research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,5-di­bromo­terephthalic acid ethyl­ene glycol monosolvate

CROSSMARK_Color_square_no_text.svg

aMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand, and bDivision of Chemistry, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 July 2019; accepted 18 July 2019; online 23 July 2019)

The title compound, C8H4Br2O4·C2H6O2, crystallizes with one-half of a 2,5-di­bromo­terephthalic acid (H2Br2tp) mol­ecule and one-half of an ethyl­ene glycol (EG) mol­ecule in the the asymmetric unit. The whole mol­ecules are generated by application of inversion symmetry. The H2Br2tp mol­ecule is not planar, with the di­bromo­benzene ring system inclined by a dihedral angle of 18.62 (3)° to the carb­oxy­lic group. In the crystal, the H2Br2tp and EG mol­ecules are linked into sheets propagating parallel to ([\overline{1}]01) through O—H⋯O hydrogen bonds, thereby forming R44 (12) and R44 (28) graph-set motifs. Br⋯O and weak ππ stacking inter­actions are also observed. Hirshfeld surface analysis was used to confirm the existence of these inter­actions.

1. Chemical context

Terephthalic acid and its derivatives are important ligands in the construction of coordination frameworks with high dimensionalities and inter­esting topologies (Li et al., 1999[Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature, 402, 276-279.]; Seidel et al., 2011[Seidel, C., Ahlers, R. & Ruschewitz, U. (2011). Cryst. Growth Des. 11, 5053-5063.]). They have also been shown to be versatile building blocks in crystal engineering to drive the self-assembly of functional supra­molecular networks through inter­molecular inter­actions such as hydrogen bonds, halogen bonds, and aromatic ππ stacking inter­actions (Lemmerer, 2011[Lemmerer, A. (2011). Cryst. Growth Des. 11, 583-593.]; Karmakar et al., 2014[Karmakar, A., Oliver, C. L., Platero-Prats, A. E., Laurila, E. & Öhrström, L. (2014). CrystEngComm, 16, 8243-8251.]; Meng et al., 2015[Meng, F., Li, Y., Liu, X., Li, B. & Wang, L. (2015). Cryst. Growth Des. 15, 4518-4525.]).

[Scheme 1]

In this study, we present the crystal structure of 2,5-di­bromoterephthalic acid ethyl­ene glycol monosolvate, C8H4Br2O4·C2H6O2 or H2Br2tp·EG, which is a pseudopolymorph of the previously reported compound 2,5-di­bromo­terephthalic acid dihydrate (Song et al., 2008[Song, G.-L., Liu, S., Liu, H.-J., Zeng, T. & Zhu, H.-J. (2008). Acta Cryst. E64, o1860.]).

2. Structural commentary

The structures of the mol­ecular components in the title compound are shown in Fig. 1[link]. The asymmetric unit contains one-half of a H2Br2tp mol­ecule and one-half of an EG mol­ecule. Both mol­ecules are generated by application of inversion symmetry. The H2Br2tp mol­ecule is not planar. Its di­bromo­benzene ring system (r.m.s. deviation = 0.006 Å) makes a dihedral angle of 18.62 (3)° with the carboxylic group (r.m.s. deviation = 0.013 Å). As a result of symmetry restrictions, the EG mol­ecule adopts an anti-conformation with an O3—C5—C5i—O3i torsion angle of 180° [symmetry code: (i) 2 − x, −y, 2 − z].

[Figure 1]
Figure 1
The structures of the mol­ecular components in the title compound with displacement ellipsoids drawn at the 50% probability level. The O—H⋯O hydrogen bond is shown by a dashed line.

3. Supra­molecular features

In the crystal, the H2Br2tp and EG mol­ecules are linked by strong-to-medium O—H⋯O hydrogen bonds between carb­oxy­lic acid and alcohol OH functions (Table 1[link]), enclosing R44 (12) and R44 (28) graph-set motifs and forming sheets parallel to the ([\overline{1}]01) plane; Fig. 2[link]. Br⋯O halogen bonding [Br⋯O = 3.2536 (4) Å; C—Br⋯O = 157.7 (3)°] and weak ππ stacking inter­actions [centroid-to-centroid distance = 4.283 (5) Å] are also observed (Fig. 3[link]). The combination of these inter­molecular inter­actions results in the formation of a three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.83 (1) 1.75 (1) 2.559 (3) 165 (4)
O3—H3⋯O2i 0.82 (1) 1.97 (1) 2.767 (3) 166 (4)
Symmetry code: (i) -x+2, -y+1, -z+2.
[Figure 2]
Figure 2
View of a supra­molecular two-dimensional sheet parallel to the ([\overline{1}]01) direction, enclosing R44 (12) and R44 (28) graph-set motifs, sustained by O—H⋯O hydrogen bonds (dashed lines).
[Figure 3]
Figure 3
View along [111] of a supra­molecular sheet sustained by Br⋯O halogen bonding and ππ stacking inter­actions (dashed lines).

4. Hirshfeld surface analysis

Hirshfeld surfaces (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and their associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were used to qu­antify the various inter­molecular inter­actions, and were generated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The shorter and longer contacts are indicated as red and blue spots on the Hirshfeld surfaces, and contacts with distances equal to the sum of the van der Waals radii are represented as white spots. Hirshfeld surfaces of the title compound mapped over the normalized distance, dnorm, using a standard surface resolution with a fixed colour scale of −0.7877 (red) to 0.9385 a.u. (blue) and the two-dimensional fingerprint plots are illustrated in Fig. 4[link]. The dominant inter­actions between H and O atoms, corresponding to the discussed O—H⋯O hydrogen bonds, can be clearly be seen as red spots on the Hirshfeld surface. The faint-red spot visible on the dnorm surface can be assigned to Br⋯O contacts. Analysis of the two-dimensional fingerprint plots reveals that the H⋯O/O⋯H (28.8%) contacts are the dominant contributors to the Hirshfeld surface. The contribution of the Br⋯H/H⋯Br contacts is 22.1%, whereas Br⋯Br contacts are negligible (0.9%). Other contacts viz. H⋯H (17.7%), H⋯C/C⋯H (7.7%), Br⋯C/C⋯Br (7.2%), Br⋯O/O⋯Br (5.8%), C⋯O/O⋯C (4.5%), C⋯C (3.3%) and O⋯O (2.2%) also make significant contributions to the Hirshfeld surface.

[Figure 4]
Figure 4
Two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯O/O⋯H, (c) H⋯Br/Br⋯H, (d) H⋯H, (e) H⋯C/C⋯H, (f) H⋯O/O⋯H, (g) Br⋯O/O⋯Br, and (h) C⋯C inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

5. Database survey

A search of the Cambridge Structural Database (Version 5.40, latest update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the H2Br2tp entity resulted in just two matches. In the structure of the pseudopolymorphic H2Br2tp dihydrate (CSD refcode POFROS; Song et al., 2008[Song, G.-L., Liu, S., Liu, H.-J., Zeng, T. & Zhu, H.-J. (2008). Acta Cryst. E64, o1860.]), the H2Br2tp mol­ecules are connected through water mol­ecules by O—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network. In the structure of bis­{N-[1-(pyridin-2-yl-κN)ethyl­idene]pyridine-4-carbohydrazonato-κ2N′,O}nickel(II)–2,5-di­bromo­terephthalic acid (OBOJEX; Nakanishi & Sato, 2017[Nakanishi, T. & Sato, O. (2017). Acta Cryst. E73, 103-106.]), the H2Br2tp mol­ecules form hydrogen-bonded zigzag chains with the complex mol­ecules. The packing is further consolidated by ππ stacking and Br⋯Br halogen bonding.

6. Synthesis and crystallization

H2Br2tp and EG were purchased from commercial sources and used as received. A solution of H2Br2tp (0.020 g) in 5 ml of EG was heated (333 K) to reflux for 15 min. The reaction solution was held for 2–3 h and colourless block-shaped crystals suitable for single-crystal X-ray diffraction analysis were obtained.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The carbon-bound H atoms were placed in geometrically calculated positions and refined as riding with C—H = 0.93 Å for aromatic and C—H = 0.97 Å for methyl­ene hydrogen atoms with Uiso(H) = 1.2Ueq(C). The H atoms bound to O atoms were located from difference-Fourier maps but were refined with distance restraints of O—H = 0.82 ± 0.02 Å and Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C8H4Br2O4·C2H6O2
Mr 386.00
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 4.2823 (6), 6.2607 (9), 11.5497 (17)
α, β, γ (°) 96.701 (5), 93.930 (5), 90.575 (5)
V3) 306.76 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 6.62
Crystal size (mm) 0.20 × 0.20 × 0.16
 
Data collection
Diffractometer Bruker D8 QUEST CMOS PHOTON II
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.576, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 9075, 1208, 1076
Rint 0.052
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.05
No. of reflections 1208
No. of parameters 91
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.28
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.] and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) top
Crystal data top
C8H4Br2O4·C2H6O2Z = 1
Mr = 386.00F(000) = 188
Triclinic, P1Dx = 2.089 Mg m3
a = 4.2823 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.2607 (9) ÅCell parameters from 5153 reflections
c = 11.5497 (17) Åθ = 3.3–28.8°
α = 96.701 (5)°µ = 6.62 mm1
β = 93.930 (5)°T = 296 K
γ = 90.575 (5)°Block, light colourless
V = 306.76 (8) Å30.20 × 0.20 × 0.16 mm
Data collection top
Bruker D8 QUEST CMOS PHOTON II
diffractometer
1208 independent reflections
Radiation source: sealed x-ray tube, Micro focus tube1076 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 7.39 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω and φ scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 77
Tmin = 0.576, Tmax = 0.747l = 1414
9075 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0175P)2 + 0.2228P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.34 e Å3
1208 reflectionsΔρmin = 0.28 e Å3
91 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.034 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28840 (7)0.90781 (4)0.67985 (2)0.03714 (15)
O10.9576 (5)0.3651 (3)0.75182 (16)0.0399 (5)
H11.013 (9)0.352 (6)0.8205 (14)0.071 (12)*
O20.6124 (5)0.5932 (3)0.82669 (15)0.0430 (5)
O31.1223 (5)0.2556 (3)0.95346 (17)0.0415 (5)
H31.205 (8)0.320 (5)1.0136 (19)0.065 (12)*
C10.7228 (6)0.4945 (4)0.7436 (2)0.0263 (5)
C20.6046 (5)0.5048 (4)0.6187 (2)0.0231 (5)
C30.4170 (6)0.6668 (4)0.5809 (2)0.0244 (5)
C40.3155 (6)0.6610 (4)0.4647 (2)0.0261 (5)
H40.1901060.7708600.4413440.031*
C50.9128 (7)0.0972 (4)0.9857 (2)0.0371 (6)
H5A0.7568190.0568210.9217090.044*
H5B0.8051740.1569801.0529490.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0530 (2)0.03148 (18)0.02537 (18)0.01196 (12)0.00214 (11)0.00380 (10)
O10.0505 (12)0.0469 (12)0.0215 (10)0.0198 (9)0.0049 (9)0.0034 (9)
O20.0507 (12)0.0585 (13)0.0175 (9)0.0199 (10)0.0031 (8)0.0034 (9)
O30.0535 (13)0.0409 (11)0.0290 (11)0.0047 (10)0.0110 (10)0.0079 (9)
C10.0292 (13)0.0285 (13)0.0206 (12)0.0021 (10)0.0026 (10)0.0029 (10)
C20.0261 (12)0.0261 (12)0.0170 (11)0.0032 (10)0.0007 (9)0.0037 (9)
C30.0299 (13)0.0239 (12)0.0189 (11)0.0015 (10)0.0031 (10)0.0006 (9)
C40.0307 (13)0.0272 (12)0.0204 (12)0.0050 (10)0.0011 (10)0.0044 (10)
C50.0386 (15)0.0414 (15)0.0310 (14)0.0065 (12)0.0030 (12)0.0062 (12)
Geometric parameters (Å, º) top
Br1—C31.894 (2)C2—C31.392 (3)
O1—H10.825 (10)C2—C4i1.394 (3)
O1—C11.303 (3)C3—C41.377 (3)
O2—C11.207 (3)C4—H40.9300
O3—H30.817 (10)C5—C5ii1.493 (5)
O3—C51.428 (4)C5—H5A0.9700
C1—C21.504 (3)C5—H5B0.9700
C1—O1—H1112 (3)C4—C3—C2120.5 (2)
C5—O3—H3108 (3)C2i—C4—H4119.1
O1—C1—C2112.1 (2)C3—C4—C2i121.9 (2)
O2—C1—O1123.7 (2)C3—C4—H4119.1
O2—C1—C2124.1 (2)O3—C5—C5ii110.6 (3)
C3—C2—C1124.6 (2)O3—C5—H5A109.5
C3—C2—C4i117.6 (2)O3—C5—H5B109.5
C4i—C2—C1117.8 (2)C5ii—C5—H5A109.5
C2—C3—Br1124.11 (18)C5ii—C5—H5B109.5
C4—C3—Br1115.39 (18)H5A—C5—H5B108.1
O3—C5—C5ii—O3ii180.000 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.83 (1)1.75 (1)2.559 (3)165 (4)
O3—H3···O2iii0.82 (1)1.97 (1)2.767 (3)166 (4)
Symmetry code: (iii) x+2, y+1, z+2.
 

Acknowledgements

The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.

Funding information

This work was supported by a National Research Councils of Thailand grant provided by the Thammasat University (No. 20/2561).

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKarmakar, A., Oliver, C. L., Platero-Prats, A. E., Laurila, E. & Öhrström, L. (2014). CrystEngComm, 16, 8243–8251.  CSD CrossRef CAS Google Scholar
First citationLemmerer, A. (2011). Cryst. Growth Des. 11, 583–593.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature, 402, 276–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMeng, F., Li, Y., Liu, X., Li, B. & Wang, L. (2015). Cryst. Growth Des. 15, 4518–4525.  CSD CrossRef CAS Google Scholar
First citationNakanishi, T. & Sato, O. (2017). Acta Cryst. E73, 103–106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeidel, C., Ahlers, R. & Ruschewitz, U. (2011). Cryst. Growth Des. 11, 5053–5063.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, G.-L., Liu, S., Liu, H.-J., Zeng, T. & Zhu, H.-J. (2008). Acta Cryst. E64, o1860.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds