research communications
Crystal structures and Hirshfeld surface analyses of the two isotypic compounds (E)-1-(4-bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene and (E)-1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene
aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of , Cameroon
*Correspondence e-mail: toflavien@yahoo.fr
In the two isotypic title compounds, C14H8BrCl2N3O2, (I), and C14H8Cl3N3O2, (II), the substitution of one of the phenyl rings is different [Br for (I) and Cl for (II)]. Aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Molecules are linked through weak X⋯Cl contacts [X = Br for (I) and Cl for (II)], C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. Additional van der Waals interactions consolidate the three-dimensional packing. Hirshfeld surface analysis of the crystal structures indicates that the most important contributions for the crystal packing for (I) are from C⋯H/H⋯C (16.1%), O⋯H/H⋯O (13.1%), Cl⋯H/H⋯Cl (12.7%), H⋯H (11.4%), Br⋯H/H⋯Br (8.9%), N⋯H/H⋯N (6.9%) and Cl⋯C/C⋯Cl (6.6%) interactions, and for (II), from Cl⋯H / H⋯Cl (21.9%), C⋯H/H⋯C (15.3%), O⋯H/H⋯O (13.4%), H⋯H (11.5%), Cl⋯C/C⋯Cl (8.3%), N⋯H/H⋯N (7.0%) and Cl⋯Cl (5.9%) interactions. The crystal of (I) studied was refined as an the ratio of components being 0.9917 (12):0.0083 (12).
1. Chemical context
Compounds with azo/hydrazone moieties are ubiquitous in various fields, ranging from organic/inorganic synthesis, catalysis, and medicinal chemistry to material chemistry. They are used as dyes, ligands, solvatochromic materials, molecular switches, or analytical reagents amongst other applications (Akbari et al., 2017; Asadov et al., 2016; Gurbanov et al., 2018; Kopylovich et al., 2011; Ma et al., 2017; Mahmoudi et al., 2018; Mahmudov et al., 2014, 2019).
The non-covalent donor/acceptor properties of azo/hydrazones depend strongly on the attached functional groups (Shixaliyev et al., 2013, 2014, 2018). In a previous study we have attached halogen atoms to dye molecules, which led to halogen bonding (Maharramov et al., 2018; Shixaliyev et al., 2018). In a continuation of our work in this direction, we have now synthesized two new azo dyes, (E)-1-(4-bromophenyl)-2-(2,2-dichloro-1-(4-nitrophenyl)vinyl)diazene (I) and (E)-1-(4-chlorophenyl)-2-(2,2-dichloro-1-(4-nitrophenyl)vinyl)diazene (II), and report here their molecular and crystal structures.
2. Structural commentary
Compounds (I) and (II) are isotypic. Their molecular structures (Figs. 1 and 2) are not planar. For the bromo-substituted compound (I), the dihedral angle between the essentially planar 4-bromophenyl ring C1–C6 [maximum deviation = 0.015 (6) Å at atom C5] and the nitro-substituted benzene ring C9–C14 [maximum deviation = −0.009 (4) Å at atom C9] is 60.9 (2)°, for the chloro-substituted compound (II) the corresponding value is 64.1 (2)°. The torsion angles involving the central diazene group amount to 18.3 (6)° for C2—C1—N1—N2, −179.1 (3)° for C1—N1—N2—C7, and 175.4 (4)° for N1—N2—C7—C8 for (I). The corresponding values for (II) are −17.0 (5)°, 179.0 (3)° and 175.4 (4)°, respectively. The bond lengths and angles are within normal ranges and are comparable to those in the related structures detailed in the Database survey.
3. Supramolecular features and Hirshfeld surface analysis
As a result of the isotypism of (I) and (II), the packing features are generally very similar in the two structures. Molecules are linked by weak Br⋯Cl contacts [for (I)] or Cl⋯Cl contacts [for (II)] and C—H⋯Cl interactions into chains extending along the a-axis direction (Tables 1–3; Figs. 3 and 4). Additional C—Cl⋯π interactions lead to the formation of sheets parallel to the ab plane (Fig. 5). van der Waals interactions (Table 3) consolidate the three-dimensional packing.
|
|
|
Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was used to investigate the intermolecular interactions in the crystal structures of both compounds (CrystalExplorer3.1; Wolff et al., 2012). The surface plots (Spackman et al., 2008) mapped over dnorm were generated to quantify and visualize the intermolecular interactions and to explain the observed crystal packing. Dark-red spots on the dnorm surface arise as a result of short interatomic contacts (Tables 1–3), while the other weaker intermolecular interactions appear as light-red spots.
For (I), the red points, which represent closer contacts and negative dnorm values on the surface, correspond to the C—H⋯O interactions. The reciprocal O⋯H/H⋯O interactions appear as two symmetrical broad wings in the two-dimensional fingerprint plots with de + di ≃ 2.5 Å and contribute 13.1% to the Hirshfeld surface (Fig. 6b). The reciprocal Cl⋯H/H⋯Cl interaction with a contribution of 13.8% is present as sharp symmetrical spikes at de + di ≃ 2.8 Å (Fig. 6c).
For (II), the percentage contributions of various contacts to the total Hirshfeld surface are shown in the two-dimensional fingerprint plots in Fig. 7. The reciprocal Cl⋯H/H⋯Cl interactions appear as two symmetrical broad wings with de + di ≃ 2.9 Å and contribute 21.9% to the Hirshfeld surface (Fig. 7b). The reciprocal C⋯H/H⋯C and O⋯H/H⋯O interactions (15.3, 13.4% contributions, respectively) are present as sharp symmetrical spikes at de + di ≃ 2.95 and 2.5 Å, respectively (Fig. 7c–d). The small percentage contributions of both compounds to the Hirshfeld surfaces from the various other interatomic contacts are comparatively listed in Table 4. Although there is almost agreement on the values given for the molecules of (I) and (II), some differences are due to the different halogen atoms substituting the phenyl ring and the different molecular environment in the crystal structures.
|
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016) for structures having an (E)-1-(2,2-dichloro-1-phenylvinyl)-2-phenyldiazene unit gave 23 hits. Four compounds closely resemble the title compound, viz. 1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]diazene (CSD refcode HODQAV; Shikhaliyev et al., 2019), 1-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]-2-(4-fluorophenyl)diazene (XIZREG; Atioğlu et al., 2019), 1,1-[methylenebis(4,1-phenylene)]bis[(2, 2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (LEQXIR; Shixaliyev et al., 2018), 1,1-[methylenebis(4,1-phenylene)]bis{[2,2-dichloro-1-(4-chlorophenyl)ethenyl]diazene} (LEQXOX; Shixaliyev et al., 2018),
In the crystal of HODQAV, molecules are stacked in columns along the a axis via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further stabilized by short Cl⋯Cl contacts. In XIZREG, molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In the crystal of LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and Cl⋯O contacts were found, and in LEQXOX, C—H⋯N and Cl⋯Cl contacts are observed.
5. Synthesis and crystallization
Dyes (I) and (II) were synthesized according to a literature protocol (Shixaliyev et al., 2018). For (I), a 20 ml screw neck vial was charged with DMSO (10 ml), (E)-1-(4-bromophenyl)-2-(4-nitrobenzylidene)hydrazine (320 mg, 1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv.). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into 0.01 M solution of HCl (100 ml, pH ∼2-3), and extracted with dichloromethane (3 × 20 ml). The organic phases were combined and washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo in a rotary evaporator. The residue was purified by on silica gel using appropriate mixtures of hexane and dichloromethane (v/v: 3/1–1/1). An orange solid was obtained (yield 58%); mp 418 K. Analysis calculated for C14H8BrCl2N3O2 (M = 401.04): C, 41.93; H, 2.01; N, 10.48; found: C, 41.87; H, 2.03; N, 10.39%. 1H NMR (300 MHz, CDCl3) δ 8.30 (d, 2H, J = 9.02 Hz), 7.65–7.56 (m, 4H), 7.38 (d, 2H, J = 9.24Hz). 13C NMR (75 MHz, CDCl3) δ 151.26, 150.60, 147.97, 139.21, 137.18, 132.49, 131.28, 126.83, 124.72, 123.44. ESI–MS: m/z: 402.08 [M + H]+.
For (II), the procedure was the same as that for (I) using (E)-1-(4-chloroophenyl)-2-(4-nitrobenzylidene)hydrazine (276 mg, 1 mmol). An orange solid was obtained (yield 64%); mp 448 K. Analysis calculated for C14H8Cl3N3O2 (M = 356.59): C, 47.16; H, 2.26; N, 11.78; found: C, 47.09; H, 2.23; N, 11.65%. 1H NMR (300 MHz, CDCl3) δ 8.32–7.37 (8H, Ar). 13C NMR (75 MHz, CDCl3) δ 150.91, 150.55, 147.98, 139.28, 138.22, 137.02, 131.24, 129.49, 124.52, 123.44. ESI–MS: m/z: 357.70 [M + H]+.
Compounds (I) and (II) were dissolved in dichloromethane and then left at room temperature for slow evaporation; orange crystals of both compounds suitable for X-rays started to form after ca 2 d.
6. Refinement
Crystal data collection and structure . C-bound H atoms were constrained to ideal values with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The crystal of (I) studied was refined as an the ratio of components being 0.9917 (12):0.0083 (12).
details are summarized in Table 5Supporting information
https://doi.org/10.1107/S2056989019010004/wm5507sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019010004/wm5507Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019010004/wm5507IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019010004/wm5507Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019010004/wm5507IIsup5.cml
For both structures, data collection: APEX3 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C14H8BrCl2N3O2 | Dx = 1.694 Mg m−3 |
Mr = 401.04 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 8656 reflections |
a = 13.9181 (7) Å | θ = 2.9–27.0° |
b = 13.4336 (6) Å | µ = 2.96 mm−1 |
c = 8.4080 (4) Å | T = 296 K |
V = 1572.05 (13) Å3 | Plate, orange |
Z = 4 | 0.19 × 0.14 × 0.08 mm |
F(000) = 792 |
Bruker APEXII CCD diffractometer | 2811 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.057 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 27.1°, θmin = 2.9° |
Tmin = 0.608, Tmax = 0.784 | h = −17→17 |
23012 measured reflections | k = −14→17 |
3429 independent reflections | l = −10→10 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0253P)2 + 0.7719P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.081 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 0.31 e Å−3 |
3429 reflections | Δρmin = −0.50 e Å−3 |
200 parameters | Absolute structure: Refined as an inversion twin |
1 restraint | Absolute structure parameter: 0.008 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4004 (2) | 0.5082 (3) | 0.5333 (5) | 0.0393 (8) | |
C2 | 0.3711 (3) | 0.4164 (3) | 0.4764 (6) | 0.0478 (10) | |
H2 | 0.309463 | 0.408665 | 0.435584 | 0.057* | |
C3 | 0.4334 (3) | 0.3360 (3) | 0.4803 (6) | 0.0545 (11) | |
H3 | 0.414420 | 0.274430 | 0.440786 | 0.065* | |
C4 | 0.5228 (3) | 0.3483 (3) | 0.5428 (6) | 0.0481 (9) | |
C5 | 0.5526 (3) | 0.4381 (4) | 0.6048 (7) | 0.0582 (13) | |
H5 | 0.613115 | 0.444124 | 0.650896 | 0.070* | |
C6 | 0.4915 (3) | 0.5191 (3) | 0.5976 (6) | 0.0539 (12) | |
H6 | 0.511337 | 0.580727 | 0.635893 | 0.065* | |
C7 | 0.1912 (2) | 0.6569 (2) | 0.5030 (5) | 0.0378 (8) | |
C8 | 0.0975 (3) | 0.6351 (3) | 0.4948 (6) | 0.0477 (10) | |
C9 | 0.2272 (3) | 0.7616 (2) | 0.5010 (5) | 0.0345 (7) | |
C10 | 0.2658 (3) | 0.8034 (3) | 0.6372 (5) | 0.0437 (9) | |
H10 | 0.270870 | 0.765504 | 0.729433 | 0.052* | |
C11 | 0.2966 (3) | 0.9009 (3) | 0.6369 (5) | 0.0442 (9) | |
H11 | 0.321785 | 0.929565 | 0.728509 | 0.053* | |
C12 | 0.2896 (2) | 0.9547 (3) | 0.4988 (5) | 0.0374 (8) | |
C13 | 0.2538 (4) | 0.9149 (3) | 0.3622 (5) | 0.0511 (11) | |
H13 | 0.250600 | 0.952658 | 0.269651 | 0.061* | |
C14 | 0.2221 (3) | 0.8170 (3) | 0.3637 (5) | 0.0491 (10) | |
H14 | 0.197279 | 0.788772 | 0.271406 | 0.059* | |
N1 | 0.3411 (2) | 0.5954 (2) | 0.5291 (5) | 0.0427 (7) | |
N2 | 0.2537 (2) | 0.5747 (2) | 0.5107 (4) | 0.0403 (7) | |
N3 | 0.3201 (2) | 1.0595 (2) | 0.4987 (5) | 0.0483 (8) | |
O1 | 0.3418 (3) | 1.0978 (3) | 0.6245 (5) | 0.0769 (11) | |
O2 | 0.3240 (4) | 1.1036 (3) | 0.3734 (5) | 0.0863 (14) | |
Cl1 | 0.05489 (8) | 0.51572 (8) | 0.4988 (2) | 0.0743 (4) | |
Cl2 | 0.00955 (8) | 0.72322 (9) | 0.4870 (2) | 0.0713 (4) | |
Br1 | 0.60741 (4) | 0.23804 (4) | 0.54965 (11) | 0.0809 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0435 (18) | 0.0297 (16) | 0.045 (2) | 0.0001 (13) | 0.0007 (18) | 0.0047 (18) |
C2 | 0.045 (2) | 0.038 (2) | 0.060 (3) | −0.0022 (16) | −0.0050 (19) | −0.007 (2) |
C3 | 0.060 (3) | 0.0298 (19) | 0.074 (3) | −0.0012 (17) | −0.002 (2) | −0.006 (2) |
C4 | 0.051 (2) | 0.0365 (18) | 0.057 (3) | 0.0094 (15) | 0.006 (2) | 0.008 (2) |
C5 | 0.043 (2) | 0.046 (3) | 0.085 (4) | 0.0025 (18) | −0.010 (2) | 0.002 (2) |
C6 | 0.048 (2) | 0.036 (2) | 0.077 (3) | −0.0035 (16) | −0.011 (2) | −0.003 (2) |
C7 | 0.0440 (18) | 0.0276 (15) | 0.042 (2) | 0.0021 (14) | 0.0025 (17) | 0.0016 (16) |
C8 | 0.046 (2) | 0.0290 (18) | 0.068 (3) | −0.0009 (14) | 0.005 (2) | −0.0031 (18) |
C9 | 0.0358 (17) | 0.0277 (16) | 0.0399 (19) | 0.0020 (12) | 0.0015 (15) | 0.0014 (16) |
C10 | 0.058 (3) | 0.035 (2) | 0.038 (2) | −0.0045 (18) | −0.0006 (18) | 0.0050 (17) |
C11 | 0.056 (2) | 0.038 (2) | 0.039 (2) | −0.0060 (18) | −0.0025 (18) | −0.0039 (17) |
C12 | 0.0395 (17) | 0.0273 (16) | 0.045 (2) | 0.0006 (13) | 0.0045 (17) | 0.0003 (17) |
C13 | 0.069 (3) | 0.039 (2) | 0.046 (2) | −0.004 (2) | −0.006 (2) | 0.0098 (18) |
C14 | 0.065 (3) | 0.041 (2) | 0.041 (2) | −0.007 (2) | −0.009 (2) | 0.0037 (18) |
N1 | 0.0446 (16) | 0.0288 (14) | 0.055 (2) | −0.0015 (11) | 0.0023 (16) | 0.0018 (15) |
N2 | 0.0437 (15) | 0.0280 (13) | 0.0493 (19) | 0.0012 (12) | 0.0009 (15) | 0.0017 (14) |
N3 | 0.0564 (19) | 0.0302 (16) | 0.058 (2) | −0.0046 (14) | 0.0018 (19) | 0.0012 (18) |
O1 | 0.119 (3) | 0.041 (2) | 0.071 (2) | −0.022 (2) | −0.004 (2) | −0.0088 (18) |
O2 | 0.142 (4) | 0.044 (2) | 0.074 (3) | −0.028 (2) | −0.011 (2) | 0.0190 (19) |
Cl1 | 0.0508 (6) | 0.0360 (5) | 0.1362 (12) | −0.0104 (4) | 0.0112 (8) | −0.0047 (7) |
Cl2 | 0.0438 (5) | 0.0440 (6) | 0.1260 (13) | 0.0068 (4) | 0.0004 (7) | −0.0025 (7) |
Br1 | 0.0781 (3) | 0.0554 (3) | 0.1093 (5) | 0.0306 (2) | 0.0097 (4) | 0.0087 (4) |
C1—C2 | 1.384 (5) | C8—Cl1 | 1.710 (4) |
C1—C6 | 1.385 (6) | C9—C14 | 1.376 (6) |
C1—N1 | 1.434 (4) | C9—C10 | 1.384 (6) |
C2—C3 | 1.386 (6) | C10—C11 | 1.378 (6) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.361 (6) | C11—C12 | 1.371 (6) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.377 (6) | C12—C13 | 1.361 (6) |
C4—Br1 | 1.893 (4) | C12—N3 | 1.470 (4) |
C5—C6 | 1.384 (6) | C13—C14 | 1.387 (6) |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C6—H6 | 0.9300 | C14—H14 | 0.9300 |
C7—C8 | 1.338 (5) | N1—N2 | 1.257 (4) |
C7—N2 | 1.407 (4) | N3—O2 | 1.209 (5) |
C7—C9 | 1.493 (4) | N3—O1 | 1.214 (5) |
C8—Cl2 | 1.705 (4) | ||
C2—C1—C6 | 120.0 (4) | C14—C9—C10 | 119.7 (3) |
C2—C1—N1 | 123.3 (3) | C14—C9—C7 | 120.1 (3) |
C6—C1—N1 | 116.7 (3) | C10—C9—C7 | 120.2 (3) |
C1—C2—C3 | 120.1 (4) | C11—C10—C9 | 120.3 (4) |
C1—C2—H2 | 120.0 | C11—C10—H10 | 119.8 |
C3—C2—H2 | 120.0 | C9—C10—H10 | 119.8 |
C4—C3—C2 | 119.1 (4) | C12—C11—C10 | 118.7 (4) |
C4—C3—H3 | 120.4 | C12—C11—H11 | 120.6 |
C2—C3—H3 | 120.4 | C10—C11—H11 | 120.6 |
C3—C4—C5 | 121.9 (4) | C13—C12—C11 | 122.2 (3) |
C3—C4—Br1 | 119.0 (3) | C13—C12—N3 | 118.8 (4) |
C5—C4—Br1 | 119.1 (3) | C11—C12—N3 | 119.0 (4) |
C4—C5—C6 | 119.1 (4) | C12—C13—C14 | 118.8 (4) |
C4—C5—H5 | 120.4 | C12—C13—H13 | 120.6 |
C6—C5—H5 | 120.4 | C14—C13—H13 | 120.6 |
C5—C6—C1 | 119.8 (4) | C9—C14—C13 | 120.3 (4) |
C5—C6—H6 | 120.1 | C9—C14—H14 | 119.9 |
C1—C6—H6 | 120.1 | C13—C14—H14 | 119.9 |
C8—C7—N2 | 115.7 (3) | N2—N1—C1 | 112.3 (3) |
C8—C7—C9 | 122.2 (3) | N1—N2—C7 | 115.5 (3) |
N2—C7—C9 | 122.2 (3) | O2—N3—O1 | 122.7 (3) |
C7—C8—Cl2 | 123.3 (3) | O2—N3—C12 | 118.8 (4) |
C7—C8—Cl1 | 122.8 (3) | O1—N3—C12 | 118.5 (4) |
Cl2—C8—Cl1 | 113.8 (2) | ||
C6—C1—C2—C3 | −1.5 (7) | C7—C9—C10—C11 | −178.3 (4) |
N1—C1—C2—C3 | 178.2 (4) | C9—C10—C11—C12 | −0.9 (7) |
C1—C2—C3—C4 | 1.0 (7) | C10—C11—C12—C13 | −0.4 (7) |
C2—C3—C4—C5 | 1.1 (8) | C10—C11—C12—N3 | 178.4 (4) |
C2—C3—C4—Br1 | 179.5 (4) | C11—C12—C13—C14 | 1.0 (7) |
C3—C4—C5—C6 | −2.7 (8) | N3—C12—C13—C14 | −177.9 (4) |
Br1—C4—C5—C6 | 179.0 (4) | C10—C9—C14—C13 | −1.2 (7) |
C4—C5—C6—C1 | 2.1 (8) | C7—C9—C14—C13 | 178.8 (4) |
C2—C1—C6—C5 | 0.0 (7) | C12—C13—C14—C9 | −0.1 (7) |
N1—C1—C6—C5 | −179.8 (4) | C2—C1—N1—N2 | 18.3 (6) |
N2—C7—C8—Cl2 | 179.2 (3) | C6—C1—N1—N2 | −161.9 (4) |
C9—C7—C8—Cl2 | −1.9 (7) | C1—N1—N2—C7 | −179.1 (3) |
N2—C7—C8—Cl1 | 1.8 (6) | C8—C7—N2—N1 | −175.4 (4) |
C9—C7—C8—Cl1 | −179.4 (3) | C9—C7—N2—N1 | 5.7 (5) |
C8—C7—C9—C14 | −70.7 (6) | C13—C12—N3—O2 | −9.3 (6) |
N2—C7—C9—C14 | 108.1 (5) | C11—C12—N3—O2 | 171.8 (5) |
C8—C7—C9—C10 | 109.3 (5) | C13—C12—N3—O1 | 171.9 (5) |
N2—C7—C9—C10 | −71.9 (5) | C11—C12—N3—O1 | −7.0 (6) |
C14—C9—C10—C11 | 1.7 (7) |
Cg2 is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···Cl2i | 0.93 | 2.92 | 3.593 (5) | 131 |
C8—Cl2···Cg2ii | 1.71 (1) | 3.66 (1) | 4.710 (5) | 118 (1) |
Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x−1/2, −y+3/2, z. |
C14H8Cl3N3O2 | Dx = 1.528 Mg m−3 |
Mr = 356.58 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 4206 reflections |
a = 13.8689 (7) Å | θ = 2.9–26.4° |
b = 13.3674 (7) Å | µ = 0.60 mm−1 |
c = 8.3620 (5) Å | T = 296 K |
V = 1550.24 (15) Å3 | Prisme, orange |
Z = 4 | 0.17 × 0.14 × 0.07 mm |
F(000) = 720 |
Bruker APEXII CCD diffractometer | 2547 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.038 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 26.4°, θmin = 2.9° |
Tmin = 0.911, Tmax = 0.946 | h = −17→16 |
11687 measured reflections | k = −16→15 |
3156 independent reflections | l = −10→10 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0419P)2 + 0.3296P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.18 e Å−3 |
3156 reflections | Δρmin = −0.25 e Å−3 |
199 parameters | Absolute structure: Flack x determined using 1011 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
1 restraint | Absolute structure parameter: 0.14 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.9044 (2) | 0.0035 (2) | 0.3115 (4) | 0.0400 (8) | |
C2 | 0.8753 (3) | −0.0900 (2) | 0.3650 (5) | 0.0507 (9) | |
H2 | 0.813001 | −0.099076 | 0.403349 | 0.061* | |
C3 | 0.9385 (3) | −0.1694 (2) | 0.3615 (6) | 0.0569 (10) | |
H3 | 0.919592 | −0.231831 | 0.399107 | 0.068* | |
C4 | 1.0294 (3) | −0.1555 (3) | 0.3023 (5) | 0.0532 (10) | |
C5 | 1.0584 (3) | −0.0645 (3) | 0.2434 (6) | 0.0646 (12) | |
H5 | 1.119552 | −0.056954 | 0.199546 | 0.077* | |
C6 | 0.9962 (3) | 0.0155 (3) | 0.2498 (6) | 0.0607 (11) | |
H6 | 1.015836 | 0.077758 | 0.212526 | 0.073* | |
C7 | 0.6941 (2) | 0.1515 (2) | 0.3415 (4) | 0.0376 (7) | |
C8 | 0.6001 (2) | 0.1294 (2) | 0.3491 (6) | 0.0480 (8) | |
C9 | 0.7299 (2) | 0.2569 (2) | 0.3447 (5) | 0.0364 (6) | |
C10 | 0.7644 (3) | 0.3003 (3) | 0.2053 (4) | 0.0464 (9) | |
H10 | 0.766518 | 0.263150 | 0.111319 | 0.056* | |
C11 | 0.7955 (3) | 0.3983 (3) | 0.2056 (4) | 0.0461 (9) | |
H11 | 0.818819 | 0.427923 | 0.112661 | 0.055* | |
C12 | 0.7913 (2) | 0.4511 (2) | 0.3468 (5) | 0.0386 (7) | |
C13 | 0.7591 (3) | 0.4093 (3) | 0.4853 (5) | 0.0530 (10) | |
H13 | 0.757981 | 0.446192 | 0.579602 | 0.064* | |
C14 | 0.7280 (3) | 0.3110 (3) | 0.4834 (5) | 0.0507 (10) | |
H14 | 0.705639 | 0.281565 | 0.577118 | 0.061* | |
N1 | 0.8441 (2) | 0.09023 (19) | 0.3159 (4) | 0.0446 (7) | |
N2 | 0.75630 (18) | 0.06882 (17) | 0.3339 (4) | 0.0408 (6) | |
N3 | 0.8211 (2) | 0.55693 (19) | 0.3468 (5) | 0.0487 (7) | |
O1 | 0.8400 (3) | 0.5963 (2) | 0.2197 (4) | 0.0754 (10) | |
O2 | 0.8259 (3) | 0.6004 (2) | 0.4729 (4) | 0.0879 (13) | |
Cl1 | 1.10869 (9) | −0.25630 (8) | 0.2991 (2) | 0.0857 (4) | |
Cl2 | 0.55690 (6) | 0.00980 (6) | 0.3445 (2) | 0.0727 (3) | |
Cl3 | 0.51218 (7) | 0.21874 (7) | 0.3590 (2) | 0.0751 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0437 (17) | 0.0277 (14) | 0.048 (2) | −0.0013 (12) | −0.0011 (15) | −0.0030 (14) |
C2 | 0.0481 (18) | 0.0381 (16) | 0.066 (2) | −0.0012 (14) | 0.008 (2) | 0.008 (2) |
C3 | 0.062 (2) | 0.0325 (16) | 0.076 (3) | −0.0010 (15) | 0.003 (2) | 0.007 (2) |
C4 | 0.053 (2) | 0.0379 (18) | 0.069 (3) | 0.0094 (15) | −0.0048 (18) | −0.0087 (18) |
C5 | 0.046 (2) | 0.054 (2) | 0.093 (3) | 0.0019 (18) | 0.012 (2) | 0.001 (2) |
C6 | 0.052 (2) | 0.039 (2) | 0.091 (3) | −0.0075 (17) | 0.008 (2) | 0.004 (2) |
C7 | 0.0461 (16) | 0.0271 (13) | 0.0397 (17) | 0.0000 (12) | −0.0005 (18) | −0.0028 (17) |
C8 | 0.0471 (17) | 0.0284 (14) | 0.069 (2) | −0.0008 (13) | −0.004 (2) | 0.0006 (19) |
C9 | 0.0361 (14) | 0.0294 (13) | 0.0437 (17) | 0.0023 (11) | −0.0006 (16) | −0.0014 (19) |
C10 | 0.065 (2) | 0.037 (2) | 0.037 (2) | −0.0058 (17) | 0.0002 (18) | −0.0045 (16) |
C11 | 0.061 (2) | 0.038 (2) | 0.039 (2) | −0.0090 (17) | 0.0010 (17) | 0.0031 (16) |
C12 | 0.0427 (16) | 0.0273 (13) | 0.0458 (18) | −0.0003 (12) | −0.0036 (19) | −0.0010 (19) |
C13 | 0.075 (3) | 0.039 (2) | 0.046 (2) | −0.0076 (19) | 0.0109 (19) | −0.0099 (17) |
C14 | 0.073 (3) | 0.037 (2) | 0.042 (2) | −0.0102 (18) | 0.0089 (19) | −0.0038 (17) |
N1 | 0.0476 (15) | 0.0295 (12) | 0.057 (2) | −0.0009 (11) | 0.0003 (14) | −0.0009 (14) |
N2 | 0.0427 (14) | 0.0313 (12) | 0.0485 (16) | −0.0006 (10) | −0.0025 (15) | −0.0011 (15) |
N3 | 0.0533 (16) | 0.0323 (13) | 0.061 (2) | −0.0051 (12) | 0.001 (2) | 0.002 (2) |
O1 | 0.118 (3) | 0.0418 (17) | 0.067 (2) | −0.0227 (18) | 0.0012 (19) | 0.0106 (17) |
O2 | 0.149 (4) | 0.0453 (19) | 0.069 (2) | −0.028 (2) | 0.013 (2) | −0.0211 (18) |
Cl1 | 0.0767 (7) | 0.0574 (6) | 0.1230 (12) | 0.0296 (5) | −0.0039 (7) | −0.0084 (7) |
Cl2 | 0.0513 (5) | 0.0375 (4) | 0.1292 (10) | −0.0109 (3) | −0.0096 (7) | 0.0036 (7) |
Cl3 | 0.0456 (5) | 0.0450 (5) | 0.1348 (11) | 0.0067 (4) | −0.0006 (7) | 0.0016 (7) |
C1—C6 | 1.383 (5) | C8—Cl3 | 1.708 (3) |
C1—C2 | 1.387 (5) | C9—C14 | 1.368 (5) |
C1—N1 | 1.430 (4) | C9—C10 | 1.387 (5) |
C2—C3 | 1.377 (5) | C10—C11 | 1.379 (5) |
C2—H2 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.366 (6) | C11—C12 | 1.377 (5) |
C3—H3 | 0.9300 | C11—H11 | 0.9300 |
C4—C5 | 1.373 (6) | C12—C13 | 1.362 (6) |
C4—Cl1 | 1.740 (4) | C12—N3 | 1.473 (4) |
C5—C6 | 1.374 (6) | C13—C14 | 1.382 (5) |
C5—H5 | 0.9300 | C13—H13 | 0.9300 |
C6—H6 | 0.9300 | C14—H14 | 0.9300 |
C7—C8 | 1.339 (4) | N1—N2 | 1.259 (4) |
C7—N2 | 1.404 (4) | N3—O2 | 1.207 (5) |
C7—C9 | 1.493 (4) | N3—O1 | 1.214 (4) |
C8—Cl2 | 1.708 (3) | ||
C6—C1—C2 | 119.5 (3) | C14—C9—C10 | 119.9 (3) |
C6—C1—N1 | 117.0 (3) | C14—C9—C7 | 120.5 (3) |
C2—C1—N1 | 123.5 (3) | C10—C9—C7 | 119.6 (3) |
C3—C2—C1 | 120.2 (3) | C11—C10—C9 | 120.3 (3) |
C3—C2—H2 | 119.9 | C11—C10—H10 | 119.9 |
C1—C2—H2 | 119.9 | C9—C10—H10 | 119.9 |
C4—C3—C2 | 119.4 (3) | C12—C11—C10 | 118.4 (3) |
C4—C3—H3 | 120.3 | C12—C11—H11 | 120.8 |
C2—C3—H3 | 120.3 | C10—C11—H11 | 120.8 |
C3—C4—C5 | 121.3 (3) | C13—C12—C11 | 122.2 (3) |
C3—C4—Cl1 | 118.9 (3) | C13—C12—N3 | 119.1 (3) |
C5—C4—Cl1 | 119.7 (3) | C11—C12—N3 | 118.7 (3) |
C4—C5—C6 | 119.4 (4) | C12—C13—C14 | 118.9 (3) |
C4—C5—H5 | 120.3 | C12—C13—H13 | 120.6 |
C6—C5—H5 | 120.3 | C14—C13—H13 | 120.6 |
C5—C6—C1 | 120.2 (4) | C9—C14—C13 | 120.4 (4) |
C5—C6—H6 | 119.9 | C9—C14—H14 | 119.8 |
C1—C6—H6 | 119.9 | C13—C14—H14 | 119.8 |
C8—C7—N2 | 115.3 (3) | N2—N1—C1 | 112.6 (2) |
C8—C7—C9 | 122.1 (3) | N1—N2—C7 | 114.9 (2) |
N2—C7—C9 | 122.7 (3) | O2—N3—O1 | 123.0 (3) |
C7—C8—Cl2 | 123.2 (2) | O2—N3—C12 | 118.5 (3) |
C7—C8—Cl3 | 122.9 (2) | O1—N3—C12 | 118.4 (3) |
Cl2—C8—Cl3 | 113.90 (19) | ||
C6—C1—C2—C3 | 2.1 (7) | C7—C9—C10—C11 | 178.5 (3) |
N1—C1—C2—C3 | −178.0 (4) | C9—C10—C11—C12 | 0.0 (6) |
C1—C2—C3—C4 | −1.1 (7) | C10—C11—C12—C13 | 1.1 (6) |
C2—C3—C4—C5 | −1.3 (7) | C10—C11—C12—N3 | −177.8 (3) |
C2—C3—C4—Cl1 | 179.8 (3) | C11—C12—C13—C14 | −1.1 (6) |
C3—C4—C5—C6 | 2.6 (8) | N3—C12—C13—C14 | 177.7 (3) |
Cl1—C4—C5—C6 | −178.5 (4) | C10—C9—C14—C13 | 0.9 (6) |
C4—C5—C6—C1 | −1.6 (8) | C7—C9—C14—C13 | −178.5 (4) |
C2—C1—C6—C5 | −0.8 (7) | C12—C13—C14—C9 | 0.1 (6) |
N1—C1—C6—C5 | 179.4 (4) | C6—C1—N1—N2 | 162.9 (4) |
N2—C7—C8—Cl2 | −1.8 (6) | C2—C1—N1—N2 | −17.0 (5) |
C9—C7—C8—Cl2 | 179.6 (3) | C1—N1—N2—C7 | 179.0 (3) |
N2—C7—C8—Cl3 | −179.9 (3) | C8—C7—N2—N1 | 175.4 (4) |
C9—C7—C8—Cl3 | 1.4 (6) | C9—C7—N2—N1 | −5.9 (5) |
C8—C7—C9—C14 | 73.1 (5) | C13—C12—N3—O2 | 7.8 (5) |
N2—C7—C9—C14 | −105.4 (4) | C11—C12—N3—O2 | −173.3 (4) |
C8—C7—C9—C10 | −106.3 (5) | C13—C12—N3—O1 | −172.4 (4) |
N2—C7—C9—C10 | 75.2 (5) | C11—C12—N3—O1 | 6.5 (5) |
C14—C9—C10—C11 | −0.9 (6) |
Cg2 is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—Cl3···Cg2i | 1.71 (1) | 3.62 (1) | 4.703 (3) | 120 (1) |
Symmetry code: (i) x−1/2, −y+1/2, z. |
Contact | Distance | Symmetry operation |
compound (I) | ||
H10···Br1 | 3.18 | 1 - x, 1 - y, 1/2 + z |
Br1···Cl1 | 3.5125 (12) | 1/2 + x, 1/2 - y, z |
H2···H11 | 2.54 | 1/2 - x, -1/2 + y, -1/2 + z |
Cl2···H6 | 2.92 | -1/2 + x, 3/2 - y, z |
O2···H3 | 2.68 | x, 1 + y, z |
H13···N2 | 2.73 | 1/2 - x, 1/2 + y, -1/2 + z |
compound (II) | ||
H10···Cl1 | 3.13 | 2 - x, -y, -1/2 + z |
Cl1···Cl2 | 3.4847 (14) | 1/2 + x, -1/2 - y, z |
H2···H11 | 2.56 | 3/2 - x, -1/2 + y, 1/2 + z |
Cl3···H6 | 2.98 | -1/2 + x, 1/2 - y, z |
O2···H3 | 2.66 | x, 1 + y, z |
H13···N2 | 2.69 | 3/2 - x, 1/2 + y, 1/2 + z |
Contact | (I) | (II) |
C···H/H···C | 16.1 | 15.3 |
O···H/H···O | 13.1 | 13.4 |
Cl···H/H···Cl | 12.7 | 21.9 |
H···H | 11.4 | 11.5 |
Br···H/H···Br | 8.9 | – |
N···H/H···N | 6.9 | 7.0 |
Cl···C/C···Cl | 6.6 | 8.3 |
Cl···Br/Br···Cl | 5.2 | – |
Cl···O/O···Cl | 4.9 | 5.8 |
O···C/C···O | 3.8 | 3.9 |
Cl···N/N···Cl | 3.4 | 3.4 |
C···C | 2.1 | 2.3 |
Br···C/C···Br | 1.5 | – |
Br···O/O···Br | 1.2 | – |
N···O/O···N | 1.1 | 1.0 |
Cl···Cl | 1.0 | 5.9 |
N···C/C···N | 0.1 | 0.2 |
Br···N/N···Br | 0.1 | – |
Acknowledgements
Funding for this research was provided by: Science Development Foundation under the President of the Republic of Azerbaijan (grant No. No EİF/ MQM/ Elm-Tehsil-1-2016-1(26)-71/06/4).
Funding information
Funding for this research was provided by: Science Development Foundation under the President of the Republic of Azerbaijan (grant No. No EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/06/4).
References
Akbari, A. F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. PubMed Google Scholar
Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145–153. Web of Science CrossRef CAS Google Scholar
Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). J. Mol. Catal. A Chem. 426, 526–533. CSD CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959–4971. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014). J. Organomet. Chem. 760, 67–73. CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Web of Science CSD CrossRef CAS Google Scholar
Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.