research communications
analysis of the biologically active drug molecule riluzole and riluzolium chloride
aDepartment of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhauri, Bhopal 462066, India
*Correspondence e-mail: dchopra@iiserb.ac.in
This study is an investigation into the 8H5F3N2OS, and its derivative, the riluzolium chloride salt [RZHCl, 2-amino-6-(trifluoromethoxy)-1,3-benzothiazol-3-ium chloride], C8H6F3N2OS+·Cl−. In spite of repeated efforts to crystallize the drug, its has not been reported to date, hence the current study provides a method for obtaining crystals of both riluzole and its corresponding salt, riluzolium hydrochloride. The salt was obtained by grinding HCl with the drug and crystallizing the obtained solid from dichloromethane. The crystals of riluzole were obtained in the presence of L-glutamic acid and D-glutamic acid in separate experiments. In the of RZHCl, the –OCF3 moiety is perpendicular to the molecular plane containing the riluzolium ion, as can be seen by the torsion angle of 107.4 (3)°. In the case of riluzole, the torsion angles of the four different molecules in the show that in three cases the trifluoromethoxy group is perpendicular to the riluzole molecular plane and only in one molecule does the –OCF3 group lie in the same molecular plane. The of riluzole primarily consists of strong N—H⋯N hydrogen bonds along with weak C—H⋯F, C—H⋯S, F⋯F, C⋯C and C⋯S interactions, while that of its salt is stabilized by strong [N—H]+⋯Cl− and weak C—H⋯Cl−, N—H⋯S, C—H⋯F, C⋯C, S⋯N and S⋯Cl− interactions.
of the biologically active drug molecule riluzole [RZ, 6-(trifluoromethoxy)-1,3-benzothiazol-2-amine], C1. Chemical Context
Crystals are composed of an infinite array of atoms or molecules arranged in a regular pattern in space. Such crystals form assemblies of supramolecules (Desiraju, 2013; Yan & Huang, 2010). These supramolecular assemblies are formed by the involvement of certain intermolecular interactions (Mondal, Kiran et al., 2017). The study of these intermolecular interactions is significant in both chemistry (Raynal et al., 2014) and biology (Ball & Maechling, 2009). Some of the major intermolecular interactions are hydrogen-bonding, dipole–dipole, van der Waals and halogen interactions (Paulini et al., 2005). Understanding the essential molecular interactions and synthons involved in the early stages of nucleation is very important in determining the formation of crystals (Davey et al., 2013). These packing trends and supramolecular synthons can also repeat themselves in other crystal structures with similar functional groups. The phenomenon of is also a common occurrence because of the possible presence of diverse combinations of intermolecular interactions (Cruz-Cabeza & Bernstein, 2014).
Riluzole (RZ) is the only available drug used for the treatment of amyotrophic lateral sclerosis (ALS) and diseases like Parkinson's disease, Huntington's disease and other mood and anxiety disorders (Nakane et al., 2016). Even though riluzole is a most important pharmaceutical drug (Doble, 1996), no of pure riluzole has been obtained to date, although several methods have been tried in the past (Mondal, Rao, et al., 2017; Mondal et al., 2018; Thomas et al., 2019; Yadav et al., 2018).
In this work, we have been successful in obtaining crystals of riluzole along with those of its hydrochloride salt. An in-depth analysis of the two crystal structures has been performed and the role of strong hydrogen bonds and weak intermolecular interactions in the
has been established.2. Structural commentary
The riluzolium chloride salt crystallizes in the P21/c with one riluzolium cation (RZH+) and a chloride anion (Cl−) in the while the riluzole molecule crystallizes in the centrosymmetric triclinic P with Z′ = 4. The of riluzolium chloride (Fig. 1) shows a riluzolium ion with a chloride ion held via [N—H]+⋯Cl− interactions between the riluzolium cation and the chloride anion. On the other hand, the of riluzole (Fig. 2) comprises four molecules, wherein each pair is perpendicular to the other pair, with parallel pairs being held together by C⋯C, C⋯O and C⋯S intermolecular contacts and each pair is connected with the other pair via C—H⋯π or C—H⋯S hydrogen-bonding interactions. The conformations of riluzole and of the riluzolium cation in the crystal packing are preserved except for the conformational changes that occur in the –OCF3 group. The main difference between the two molecular structures can be seen from the magnitude of the torsion angles Ci—Cj—Ok—Cl, Table 1 (Mondal, Rao et al., 2017; Mondal et al., 2018; Thomas et al., 2019; Yadav et al., 2018). Both the structures in the current study crystallized in a centrosymmetric Hence, only torsion angles within the 0 to 180° range are significant. In the of RZHCl, the torsion angle relative to the –OCF3 moiety is 107.4 (3)°, which means that the trifluoromethoxy group is roughly perpendicular to the molecular plane of the riluzolium ion. The corresponding torsion angles for the four different riluzole molecules in the of the of RZ are −86.2 (4), 91.9 (3), −96.4 (3)° (when the –OCF3 group is perpendicular to the molecular plane of riluzole) and 167.6 (2)° (for one molecule when the group is in the same molecular plane).
|
3. Supramolecular features
The riluzolium ion forms hydrogen-bonding interactions (Table 2) with a chloride ion via strong N1—H1A⋯Cl1 (2.15 Å, 154°), N2—H2⋯Cl1 (2.35 Å, 139°) and N1—H1B⋯Cl1 (2.14 Å, 175°) interactions (Motifs I and II, Fig. 3) along with weak C—H⋯Cl and S⋯Cl interactions (Motif III), forming a molecular sheet down the ab plane. Riluzolinium molecules in parallel planes are connected by weak C⋯C and C⋯S interactions (Motif V, Fig. 4). Two such chains along the b axis are connected via motif IV, the dimer based on two symmetry-related C—H⋯F–Csp3 interactions, which yields an R22(12) graph-set motif. The importance of such interactions has been evidenced in the crystal structures of –F- and –CF3-containing benzanilides (Panini et al., 2016). The of riluzole consists of strong as well as weak interactions between the corresponding riluzole molecules. Similar types of interactions are grouped together as motifs, in both parallel and perpendicularly aligned molecules in the Strong N—H⋯N hydrogen-bonded R22(8) dimers are obtained (Motifs I to III; Figs. 5, 6), leading to the formation of chains along the b-axis direction. [Motifs I(a) and I(b); Fig. 5]. In addition, the amine nitrogen forms hydrogen-bonding interactions with the amine hydrogen of another riluzole molecule [Motifs II(a) and II(b); Fig. 5]. The ring nitrogen atom was found to form hydrogen bonds with the amine hydrogens [Motifs III(a) and III(b)] along with other weak C—H⋯F, N—H⋯C, and C⋯S interactions. Molecular motifs IV(a), IV(b), and V(a–f), show the presence of short and highly directional interactions involving organic fluorine, such as the Csp3—F⋯H–Csp2 (2.46 Å, 161°; 2.41 Å, 161°) hydrogen bond and the Csp3—F⋯F—Csp3 (2.907 Å, 137°, 107°; 2.923 Å, 115°, 120°; 2.845 Å, 127°, 127°) interactions [Figs. 5 and 6], in the crystal packing and these structural features are indeed noteworthy. Furthermore, we have also observed sulfur forming weak C—H⋯S and C⋯S interactions (Motifs VII and VIII) in addition to the presence of weak C⋯O, C⋯C (Motif VI), and C—H⋯C interactions (Motif IX) (Fig. 6).
|
The electrostatic potentials (ESP) (Spackman et al., 2008) were mapped on the Hirshfeld surfaces for RZHCl (Fig. 7a), and for the four molecules in RZ (Fig. 7b, front and back views). These were calculated using HF/6-31G** ab initio wave functions via the program Gaussian09 (Frisch et al., 2009). The ESP map allows a quantitative understanding of the nature of electron-rich and electron-deficient sites in the molecule to be obtained. As expected in all the RZ molecules, the electronegative regions are around the nitrogen, oxygen, fluorine, and sulfur atoms. The corresponding electropositive regions were observed around the N—H and C—H bonds.
4. Database analysis
Recently, Thomas and coworkers (Thomas et al., 2019) reported the ubiquity of a robust, directional S⋯O chalcogen-bonded synthon and have probed the electronic nature in a series of co-crystals and salts of the drug riluzole. The S⋯O bond order for chalcogen bonding was found to be one-third of a single bond (minimum 0.10 to maximum 0.35), and these are short (2.90 to 3.40 Å) and directional (<C—S⋯O = 160–179°) in nature. In another recent study, performed on the drug riluzole, the riluzole molecules (CCDC codes YEPJIP and YEPJOV; Yadav et al., 2018) also display the presence of S⋯O chalcogen-bonded synthons (S⋯O distances = 3.39 and 3.42 Å, respectively). However, in the current study, S⋯O chalcogen-bonded synthons were not observed.
5. Synthesis and crystallization
Riluzole was obtained from Rallis India Ltd, and different solvents were used to crystallize it, along with two additives, namely L-Glutamic acid (LGA) and D-Glutamic acid (DGA), which were obtained from Sigma Aldrich and used directly without further purification. The crystallization of riluzole was conducted with LGA and DGA, by the solvent-drop grinding method. Grinding was carried out for 15-20 minutes, with the dropwise addition of methanol at an interval of 5 min in an agate mortar and pestle. The slow evaporation method was conducted both at low temperature (278 K) in a refrigerator and also at room temperature with 5 mg of granulated material for each crystallization. This resulted in the formation of plate-like crystals of riluzole from methanol. The riluzole crystals were collected from the crystallization beaker under the polarizing microscope and used for single crystal XRD experiments. No further experiments to evaluate the role of additives have been performed and these are not within the scope of the current work.
Riluzolium chloride was obtained by grinding concentrated HCl (35%) with riluzole in a 1:1 molar ratio for 10-15 minutes and the powder obtained was recrystallized from different solvents. 5 mg of granulated material was used for each crystallization. In particular, crystals of riluzolium chloride were obtained from dichloromethane (DCM).
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms attached to the carbon atoms and sp2 nitrogen atoms were placed in calculated positions (C–H = 0.95 Å and Nsp2—H = 0.88 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, Nsp2). Hydrogen atoms attached to sp3 nitrogen atoms were located in difference-Fourier maps (Nsp3—H = 0.81–0.91 Å). The normalized values of hydrogen atoms given by PARST (Nardelli, 1995) were used for the hydrogen-bonding (Taylor & Kennard, 1983) analysis.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989019009022/xi2017sup1.cif
contains datablocks RZHCl, RZ. DOI:Structure factors: contains datablock RZHCl. DOI: https://doi.org/10.1107/S2056989019009022/xi2017RZHClsup2.hkl
Structure factors: contains datablock RZ. DOI: https://doi.org/10.1107/S2056989019009022/xi2017RZsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019009022/xi2017RZHClsup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019009022/xi2017RZsup5.cml
For both structures, data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and WinGX (Farrugia, 2012).C8H6ClF3N2OS+·Cl− | F(000) = 544 |
Mr = 270.66 | Dx = 1.756 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.737 (8) Å | Cell parameters from 2658 reflections |
b = 8.526 (4) Å | θ = 2.7–29.8° |
c = 7.761 (4) Å | µ = 0.60 mm−1 |
β = 100.45 (2)° | T = 100 K |
V = 1024.0 (9) Å3 | Plates, colorless |
Z = 4 | 0.39 × 0.08 × 0.05 mm |
Bruker APEXII CCD diffractometer | 1344 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.104 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.4°, θmin = 2.6° |
Tmin = 0.572, Tmax = 0.746 | h = −19→19 |
5326 measured reflections | k = −10→10 |
2037 independent reflections | l = −9→9 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.157 | w = 1/[σ2(Fo2) + (0.0525P)2 + 1.7896P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2037 reflections | Δρmax = 0.65 e Å−3 |
153 parameters | Δρmin = −0.60 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.09861 (8) | 0.78340 (12) | 0.44751 (16) | 0.0149 (3) | |
Cl1 | 0.12321 (8) | 0.16795 (12) | 0.39066 (17) | 0.0221 (4) | |
F1 | 0.4624 (2) | 1.1822 (3) | 0.8833 (5) | 0.0363 (9) | |
O1 | 0.3711 (2) | 0.9930 (3) | 0.8688 (4) | 0.0181 (8) | |
N2 | 0.1688 (2) | 0.5156 (4) | 0.5297 (5) | 0.0127 (9) | |
H2 | 0.1770 | 0.4136 | 0.5374 | 0.015* | |
F2 | 0.3640 (3) | 1.1687 (4) | 0.6555 (5) | 0.0637 (13) | |
N1 | 0.0427 (3) | 0.4997 (5) | 0.3216 (6) | 0.0207 (10) | |
H1B | −0.004 (4) | 0.546 (5) | 0.254 (7) | 0.020 (14)* | |
H1A | 0.051 (4) | 0.396 (7) | 0.319 (8) | 0.040 (17)* | |
F3 | 0.4660 (3) | 1.0022 (4) | 0.6932 (6) | 0.0696 (15) | |
C2 | 0.2266 (3) | 0.6230 (5) | 0.6236 (6) | 0.0140 (10) | |
C7 | 0.1975 (3) | 0.7775 (5) | 0.5902 (6) | 0.0126 (10) | |
C1 | 0.1005 (3) | 0.5799 (5) | 0.4278 (7) | 0.0147 (11) | |
C6 | 0.2447 (3) | 0.9045 (5) | 0.6695 (6) | 0.0139 (11) | |
H6 | 0.2253 | 1.0095 | 0.6492 | 0.017* | |
C3 | 0.3029 (3) | 0.5914 (5) | 0.7342 (6) | 0.0164 (11) | |
H3 | 0.3222 | 0.4866 | 0.7567 | 0.020* | |
C5 | 0.3213 (3) | 0.8689 (5) | 0.7791 (7) | 0.0160 (11) | |
C4 | 0.3515 (3) | 0.7175 (5) | 0.8127 (7) | 0.0183 (11) | |
H4 | 0.4050 | 0.6996 | 0.8889 | 0.022* | |
C8 | 0.4151 (4) | 1.0835 (6) | 0.7748 (8) | 0.0293 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0197 (7) | 0.0091 (5) | 0.0146 (7) | 0.0011 (5) | −0.0001 (5) | 0.0011 (4) |
Cl1 | 0.0307 (8) | 0.0110 (5) | 0.0215 (7) | 0.0016 (5) | −0.0037 (6) | −0.0011 (5) |
F1 | 0.037 (2) | 0.0304 (16) | 0.039 (2) | −0.0181 (14) | 0.0001 (16) | −0.0117 (15) |
O1 | 0.022 (2) | 0.0206 (16) | 0.011 (2) | −0.0081 (14) | 0.0011 (15) | −0.0053 (13) |
N2 | 0.017 (2) | 0.0075 (16) | 0.013 (2) | −0.0012 (15) | −0.0002 (17) | −0.0001 (15) |
F2 | 0.069 (3) | 0.053 (2) | 0.057 (3) | −0.034 (2) | −0.019 (2) | 0.032 (2) |
N1 | 0.022 (3) | 0.0119 (19) | 0.025 (3) | −0.0015 (18) | −0.003 (2) | 0.0025 (18) |
F3 | 0.076 (3) | 0.057 (2) | 0.095 (4) | −0.039 (2) | 0.067 (3) | −0.046 (2) |
C2 | 0.023 (3) | 0.010 (2) | 0.009 (3) | 0.0002 (18) | 0.004 (2) | 0.0002 (18) |
C7 | 0.012 (3) | 0.014 (2) | 0.013 (3) | 0.0005 (18) | 0.005 (2) | 0.0038 (18) |
C1 | 0.020 (3) | 0.008 (2) | 0.017 (3) | −0.0040 (19) | 0.007 (2) | 0.0006 (18) |
C6 | 0.023 (3) | 0.011 (2) | 0.009 (3) | 0.0013 (18) | 0.007 (2) | 0.0002 (18) |
C3 | 0.026 (3) | 0.012 (2) | 0.011 (3) | 0.0027 (19) | 0.003 (2) | 0.0012 (18) |
C5 | 0.025 (3) | 0.015 (2) | 0.011 (3) | −0.0073 (19) | 0.011 (2) | −0.0031 (18) |
C4 | 0.015 (3) | 0.024 (2) | 0.015 (3) | 0.003 (2) | 0.002 (2) | 0.004 (2) |
C8 | 0.034 (4) | 0.024 (3) | 0.030 (4) | −0.013 (2) | 0.006 (3) | −0.007 (2) |
S1—C7 | 1.739 (5) | N1—H1A | 0.89 (6) |
S1—C1 | 1.742 (4) | F3—C8 | 1.306 (6) |
F1—C8 | 1.321 (6) | C2—C3 | 1.371 (7) |
O1—C8 | 1.338 (6) | C2—C7 | 1.403 (6) |
O1—C5 | 1.422 (5) | C7—C6 | 1.392 (6) |
N2—C1 | 1.332 (6) | C6—C5 | 1.376 (7) |
N2—C2 | 1.398 (6) | C6—H6 | 0.9500 |
N2—H2 | 0.8800 | C3—C4 | 1.393 (7) |
F2—C8 | 1.328 (7) | C3—H3 | 0.9500 |
N1—C1 | 1.305 (6) | C5—C4 | 1.384 (6) |
N1—H1B | 0.91 (6) | C4—H4 | 0.9500 |
C7—S1—C1 | 90.0 (2) | C5—C6—H6 | 122.0 |
C8—O1—C5 | 117.1 (4) | C7—C6—H6 | 122.0 |
C1—N2—C2 | 114.7 (4) | C2—C3—C4 | 118.1 (4) |
C1—N2—H2 | 122.6 | C2—C3—H3 | 121.0 |
C2—N2—H2 | 122.6 | C4—C3—H3 | 121.0 |
C1—N1—H1B | 122 (3) | C6—C5—C4 | 123.7 (4) |
C1—N1—H1A | 116 (4) | C6—C5—O1 | 118.8 (4) |
H1B—N1—H1A | 121 (5) | C4—C5—O1 | 117.5 (5) |
C3—C2—N2 | 127.6 (4) | C5—C4—C3 | 119.7 (5) |
C3—C2—C7 | 121.3 (4) | C5—C4—H4 | 120.2 |
N2—C2—C7 | 111.0 (4) | C3—C4—H4 | 120.2 |
C6—C7—C2 | 121.2 (4) | F3—C8—F1 | 108.8 (5) |
C6—C7—S1 | 127.1 (3) | F3—C8—F2 | 107.4 (5) |
C2—C7—S1 | 111.7 (3) | F1—C8—F2 | 107.3 (4) |
N1—C1—N2 | 123.7 (4) | F3—C8—O1 | 112.5 (4) |
N1—C1—S1 | 123.8 (4) | F1—C8—O1 | 107.9 (5) |
N2—C1—S1 | 112.5 (3) | F2—C8—O1 | 112.8 (5) |
C5—C6—C7 | 116.1 (4) |
C8H5F3N2OS | Z = 8 |
Mr = 234.20 | F(000) = 944 |
Triclinic, P1 | Dx = 1.696 Mg m−3 |
a = 8.0824 (19) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.788 (3) Å | Cell parameters from 7465 reflections |
c = 19.745 (5) Å | θ = 2.8–28.3° |
α = 78.449 (9)° | µ = 0.37 mm−1 |
β = 84.378 (8)° | T = 100 K |
γ = 89.318 (9)° | Plates, colorless |
V = 1834.2 (8) Å3 | 0.20 × 0.20 × 0.03 mm |
Bruker APEXII CCD diffractometer | 4593 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.117 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 25.5°, θmin = 2.1° |
Tmin = 0.553, Tmax = 0.746 | h = −9→8 |
29801 measured reflections | k = −14→14 |
6730 independent reflections | l = −23→23 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0541P)2 + 0.7369P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
6730 reflections | Δρmax = 0.51 e Å−3 |
573 parameters | Δρmin = −0.47 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.56739 (12) | 0.27424 (7) | 0.80617 (4) | 0.0194 (2) | |
S2 | 0.83832 (12) | 0.45174 (7) | 0.89575 (4) | 0.0186 (2) | |
S3 | −0.00146 (12) | 0.76611 (7) | 0.82003 (4) | 0.0193 (2) | |
S4 | −0.30623 (12) | 0.95409 (7) | 0.89386 (4) | 0.0176 (2) | |
F1 | 0.2905 (3) | 0.5228 (2) | 0.48186 (10) | 0.0538 (8) | |
F2 | 0.2508 (4) | 0.3698 (2) | 0.56134 (13) | 0.0681 (9) | |
F3 | 0.0949 (4) | 0.5160 (3) | 0.56353 (12) | 0.0628 (8) | |
F4 | 0.9015 (3) | 0.7039 (2) | 0.62797 (11) | 0.0427 (6) | |
F5 | 0.7172 (3) | 0.7514 (2) | 0.55647 (10) | 0.0405 (6) | |
F6 | 0.7410 (3) | 0.84532 (19) | 0.63754 (10) | 0.0451 (7) | |
F7 | 0.3242 (3) | 0.9755 (2) | 0.48390 (10) | 0.0476 (7) | |
F8 | 0.3079 (4) | 0.8212 (2) | 0.56344 (11) | 0.0504 (8) | |
F9 | 0.0973 (4) | 0.9316 (2) | 0.54890 (11) | 0.0527 (7) | |
F10 | −0.1373 (3) | 1.3300 (2) | 0.63105 (11) | 0.0463 (7) | |
F11 | −0.0685 (3) | 1.2372 (2) | 0.54945 (10) | 0.0422 (7) | |
F12 | −0.2758 (3) | 1.1814 (2) | 0.62482 (11) | 0.0538 (8) | |
O1 | 0.3591 (3) | 0.5281 (2) | 0.58387 (11) | 0.0280 (6) | |
O2 | 0.6333 (3) | 0.6668 (2) | 0.66125 (11) | 0.0231 (6) | |
O3 | 0.3167 (4) | 0.9962 (2) | 0.58944 (12) | 0.0331 (7) | |
O4 | −0.0152 (3) | 1.1590 (2) | 0.65325 (11) | 0.0253 (6) | |
N1 | 0.4995 (5) | 0.2583 (3) | 0.94561 (15) | 0.0191 (7) | |
H1A | 0.599 (5) | 0.237 (3) | 0.9497 (16) | 0.017 (10)* | |
H1B | 0.463 (5) | 0.292 (4) | 0.980 (2) | 0.042 (13)* | |
N2 | 0.3463 (4) | 0.3895 (2) | 0.86966 (13) | 0.0167 (6) | |
N3 | 0.7894 (4) | 0.4741 (3) | 1.02897 (15) | 0.0215 (7) | |
H3A | 0.847 (5) | 0.414 (3) | 1.0362 (18) | 0.030 (12)* | |
H3B | 0.743 (5) | 0.504 (3) | 1.0596 (19) | 0.029 (12)* | |
N4 | 0.6520 (4) | 0.6036 (2) | 0.94687 (13) | 0.0179 (7) | |
N5 | 0.0104 (5) | 0.7614 (3) | 0.95743 (15) | 0.0185 (7) | |
H5A | −0.090 (6) | 0.728 (3) | 0.9646 (18) | 0.033 (12)* | |
H5B | 0.041 (7) | 0.795 (4) | 0.987 (2) | 0.068 (18)* | |
N6 | 0.1865 (4) | 0.8916 (2) | 0.87642 (13) | 0.0175 (7) | |
N7 | −0.2997 (4) | 0.9781 (3) | 1.02592 (15) | 0.0218 (7) | |
H7A | −0.362 (5) | 0.915 (3) | 1.0386 (16) | 0.016 (9)* | |
H7B | −0.266 (5) | 1.009 (3) | 1.0575 (18) | 0.027 (11)* | |
N8 | −0.1349 (4) | 1.1049 (2) | 0.93992 (13) | 0.0171 (6) | |
C1 | 0.4623 (5) | 0.3124 (3) | 0.88061 (16) | 0.0185 (8) | |
C2 | 0.3336 (5) | 0.4262 (3) | 0.79884 (16) | 0.0172 (8) | |
C12 | 0.5408 (5) | 0.7238 (3) | 0.76878 (16) | 0.0192 (8) | |
H12 | 0.475160 | 0.782215 | 0.744004 | 0.023* | |
C23 | 0.1382 (4) | 0.8618 (3) | 0.76540 (16) | 0.0160 (8) | |
C20 | 0.3703 (5) | 1.0258 (3) | 0.69917 (17) | 0.0230 (8) | |
H20 | 0.450304 | 1.081977 | 0.675480 | 0.028* | |
C14 | 0.7326 (5) | 0.5640 (3) | 0.76693 (16) | 0.0192 (8) | |
H14 | 0.796259 | 0.514646 | 0.742027 | 0.023* | |
C19 | 0.3441 (5) | 1.0046 (3) | 0.77075 (17) | 0.0205 (8) | |
H19 | 0.405089 | 1.046423 | 0.796581 | 0.025* | |
C9 | 0.7506 (4) | 0.5159 (3) | 0.96437 (16) | 0.0160 (8) | |
C30 | −0.1529 (5) | 1.0603 (3) | 0.76231 (16) | 0.0175 (8) | |
H30 | −0.207468 | 1.010101 | 0.739374 | 0.021* | |
C31 | −0.1760 (4) | 1.0495 (3) | 0.83368 (16) | 0.0153 (7) | |
C25 | −0.2392 (4) | 1.0181 (3) | 0.96022 (16) | 0.0156 (7) | |
C26 | −0.0953 (4) | 1.1236 (3) | 0.86839 (15) | 0.0146 (7) | |
C11 | 0.5392 (5) | 0.7088 (3) | 0.84009 (16) | 0.0196 (8) | |
H11 | 0.471794 | 0.756926 | 0.864594 | 0.023* | |
C10 | 0.6358 (4) | 0.6237 (3) | 0.87584 (16) | 0.0160 (8) | |
C17 | 0.0717 (5) | 0.8133 (3) | 0.89124 (16) | 0.0173 (8) | |
C22 | 0.1616 (5) | 0.8820 (3) | 0.69313 (16) | 0.0209 (8) | |
H22 | 0.099841 | 0.841139 | 0.667017 | 0.025* | |
C6 | 0.4514 (5) | 0.4040 (3) | 0.68358 (17) | 0.0206 (8) | |
H6 | 0.526557 | 0.368110 | 0.654413 | 0.025* | |
C15 | 0.7294 (4) | 0.5499 (3) | 0.83875 (16) | 0.0164 (8) | |
C32 | −0.1223 (5) | 1.2251 (4) | 0.61556 (18) | 0.0308 (10) | |
C7 | 0.4453 (5) | 0.3729 (3) | 0.75555 (16) | 0.0174 (8) | |
C28 | 0.0382 (5) | 1.2201 (3) | 0.75845 (16) | 0.0208 (8) | |
H28 | 0.112366 | 1.277598 | 0.731590 | 0.025* | |
C18 | 0.2277 (4) | 0.9216 (3) | 0.80461 (16) | 0.0158 (8) | |
C16 | 0.7463 (5) | 0.7402 (3) | 0.62168 (17) | 0.0275 (9) | |
C5 | 0.3445 (5) | 0.4888 (3) | 0.65630 (16) | 0.0202 (8) | |
C13 | 0.6395 (5) | 0.6524 (3) | 0.73365 (16) | 0.0183 (8) | |
C3 | 0.2279 (5) | 0.5104 (3) | 0.76902 (17) | 0.0204 (8) | |
H3 | 0.151349 | 0.546462 | 0.797609 | 0.025* | |
C29 | −0.0478 (5) | 1.1467 (3) | 0.72619 (16) | 0.0195 (8) | |
C21 | 0.2789 (5) | 0.9644 (3) | 0.66162 (16) | 0.0216 (8) | |
C27 | 0.0141 (5) | 1.2081 (3) | 0.82977 (16) | 0.0199 (8) | |
H27 | 0.071741 | 1.257234 | 0.852371 | 0.024* | |
C4 | 0.2335 (5) | 0.5424 (3) | 0.69743 (17) | 0.0239 (9) | |
H4 | 0.161571 | 0.600681 | 0.676698 | 0.029* | |
C8 | 0.2511 (6) | 0.4824 (4) | 0.54838 (19) | 0.0387 (11) | |
C24 | 0.2624 (6) | 0.9305 (4) | 0.54759 (18) | 0.0347 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0208 (6) | 0.0135 (5) | 0.0253 (4) | 0.0032 (4) | −0.0030 (4) | −0.0070 (3) |
S2 | 0.0197 (6) | 0.0137 (5) | 0.0232 (4) | 0.0015 (4) | −0.0018 (4) | −0.0061 (3) |
S3 | 0.0192 (6) | 0.0156 (5) | 0.0245 (4) | −0.0047 (4) | −0.0002 (4) | −0.0084 (3) |
S4 | 0.0187 (6) | 0.0141 (4) | 0.0211 (4) | −0.0028 (4) | −0.0018 (3) | −0.0062 (3) |
F1 | 0.054 (2) | 0.084 (2) | 0.0219 (12) | 0.0105 (15) | −0.0067 (11) | −0.0060 (12) |
F2 | 0.123 (3) | 0.0444 (18) | 0.0446 (15) | −0.0135 (17) | −0.0252 (16) | −0.0176 (13) |
F3 | 0.0352 (19) | 0.114 (3) | 0.0434 (15) | 0.0000 (17) | −0.0094 (12) | −0.0228 (15) |
F4 | 0.0258 (16) | 0.0544 (16) | 0.0435 (13) | −0.0024 (13) | 0.0007 (11) | −0.0014 (11) |
F5 | 0.0532 (19) | 0.0484 (15) | 0.0201 (11) | −0.0052 (13) | −0.0036 (10) | −0.0066 (10) |
F6 | 0.079 (2) | 0.0220 (13) | 0.0322 (12) | −0.0116 (12) | 0.0033 (12) | −0.0042 (10) |
F7 | 0.066 (2) | 0.0562 (17) | 0.0188 (11) | −0.0080 (14) | 0.0006 (11) | −0.0043 (10) |
F8 | 0.081 (2) | 0.0370 (15) | 0.0331 (13) | 0.0120 (14) | 0.0028 (12) | −0.0117 (11) |
F9 | 0.042 (2) | 0.080 (2) | 0.0350 (13) | −0.0092 (15) | −0.0155 (11) | −0.0022 (12) |
F10 | 0.067 (2) | 0.0360 (15) | 0.0338 (13) | 0.0146 (13) | −0.0077 (12) | −0.0008 (11) |
F11 | 0.0503 (18) | 0.0570 (16) | 0.0177 (11) | −0.0113 (13) | −0.0014 (10) | −0.0041 (10) |
F12 | 0.0317 (18) | 0.087 (2) | 0.0378 (13) | −0.0198 (15) | −0.0083 (11) | 0.0024 (13) |
O1 | 0.0260 (18) | 0.0327 (16) | 0.0232 (13) | −0.0004 (12) | −0.0024 (11) | −0.0001 (11) |
O2 | 0.0265 (17) | 0.0262 (14) | 0.0180 (12) | −0.0072 (12) | −0.0043 (10) | −0.0059 (10) |
O3 | 0.043 (2) | 0.0345 (16) | 0.0208 (13) | −0.0110 (14) | 0.0025 (12) | −0.0043 (11) |
O4 | 0.0307 (18) | 0.0277 (15) | 0.0175 (12) | 0.0016 (12) | −0.0001 (11) | −0.0053 (10) |
N1 | 0.017 (2) | 0.0176 (17) | 0.0231 (16) | 0.0009 (14) | −0.0057 (13) | −0.0040 (13) |
N2 | 0.0180 (19) | 0.0115 (15) | 0.0211 (14) | −0.0006 (13) | −0.0026 (12) | −0.0044 (11) |
N3 | 0.025 (2) | 0.0198 (18) | 0.0203 (17) | 0.0073 (15) | −0.0038 (14) | −0.0047 (14) |
N4 | 0.0171 (19) | 0.0159 (16) | 0.0211 (14) | −0.0022 (13) | −0.0013 (12) | −0.0049 (11) |
N5 | 0.020 (2) | 0.0126 (16) | 0.0225 (16) | −0.0034 (14) | 0.0000 (13) | −0.0035 (12) |
N6 | 0.0194 (19) | 0.0119 (15) | 0.0216 (15) | 0.0002 (13) | −0.0030 (12) | −0.0035 (11) |
N7 | 0.025 (2) | 0.0221 (18) | 0.0192 (16) | −0.0118 (15) | −0.0006 (13) | −0.0063 (14) |
N8 | 0.0158 (18) | 0.0155 (15) | 0.0206 (14) | −0.0016 (13) | −0.0003 (12) | −0.0058 (11) |
C1 | 0.022 (2) | 0.0091 (17) | 0.0248 (18) | −0.0068 (16) | 0.0001 (15) | −0.0051 (14) |
C2 | 0.020 (2) | 0.0097 (17) | 0.0231 (17) | −0.0044 (15) | −0.0002 (14) | −0.0057 (13) |
C12 | 0.016 (2) | 0.0176 (19) | 0.0242 (18) | −0.0021 (15) | −0.0072 (14) | −0.0014 (14) |
C23 | 0.013 (2) | 0.0126 (17) | 0.0223 (17) | −0.0006 (14) | −0.0010 (14) | −0.0045 (14) |
C20 | 0.023 (2) | 0.0146 (19) | 0.031 (2) | −0.0085 (16) | 0.0002 (16) | −0.0028 (15) |
C14 | 0.022 (2) | 0.0131 (18) | 0.0241 (18) | −0.0049 (15) | −0.0008 (15) | −0.0086 (14) |
C19 | 0.019 (2) | 0.0169 (19) | 0.0269 (18) | −0.0057 (16) | −0.0052 (15) | −0.0067 (15) |
C9 | 0.011 (2) | 0.0144 (18) | 0.0234 (18) | −0.0043 (15) | 0.0009 (14) | −0.0076 (14) |
C30 | 0.017 (2) | 0.0162 (18) | 0.0224 (18) | 0.0032 (15) | −0.0052 (14) | −0.0096 (14) |
C31 | 0.016 (2) | 0.0071 (16) | 0.0226 (17) | 0.0007 (14) | −0.0020 (14) | −0.0029 (13) |
C25 | 0.011 (2) | 0.0148 (18) | 0.0234 (18) | 0.0001 (15) | −0.0042 (14) | −0.0087 (14) |
C26 | 0.013 (2) | 0.0110 (17) | 0.0211 (17) | 0.0046 (14) | −0.0037 (14) | −0.0048 (13) |
C11 | 0.018 (2) | 0.0162 (19) | 0.0263 (18) | −0.0031 (16) | −0.0001 (15) | −0.0090 (14) |
C10 | 0.017 (2) | 0.0096 (17) | 0.0207 (17) | −0.0047 (15) | 0.0005 (14) | −0.0032 (13) |
C17 | 0.018 (2) | 0.0110 (18) | 0.0242 (18) | 0.0026 (15) | −0.0032 (14) | −0.0055 (14) |
C22 | 0.021 (2) | 0.021 (2) | 0.0221 (18) | 0.0004 (16) | −0.0032 (15) | −0.0083 (15) |
C6 | 0.020 (2) | 0.0185 (19) | 0.0258 (18) | −0.0041 (16) | −0.0014 (15) | −0.0100 (15) |
C15 | 0.014 (2) | 0.0098 (17) | 0.0252 (18) | −0.0031 (14) | −0.0018 (14) | −0.0033 (13) |
C32 | 0.031 (3) | 0.038 (3) | 0.022 (2) | −0.006 (2) | −0.0008 (17) | −0.0034 (17) |
C7 | 0.014 (2) | 0.0132 (18) | 0.0260 (18) | −0.0011 (15) | −0.0028 (14) | −0.0069 (14) |
C28 | 0.016 (2) | 0.020 (2) | 0.0247 (18) | −0.0007 (16) | 0.0038 (14) | −0.0022 (15) |
C18 | 0.015 (2) | 0.0106 (17) | 0.0230 (17) | 0.0040 (15) | −0.0040 (14) | −0.0054 (13) |
C16 | 0.035 (3) | 0.025 (2) | 0.0230 (19) | 0.0025 (19) | −0.0042 (16) | −0.0054 (16) |
C5 | 0.018 (2) | 0.021 (2) | 0.0207 (17) | −0.0041 (16) | −0.0023 (14) | −0.0020 (14) |
C13 | 0.018 (2) | 0.0164 (18) | 0.0205 (17) | −0.0068 (15) | −0.0032 (14) | −0.0029 (14) |
C3 | 0.018 (2) | 0.0160 (19) | 0.0272 (18) | −0.0005 (16) | 0.0005 (15) | −0.0062 (15) |
C29 | 0.022 (2) | 0.0186 (19) | 0.0182 (17) | 0.0042 (16) | 0.0004 (14) | −0.0060 (14) |
C21 | 0.020 (2) | 0.022 (2) | 0.0218 (18) | −0.0005 (16) | 0.0002 (15) | −0.0027 (14) |
C27 | 0.023 (2) | 0.0149 (18) | 0.0236 (18) | 0.0006 (16) | −0.0042 (15) | −0.0062 (14) |
C4 | 0.022 (2) | 0.0169 (19) | 0.033 (2) | 0.0006 (16) | −0.0065 (16) | −0.0024 (15) |
C8 | 0.042 (3) | 0.052 (3) | 0.022 (2) | 0.001 (2) | −0.0040 (18) | −0.0069 (19) |
C24 | 0.044 (3) | 0.038 (3) | 0.021 (2) | 0.000 (2) | −0.0057 (18) | −0.0024 (17) |
S1—C7 | 1.739 (4) | N6—C18 | 1.399 (4) |
S1—C1 | 1.759 (3) | N7—C25 | 1.335 (4) |
S2—C15 | 1.740 (3) | N7—H7A | 0.88 (4) |
S2—C9 | 1.766 (3) | N7—H7B | 0.85 (4) |
S3—C23 | 1.736 (3) | N8—C25 | 1.307 (4) |
S3—C17 | 1.766 (3) | N8—C26 | 1.391 (4) |
S4—C31 | 1.742 (3) | C2—C3 | 1.381 (5) |
S4—C25 | 1.768 (3) | C2—C7 | 1.411 (4) |
F1—C8 | 1.313 (4) | C12—C11 | 1.383 (4) |
F2—C8 | 1.300 (5) | C12—C13 | 1.391 (5) |
F3—C8 | 1.342 (5) | C12—H12 | 0.9500 |
F4—C16 | 1.330 (5) | C23—C22 | 1.393 (4) |
F5—C16 | 1.312 (4) | C23—C18 | 1.400 (5) |
F6—C16 | 1.337 (4) | C20—C19 | 1.381 (4) |
F7—C24 | 1.315 (4) | C20—C21 | 1.398 (5) |
F8—C24 | 1.320 (5) | C20—H20 | 0.9500 |
F9—C24 | 1.332 (5) | C14—C13 | 1.374 (5) |
F10—C32 | 1.334 (4) | C14—C15 | 1.392 (4) |
F11—C32 | 1.315 (4) | C14—H14 | 0.9500 |
F12—C32 | 1.331 (5) | C19—C18 | 1.387 (5) |
O1—C8 | 1.351 (5) | C19—H19 | 0.9500 |
O1—C5 | 1.406 (4) | C30—C29 | 1.371 (5) |
O2—C16 | 1.342 (5) | C30—C31 | 1.383 (4) |
O2—C13 | 1.411 (4) | C30—H30 | 0.9500 |
O3—C24 | 1.345 (5) | C31—C26 | 1.413 (5) |
O3—C21 | 1.403 (4) | C26—C27 | 1.393 (5) |
O4—C32 | 1.337 (5) | C11—C10 | 1.386 (5) |
O4—C29 | 1.417 (4) | C11—H11 | 0.9500 |
N1—C1 | 1.374 (4) | C10—C15 | 1.414 (4) |
N1—H1A | 0.84 (4) | C22—C21 | 1.376 (5) |
N1—H1B | 0.88 (4) | C22—H22 | 0.9500 |
N2—C1 | 1.301 (4) | C6—C5 | 1.375 (5) |
N2—C2 | 1.392 (4) | C6—C7 | 1.391 (5) |
N3—C9 | 1.338 (4) | C6—H6 | 0.9500 |
N3—H3A | 0.84 (4) | C28—C27 | 1.381 (4) |
N3—H3B | 0.82 (4) | C28—C29 | 1.400 (5) |
N4—C9 | 1.309 (4) | C28—H28 | 0.9500 |
N4—C10 | 1.394 (4) | C5—C4 | 1.383 (5) |
N5—C17 | 1.374 (4) | C3—C4 | 1.384 (5) |
N5—H5A | 0.89 (5) | C3—H3 | 0.9500 |
N5—H5B | 0.82 (5) | C27—H27 | 0.9500 |
N6—C17 | 1.288 (4) | C4—H4 | 0.9500 |
C7—S1—C1 | 88.72 (16) | N6—C17—N5 | 124.8 (3) |
C15—S2—C9 | 88.86 (16) | N6—C17—S3 | 116.1 (2) |
C23—S3—C17 | 88.43 (16) | N5—C17—S3 | 119.0 (3) |
C31—S4—C25 | 88.76 (16) | C21—C22—C23 | 116.4 (3) |
C8—O1—C5 | 116.5 (3) | C21—C22—H22 | 121.8 |
C16—O2—C13 | 115.7 (3) | C23—C22—H22 | 121.8 |
C24—O3—C21 | 120.0 (3) | C5—C6—C7 | 117.4 (3) |
C32—O4—C29 | 115.5 (3) | C5—C6—H6 | 121.3 |
C1—N1—H1A | 117 (2) | C7—C6—H6 | 121.3 |
C1—N1—H1B | 116 (3) | C14—C15—C10 | 121.6 (3) |
H1A—N1—H1B | 110 (4) | C14—C15—S2 | 128.8 (3) |
C1—N2—C2 | 110.8 (3) | C10—C15—S2 | 109.6 (2) |
C9—N3—H3A | 119 (2) | F11—C32—F12 | 108.3 (3) |
C9—N3—H3B | 116 (3) | F11—C32—F10 | 108.5 (3) |
H3A—N3—H3B | 124 (4) | F12—C32—F10 | 105.5 (3) |
C9—N4—C10 | 110.5 (3) | F11—C32—O4 | 108.7 (3) |
C17—N5—H5A | 120 (2) | F12—C32—O4 | 113.5 (3) |
C17—N5—H5B | 112 (4) | F10—C32—O4 | 112.2 (3) |
H5A—N5—H5B | 119 (4) | C6—C7—C2 | 121.2 (3) |
C17—N6—C18 | 110.7 (3) | C6—C7—S1 | 129.0 (3) |
C25—N7—H7A | 123 (2) | C2—C7—S1 | 109.7 (2) |
C25—N7—H7B | 118 (3) | C27—C28—C29 | 119.2 (3) |
H7A—N7—H7B | 118 (3) | C27—C28—H28 | 120.4 |
C25—N8—C26 | 110.3 (3) | C29—C28—H28 | 120.4 |
N2—C1—N1 | 123.7 (3) | C19—C18—N6 | 125.9 (3) |
N2—C1—S1 | 116.0 (2) | C19—C18—C23 | 119.3 (3) |
N1—C1—S1 | 120.2 (3) | N6—C18—C23 | 114.8 (3) |
C3—C2—N2 | 126.0 (3) | F5—C16—F4 | 108.6 (3) |
C3—C2—C7 | 119.2 (3) | F5—C16—F6 | 108.1 (3) |
N2—C2—C7 | 114.7 (3) | F4—C16—F6 | 105.8 (3) |
C11—C12—C13 | 119.4 (3) | F5—C16—O2 | 108.7 (3) |
C11—C12—H12 | 120.3 | F4—C16—O2 | 112.8 (3) |
C13—C12—H12 | 120.3 | F6—C16—O2 | 112.7 (3) |
C22—C23—C18 | 122.5 (3) | C6—C5—C4 | 122.6 (3) |
C22—C23—S3 | 127.6 (3) | C6—C5—O1 | 118.0 (3) |
C18—C23—S3 | 109.9 (2) | C4—C5—O1 | 119.2 (3) |
C19—C20—C21 | 119.9 (3) | C14—C13—C12 | 122.9 (3) |
C19—C20—H20 | 120.1 | C14—C13—O2 | 119.0 (3) |
C21—C20—H20 | 120.1 | C12—C13—O2 | 117.9 (3) |
C13—C14—C15 | 117.0 (3) | C2—C3—C4 | 119.9 (3) |
C13—C14—H14 | 121.5 | C2—C3—H3 | 120.0 |
C15—C14—H14 | 121.5 | C4—C3—H3 | 120.0 |
C20—C19—C18 | 119.4 (3) | C30—C29—C28 | 123.0 (3) |
C20—C19—H19 | 120.3 | C30—C29—O4 | 119.3 (3) |
C18—C19—H19 | 120.3 | C28—C29—O4 | 117.6 (3) |
N4—C9—N3 | 124.9 (3) | C22—C21—C20 | 122.6 (3) |
N4—C9—S2 | 115.9 (2) | C22—C21—O3 | 123.8 (3) |
N3—C9—S2 | 119.2 (3) | C20—C21—O3 | 113.6 (3) |
C29—C30—C31 | 117.0 (3) | C28—C27—C26 | 119.7 (3) |
C29—C30—H30 | 121.5 | C28—C27—H27 | 120.2 |
C31—C30—H30 | 121.5 | C26—C27—H27 | 120.2 |
C30—C31—C26 | 122.0 (3) | C5—C4—C3 | 119.6 (3) |
C30—C31—S4 | 128.6 (3) | C5—C4—H4 | 120.2 |
C26—C31—S4 | 109.3 (2) | C3—C4—H4 | 120.2 |
N8—C25—N7 | 124.8 (3) | F2—C8—F1 | 110.3 (3) |
N8—C25—S4 | 116.0 (2) | F2—C8—F3 | 107.3 (4) |
N7—C25—S4 | 119.2 (3) | F1—C8—F3 | 107.0 (3) |
N8—C26—C27 | 125.4 (3) | F2—C8—O1 | 113.1 (4) |
N8—C26—C31 | 115.6 (3) | F1—C8—O1 | 107.9 (4) |
C27—C26—C31 | 119.0 (3) | F3—C8—O1 | 111.2 (3) |
C12—C11—C10 | 120.0 (3) | F7—C24—F8 | 109.2 (3) |
C12—C11—H11 | 120.0 | F7—C24—F9 | 107.8 (3) |
C10—C11—H11 | 120.0 | F8—C24—F9 | 107.4 (4) |
C11—C10—N4 | 125.7 (3) | F7—C24—O3 | 107.2 (4) |
C11—C10—C15 | 119.0 (3) | F8—C24—O3 | 113.3 (3) |
N4—C10—C15 | 115.2 (3) | F9—C24—O3 | 111.9 (3) |
C2—N2—C1—N1 | −178.1 (3) | N2—C2—C7—C6 | −177.6 (3) |
C2—N2—C1—S1 | −0.9 (4) | C3—C2—C7—S1 | 178.1 (3) |
C7—S1—C1—N2 | 0.8 (3) | N2—C2—C7—S1 | 0.2 (4) |
C7—S1—C1—N1 | 178.1 (3) | C1—S1—C7—C6 | 177.0 (3) |
C1—N2—C2—C3 | −177.3 (4) | C1—S1—C7—C2 | −0.6 (3) |
C1—N2—C2—C7 | 0.4 (4) | C20—C19—C18—N6 | −179.3 (3) |
C17—S3—C23—C22 | −179.0 (3) | C20—C19—C18—C23 | −0.6 (5) |
C17—S3—C23—C18 | −0.2 (3) | C17—N6—C18—C19 | 178.7 (3) |
C21—C20—C19—C18 | 0.5 (5) | C17—N6—C18—C23 | −0.1 (4) |
C10—N4—C9—N3 | −179.1 (3) | C22—C23—C18—C19 | 0.2 (5) |
C10—N4—C9—S2 | 1.7 (4) | S3—C23—C18—C19 | −178.6 (3) |
C15—S2—C9—N4 | −1.2 (3) | C22—C23—C18—N6 | 179.0 (3) |
C15—S2—C9—N3 | 179.6 (3) | S3—C23—C18—N6 | 0.2 (4) |
C29—C30—C31—C26 | −0.1 (5) | C13—O2—C16—F5 | −175.2 (3) |
C29—C30—C31—S4 | 177.0 (3) | C13—O2—C16—F4 | 64.3 (4) |
C25—S4—C31—C30 | −178.7 (3) | C13—O2—C16—F6 | −55.4 (4) |
C25—S4—C31—C26 | −1.3 (3) | C7—C6—C5—C4 | −0.2 (6) |
C26—N8—C25—N7 | 179.3 (3) | C7—C6—C5—O1 | 174.7 (3) |
C26—N8—C25—S4 | −2.5 (4) | C8—O1—C5—C6 | 98.8 (4) |
C31—S4—C25—N8 | 2.3 (3) | C8—O1—C5—C4 | −86.2 (4) |
C31—S4—C25—N7 | −179.4 (3) | C15—C14—C13—C12 | −2.1 (5) |
C25—N8—C26—C27 | −179.1 (3) | C15—C14—C13—O2 | −177.3 (3) |
C25—N8—C26—C31 | 1.4 (4) | C11—C12—C13—C14 | 2.3 (5) |
C30—C31—C26—N8 | 177.9 (3) | C11—C12—C13—O2 | 177.5 (3) |
S4—C31—C26—N8 | 0.2 (4) | C16—O2—C13—C14 | −92.6 (4) |
C30—C31—C26—C27 | −1.7 (5) | C16—O2—C13—C12 | 92.0 (4) |
S4—C31—C26—C27 | −179.3 (3) | N2—C2—C3—C4 | 177.0 (3) |
C13—C12—C11—C10 | 0.3 (5) | C7—C2—C3—C4 | −0.6 (5) |
C12—C11—C10—N4 | 176.5 (3) | C31—C30—C29—C28 | 1.8 (5) |
C12—C11—C10—C15 | −2.7 (5) | C31—C30—C29—O4 | 177.8 (3) |
C9—N4—C10—C11 | 179.1 (3) | C27—C28—C29—C30 | −1.8 (5) |
C9—N4—C10—C15 | −1.6 (4) | C27—C28—C29—O4 | −177.8 (3) |
C18—N6—C17—N5 | 176.4 (3) | C32—O4—C29—C30 | 87.5 (4) |
C18—N6—C17—S3 | −0.1 (4) | C32—O4—C29—C28 | −96.3 (4) |
C23—S3—C17—N6 | 0.2 (3) | C23—C22—C21—C20 | −0.3 (5) |
C23—S3—C17—N5 | −176.5 (3) | C23—C22—C21—O3 | −179.3 (3) |
C18—C23—C22—C21 | 0.3 (5) | C19—C20—C21—C22 | 0.0 (6) |
S3—C23—C22—C21 | 178.8 (3) | C19—C20—C21—O3 | 179.0 (3) |
C13—C14—C15—C10 | −0.5 (5) | C24—O3—C21—C22 | −13.4 (6) |
C13—C14—C15—S2 | −177.1 (3) | C24—O3—C21—C20 | 167.6 (4) |
C11—C10—C15—C14 | 2.9 (5) | C29—C28—C27—C26 | −0.1 (5) |
N4—C10—C15—C14 | −176.5 (3) | N8—C26—C27—C28 | −177.7 (3) |
C11—C10—C15—S2 | −179.9 (3) | C31—C26—C27—C28 | 1.7 (5) |
N4—C10—C15—S2 | 0.7 (4) | C6—C5—C4—C3 | −0.1 (6) |
C9—S2—C15—C14 | 177.1 (3) | O1—C5—C4—C3 | −174.9 (3) |
C9—S2—C15—C10 | 0.2 (3) | C2—C3—C4—C5 | 0.5 (5) |
C29—O4—C32—F11 | 174.4 (3) | C5—O1—C8—F2 | −53.5 (5) |
C29—O4—C32—F12 | −65.1 (4) | C5—O1—C8—F1 | −175.7 (3) |
C29—O4—C32—F10 | 54.4 (4) | C5—O1—C8—F3 | 67.2 (4) |
C5—C6—C7—C2 | 0.1 (5) | C21—O3—C24—F7 | −175.9 (3) |
C5—C6—C7—S1 | −177.3 (3) | C21—O3—C24—F8 | −55.4 (5) |
C3—C2—C7—C6 | 0.3 (5) | C21—O3—C24—F9 | 66.1 (4) |
Motif number | Symmetry Code | Possible involved interactions | Geometry |
RZHCL | |||
I | x, y, z | N1—H1A···Cl1 | 2.15, 154 |
N2—H2···Cl1 | 2.35, 139 | ||
II | -x, 1/2 + y, 1/2 - z | N1—H1B···Cl1 | 2.14, 175 |
III | x, 1 + y, z | C6—H6···Cl1 | 2.60, 135 |
S1···Cl1 | 3.340 (2) | ||
IV | 1-x, 2 - y, 2 - z | C4—H4···F1 | 2.57, 147 |
V | x, 3/2 - y, 1/2 + z | C5···C2 | 3.289 (7) |
C6···C1 | 3.292 (7) | ||
C7···S1 | 3.456 (6) | ||
RZ | |||
I(a) | -x, 2 - y, 2 - z | N7—H7B···N6 | 1.89, 170 |
N5—H5B···N8 | 2.03, 175 | ||
I(b) | 1-x, 1 - y, 2 - z | N3—H3B···N2 | 1.92, 167 |
N1—H1B···N4 | 2.06, 170 | ||
II(a) | -x, 1 - y, 2 - z | N7—H7A···N1 | 2.14, 169 |
II(b) | 1-x, 1 - y, 2 - z | N3—H3A···N5 | 2.15, 171 |
III(a) | 1+x, -1 + y, z | N1—H1A···N8 | 2.49, 155 |
N1—H1A···C25 | 2.77, 130 | ||
S1···C31 | 3.336 (1) | ||
S1···C26 | 3.430 (1) | ||
III(b) | -1+x, y, z | N5—H5A···N4 | 2.53, 159 |
N5—H5A···C9 | 2.75, 140 | ||
C10···S3 | 3.372 (1) | ||
C15···S3 | 3.311 (1) | ||
C22—H22···F4 | 2.44, 164 | ||
IV(a) | -1+x, y, z | C4—H4···F4 | 2.46, 161 |
IV(b) | 1+x, y, z | C20—H20···F12 | 2.41, 161 |
V(a) | -x, 2 - y, 1 - z | F1···F10 | 2.907 (1), 137, 107 |
V(b) | x, -1 + y, z | F3···F10 | 2.923 (1), 115, 120 |
C27—H27···C2 | 2.81, 129 | ||
V(c) | -x, 2 - y, 1 - z | F9···F9 | 2.845 (1), 127, 127 |
V(d) | 1 - x, 1 - y, 1 - z | F2···F5 | 2.954 (1), 143, 119 |
V(e) | 1 - x, 2 - y, 1 - z | F6···F7 | 2.946 (1), 142, 111 |
V(f) | -x, 2 - y, 1 - z | F11···F9 | 3.071 (1), 129, 97 |
VI | x, y, z | C5···O2 | 3.179 (1) |
C7···C14 | 3.308 (1) | ||
VII | x, y, z | C3—H3···S3 | 2.84, 145 |
VIII | x, y, z | C17···S4 | 3.460 (1) |
C23···C30 | 3.295 (1) | ||
IX | x, y, z | C12—H12···C18 | 2.82, 124 |
C12—H12···C23 | 2.80, 133 |
The normalized values of hydrogen atoms given by PARST (Nardelli, 1995) were used for the hydrogen-bonding (Taylor & Kennard, 1983) analysis. |
Compound | Ci—Cj—Ok—Cl | Torsion |
RZHCl | C4—C5—O1—C8 | 107.4 (3) |
RZ | C4—C5—O1—C8 | -86.2 (4) |
C12—C13—O2—C16 | 91.9 (3) | |
C20—C21—O3—C24 | 167.6 (2) | |
C28—C29—O4—C32 | -96.4 (3) |
Acknowledgements
We thank IISER Bhopal for research facilities and infrastructure.
Funding information
DC thanks the DST-SERB Scheme for funding. PKM thanks CSIR-India for a senior research fellowship.
References
Ball, V. & Maechling, C. (2009). Int. J. Mol. Sci. 10, 3283–3315. Web of Science CrossRef CAS PubMed Google Scholar
Bruker, (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cruz-Cabeza, A. J. & Bernstein, J. (2014). Chem. Rev. 114, 2170–2191. Web of Science CAS PubMed Google Scholar
Davey, R. J., Schroeder, S. L. M. & ter Horst, J. H. (2013). Angew. Chem. Int. Ed. 52, 2166–2179. Web of Science CrossRef CAS Google Scholar
Desiraju, G. R. (2013). J. Am. Chem. Soc. 135, 9952–9967. Web of Science CrossRef CAS PubMed Google Scholar
Doble, A. (1996). Neurology, 47, S233–S241. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian09. Gaussian Inc., Wallingford, Connecticut, USA. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mondal, P. K., Kiran, M. S. R. N., Ramamurty, U. & Chopra, D. (2017). Chem. Eur. J. 23, 1023–1027. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mondal, P. K., Rao, V. & Chopra, D. (2018). CrystEngComm, 20, 2079–2083. Web of Science CSD CrossRef CAS Google Scholar
Mondal, P. K., Rao, V., Mittapalli, S. & Chopra, D. (2017). Cryst. Growth Des. 17, 1938–1946. Web of Science CSD CrossRef CAS Google Scholar
Nakane, S., Izumi, Y., Oda, M., Kaji, R. & Matsuo, H. (2016). Intern. Med. 55, 1985–1990. Web of Science CrossRef PubMed Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Panini, P., Gonnade, R. G. & Chopra, D. (2016). New J. Chem. 40, 4981–5001. Web of Science CSD CrossRef CAS Google Scholar
Paulini, R., Müller, K. & Diederich, F. (2005). Angew. Chem. Int. Ed. 44, 1788–1805. Web of Science CrossRef CAS Google Scholar
Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. (2014). Chem. Soc. Rev. 43, 1660–1733. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008a). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Taylor, R. & Kennard, O. (1983). Acta Cryst. B39, 133–138. CrossRef CAS Web of Science IUCr Journals Google Scholar
Thomas, S. P., Kumar, V., Alhameedi, K. & Guru Row, T. N. (2019). Chem. Eur. J. 25, 3591–3597. Web of Science CSD CrossRef CAS PubMed Google Scholar
Yadav, B., Balasubramanian, S., Chavan, R. B., Thipparaboina, R., Naidu, V. G. M. & Shastri, N. R. (2018). Cryst. Growth Des. 18, 1047–1061. Web of Science CSD CrossRef CAS Google Scholar
Yan, Y. & Huang, J. (2010). Coord. Chem. Rev. 254, 1072–1080. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.