | | |
Br1i—Rb1—Br1ii | 110.85 (3) | Rb1vi—Br1—Rb1 | 157.67 (2) |
Br1i—Rb1—Br3iii | 84.255 (10) | Rb2—Br2—Rb2vi | 176.93 (2) |
Br1ii—Rb1—Br3iii | 84.255 (10) | Rb2—Br3—Rb1 | 178.12 (3) |
Br1i—Rb1—Br3 | 84.255 (10) | N1—C1—C2 | 111.6 (3) |
Br1ii—Rb1—Br3 | 84.255 (10) | N1—C1—H1A | 109.3 |
Br3iii—Rb1—Br3 | 159.68 (3) | C2—C1—H1A | 109.3 |
Br1i—Rb1—Br1iii | 157.67 (2) | N1—C1—H1B | 109.3 |
Br1ii—Rb1—Br1iii | 91.481 (16) | C2—C1—H1B | 109.3 |
Br3iii—Rb1—Br1iii | 98.498 (12) | H1A—C1—H1B | 108.0 |
Br3—Rb1—Br1iii | 98.498 (12) | N2—C2—C1 | 110.0 (3) |
Br1i—Rb1—Br1 | 91.481 (15) | N2—C2—H2A | 109.7 |
Br1ii—Rb1—Br1 | 157.67 (2) | C1—C2—H2A | 109.7 |
Br3iii—Rb1—Br1 | 98.498 (12) | N2—C2—H2B | 109.7 |
Br3—Rb1—Br1 | 98.498 (12) | C1—C2—H2B | 109.7 |
Br1iii—Rb1—Br1 | 66.19 (3) | H2A—C2—H2B | 108.2 |
Br3—Rb2—Br3iv | 155.93 (3) | N2—C3—H3A | 109.5 |
Br3—Rb2—Br2iv | 81.173 (14) | N2—C3—H3B | 109.4 |
Br3iv—Rb2—Br2iv | 81.173 (13) | H3A—C3—H3B | 108.6 |
Br3—Rb2—Br2 | 81.172 (13) | C1—N1—C1vii | 111.7 (4) |
Br3iv—Rb2—Br2 | 81.173 (14) | C1—N1—H1N | 109.3 |
Br2iv—Rb2—Br2 | 85.22 (3) | C1vii—N1—H1N | 109.3 |
Br3—Rb2—Br2v | 98.376 (11) | C1—N1—H2N | 109.3 |
Br3iv—Rb2—Br2v | 98.376 (11) | C1vii—N1—H2N | 109.3 |
Br2iv—Rb2—Br2v | 176.93 (2) | H1N—N1—H2N | 107.9 |
Br2—Rb2—Br2v | 91.702 (16) | C3—N2—C2 | 111.3 (3) |
Br3—Rb2—Br2ii | 98.376 (11) | C3—N2—C2vii | 111.3 (3) |
Br3iv—Rb2—Br2ii | 98.376 (11) | C2—N2—C2vii | 109.4 (4) |
Br2iv—Rb2—Br2ii | 91.702 (16) | C3—N2—H3N | 108.3 |
Br2—Rb2—Br2ii | 176.93 (2) | C2—N2—H3N | 108.3 |
Br2v—Rb2—Br2ii | 91.37 (3) | C2vii—N2—H3N | 108.3 |
| | | |
N1—C1—C2—N2 | −56.8 (4) | C1—C2—N2—C3 | −176.8 (3) |
C2—C1—N1—C1vii | 53.6 (5) | C1—C2—N2—C2vii | 59.8 (5) |
Symmetry codes: (i) −x, −y+1/2, z−1/2; (ii) x, y+1/2, z−1/2; (iii) −x, −y+1, z; (iv) −x+1, −y+1, z; (v) −x+1, −y+1/2, z−1/2; (vi) x, y−1/2, z+1/2; (vii) x, −y+1, z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.91 | 1.91 | 2.816 (5) | 173 |
N1—H2N···Br3 | 0.91 | 2.49 | 3.243 (4) | 140 |
N2—H3N···Br1 | 1.00 | 2.68 | 3.448 (4) | 134 |
N2—H3N···Br1iii | 1.00 | 2.68 | 3.448 (4) | 134 |
O1—H1O···Br2viii | 0.87 | 2.34 | 3.212 (3) | 173 |
C1—H1A···Br1iii | 0.99 | 3.01 | 3.717 (4) | 129 |
C1—H1B···Br2iv | 0.99 | 2.92 | 3.652 (4) | 131 |
C2—H2B···Br1iii | 0.99 | 3.06 | 3.531 (4) | 111 |
C2—H2B···Br3viii | 0.99 | 2.85 | 3.560 (4) | 130 |
C3—H3A···Br1ix | 0.99 | 3.03 | 3.927 (4) | 152 |
C3—H3B···Br3x | 0.99 | 2.79 | 3.653 (5) | 146 |
Symmetry codes: (iii) −x, −y+1, z; (iv) −x+1, −y+1, z; (viii) x, y+1/2, z+1/2; (ix) −x, −y+1/2, z+1/2; (x) x, y, z+1. |
Poly[1-methylpiperizine-1,4-diium [tri-µ-bromido-caesium] hemihydrate] (III)
top Crystal data top (C5H14N2)[CsBr3]·0.5H2O | Dx = 2.435 Mg m−3 |
Mr = 483.83 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Amm2 | Cell parameters from 2407 reflections |
a = 13.610 (3) Å | θ = 2.9–27.5° |
b = 9.7201 (19) Å | µ = 11.85 mm−1 |
c = 9.977 (2) Å | T = 93 K |
V = 1319.9 (5) Å3 | Block, colourless |
Z = 4 | 0.10 × 0.10 × 0.10 mm |
F(000) = 892 | |
Data collection top Rigaku Pilatus 200K CCD diffractometer | 1293 reflections with I > 2σ(I) |
ω scans | Rint = 0.022 |
Absorption correction: multi-scan (CrysalisPro; Rigaku, 2017) | θmax = 25.4°, θmin = 2.9° |
Tmin = 0.463, Tmax = 1.000 | h = −16→15 |
3718 measured reflections | k = −11→11 |
1312 independent reflections | l = −11→12 |
Refinement top Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0012P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.013 | (Δ/σ)max < 0.001 |
wR(F2) = 0.029 | Δρmax = 0.57 e Å−3 |
S = 0.94 | Δρmin = −0.70 e Å−3 |
1312 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
68 parameters | Extinction coefficient: 0.00081 (7) |
1 restraint | Absolute structure: Parsons et al. (2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.016 (7) |
Hydrogen site location: mixed | |
Special details top Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cs1 | 0.0000 | 0.5000 | 0.10292 (5) | 0.01104 (16) | |
Cs2 | 0.5000 | 0.5000 | −0.04771 (5) | 0.01285 (16) | |
Br1 | 0.0000 | 0.30234 (7) | 0.40657 (7) | 0.01341 (18) | |
Br2 | 0.5000 | 0.26080 (7) | 0.21347 (7) | 0.01513 (17) | |
Br3 | 0.25365 (6) | 0.5000 | 0.03902 (7) | 0.01354 (16) | |
C1 | 0.2714 (4) | 0.6276 (5) | 0.3848 (5) | 0.0140 (11) | |
H1A | 0.2128 | 0.6348 | 0.3263 | 0.017* | |
H1B | 0.3132 | 0.7093 | 0.3686 | 0.017* | |
C2 | 0.2391 (4) | 0.6259 (4) | 0.5301 (6) | 0.0138 (10) | |
H2A | 0.2977 | 0.6263 | 0.5890 | 0.017* | |
H2B | 0.2001 | 0.7095 | 0.5497 | 0.017* | |
C3 | 0.1412 (5) | 0.5000 | 0.6985 (7) | 0.0189 (16) | |
H3A | 0.1014 | 0.4149 | 0.7140 | 0.028* | |
H3B | 0.1974 | 0.5000 | 0.7625 | 0.028* | |
N1 | 0.3276 (4) | 0.5000 | 0.3497 (6) | 0.0125 (13) | |
H1N | 0.3408 | 0.5000 | 0.2603 | 0.015* | |
H2N | 0.3859 | 0.5000 | 0.3944 | 0.015* | |
N2 | 0.1782 (4) | 0.5000 | 0.5586 (6) | 0.0112 (12) | |
H3N | 0.1205 | 0.5000 | 0.4965 | 0.013* | |
O1 | 0.5000 | 0.5000 | 0.5110 (6) | 0.0149 (16) | |
H1O | 0.5000 | 0.5749 | 0.5620 | 0.018* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cs1 | 0.0133 (4) | 0.0096 (3) | 0.0102 (3) | 0.000 | 0.000 | 0.000 |
Cs2 | 0.0146 (3) | 0.0134 (3) | 0.0105 (3) | 0.000 | 0.000 | 0.000 |
Br1 | 0.0155 (4) | 0.0110 (3) | 0.0138 (3) | 0.000 | 0.000 | 0.0029 (3) |
Br2 | 0.0193 (4) | 0.0128 (3) | 0.0133 (3) | 0.000 | 0.000 | −0.0001 (3) |
Br3 | 0.0143 (3) | 0.0140 (3) | 0.0123 (4) | 0.000 | −0.0017 (3) | 0.000 |
C1 | 0.015 (3) | 0.009 (2) | 0.018 (3) | 0.001 (2) | 0.001 (2) | 0.003 (2) |
C2 | 0.017 (3) | 0.009 (2) | 0.016 (2) | 0.002 (2) | 0.000 (2) | 0.001 (3) |
C3 | 0.021 (4) | 0.026 (4) | 0.009 (3) | 0.000 | 0.003 (4) | 0.000 |
N1 | 0.010 (3) | 0.016 (3) | 0.012 (3) | 0.000 | 0.001 (2) | 0.000 |
N2 | 0.012 (3) | 0.012 (3) | 0.010 (3) | 0.000 | 0.001 (2) | 0.000 |
O1 | 0.022 (4) | 0.007 (3) | 0.016 (4) | 0.000 | 0.000 | 0.000 |
Geometric parameters (Å, º) top Cs1—Br1i | 3.5319 (9) | C1—C2 | 1.515 (7) |
Cs1—Br1ii | 3.5319 (9) | C1—H1A | 0.9900 |
Cs1—Br1iii | 3.5873 (10) | C1—H1B | 0.9900 |
Cs1—Br1 | 3.5873 (10) | C2—N2 | 1.505 (6) |
Cs1—Br3iii | 3.5105 (11) | C2—H2A | 0.9900 |
Cs1—Br3 | 3.5105 (11) | C2—H2B | 0.9900 |
Cs2—Br2iv | 3.4923 (10) | C3—N2 | 1.484 (9) |
Cs2—Br2 | 3.4923 (10) | C3—H3A | 1.0011 |
Cs2—Br2v | 3.4790 (9) | C3—H3B | 0.9961 |
Cs2—Br2ii | 3.4790 (9) | N1—C1vii | 1.499 (6) |
Cs2—Br3 | 3.4627 (11) | N1—H1N | 0.9100 |
Cs2—Br3iv | 3.4627 (11) | N1—H2N | 0.9100 |
Br1—Cs1vi | 3.5319 (9) | N2—C2vii | 1.505 (6) |
Br2—Cs2vi | 3.4790 (9) | N2—H3N | 1.0000 |
C1—N1 | 1.499 (6) | O1—H1O | 0.8883 |
| | | |
Br3iii—Cs1—Br3 | 159.07 (3) | Cs1vi—Br1—Cs1 | 156.07 (2) |
Br3iii—Cs1—Br1i | 84.218 (9) | Cs2vi—Br2—Cs2 | 174.97 (3) |
Br3—Cs1—Br1i | 84.219 (9) | Cs2—Br3—Cs1 | 175.99 (3) |
Br3iii—Cs1—Br1ii | 84.218 (9) | N1—C1—C2 | 111.3 (4) |
Br3—Cs1—Br1ii | 84.219 (9) | N1—C1—H1A | 109.4 |
Br1i—Cs1—Br1ii | 112.63 (3) | C2—C1—H1A | 109.4 |
Br3iii—Cs1—Br1iii | 98.823 (12) | N1—C1—H1B | 109.4 |
Br3—Cs1—Br1iii | 98.822 (12) | C2—C1—H1B | 109.4 |
Br1i—Cs1—Br1iii | 156.07 (2) | H1A—C1—H1B | 108.0 |
Br1ii—Cs1—Br1iii | 91.305 (15) | N2—C2—C1 | 110.4 (4) |
Br3iii—Cs1—Br1 | 98.823 (12) | N2—C2—H2A | 109.6 |
Br3—Cs1—Br1 | 98.822 (13) | C1—C2—H2A | 109.6 |
Br1i—Cs1—Br1 | 91.305 (15) | N2—C2—H2B | 109.6 |
Br1ii—Cs1—Br1 | 156.07 (2) | C1—C2—H2B | 109.6 |
Br1iii—Cs1—Br1 | 64.76 (3) | H2A—C2—H2B | 108.1 |
Br3—Cs2—Br3iv | 151.06 (3) | N2—C3—H3A | 109.2 |
Br3—Cs2—Br2v | 99.854 (11) | N2—C3—H3B | 110.0 |
Br3iv—Cs2—Br2v | 99.854 (11) | H3A—C3—H3B | 108.5 |
Br3—Cs2—Br2ii | 99.854 (11) | C1vii—N1—C1 | 111.7 (5) |
Br3iv—Cs2—Br2ii | 99.854 (11) | C1vii—N1—H1N | 109.3 |
Br2v—Cs2—Br2ii | 93.55 (3) | C1—N1—H1N | 109.3 |
Br3—Cs2—Br2iv | 79.254 (13) | C1vii—N1—H2N | 109.3 |
Br3iv—Cs2—Br2iv | 79.255 (13) | C1—N1—H2N | 109.3 |
Br2v—Cs2—Br2iv | 174.97 (3) | H1N—N1—H2N | 107.9 |
Br2ii—Cs2—Br2iv | 91.485 (16) | C3—N2—C2 | 111.4 (4) |
Br3—Cs2—Br2 | 79.254 (13) | C3—N2—C2vii | 111.4 (4) |
Br3iv—Cs2—Br2 | 79.255 (13) | C2—N2—C2vii | 108.8 (5) |
Br2v—Cs2—Br2 | 91.485 (16) | C3—N2—H3N | 108.4 |
Br2ii—Cs2—Br2 | 174.97 (3) | C2—N2—H3N | 108.4 |
Br2iv—Cs2—Br2 | 83.48 (3) | C2vii—N2—H3N | 108.4 |
| | | |
N1—C1—C2—N2 | −57.1 (6) | C1—C2—N2—C3 | −176.9 (4) |
C2—C1—N1—C1vii | 53.6 (7) | C1—C2—N2—C2vii | 60.0 (7) |
Symmetry codes: (i) −x, −y+1/2, z−1/2; (ii) x, y+1/2, z−1/2; (iii) −x, −y+1, z; (iv) −x+1, −y+1, z; (v) −x+1, −y+1/2, z−1/2; (vi) x, y−1/2, z+1/2; (vii) x, −y+1, z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
N1—H2N···O1 | 0.91 | 1.94 | 2.845 (7) | 173 |
N1—H1N···Br3 | 0.91 | 2.51 | 3.259 (6) | 140 |
N2—H3N···Br1 | 1.00 | 2.68 | 3.446 (5) | 134 |
N2—H3N···Br1iii | 1.00 | 2.68 | 3.446 (5) | 134 |
O1—H1O···Br2viii | 0.89 | 2.36 | 3.242 (4) | 175 |
C1—H1A···Br1iii | 0.99 | 3.07 | 3.762 (5) | 128 |
C1—H1B···Br2iv | 0.99 | 2.99 | 3.712 (5) | 131 |
C2—H2B···Br1iii | 0.99 | 3.08 | 3.550 (5) | 111 |
C2—H2B···Br3viii | 0.99 | 2.92 | 3.643 (4) | 131 |
C3—H3B···Br3ix | 1.00 | 2.86 | 3.726 (7) | 145 |
Symmetry codes: (iii) −x, −y+1, z; (iv) −x+1, −y+1, z; (viii) x, y+1/2, z+1/2; (ix) x, y, z+1. |
Summary of hybrid perovskite structures based on AX3 alkali-metal–halide octahedral networks topCode/refcode | Formula | Space group | Reference |
(I) | C5H14N2·KBr3·0.5H2O | Amm2 | This work |
(II) | C5H14N2·RbBr3·0.5H2O | Amm2 | This work |
(III) | C5H14N2·CsBr3·0.5H2O | Amm2 | This work |
GUYMIX | C4H12N2·KCl3·H2O | Pbcm | Paton & Harrison (2010) |
GUYMOD | C4H12N2·RbCl3·H2O | Pbcm | Paton & Harrison (2010) |
GUYMUJ | C4H12N2·CsCl3·H2O | Pbcm | Paton & Harrison (2010) |
MOMLEI | C4H12N2·KBr3·H2O | Pbcm | Harrison (2019a) |
MOMSEP | C4H12N2·RbBr3·H2O | Pbcm | Harrison (2019b) |
FIZYIZ | C6H14N2·KBr3 | P3121 | Hongzhang (2019) |
GUYNEU | C6H14N2·RbCl3 | P3221 | Paton & Harrison (2010) |
HEJGUB | C6H14N2·RbBr3 | P3221 | Zhang et al. (2017) |
GUYNEU02a | C6H14N2·RbCl3 | Pm3m | Zhang et al. (2017) |
HEJGUB01 | aC6H14N2·RbBr3 | Pm3m | Zhang et al. (2017) |
GUYNIY | C6H14N2·CsCl3 | C2/c | Paton & Harrison (2010) |
HEJGOV | C7H16N2·RbI3 | P432 | Zhang et al. (2017) |
HEJGOV01 | C7H16N2.RbI3 | R3 | Zhang et al. (2017) |
GEFLOV | C4H12N2·RbBr3 | Ia | Pan et al. (2017) |
GEFLOV01a | C4H12N2.RbBr3 | Pm3m | Pan et al. (2017) |
MEXMAG | C4H12N2·NaI3 | C2/c | Chen et al. (2018) |
Redetermined structures not included. Note: (a) high-temperature polymorph. |
References
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Chen, X.-G., Gao, J.-X., Hua, X.-N. & Liao, W.-Q. (2018). Acta Cryst. C74, 728–733. CSD CrossRef IUCr Journals Google Scholar
Dennington, A. J. & Weller, M. T. (2018). Dalton Trans. 47, 3469–3484. CSD CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harrison, W. T. A. (2019a). Private communication (refcode MOMLEI). CCDC, Cambridge, England. Google Scholar
Harrison, W. T. A. (2019b). Private communication (refcode MOMSEP). CCDC, Cambridge, England. Google Scholar
Heacock, R. A. & Marion, L. (1956). Can. J. Chem. 34, 1782–1795. CrossRef CAS Google Scholar
Hongzhang (2019). Private communication (refcode FIZYIZ). CCDC, Cambridge, England. Google Scholar
Megaw, H. D. (1973). Crystal Structures: a Working Approach. Philadelphia: Saunders. Google Scholar
Pan, Q., Liu, Z. B., Tang, Y. Y., Li, P. F., Ma, R. W., Wei, R. Y., Zhang, Y., You, Y. M., Ye, H. Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 3954–3957. Web of Science CSD CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Paton, L. A. & Harrison, W. T. (2010). Angew. Chem. Int. Ed. 49, 7684–7687. CSD CrossRef CAS Google Scholar
Rigaku (2017). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. CrossRef PubMed CAS Web of Science Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoumpos, C. C., Cao, D. H., Clark, D. J., Young, J., Rondinelli, J. M., Jang, J. I., Hupp, J. T. & Kanatzidis, M. G. (2016). Chem. Mater. 28, 2852–2867. CSD CrossRef CAS Google Scholar
Stylianakis, M. M., Maksuov, T., Panagiotopoulos, A., Kakavelakis, G. & Petridis, K. (2019). Materials, 12, article 859 (28 pages). CrossRef Google Scholar
Tilley, R. J. D. (2016). Perovskites: Structure–Property Relationships. New York: Wiley. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Woodward, P. M. (1997). Acta Cryst. B53, 32–43. CrossRef CAS Web of Science IUCr Journals Google Scholar
Xu, W.-J., Kopyl, S., Kholkin, A. & Rocha, J. (2019). Coord. Chem. Rev. 387, 398–414. CrossRef CAS Google Scholar
Zhang, W. Y., Tang, Y. Y., Li, P. F., Shi, P. P., Liao, W. Q., Fu, D. W., Ye, H. Y., Zhang, Y. & Xiong, R. G. (2017). J. Am. Chem. Soc. 139, 10897–10902. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zuo, T. T., He, X. X., Hu, P. & Jiang, H. (2019). Chemnanomat, 5, 278–289. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access