research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[di­hydro­bis­­(pyrazol-1-yl)borato-κ2N2,N2′](1,10-phenanthroline-κ2N,N′)zinc(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: ftuczek@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 May 2019; accepted 28 June 2019; online 4 July 2019)

The asymmetric unit of the title compound, [Zn(C6H8N4B)2(C12H8N2)], comprises one half of a ZnII cation (site symmetry 2), one di­hydro­bis­(pyrazol-1-yl)borate ligand in a general position, and one half of a phenanthroline ligand, the other half being completed by twofold rotation symmetry. The ZnII cation is coordinated in form of a slightly distorted octa­hedron by the N atoms of a phenanthroline ligand and by two pairs of N atoms of symmetry-related di­hydro­bis­(pyrazol-1-yl)borate ligands. The discrete complexes are arranged into columns that elongate in the c-axis direction with a parallel alignment of the phenanthroline ligands, indicating weak ππ inter­actions.

1. Chemical context

Spin-crossover transition-metal complexes (3d4–3d7) continue to be a fascinating class of functional materials in the field of coordination chemistry and have the potential to play a significant role in electronic data storage or in spintronics (Gütlich et al., 2013[Gütlich, P., Gaspar, A. B. & Garcia, Y. (2013). Beilstein J. Org. Chem. 9, 342-391.]; Halcrow, 2013[Halcrow, M. A. (2013). Spin-Crossover Materials. Chichester: Wiley.]). Transitions between the diamagnetic low spin state (S = 0 for FeII) and the paramagnetic high-spin state (S = 2 for FeII) of such complexes can be induced by stimuli such as temperature or light. In most cases, spin-crossover complexes are based on octa­hedral [FeIIN6] coordination environments with chelating or mono-coordinating nitro­gen donor ligands. From all metal ions and ligands leading to spin-crossover complexes, the FeII/nitro­gen ligand combination leads to the greatest changes in metal–ligand bond lengths between the two spin states and so far to the longest-lived photochemical excited spin state (Halcrow, 2007[Halcrow, M. A. (2007). Polyhedron, 26, 3523-3576.]). Since the beginning of this research area some several decades ago, this field has been directed towards applications using the change of the magnetic and electronic properties of the spin-crossover compounds associated with the spin transition. Regarding applications, it might be advantageous to deposit spin-crossover complexes as thin films on substrates. This can be achieved by different methods of which physical vapour deposition is the most practicable because the formation of solvates can be ruled out. In this context, we have deposited various complexes with organoborate ligands mainly based on di­hydro­bis­(pyrazol-1-yl)borate on different substrates (Naggert et al., 2011[Naggert, H., Bannwarth, A., Chemnitz, S., von Hofe, T., Quandt, E. & Tuczek, F. (2011). Dalton Trans. 40, 6364-6366.], 2015[Naggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C. 3, 7870-7877.]; Ossinger et al., 2017[Ossinger, S., Naggert, H., Kipgen, L., Jasper-Toennies, T., Rai, A., Rudnik, J., Nickel, F., Arruda, L. M., Bernien, M., Kuch, W., Berndt, R. & Tuczek, F. (2017). J. Phys. Chem. C, 121, 1210-1219.]; Gopakumar et al., 2012[Gopakumar, T. G., Matino, F., Naggert, H., Bannwarth, A., Tuczek, F. & Berndt, R. (2012). Angew. Chem. Int. Ed. 51, 6262-6266.]; Kipgen et al., 2018[Kipgen, L., Bernien, M., Ossinger, S., Nickel, F., Britton, A. J., Arruda, L. M., Naggert, H., Luo, C., Lotze, C., Ryll, H., Radu, F., Schierle, E., Weschke, E., Tuczek, F. & Kuch, W. (2018). Nat. Commun. 9, 2984.]).

In the course of this project we became inter­ested in the well-known iron spin-crossover complex [Fe(H2B(pz)2)2(phen)] ((H2B(pz)2)2 = bis­(di­hydro­bis­(pyrazol-1-yl)borate); phen = 1,10-phenanthroline). To make conclusions regarding the behaviour of [Fe(H2B(pz)2)2(phen)] on substrates such as, for example, graphene, quantum-chemical calculations using the xTB program (Grimme et al., 2017[Grimme, S., Bannwarth, C. & Shushkov, P. (2017). J. Chem. Theory Comput. 13, 1989-2009.]; Bannwarth et al., 2019[Bannwarth, C., Ehlert, S. & Grimme, S. (2019). J. Chem. Theory Comput. 15, 1652-1671.]) are useful. We are especially inter­ested in structural details of the high-spin state, but unfortunately for iron(II) complexes the geometry optimization always leads to the low-spin state. To overcome this problem, corresponding compounds with ZnII can be used in the calculation, because their geometry is close to that of FeII compounds in the high-spin state. This approach is beneficial because the calculation of diamagnetic compounds is simpler and, in addition, diamagnetic compounds can easily be investigated by NMR spectroscopy. Therefore, ZnII complexes are often used as model systems for high-spin iron(II) complexes (Seredyuk et al., 2007[Seredyuk, M., Gaspar, A. B., Kusz, J., Bednarek, G. & Gütlich, P. (2007). J. Appl. Cryst. 40, 1135-1145.]; Schenker et al., 2001[Schenker, S., Stein, P. C., Wolny, J. A., Brady, C., McGarvey, J. J., Toftlund, H. & Hauser, A. (2001). Inorg. Chem. 40, 134-139.]). The ionic radii (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) for ZnII cations (3d10, 1S) are nearly the same as for FeII cations in the high-spin state (3d6, 5T2), frequently leading to the formation of isotypic compounds.

With these consideration in mind, [Zn(H2B(pz)2)2(phen)] was synthesized, crystallized and investigated by single crystal X-ray diffraction. The X-ray powder pattern revealed that a pure compound was obtained (see Fig. S1 in the supporting information) that is suitable for physical vapour deposition, in analogy to the FeII analogue (Naggert et al., 2011[Naggert, H., Bannwarth, A., Chemnitz, S., von Hofe, T., Quandt, E. & Tuczek, F. (2011). Dalton Trans. 40, 6364-6366.], 2015[Naggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C. 3, 7870-7877.]; Ossinger et al., 2017[Ossinger, S., Naggert, H., Kipgen, L., Jasper-Toennies, T., Rai, A., Rudnik, J., Nickel, F., Arruda, L. M., Bernien, M., Kuch, W., Berndt, R. & Tuczek, F. (2017). J. Phys. Chem. C, 121, 1210-1219.]). Comparison of the infrared spectra from the bulk and vacuum-deposited ZnII compound shows identical vibrational modes, proving that no decomposition takes place during deposition (Fig. S2).

[Scheme 1]

2. Structural commentary

[Zn(H2B(pz)2)2(phen)] is isotypic with the FeII analogue (Real et al., 1997[Real, J. A., Muñoz, M. C., Faus, J. & Solans, X. (1997). Inorg. Chem. 36, 3008-3013.]). The asymmetric unit of the title compound consists of one di­hydro­bis­(pyrazol-1-yl)borate ligand, one half of a ZnII cation located on a twofold rotation axis and one half of a phenanthroline ligand, the other half being completed by application of twofold rotation symmetry. The ZnII cation is coordinated by the N atoms of the chelating phenanthroline ligand and by two pairs of N atoms of two symmetry-related di­hydro­bis­(pyrazol-1-yl)borate ligands, leading to a slightly distorted octa­hedral coordination environment (Fig. 1[link]), as shown by the different bond lengths and angles deviating from ideal values (Table 1[link]). The Zn—N bond lengths involving the di­hydro­bis­(pyrazol-1-yl)borate ligand are 2.1454 (18) and 2.1705 (18) Å and thus are significantly shorter than those to the phenanthroline ligand of 2.2101 (19) Å. The planes of the five-membered rings of the di­hydro­bis­(pyrazol-1-yl)borate ligand are rotated with respect to each other by 44.4 (2)°.

Table 1
Selected geometric parameters (Å, °)

Zn1—N12 2.1454 (18) Zn1—N1 2.2101 (19)
Zn1—N14 2.1704 (18)    
       
N12—Zn1—N12i 91.24 (10) N14—Zn1—N1 89.34 (7)
N12—Zn1—N14 90.43 (7) N12—Zn1—N1i 171.59 (7)
N12—Zn1—N14i 88.55 (7) N14—Zn1—N1i 91.83 (7)
N14—Zn1—N14i 178.54 (11) N1—Zn1—N1i 75.01 (11)
N12—Zn1—N1 96.92 (7)    
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with the atom labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 1, y, −z + [{3\over 2}].]

3. Supra­molecular features

In the crystal structure of the title compound, the discrete complexes are arranged into columns that elongate in the c-axis direction (Fig. 2[link]). Within these columns, the phenanthroline ligands are parallel but shifted relative to each other (Fig. 3[link]). The shortest distance between two parallel phenanthroline planes amounts to 3.9341 (11) Å, indicative of weak ππ inter­actions.

[Figure 2]
Figure 2
Crystal structure of the title compound in a view along the c axis.
[Figure 3]
Figure 3
Parts of the crystal structure of the title compound emphasizing the arrangement of the phenanthroline ligands.

4. Database survey

There are already 17 crystal structures of iron complexes with di­hydro­bis­(pyrazol-1-yl)borate and different co-ligands reported in the literature, which includes [Fe(H2B(pz)2)2(phen)] and [Fe(H2B(pz)2)2(2,2′-bipy)] (Real et al., 1997[Real, J. A., Muñoz, M. C., Faus, J. & Solans, X. (1997). Inorg. Chem. 36, 3008-3013.]; Thompson, et al., 2004[Thompson, A. L., Goeta, A. E., Real, J. A., Galet, A. & Carmen Muñoz, M. (2004). Chem. Commun. pp. 1390-1391.]) as the most well-known complexes. In the others, the co-ligand is exchanged by annelated bipyridyl ligands (Kulmaczewski et al., 2014[Kulmaczewski, R., Shepherd, H. J., Cespedes, O. & Halcrow, M. A. (2014). Inorg. Chem. 53, 9809-9817.]), various modified di­aryl­ethene ligands (Nihei et al., 2013[Nihei, M., Suzuki, Y., Kimura, N., Kera, Y. & Oshio, H. (2013). Chem. Eur. J. 19, 6946-6949.]; Milek et al., 2013[Milek, M., Heinemann, F. W. & Khusniyarov, M. M. (2013). Inorg. Chem. 52, 11585-11592.]; Mörtel et al., 2017[Mörtel, M., Witt, A., Heinemann, F. W., Bochmann, S., Bachmann, J. & Khusniyarov, M. M. (2017). Inorg. Chem. 56, 13174-13186.]), 4,7-dimethyl-phenanthroline (Naggert et al., 2015[Naggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C. 3, 7870-7877.]), di­methyl­bipyridine derivatives substituted in the 5,5′ position (Xue et al., 2018[Xue, S., Guo, Y., Rotaru, A., Müller-Bunz, H., Morgan, G. G., Trzop, E., Collet, E., Oláh, J. & Garcia, Y. (2018). Inorg. Chem. 57, 9880-9891.]), diaminobipyridine (Luo et al., 2016[Luo, Y.-H., Nihei, M., Wen, G.-J., Sun, B.-W., Oshio, H. (2016). Inorg. Chem. 55, 8147-8152.]) and chiral (R)/(S)-4,5-pinenepyridyl-2-pyrazine ligands (Ru et al., 2017[Ru, J., Yu, F., Shi, P.-P., Jiao, C.-Q., Li, C.-H., Xiong, R.-G., Liu, T., Kurmoo, M. & Zuo, J.-L. (2017). Eur. J. Inorg. Chem. 2017, 3144-3149.]). In all of these complexes, the FeII cations are coordinated by three bidentate chelate ligands in an octa­hedral environment and show spin-crossover behaviour. Moreover, the structure of the synthetic inter­mediate used for the preparation of the Fe phenanthroline complex, [Fe(H2B(pz)2)2(MeOH)2], has also been published (Ossinger et al., 2016[Ossinger, S., Näther, C. & Tuczek, F. (2016). IUCrData, 1, x161252.]).

To the best of our knowledge, no zinc complex with the di­hydro­bis­(pyrazol-1-yl)borate ligand and additional co-ligands has been reported in the literature. So far only the complex [Zn(H2B(pz)2)2] (Reger et al., 2000[Reger, D. L., Wright, T. D., Smith, M. D., Rheingold, A. L. & Rhagitan, B. (2000). J. Chem. Crystallogr. 30, 665-670.]) and four related compounds with di­hydro­bis­(pyrazol-1-yl)borate modified by different substituents at the pyrazole unit have been reported (Rheingold et al., 2000[Rheingold, A. L., Incarvito, C. D. & Trofimenko, S. (2000). Inorg. Chem. 39, 5569-5571.]; Agrifoglio & Capparelli, 2005[Agrifoglio, G. & Capparelli, M. V. (2005). J. Chem. Crystallogr. 35, 95-100.]; Dias & Gorden, 1996[Dias, H. V. R. & Gorden, J. D. (1996). Inorg. Chem. 35, 318-324.]). In all of these complexes, the ZnII cations are tetra­hedrally coordinated by two bidentate organoborate ligands based on di­hydro­bis­(pyrazol-1-yl)borate. There are other zinc complexes supported by the tripodal hydro­tris(pyrazol-1-yl)borate ligand (Nakata et al., 1995[Nakata, K., Kawabata, S. & Ichikawa, K. (1995). Acta Cryst. C51, 1092-1094.]) with various substituents at the pyrazole unit forming different solvates (Reger et al., 2000[Reger, D. L., Wright, T. D., Smith, M. D., Rheingold, A. L. & Rhagitan, B. (2000). J. Chem. Crystallogr. 30, 665-670.]; Kitano et al., 2003[Kitano, T., Sohrin, Y., Hata, Y., Wada, H., Hori, T. & Ueda, K. (2003). Bull. Chem. Soc. Jpn, 76, 1365-1373.]; Lobbia et al., 1997[Lobbia, G. G., Bovio, B., Santini, C., Pettinari, C. & Marchetti, F. (1997). Polyhedron, 16, 671-680.]; Yang et al., 1997[Yang, K.-W., Wang, Y.-Z., Huang, Z.-X. & Sun, J. (1997). Polyhedron, 16, 1297-1300.]; Calvo & Vahrenkamp, 2006[Calvo, J. A. M. & Vahrenkamp, H. (2006). Inorg. Chim. Acta, 359, 4079-4086.]; Janiak et al., 2000[Janiak, C., Temizdemir, S., Dechert, S., Deck, W., Girgsdies, F., Heinze, J., Kolm, M. J., Scharmann, T. G. & Zipffel, O. M. (2000). Eur. J. Inorg. Chem. pp. 1229-1241.]; Looney et al., 1995[Looney, A., Han, R., Gorrell, I. B., Cornebise, M., Yoon, K., Parkin, G. & Rheingold, A. L. (1995). Organometallics, 14, 274-288.]; Bats & Guo, 2014[Bats, J. W. & Guo, S. L. (2014). Private communication (refcode CCDC 1009463). CCDC, Cambridge, England. DOI: 10.5517/cc12wfbq.]). In the zinc complexes, the metal cations are in each case coordinated by two tripodal ligands in an octa­hedral coordination environment.

5. Synthesis and crystallization

1H-pyrazole, potassium tetra­hydro­borate, zinc perchlorate hexa­hydrate and 1,10-phenanthroline were purchased and used without further purification. Solvents were purchased and purified by distilling over conventional drying agents. K[H2B(pz)2] and [Zn(H2B(pz)2)2(phen)] were synthesized according to previously reported procedures (Naggert et al., 2011[Naggert, H., Bannwarth, A., Chemnitz, S., von Hofe, T., Quandt, E. & Tuczek, F. (2011). Dalton Trans. 40, 6364-6366.], 2015[Naggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C. 3, 7870-7877.]; Ossinger et al., 2016[Ossinger, S., Näther, C. & Tuczek, F. (2016). IUCrData, 1, x161252.], 2017[Ossinger, S., Naggert, H., Kipgen, L., Jasper-Toennies, T., Rai, A., Rudnik, J., Nickel, F., Arruda, L. M., Bernien, M., Kuch, W., Berndt, R. & Tuczek, F. (2017). J. Phys. Chem. C, 121, 1210-1219.]).

Synthesis of [Zn(H2B(pz)2)2(phen)]: To a solution of Zn(ClO4)2·6H2O (746 mg, 2.00 mmol) in methanol (10 ml) a solution of K[H2B(pz)2] (744 mg, 4.00 mmol) in methanol (10 ml) was added. After 15 min of stirring, precipitated KClO4 was removed by filtration. To the filtrate a solution of 1,10-phenanthroline (361 mg, 2.00 mmol) in methanol (10 ml) was added dropwise, leading to the formation of a colourless precipitate. The mixture was stirred for another hour at room temperature and the precipitate was filtered off, washed with methanol (5 ml) and filtered again by suction filtration (30 min). Yield: 142 mg (263 µmol, 13% based on Zn(ClO4)2·6H2O).

Elemental analysis calculated for C24H24B2ZnN10: C 53.42, H 4.48, N 25.96%, found: C 53.39, H 4.47, N 25.98%.

HRESI–MS(+)(CHCl3 + MeOH): m/z (%) = [M − H2B(pz)2]+ calculated 391.08155, found 391.08061 (5).

1H NMR (400 MHz, CDCl3): δ (ppm) = 9.21 (dd, J = 4.3Hz, 1.7Hz, 2H, phen-H4), 8.27 (dd, J = 8.1Hz, 1.7Hz, 2H, phen-H4), 7.81 (s, 2H, phen-H7), 7.73 (dd, J = 2.2Hz, 0.5Hz, 4H, pyrazolyl-H5), 7.65 (dd, J = 8.1Hz, 4.3Hz, 2H, phen-H3), 7.57 (d, J = 1.9Hz, 4H, pyrazolyl-H3), 6.28 (t, J = 2.1Hz, 4H, pyrazolyl-H4), 3.78 (br. d, J = 127.9Hz, 4H, B-H).

13C{1H} NMR (100 MHz, CDCl3): δ/ppm = 150.5 (CH, phen-C2), 146.39 (Cq, phen-C6), 140.31 (CH, pyrazolyl-C3), 136.93 (CH, pyrazolyl-C5), 136.14 (CH, phen-C4), 128.8 (Cq, phen-C5), 126.68 (CH, phen-C7), 123.24 (CH, phen-C3), 105.13 (CH, pyrazolyl-C4).

1B NMR (128 MHz, CDCl3): δ/ppm = −8.43 (br. s (t), 1B).

IR (ATR, 298 K): ν/cm−1 = 3134, 3118, 3073, 3060 [w, ν (=C—H)], 2464, 2438, 2397, 2356 [m, νasym. (–BH2)], 2309, 2295 [m, νsym. (–BH2)], 1719 (w), 1625 (w), 1595 (w), 1578 (w), 1515 (m). 1494 (m), 1425 (m), 1399 (m), 1347 (w), 1321 (w), 1294 (m), 1266 (w), 1213 (m), 1200 (m), 1186 (m), 1172 (m), 1160 (s), 1137 (w), 1098 (w), 1090 (w), 1064 (m), 1049 (s), 1011 (w), 978 (m), 960 (w), 921 (w), 900 (w), 882 (m), 866 (w), 843 (m), 806 (w), 782 (s), 747 (s), 727 (s), 717 (m), 678 (m), 649 (m), 637 (s), 623 (m), 480 (w), 437 (w), 421 (w).

Raman (Bulk, 298 K): ν (cm−1) = 3134, 3115, 3088, 3074, 3061, 3028, 2997 [m, ν (=C—H)], 2472, 2447, 2397, 2359 [w, νasym. (–BH2)], 2310, 2297 [w, νsym. (–BH2)], 1626 (w), 1605 (w), 1589 (w), 1516 (w), 1452 (m), 1419 (s), 1408 (m), 1350 (w), 1308 (m), 1296 (m), 1213 (m), 1163 (w), 1138 (w), 1097 (w), 1057 (w), 1045 (m), 1012 (w), 980 (w), 924 (w), 727 (m), 559 (w), 422 (w), 411 (w).

UV/Vis (KBr, 298 K): λmax (nm) = 204, 230, 274, 298, 332, 448–600 (br), 600–650 (br).

Crystallization: Single crystals of [Zn(H2B(pz)2)2(phen)] were obtained under synthetic conditions as described above. After the precipitate was filtered off and washed with methanol, the mother liquor was stored at 278 K. After a few days colourless block-like single crystals had formed.

Experimental details: NMR spectra were recorded in deuterated solvents with a Bruker Avance 400 spectrometer operating at a 1H frequency of 400 MHz, a 13C frequency of 100 MHz and a 11B frequency of 128 MHz. They were referenced to the residual protonated solvent signal [1H: δ(CDCl3) = 7.26 ppm], the solvent signal [13C: δ(CDCl3) = 77.16 ppm] or an external standard (11B:BF3·Et2O) (Gottlieb et al., 1997[Gottlieb, H. E., Kotlyar, V. & Nudelman, A. (1997). J. Org. Chem. 62, 7512-7515.]; Fulmer et al., 2010[Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176-2179.]). Signals were assigned with the help of DEPT-135 and two-dimensional correlation spectra (1H,1H-COSY, 1H,13C-HSQC, 1H,13C-HMBC). Signal multiplicities are abbreviated as s (singlet), d (doublet), t (triplet), m (multiplet) and br. (broad signal). Elemental analyses were performed using a vario MICRO cube CHNS element analyser from Elementar. Samples were burned in sealed tin containers by a stream of oxygen. High-resolution ESI mass spectra were recorded on a ThermoFisher Orbitrap spectrometer. IR spectra were recorded on a Bruker Alpha-P ATR-IR Spectrometer. Signal intensities are marked as s (strong), m (medium), w (weak) and br. (broad). For FT–Raman spectroscopy, a Bruker RAM II −1064 FT–Raman Module, a R510-N/R Nd:YAG-laser (1046 nm, up to 500 mW) and a D418-T/R liquid-nitro­gen-cooled, highly sensitive Ge detector or a Bruker IFS 66 with a FRA 106 unit and a 35mW NdYAG-LASER (1064 nm) was used. XRPD experiments were performed with a Stoe Transmission Powder Diffraction System (STADI P) with Cu Kα radiation (λ = 1.5406 Å) that is equipped with position-sensitive detectors (Mythen-K1). UV/vis spectra were recorded with a Cary 5000 spectrometer in transmission geometry.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned with idealized geometry (C—H = 0.93 Å) and were refined with Uiso(H) = 1.2Ueq(C) using a riding model. The B—H hydrogen atoms were located in a difference-Fourier map. Their bond lengths were set to ideal values (B—H = 0.97 Å) and finally they were refined with Uiso(H) = 1.5Ueq(B) using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C6H8BN4)2(C12H8N2)]
Mr 539.52
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 17.4591 (10), 16.0990 (7), 10.6076 (6)
β (°) 121.533 (4)
V3) 2541.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.13 × 0.10 × 0.06
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.805, 0.911
No. of measured, independent and observed [I > 2σ(I)] reflections 10361, 2765, 2359
Rint 0.031
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.089, 1.08
No. of reflections 2765
No. of parameters 168
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.22
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[dihydrobis(pyrazol-1-yl)borato-κ2N2,N2'](1,10-\ phenanthroline-κ2N,N')zinc(II) top
Crystal data top
[Zn(C6H8BN4)2(C12H8N2)]F(000) = 1112
Mr = 539.52Dx = 1.410 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.4591 (10) ÅCell parameters from 10361 reflections
b = 16.0990 (7) Åθ = 2.3–27.0°
c = 10.6076 (6) ŵ = 1.00 mm1
β = 121.533 (4)°T = 293 K
V = 2541.3 (3) Å3Block, colourless
Z = 40.13 × 0.10 × 0.06 mm
Data collection top
Stoe IPDS-2
diffractometer
2359 reflections with I > 2σ(I)
ω scansRint = 0.031
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2008)
θmax = 27.0°, θmin = 2.3°
Tmin = 0.805, Tmax = 0.911h = 2122
10361 measured reflectionsk = 2016
2765 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.6977P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2765 reflectionsΔρmax = 0.22 e Å3
168 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.75993 (2)0.75000.04673 (13)
N10.42976 (13)0.86884 (12)0.6097 (2)0.0560 (5)
C10.36392 (18)0.86814 (18)0.4692 (3)0.0689 (7)
H10.33930.81730.42460.083*
C20.3299 (2)0.9403 (2)0.3851 (4)0.0835 (9)
H20.28510.93720.28550.100*
C30.3626 (2)1.0144 (2)0.4497 (4)0.0912 (10)
H30.33991.06300.39500.109*
C40.4307 (2)1.01866 (16)0.5991 (4)0.0762 (8)
C50.46363 (16)0.94306 (13)0.6741 (3)0.0556 (5)
C60.4676 (3)1.09407 (18)0.6787 (5)0.1086 (14)
H60.44581.14450.63000.130*
N110.43035 (14)0.63487 (13)0.4888 (2)0.0595 (5)
N120.41630 (13)0.66673 (11)0.5937 (2)0.0518 (4)
C110.37140 (18)0.60880 (16)0.6182 (3)0.0642 (6)
H110.35340.61380.68630.077*
C120.3549 (2)0.54065 (19)0.5298 (4)0.0870 (9)
H120.32410.49250.52480.104*
C130.3939 (2)0.55958 (19)0.4513 (4)0.0830 (9)
H130.39500.52510.38190.100*
B10.4746 (2)0.6851 (2)0.4199 (3)0.0690 (8)
H1A0.43810.73340.36930.083*
H1B0.47820.65110.34760.083*
N130.57014 (14)0.71333 (13)0.5411 (2)0.0580 (5)
N140.58774 (13)0.75821 (12)0.6621 (2)0.0546 (4)
C140.67425 (17)0.78014 (16)0.7300 (3)0.0631 (6)
H240.70460.81060.81730.076*
C150.71221 (18)0.75136 (19)0.6524 (3)0.0732 (7)
H150.77100.75890.67530.088*
C160.64476 (18)0.70945 (19)0.5346 (3)0.0695 (7)
H160.64970.68250.46170.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0499 (2)0.0432 (2)0.04314 (19)0.0000.02155 (15)0.000
N10.0552 (11)0.0514 (11)0.0531 (11)0.0032 (9)0.0225 (9)0.0053 (8)
C10.0653 (16)0.0721 (16)0.0568 (15)0.0089 (13)0.0232 (13)0.0111 (12)
C20.0744 (19)0.099 (2)0.0705 (18)0.0207 (17)0.0335 (16)0.0335 (17)
C30.081 (2)0.079 (2)0.115 (3)0.0242 (17)0.052 (2)0.051 (2)
C40.0742 (18)0.0522 (14)0.112 (2)0.0121 (13)0.0552 (18)0.0250 (14)
C50.0550 (13)0.0459 (12)0.0735 (15)0.0046 (10)0.0390 (12)0.0063 (10)
C60.104 (3)0.0439 (14)0.174 (4)0.0090 (15)0.070 (3)0.0195 (17)
N110.0640 (12)0.0682 (12)0.0513 (11)0.0061 (10)0.0338 (10)0.0125 (9)
N120.0583 (11)0.0524 (10)0.0486 (10)0.0039 (8)0.0307 (9)0.0052 (8)
C110.0742 (17)0.0613 (14)0.0657 (15)0.0147 (12)0.0425 (14)0.0092 (11)
C120.110 (3)0.0628 (16)0.108 (2)0.0286 (17)0.070 (2)0.0235 (16)
C130.094 (2)0.0747 (18)0.088 (2)0.0200 (16)0.0525 (19)0.0387 (16)
B10.0674 (18)0.098 (2)0.0443 (14)0.0064 (16)0.0308 (14)0.0032 (14)
N130.0588 (11)0.0716 (12)0.0495 (10)0.0034 (9)0.0324 (9)0.0081 (9)
N140.0524 (10)0.0625 (11)0.0484 (9)0.0004 (9)0.0260 (8)0.0083 (8)
C140.0559 (13)0.0688 (15)0.0584 (13)0.0027 (11)0.0256 (12)0.0166 (11)
C150.0540 (13)0.095 (2)0.0748 (16)0.0067 (14)0.0365 (13)0.0276 (15)
C160.0663 (16)0.0879 (18)0.0663 (16)0.0139 (14)0.0430 (15)0.0181 (13)
Geometric parameters (Å, º) top
Zn1—N122.1454 (18)N11—N121.358 (2)
Zn1—N12i2.1454 (18)N11—B11.541 (4)
Zn1—N142.1704 (18)N12—C111.328 (3)
Zn1—N14i2.1705 (18)C11—C121.372 (4)
Zn1—N12.2101 (19)C11—H110.9300
Zn1—N1i2.2101 (19)C12—C131.356 (4)
N1—C11.323 (3)C12—H120.9300
N1—C51.350 (3)C13—H130.9300
C1—C21.394 (4)B1—N131.549 (4)
C1—H10.9300B1—H1A0.9700
C2—C31.347 (5)B1—H1B0.9700
C2—H20.9300N13—C161.341 (3)
C3—C41.399 (5)N13—N141.361 (3)
C3—H30.9300N14—C141.337 (3)
C4—C51.402 (3)C14—C151.379 (4)
C4—C61.426 (5)C14—H240.9300
C5—C5i1.438 (5)C15—C161.365 (4)
C6—C6i1.334 (8)C15—H150.9300
C6—H60.9300C16—H160.9300
N11—C131.329 (3)
N12—Zn1—N12i91.24 (10)C13—N11—N12109.0 (2)
N12—Zn1—N1490.43 (7)C13—N11—B1128.0 (2)
N12i—Zn1—N1488.55 (7)N12—N11—B1122.7 (2)
N12—Zn1—N14i88.55 (7)C11—N12—N11105.83 (19)
N12i—Zn1—N14i90.43 (7)C11—N12—Zn1124.95 (15)
N14—Zn1—N14i178.54 (11)N11—N12—Zn1123.73 (14)
N12—Zn1—N196.92 (7)N12—C11—C12111.2 (2)
N12i—Zn1—N1171.59 (8)N12—C11—H11124.4
N14—Zn1—N189.34 (7)C12—C11—H11124.4
N14i—Zn1—N191.83 (7)C13—C12—C11104.3 (2)
N12—Zn1—N1i171.59 (7)C13—C12—H12127.9
N12i—Zn1—N1i96.92 (7)C11—C12—H12127.9
N14—Zn1—N1i91.83 (7)N11—C13—C12109.6 (2)
N14i—Zn1—N1i89.34 (7)N11—C13—H13125.2
N1—Zn1—N1i75.01 (11)C12—C13—H13125.2
C1—N1—C5118.1 (2)N11—B1—N13110.5 (2)
C1—N1—Zn1126.95 (18)N11—B1—H1A109.6
C5—N1—Zn1114.81 (16)N13—B1—H1A109.6
N1—C1—C2122.8 (3)N11—B1—H1B109.6
N1—C1—H1118.6N13—B1—H1B109.6
C2—C1—H1118.6H1A—B1—H1B108.1
C3—C2—C1119.2 (3)C16—N13—N14109.1 (2)
C3—C2—H2120.4C16—N13—B1126.7 (2)
C1—C2—H2120.4N14—N13—B1123.6 (2)
C2—C3—C4120.2 (3)C14—N14—N13106.4 (2)
C2—C3—H3119.9C14—N14—Zn1128.16 (17)
C4—C3—H3119.9N13—N14—Zn1123.37 (14)
C3—C4—C5117.0 (3)N14—C14—C15110.5 (2)
C3—C4—C6124.4 (3)N14—C14—H24124.8
C5—C4—C6118.6 (3)C15—C14—H24124.8
N1—C5—C4122.7 (3)C16—C15—C14105.0 (2)
N1—C5—C5i117.61 (13)C16—C15—H15127.5
C4—C5—C5i119.68 (18)C14—C15—H15127.5
C6i—C6—C4121.61 (19)N13—C16—C15109.0 (2)
C6i—C6—H6119.2N13—C16—H16125.5
C4—C6—H6119.2C15—C16—H16125.5
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

This project was supported by the DFG (SFB 677 Function by Switching) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationAgrifoglio, G. & Capparelli, M. V. (2005). J. Chem. Crystallogr. 35, 95–100.  Web of Science CSD CrossRef CAS Google Scholar
First citationBannwarth, C., Ehlert, S. & Grimme, S. (2019). J. Chem. Theory Comput. 15, 1652–1671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBats, J. W. & Guo, S. L. (2014). Private communication (refcode CCDC 1009463). CCDC, Cambridge, England. DOI: 10.5517/cc12wfbq.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCalvo, J. A. M. & Vahrenkamp, H. (2006). Inorg. Chim. Acta, 359, 4079–4086.  Google Scholar
First citationDias, H. V. R. & Gorden, J. D. (1996). Inorg. Chem. 35, 318–324.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationFulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176–2179.  Web of Science CrossRef CAS Google Scholar
First citationGopakumar, T. G., Matino, F., Naggert, H., Bannwarth, A., Tuczek, F. & Berndt, R. (2012). Angew. Chem. Int. Ed. 51, 6262–6266.  Web of Science CrossRef CAS Google Scholar
First citationGottlieb, H. E., Kotlyar, V. & Nudelman, A. (1997). J. Org. Chem. 62, 7512–7515.  CrossRef PubMed CAS Web of Science Google Scholar
First citationGrimme, S., Bannwarth, C. & Shushkov, P. (2017). J. Chem. Theory Comput. 13, 1989–2009.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGütlich, P., Gaspar, A. B. & Garcia, Y. (2013). Beilstein J. Org. Chem. 9, 342–391.  Web of Science PubMed Google Scholar
First citationHalcrow, M. A. (2007). Polyhedron, 26, 3523–3576.  Web of Science CrossRef CAS Google Scholar
First citationHalcrow, M. A. (2013). Spin-Crossover Materials. Chichester: Wiley.  Google Scholar
First citationJaniak, C., Temizdemir, S., Dechert, S., Deck, W., Girgsdies, F., Heinze, J., Kolm, M. J., Scharmann, T. G. & Zipffel, O. M. (2000). Eur. J. Inorg. Chem. pp. 1229–1241.  CrossRef Google Scholar
First citationKipgen, L., Bernien, M., Ossinger, S., Nickel, F., Britton, A. J., Arruda, L. M., Naggert, H., Luo, C., Lotze, C., Ryll, H., Radu, F., Schierle, E., Weschke, E., Tuczek, F. & Kuch, W. (2018). Nat. Commun. 9, 2984.  Web of Science CrossRef PubMed Google Scholar
First citationKitano, T., Sohrin, Y., Hata, Y., Wada, H., Hori, T. & Ueda, K. (2003). Bull. Chem. Soc. Jpn, 76, 1365–1373.  Web of Science CSD CrossRef CAS Google Scholar
First citationKulmaczewski, R., Shepherd, H. J., Cespedes, O. & Halcrow, M. A. (2014). Inorg. Chem. 53, 9809–9817.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLobbia, G. G., Bovio, B., Santini, C., Pettinari, C. & Marchetti, F. (1997). Polyhedron, 16, 671–680.  CSD CrossRef CAS Web of Science Google Scholar
First citationLooney, A., Han, R., Gorrell, I. B., Cornebise, M., Yoon, K., Parkin, G. & Rheingold, A. L. (1995). Organometallics, 14, 274–288.  CSD CrossRef CAS Web of Science Google Scholar
First citationLuo, Y.-H., Nihei, M., Wen, G.-J., Sun, B.-W., Oshio, H. (2016). Inorg. Chem. 55, 8147–8152.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMilek, M., Heinemann, F. W. & Khusniyarov, M. M. (2013). Inorg. Chem. 52, 11585–11592.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMörtel, M., Witt, A., Heinemann, F. W., Bochmann, S., Bachmann, J. & Khusniyarov, M. M. (2017). Inorg. Chem. 56, 13174–13186.  Web of Science PubMed Google Scholar
First citationNaggert, H., Bannwarth, A., Chemnitz, S., von Hofe, T., Quandt, E. & Tuczek, F. (2011). Dalton Trans. 40, 6364–6366.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNaggert, H., Rudnik, J., Kipgen, L., Bernien, M., Nickel, F., Arruda, L. M., Kuch, W., Näther, C. & Tuczek, F. (2015). J. Mater. Chem. C. 3, 7870–7877.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakata, K., Kawabata, S. & Ichikawa, K. (1995). Acta Cryst. C51, 1092–1094.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNihei, M., Suzuki, Y., Kimura, N., Kera, Y. & Oshio, H. (2013). Chem. Eur. J. 19, 6946–6949.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOssinger, S., Naggert, H., Kipgen, L., Jasper-Toennies, T., Rai, A., Rudnik, J., Nickel, F., Arruda, L. M., Bernien, M., Kuch, W., Berndt, R. & Tuczek, F. (2017). J. Phys. Chem. C, 121, 1210–1219.  Web of Science CrossRef CAS Google Scholar
First citationOssinger, S., Näther, C. & Tuczek, F. (2016). IUCrData, 1, x161252.  Google Scholar
First citationReal, J. A., Muñoz, M. C., Faus, J. & Solans, X. (1997). Inorg. Chem. 36, 3008–3013.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationReger, D. L., Wright, T. D., Smith, M. D., Rheingold, A. L. & Rhagitan, B. (2000). J. Chem. Crystallogr. 30, 665–670.  Web of Science CSD CrossRef CAS Google Scholar
First citationRheingold, A. L., Incarvito, C. D. & Trofimenko, S. (2000). Inorg. Chem. 39, 5569–5571.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRu, J., Yu, F., Shi, P.-P., Jiao, C.-Q., Li, C.-H., Xiong, R.-G., Liu, T., Kurmoo, M. & Zuo, J.-L. (2017). Eur. J. Inorg. Chem. 2017, 3144–3149.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchenker, S., Stein, P. C., Wolny, J. A., Brady, C., McGarvey, J. J., Toftlund, H. & Hauser, A. (2001). Inorg. Chem. 40, 134–139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Kusz, J., Bednarek, G. & Gütlich, P. (2007). J. Appl. Cryst. 40, 1135–1145.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThompson, A. L., Goeta, A. E., Real, J. A., Galet, A. & Carmen Muñoz, M. (2004). Chem. Commun. pp. 1390–1391.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, S., Guo, Y., Rotaru, A., Müller-Bunz, H., Morgan, G. G., Trzop, E., Collet, E., Oláh, J. & Garcia, Y. (2018). Inorg. Chem. 57, 9880–9891.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYang, K.-W., Wang, Y.-Z., Huang, Z.-X. & Sun, J. (1997). Polyhedron, 16, 1297–1300.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds