research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analyses of the two isotypic compounds (E)-1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene and (E)-1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az, 1148 Baku, Azerbaijan, and cDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of , Cameroon
*Correspondence e-mail: toflavien@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 May 2019; accepted 12 July 2019; online 19 July 2019)

In the two isotypic title compounds, C14H8BrCl2N3O2, (I), and C14H8Cl3N3O2, (II), the substitution of one of the phenyl rings is different [Br for (I) and Cl for (II)]. Aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Mol­ecules are linked through weak X⋯Cl contacts [X = Br for (I) and Cl for (II)], C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. Additional van der Waals inter­actions consolidate the three-dimensional packing. Hirshfeld surface analysis of the crystal structures indicates that the most important contributions for the crystal packing for (I) are from C⋯H/H⋯C (16.1%), O⋯H/H⋯O (13.1%), Cl⋯H/H⋯Cl (12.7%), H⋯H (11.4%), Br⋯H/H⋯Br (8.9%), N⋯H/H⋯N (6.9%) and Cl⋯C/C⋯Cl (6.6%) inter­actions, and for (II), from Cl⋯H / H⋯Cl (21.9%), C⋯H/H⋯C (15.3%), O⋯H/H⋯O (13.4%), H⋯H (11.5%), Cl⋯C/C⋯Cl (8.3%), N⋯H/H⋯N (7.0%) and Cl⋯Cl (5.9%) inter­actions. The crystal of (I) studied was refined as an inversion twin, the ratio of components being 0.9917 (12):0.0083 (12).

1. Chemical context

Compounds with azo/hydrazone moieties are ubiquitous in various fields, ranging from organic/inorganic synthesis, catal­ysis, and medicinal chemistry to material chemistry. They are used as dyes, ligands, solvatochromic materials, mol­ecular switches, or analytical reagents amongst other applications (Akbari et al., 2017[Akbari, A. F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145-153.]; Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011). Inorg. Chim. Acta, 374, 175-180.]; Ma et al., 2017[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). J. Mol. Catal. A Chem. 426, 526-533.]; Mahmoudi et al., 2018[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959-4971.]; Mahmudov et al., 2014[Mahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014). J. Organomet. Chem. 760, 67-73.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]).

[Scheme 1]

The non-covalent donor/acceptor properties of azo/hydrazones depend strongly on the attached functional groups (Shixaliyev et al., 2013[Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76-79.], 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.], 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). In a previous study we have attached halogen atoms to dye mol­ecules, which led to halogen bonding (Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). In a continuation of our work in this direction, we have now synthesized two new azo dyes, (E)-1-(4-bromo­phen­yl)-2-(2,2-di­chloro-1-(4-nitro­phen­yl)vin­yl)diazene (I)[link] and (E)-1-(4-chloro­phen­yl)-2-(2,2-di­chloro-1-(4-nitro­phen­yl)vin­yl)diazene (II)[link], and report here their mol­ecular and crystal structures.

2. Structural commentary

Compounds (I)[link] and (II)[link] are isotypic. Their mol­ecular structures (Figs. 1[link] and 2[link]) are not planar. For the bromo-substituted compound (I)[link], the dihedral angle between the essentially planar 4-bromo­phenyl ring C1–C6 [maximum deviation = 0.015 (6) Å at atom C5] and the nitro-substituted benzene ring C9–C14 [maximum deviation = −0.009 (4) Å at atom C9] is 60.9 (2)°, for the chloro-substituted compound (II)[link] the corresponding value is 64.1 (2)°. The torsion angles involving the central diazene group amount to 18.3 (6)° for C2—C1—N1—N2, −179.1 (3)° for C1—N1—N2—C7, and 175.4 (4)° for N1—N2—C7—C8 for (I)[link]. The corresponding values for (II)[link] are −17.0 (5)°, 179.0 (3)° and 175.4 (4)°, respectively. The bond lengths and angles are within normal ranges and are comparable to those in the related structures detailed in the Database survey.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link] with displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

As a result of the isotypism of (I)[link] and (II)[link], the packing features are generally very similar in the two structures. Mol­ecules are linked by weak Br⋯Cl contacts [for (I)] or Cl⋯Cl contacts [for (II)] and C—H⋯Cl inter­actions into chains extending along the a-axis direction (Tables 1[link]–3[link][link]; Figs. 3[link] and 4[link]). Additional C—Cl⋯π inter­actions lead to the formation of sheets parallel to the ab plane (Fig. 5[link]). van der Waals inter­actions (Table 3[link]) consolidate the three-dimensional packing.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cl2i 0.93 2.92 3.593 (5) 131
C8—Cl2⋯Cg2ii 1.71 (1) 3.66 (1) 4.710 (5) 118 (1)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Table 2
C—Cl⋯π geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C9–C14 ring.

C—C⋯π C—Cl Cl⋯π C⋯π C—C⋯π
C8—Cl3⋯Cg2i 1.71 (1) 3.62 (1) 4.703 (3) 120 (1)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Table 3
Summary of short inter­atomic contacts (Å) in the crystal structures of compounds (I)[link] and (II)

Contact Distance Symmetry operation
Compound (I)    
H10⋯Br1 3.18 1 − x, 1 − y, [{1\over 2}] + z
Br1⋯Cl1 3.5125 (12) [{1\over 2}] + x, [{1\over 2}] − y, z
H2⋯H11 2.54 [{1\over 2}] − x, −[{1\over 2}] + y, −[{1\over 2}] + z
Cl2⋯H6 2.92 [{1\over 2}] + x, [{3\over 2}] − y, z
O2⋯H3 2.68 x, 1 + y, z
H13⋯N2 2.73 [{1\over 2}] − x, [{1\over 2}] + y, −[{1\over 2}] + z
Compound (II)    
H10⋯Cl1 3.13 2 − x, −y, −[{1\over 2}] + z
Cl1⋯Cl2 3.4847 (14) [{1\over 2}] + x, −[{1\over 2}] − y, z
H2⋯H11 2.56 [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] + z
Cl3⋯H6 2.98 [{1\over 2}] + x, [{1\over 2}] − y, z
O2⋯H3 2.66 x, 1 + y, z
H13⋯N2 2.69 [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] + z
[Figure 3]
Figure 3
Packing in the crystal structure of (I)[link] showing chains running parallel to the a-axis.
[Figure 4]
Figure 4
A view of the packing in (I)[link] along the a axis showing C—H⋯Cl contacts.
[Figure 5]
Figure 5
Formation of sheets in (II)[link] parallel to ab through C—Cl⋯π contacts.

Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was used to investigate the inter­molecular inter­actions in the crystal structures of both compounds (CrystalExplorer3.1; Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.]). The surface plots (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) mapped over dnorm were generated to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing. Dark-red spots on the dnorm surface arise as a result of short inter­atomic contacts (Tables 1[link]–3[link][link]), while the other weaker inter­molecular inter­actions appear as light-red spots.

For (I)[link], the red points, which represent closer contacts and negative dnorm values on the surface, correspond to the C—H⋯O inter­actions. The reciprocal O⋯H/H⋯O inter­actions appear as two symmetrical broad wings in the two-dimensional fingerprint plots with de + di ≃ 2.5 Å and contribute 13.1% to the Hirshfeld surface (Fig. 6[link]b). The reciprocal Cl⋯H/H⋯Cl inter­action with a contribution of 13.8% is present as sharp symmetrical spikes at de + di ≃ 2.8 Å (Fig. 6[link]c).

[Figure 6]
Figure 6
Hirshfeld surface representations and full two-dimensional fingerprint plots for (I)[link], showing (a) all inter­actions, and delineated into (b) C⋯H/H⋯C (c), O⋯H/H⋯O (d), Cl⋯H/H⋯Cl (e), H⋯H (f), Br⋯H/H⋯Br (g), N⋯H/H⋯N and (h) Cl⋯C/C⋯Cl inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.

For (II)[link], the percentage contributions of various contacts to the total Hirshfeld surface are shown in the two-dimensional fingerprint plots in Fig. 7[link]. The reciprocal Cl⋯H/H⋯Cl inter­actions appear as two symmetrical broad wings with de + di ≃ 2.9 Å and contribute 21.9% to the Hirshfeld surface (Fig. 7[link]b). The reciprocal C⋯H/H⋯C and O⋯H/H⋯O inter­actions (15.3, 13.4% contributions, respectively) are present as sharp symmetrical spikes at de + di ≃ 2.95 and 2.5 Å, respectively (Fig. 7[link]cd). The small percentage contributions of both compounds to the Hirshfeld surfaces from the various other inter­atomic contacts are comparatively listed in Table 4[link]. Although there is almost agreement on the values given for the mol­ecules of (I)[link] and (II)[link], some differences are due to the different halogen atoms substituting the phenyl ring and the different mol­ecular environment in the crystal structures.

Table 4
Percentage contributions of inter­atomic contacts to the Hirshfeld surface in the crystal structures of compounds (I)[link] and (II)

Contact (I) (II)
C⋯H/H⋯C 16.1 15.3
O⋯H/H⋯O 13.1 13.4
Cl⋯H/H⋯Cl 12.7 21.9
H⋯H 11.4 11.5
Br⋯H/H⋯Br 8.9
N⋯H/H⋯N 6.9 7.0
Cl⋯C/C⋯Cl 6.6 8.3
Cl⋯Br/Br⋯Cl 5.2
Cl⋯O/O⋯Cl 4.9 5.8
O⋯C/C⋯O 3.8 3.9
Cl⋯N/N⋯Cl 3.4 3.4
C⋯C 2.1 2.3
Br⋯C/C⋯Br 1.5
Br⋯O/O⋯Br 1.2
N⋯O/O⋯N 1.1 1.0
Cl⋯Cl 1.0 5.9
N⋯C/C⋯N 0.1 0.2
Br⋯N/N⋯Br 0.1
[Figure 7]
Figure 7
The Hirshfeld surface representations and the full two-dimensional fingerprint plots for (II)[link], showing (a) all inter­actions, and delineated into (b) Cl⋯H/H⋯Cl, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) H⋯H, (f) Cl⋯C/C⋯Cl, (g) N⋯H/H⋯N and (h) Cl⋯Cl inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures having an (E)-1-(2,2-di­chloro-1-phenyl­vin­yl)-2-phenyl­diazene unit gave 23 hits. Four compounds closely resemble the title compound, viz. 1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]diazene (CSD refcode HODQAV; Shikhaliyev et al., 2019[Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465-469.]), 1-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene (XIZREG; Atioğlu et al., 2019[Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237-241.]), 1,1-[methyl­enebis(4,1-phenyl­ene)]bis­[(2, 2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene (LEQXIR; Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]), 1,1-[methyl­enebis(4,1-phenyl­ene)]bis­{[2,2-di­chloro-1-(4-chloro­phen­yl)ethen­yl]diazene} (LEQXOX; Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]),

In the crystal of HODQAV, mol­ecules are stacked in columns along the a axis via weak C—H⋯Cl hydrogen bonds and face-to-face ππ stacking inter­actions. The crystal packing is further stabilized by short Cl⋯Cl contacts. In XIZREG, mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing is further stabilized by C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In the crystal of LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and Cl⋯O contacts were found, and in LEQXOX, C—H⋯N and Cl⋯Cl contacts are observed.

5. Synthesis and crystallization

Dyes (I)[link] and (II)[link] were synthesized according to a literature protocol (Shixaliyev et al., 2018[Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). For (I)[link], a 20 ml screw neck vial was charged with DMSO (10 ml), (E)-1-(4-bromo­phen­yl)-2-(4-nitro­benzyl­idene)hydrazine (320 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv.). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into 0.01 M solution of HCl (100 ml, pH ∼2-3), and extracted with di­chloro­methane (3 × 20 ml). The organic phases were combined and washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo in a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (v/v: 3/1–1/1). An orange solid was obtained (yield 58%); mp 418 K. Analysis calculated for C14H8BrCl2N3O2 (M = 401.04): C, 41.93; H, 2.01; N, 10.48; found: C, 41.87; H, 2.03; N, 10.39%. 1H NMR (300 MHz, CDCl3) δ 8.30 (d, 2H, J = 9.02 Hz), 7.65–7.56 (m, 4H), 7.38 (d, 2H, J = 9.24Hz). 13C NMR (75 MHz, CDCl3) δ 151.26, 150.60, 147.97, 139.21, 137.18, 132.49, 131.28, 126.83, 124.72, 123.44. ESI–MS: m/z: 402.08 [M + H]+.

For (II)[link], the procedure was the same as that for (I)[link] using (E)-1-(4-chloro­ophen­yl)-2-(4-nitro­benzyl­idene)hydrazine (276 mg, 1 mmol). An orange solid was obtained (yield 64%); mp 448 K. Analysis calculated for C14H8Cl3N3O2 (M = 356.59): C, 47.16; H, 2.26; N, 11.78; found: C, 47.09; H, 2.23; N, 11.65%. 1H NMR (300 MHz, CDCl3) δ 8.32–7.37 (8H, Ar). 13C NMR (75 MHz, CDCl3) δ 150.91, 150.55, 147.98, 139.28, 138.22, 137.02, 131.24, 129.49, 124.52, 123.44. ESI–MS: m/z: 357.70 [M + H]+.

Compounds (I)[link] and (II)[link] were dissolved in di­chloro­methane and then left at room temperature for slow evaporation; orange crystals of both compounds suitable for X-rays started to form after ca 2 d.

6. Refinement

Crystal data collection and structure refinement details are summarized in Table 5[link]. C-bound H atoms were constrained to ideal values with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The crystal of (I)[link] studied was refined as an inversion twin, the ratio of components being 0.9917 (12):0.0083 (12).

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula C14H8BrCl2N3O2 C14H8Cl3N3O2
Mr 401.04 356.58
Crystal system, space group Orthorhombic, Pna21 Orthorhombic, Pna21
Temperature (K) 296 296
a, b, c (Å) 13.9181 (7), 13.4336 (6), 8.4080 (4) 13.8689 (7), 13.3674 (7), 8.3620 (5)
V3) 1572.05 (13) 1550.24 (15)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.96 0.60
Crystal size (mm) 0.19 × 0.14 × 0.08 0.17 × 0.14 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.608, 0.784 0.911, 0.946
No. of measured, independent and observed [I > 2σ(I)] reflections 23012, 3429, 2811 11687, 3156, 2547
Rint 0.057 0.038
(sin θ/λ)max−1) 0.641 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.02 0.037, 0.091, 1.04
No. of reflections 3429 3156
No. of parameters 200 199
No. of restraints 1 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.50 0.18, −0.25
Absolute structure Refined as an inversion twin Flack x determined using 1011 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter 0.008 (13) 0.14 (3)
Computer programs: APEX3 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016/6 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT2016/6 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

(E)-1-(4-Bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (I) top
Crystal data top
C14H8BrCl2N3O2Dx = 1.694 Mg m3
Mr = 401.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 8656 reflections
a = 13.9181 (7) Åθ = 2.9–27.0°
b = 13.4336 (6) ŵ = 2.96 mm1
c = 8.4080 (4) ÅT = 296 K
V = 1572.05 (13) Å3Plate, orange
Z = 40.19 × 0.14 × 0.08 mm
F(000) = 792
Data collection top
Bruker APEXII CCD
diffractometer
2811 reflections with I > 2σ(I)
φ and ω scansRint = 0.057
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 27.1°, θmin = 2.9°
Tmin = 0.608, Tmax = 0.784h = 1717
23012 measured reflectionsk = 1417
3429 independent reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.7719P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.31 e Å3
3429 reflectionsΔρmin = 0.50 e Å3
200 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.008 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4004 (2)0.5082 (3)0.5333 (5)0.0393 (8)
C20.3711 (3)0.4164 (3)0.4764 (6)0.0478 (10)
H20.3094630.4086650.4355840.057*
C30.4334 (3)0.3360 (3)0.4803 (6)0.0545 (11)
H30.4144200.2744300.4407860.065*
C40.5228 (3)0.3483 (3)0.5428 (6)0.0481 (9)
C50.5526 (3)0.4381 (4)0.6048 (7)0.0582 (13)
H50.6131150.4441240.6508960.070*
C60.4915 (3)0.5191 (3)0.5976 (6)0.0539 (12)
H60.5113370.5807270.6358930.065*
C70.1912 (2)0.6569 (2)0.5030 (5)0.0378 (8)
C80.0975 (3)0.6351 (3)0.4948 (6)0.0477 (10)
C90.2272 (3)0.7616 (2)0.5010 (5)0.0345 (7)
C100.2658 (3)0.8034 (3)0.6372 (5)0.0437 (9)
H100.2708700.7655040.7294330.052*
C110.2966 (3)0.9009 (3)0.6369 (5)0.0442 (9)
H110.3217850.9295650.7285090.053*
C120.2896 (2)0.9547 (3)0.4988 (5)0.0374 (8)
C130.2538 (4)0.9149 (3)0.3622 (5)0.0511 (11)
H130.2506000.9526580.2696510.061*
C140.2221 (3)0.8170 (3)0.3637 (5)0.0491 (10)
H140.1972790.7887720.2714060.059*
N10.3411 (2)0.5954 (2)0.5291 (5)0.0427 (7)
N20.2537 (2)0.5747 (2)0.5107 (4)0.0403 (7)
N30.3201 (2)1.0595 (2)0.4987 (5)0.0483 (8)
O10.3418 (3)1.0978 (3)0.6245 (5)0.0769 (11)
O20.3240 (4)1.1036 (3)0.3734 (5)0.0863 (14)
Cl10.05489 (8)0.51572 (8)0.4988 (2)0.0743 (4)
Cl20.00955 (8)0.72322 (9)0.4870 (2)0.0713 (4)
Br10.60741 (4)0.23804 (4)0.54965 (11)0.0809 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0435 (18)0.0297 (16)0.045 (2)0.0001 (13)0.0007 (18)0.0047 (18)
C20.045 (2)0.038 (2)0.060 (3)0.0022 (16)0.0050 (19)0.007 (2)
C30.060 (3)0.0298 (19)0.074 (3)0.0012 (17)0.002 (2)0.006 (2)
C40.051 (2)0.0365 (18)0.057 (3)0.0094 (15)0.006 (2)0.008 (2)
C50.043 (2)0.046 (3)0.085 (4)0.0025 (18)0.010 (2)0.002 (2)
C60.048 (2)0.036 (2)0.077 (3)0.0035 (16)0.011 (2)0.003 (2)
C70.0440 (18)0.0276 (15)0.042 (2)0.0021 (14)0.0025 (17)0.0016 (16)
C80.046 (2)0.0290 (18)0.068 (3)0.0009 (14)0.005 (2)0.0031 (18)
C90.0358 (17)0.0277 (16)0.0399 (19)0.0020 (12)0.0015 (15)0.0014 (16)
C100.058 (3)0.035 (2)0.038 (2)0.0045 (18)0.0006 (18)0.0050 (17)
C110.056 (2)0.038 (2)0.039 (2)0.0060 (18)0.0025 (18)0.0039 (17)
C120.0395 (17)0.0273 (16)0.045 (2)0.0006 (13)0.0045 (17)0.0003 (17)
C130.069 (3)0.039 (2)0.046 (2)0.004 (2)0.006 (2)0.0098 (18)
C140.065 (3)0.041 (2)0.041 (2)0.007 (2)0.009 (2)0.0037 (18)
N10.0446 (16)0.0288 (14)0.055 (2)0.0015 (11)0.0023 (16)0.0018 (15)
N20.0437 (15)0.0280 (13)0.0493 (19)0.0012 (12)0.0009 (15)0.0017 (14)
N30.0564 (19)0.0302 (16)0.058 (2)0.0046 (14)0.0018 (19)0.0012 (18)
O10.119 (3)0.041 (2)0.071 (2)0.022 (2)0.004 (2)0.0088 (18)
O20.142 (4)0.044 (2)0.074 (3)0.028 (2)0.011 (2)0.0190 (19)
Cl10.0508 (6)0.0360 (5)0.1362 (12)0.0104 (4)0.0112 (8)0.0047 (7)
Cl20.0438 (5)0.0440 (6)0.1260 (13)0.0068 (4)0.0004 (7)0.0025 (7)
Br10.0781 (3)0.0554 (3)0.1093 (5)0.0306 (2)0.0097 (4)0.0087 (4)
Geometric parameters (Å, º) top
C1—C21.384 (5)C8—Cl11.710 (4)
C1—C61.385 (6)C9—C141.376 (6)
C1—N11.434 (4)C9—C101.384 (6)
C2—C31.386 (6)C10—C111.378 (6)
C2—H20.9300C10—H100.9300
C3—C41.361 (6)C11—C121.371 (6)
C3—H30.9300C11—H110.9300
C4—C51.377 (6)C12—C131.361 (6)
C4—Br11.893 (4)C12—N31.470 (4)
C5—C61.384 (6)C13—C141.387 (6)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.338 (5)N1—N21.257 (4)
C7—N21.407 (4)N3—O21.209 (5)
C7—C91.493 (4)N3—O11.214 (5)
C8—Cl21.705 (4)
C2—C1—C6120.0 (4)C14—C9—C10119.7 (3)
C2—C1—N1123.3 (3)C14—C9—C7120.1 (3)
C6—C1—N1116.7 (3)C10—C9—C7120.2 (3)
C1—C2—C3120.1 (4)C11—C10—C9120.3 (4)
C1—C2—H2120.0C11—C10—H10119.8
C3—C2—H2120.0C9—C10—H10119.8
C4—C3—C2119.1 (4)C12—C11—C10118.7 (4)
C4—C3—H3120.4C12—C11—H11120.6
C2—C3—H3120.4C10—C11—H11120.6
C3—C4—C5121.9 (4)C13—C12—C11122.2 (3)
C3—C4—Br1119.0 (3)C13—C12—N3118.8 (4)
C5—C4—Br1119.1 (3)C11—C12—N3119.0 (4)
C4—C5—C6119.1 (4)C12—C13—C14118.8 (4)
C4—C5—H5120.4C12—C13—H13120.6
C6—C5—H5120.4C14—C13—H13120.6
C5—C6—C1119.8 (4)C9—C14—C13120.3 (4)
C5—C6—H6120.1C9—C14—H14119.9
C1—C6—H6120.1C13—C14—H14119.9
C8—C7—N2115.7 (3)N2—N1—C1112.3 (3)
C8—C7—C9122.2 (3)N1—N2—C7115.5 (3)
N2—C7—C9122.2 (3)O2—N3—O1122.7 (3)
C7—C8—Cl2123.3 (3)O2—N3—C12118.8 (4)
C7—C8—Cl1122.8 (3)O1—N3—C12118.5 (4)
Cl2—C8—Cl1113.8 (2)
C6—C1—C2—C31.5 (7)C7—C9—C10—C11178.3 (4)
N1—C1—C2—C3178.2 (4)C9—C10—C11—C120.9 (7)
C1—C2—C3—C41.0 (7)C10—C11—C12—C130.4 (7)
C2—C3—C4—C51.1 (8)C10—C11—C12—N3178.4 (4)
C2—C3—C4—Br1179.5 (4)C11—C12—C13—C141.0 (7)
C3—C4—C5—C62.7 (8)N3—C12—C13—C14177.9 (4)
Br1—C4—C5—C6179.0 (4)C10—C9—C14—C131.2 (7)
C4—C5—C6—C12.1 (8)C7—C9—C14—C13178.8 (4)
C2—C1—C6—C50.0 (7)C12—C13—C14—C90.1 (7)
N1—C1—C6—C5179.8 (4)C2—C1—N1—N218.3 (6)
N2—C7—C8—Cl2179.2 (3)C6—C1—N1—N2161.9 (4)
C9—C7—C8—Cl21.9 (7)C1—N1—N2—C7179.1 (3)
N2—C7—C8—Cl11.8 (6)C8—C7—N2—N1175.4 (4)
C9—C7—C8—Cl1179.4 (3)C9—C7—N2—N15.7 (5)
C8—C7—C9—C1470.7 (6)C13—C12—N3—O29.3 (6)
N2—C7—C9—C14108.1 (5)C11—C12—N3—O2171.8 (5)
C8—C7—C9—C10109.3 (5)C13—C12—N3—O1171.9 (5)
N2—C7—C9—C1071.9 (5)C11—C12—N3—O17.0 (6)
C14—C9—C10—C111.7 (7)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cl2i0.932.923.593 (5)131
C8—Cl2···Cg2ii1.71 (1)3.66 (1)4.710 (5)118 (1)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z.
(E)-1-(4-Chlorophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene (II) top
Crystal data top
C14H8Cl3N3O2Dx = 1.528 Mg m3
Mr = 356.58Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 4206 reflections
a = 13.8689 (7) Åθ = 2.9–26.4°
b = 13.3674 (7) ŵ = 0.60 mm1
c = 8.3620 (5) ÅT = 296 K
V = 1550.24 (15) Å3Prisme, orange
Z = 40.17 × 0.14 × 0.07 mm
F(000) = 720
Data collection top
Bruker APEXII CCD
diffractometer
2547 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 26.4°, θmin = 2.9°
Tmin = 0.911, Tmax = 0.946h = 1716
11687 measured reflectionsk = 1615
3156 independent reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.3296P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.18 e Å3
3156 reflectionsΔρmin = 0.25 e Å3
199 parametersAbsolute structure: Flack x determined using 1011 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
1 restraintAbsolute structure parameter: 0.14 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9044 (2)0.0035 (2)0.3115 (4)0.0400 (8)
C20.8753 (3)0.0900 (2)0.3650 (5)0.0507 (9)
H20.8130010.0990760.4033490.061*
C30.9385 (3)0.1694 (2)0.3615 (6)0.0569 (10)
H30.9195920.2318310.3991070.068*
C41.0294 (3)0.1555 (3)0.3023 (5)0.0532 (10)
C51.0584 (3)0.0645 (3)0.2434 (6)0.0646 (12)
H51.1195520.0569540.1995460.077*
C60.9962 (3)0.0155 (3)0.2498 (6)0.0607 (11)
H61.0158360.0777580.2125260.073*
C70.6941 (2)0.1515 (2)0.3415 (4)0.0376 (7)
C80.6001 (2)0.1294 (2)0.3491 (6)0.0480 (8)
C90.7299 (2)0.2569 (2)0.3447 (5)0.0364 (6)
C100.7644 (3)0.3003 (3)0.2053 (4)0.0464 (9)
H100.7665180.2631500.1113190.056*
C110.7955 (3)0.3983 (3)0.2056 (4)0.0461 (9)
H110.8188190.4279230.1126610.055*
C120.7913 (2)0.4511 (2)0.3468 (5)0.0386 (7)
C130.7591 (3)0.4093 (3)0.4853 (5)0.0530 (10)
H130.7579810.4461920.5796020.064*
C140.7280 (3)0.3110 (3)0.4834 (5)0.0507 (10)
H140.7056390.2815650.5771180.061*
N10.8441 (2)0.09023 (19)0.3159 (4)0.0446 (7)
N20.75630 (18)0.06882 (17)0.3339 (4)0.0408 (6)
N30.8211 (2)0.55693 (19)0.3468 (5)0.0487 (7)
O10.8400 (3)0.5963 (2)0.2197 (4)0.0754 (10)
O20.8259 (3)0.6004 (2)0.4729 (4)0.0879 (13)
Cl11.10869 (9)0.25630 (8)0.2991 (2)0.0857 (4)
Cl20.55690 (6)0.00980 (6)0.3445 (2)0.0727 (3)
Cl30.51218 (7)0.21874 (7)0.3590 (2)0.0751 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0437 (17)0.0277 (14)0.048 (2)0.0013 (12)0.0011 (15)0.0030 (14)
C20.0481 (18)0.0381 (16)0.066 (2)0.0012 (14)0.008 (2)0.008 (2)
C30.062 (2)0.0325 (16)0.076 (3)0.0010 (15)0.003 (2)0.007 (2)
C40.053 (2)0.0379 (18)0.069 (3)0.0094 (15)0.0048 (18)0.0087 (18)
C50.046 (2)0.054 (2)0.093 (3)0.0019 (18)0.012 (2)0.001 (2)
C60.052 (2)0.039 (2)0.091 (3)0.0075 (17)0.008 (2)0.004 (2)
C70.0461 (16)0.0271 (13)0.0397 (17)0.0000 (12)0.0005 (18)0.0028 (17)
C80.0471 (17)0.0284 (14)0.069 (2)0.0008 (13)0.004 (2)0.0006 (19)
C90.0361 (14)0.0294 (13)0.0437 (17)0.0023 (11)0.0006 (16)0.0014 (19)
C100.065 (2)0.037 (2)0.037 (2)0.0058 (17)0.0002 (18)0.0045 (16)
C110.061 (2)0.038 (2)0.039 (2)0.0090 (17)0.0010 (17)0.0031 (16)
C120.0427 (16)0.0273 (13)0.0458 (18)0.0003 (12)0.0036 (19)0.0010 (19)
C130.075 (3)0.039 (2)0.046 (2)0.0076 (19)0.0109 (19)0.0099 (17)
C140.073 (3)0.037 (2)0.042 (2)0.0102 (18)0.0089 (19)0.0038 (17)
N10.0476 (15)0.0295 (12)0.057 (2)0.0009 (11)0.0003 (14)0.0009 (14)
N20.0427 (14)0.0313 (12)0.0485 (16)0.0006 (10)0.0025 (15)0.0011 (15)
N30.0533 (16)0.0323 (13)0.061 (2)0.0051 (12)0.001 (2)0.002 (2)
O10.118 (3)0.0418 (17)0.067 (2)0.0227 (18)0.0012 (19)0.0106 (17)
O20.149 (4)0.0453 (19)0.069 (2)0.028 (2)0.013 (2)0.0211 (18)
Cl10.0767 (7)0.0574 (6)0.1230 (12)0.0296 (5)0.0039 (7)0.0084 (7)
Cl20.0513 (5)0.0375 (4)0.1292 (10)0.0109 (3)0.0096 (7)0.0036 (7)
Cl30.0456 (5)0.0450 (5)0.1348 (11)0.0067 (4)0.0006 (7)0.0016 (7)
Geometric parameters (Å, º) top
C1—C61.383 (5)C8—Cl31.708 (3)
C1—C21.387 (5)C9—C141.368 (5)
C1—N11.430 (4)C9—C101.387 (5)
C2—C31.377 (5)C10—C111.379 (5)
C2—H20.9300C10—H100.9300
C3—C41.366 (6)C11—C121.377 (5)
C3—H30.9300C11—H110.9300
C4—C51.373 (6)C12—C131.362 (6)
C4—Cl11.740 (4)C12—N31.473 (4)
C5—C61.374 (6)C13—C141.382 (5)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.339 (4)N1—N21.259 (4)
C7—N21.404 (4)N3—O21.207 (5)
C7—C91.493 (4)N3—O11.214 (4)
C8—Cl21.708 (3)
C6—C1—C2119.5 (3)C14—C9—C10119.9 (3)
C6—C1—N1117.0 (3)C14—C9—C7120.5 (3)
C2—C1—N1123.5 (3)C10—C9—C7119.6 (3)
C3—C2—C1120.2 (3)C11—C10—C9120.3 (3)
C3—C2—H2119.9C11—C10—H10119.9
C1—C2—H2119.9C9—C10—H10119.9
C4—C3—C2119.4 (3)C12—C11—C10118.4 (3)
C4—C3—H3120.3C12—C11—H11120.8
C2—C3—H3120.3C10—C11—H11120.8
C3—C4—C5121.3 (3)C13—C12—C11122.2 (3)
C3—C4—Cl1118.9 (3)C13—C12—N3119.1 (3)
C5—C4—Cl1119.7 (3)C11—C12—N3118.7 (3)
C4—C5—C6119.4 (4)C12—C13—C14118.9 (3)
C4—C5—H5120.3C12—C13—H13120.6
C6—C5—H5120.3C14—C13—H13120.6
C5—C6—C1120.2 (4)C9—C14—C13120.4 (4)
C5—C6—H6119.9C9—C14—H14119.8
C1—C6—H6119.9C13—C14—H14119.8
C8—C7—N2115.3 (3)N2—N1—C1112.6 (2)
C8—C7—C9122.1 (3)N1—N2—C7114.9 (2)
N2—C7—C9122.7 (3)O2—N3—O1123.0 (3)
C7—C8—Cl2123.2 (2)O2—N3—C12118.5 (3)
C7—C8—Cl3122.9 (2)O1—N3—C12118.4 (3)
Cl2—C8—Cl3113.90 (19)
C6—C1—C2—C32.1 (7)C7—C9—C10—C11178.5 (3)
N1—C1—C2—C3178.0 (4)C9—C10—C11—C120.0 (6)
C1—C2—C3—C41.1 (7)C10—C11—C12—C131.1 (6)
C2—C3—C4—C51.3 (7)C10—C11—C12—N3177.8 (3)
C2—C3—C4—Cl1179.8 (3)C11—C12—C13—C141.1 (6)
C3—C4—C5—C62.6 (8)N3—C12—C13—C14177.7 (3)
Cl1—C4—C5—C6178.5 (4)C10—C9—C14—C130.9 (6)
C4—C5—C6—C11.6 (8)C7—C9—C14—C13178.5 (4)
C2—C1—C6—C50.8 (7)C12—C13—C14—C90.1 (6)
N1—C1—C6—C5179.4 (4)C6—C1—N1—N2162.9 (4)
N2—C7—C8—Cl21.8 (6)C2—C1—N1—N217.0 (5)
C9—C7—C8—Cl2179.6 (3)C1—N1—N2—C7179.0 (3)
N2—C7—C8—Cl3179.9 (3)C8—C7—N2—N1175.4 (4)
C9—C7—C8—Cl31.4 (6)C9—C7—N2—N15.9 (5)
C8—C7—C9—C1473.1 (5)C13—C12—N3—O27.8 (5)
N2—C7—C9—C14105.4 (4)C11—C12—N3—O2173.3 (4)
C8—C7—C9—C10106.3 (5)C13—C12—N3—O1172.4 (4)
N2—C7—C9—C1075.2 (5)C11—C12—N3—O16.5 (5)
C14—C9—C10—C110.9 (6)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C8—Cl3···Cg2i1.71 (1)3.62 (1)4.703 (3)120 (1)
Symmetry code: (i) x1/2, y+1/2, z.
Summary of short interatomic contacts (Å) in the crystal structures of compounds (I) and (II) top
ContactDistanceSymmetry operation
compound (I)
H10···Br13.181 - x, 1 - y, 1/2 + z
Br1···Cl13.5125 (12)1/2 + x, 1/2 - y, z
H2···H112.541/2 - x, -1/2 + y, -1/2 + z
Cl2···H62.92-1/2 + x, 3/2 - y, z
O2···H32.68x, 1 + y, z
H13···N22.731/2 - x, 1/2 + y, -1/2 + z
compound (II)
H10···Cl13.132 - x, -y, -1/2 + z
Cl1···Cl23.4847 (14)1/2 + x, -1/2 - y, z
H2···H112.563/2 - x, -1/2 + y, 1/2 + z
Cl3···H62.98-1/2 + x, 1/2 - y, z
O2···H32.66x, 1 + y, z
H13···N22.693/2 - x, 1/2 + y, 1/2 + z
Percentage contributions of interatomic contacts to the Hirshfeld surface in the crystal structures of compounds (I) and (II) top
Contact(I)(II)
C···H/H···C16.115.3
O···H/H···O13.113.4
Cl···H/H···Cl12.721.9
H···H11.411.5
Br···H/H···Br8.9
N···H/H···N6.97.0
Cl···C/C···Cl6.68.3
Cl···Br/Br···Cl5.2
Cl···O/O···Cl4.95.8
O···C/C···O3.83.9
Cl···N/N···Cl3.43.4
C···C2.12.3
Br···C/C···Br1.5
Br···O/O···Br1.2
N···O/O···N1.11.0
Cl···Cl1.05.9
N···C/C···N0.10.2
Br···N/N···Br0.1
 

Acknowledgements

Funding for this research was provided by: Science Development Foundation under the President of the Republic of Azerbaijan (grant No. No EİF/ MQM/ Elm-Tehsil-1-2016-1(26)-71/06/4).

Funding information

Funding for this research was provided by: Science Development Foundation under the President of the Republic of Azerbaijan (grant No. No EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/06/4).

References

First citationAkbari, A. F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  PubMed Google Scholar
First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationAtioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017). J. Mol. Catal. A Chem. 426, 526–533.  CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959–4971.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014). J. Organomet. Chem. 760, 67–73.  CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Web of Science CSD CrossRef CAS Google Scholar
First citationShikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationShixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds