research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure analysis of the biologically active drug mol­ecule riluzole and riluzolium chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhauri, Bhopal 462066, India
*Correspondence e-mail: dchopra@iiserb.ac.in

Edited by C. Massera, Università di Parma, Italy (Received 27 May 2019; accepted 24 June 2019; online 2 July 2019)

This study is an investigation into the crystal structure of the biologically active drug mol­ecule riluzole [RZ, 6-(tri­fluoro­meth­oxy)-1,3-benzo­thia­zol-2-amine], C8H5F3N2OS, and its derivative, the riluzolium chloride salt [RZHCl, 2-amino-6-(tri­fluoro­meth­oxy)-1,3-benzo­thia­zol-3-ium chloride], C8H6F3N2OS+·Cl. In spite of repeated efforts to crystallize the drug, its crystal structure has not been reported to date, hence the current study provides a method for obtaining crystals of both riluzole and its corresponding salt, riluzolium hydro­chloride. The salt was obtained by grinding HCl with the drug and crystallizing the obtained solid from di­chloro­methane. The crystals of riluzole were obtained in the presence of L-glutamic acid and D-glutamic acid in separate experiments. In the crystal structure of RZHCl, the –OCF3 moiety is perpendicular to the mol­ecular plane containing the riluzolium ion, as can be seen by the torsion angle of 107.4 (3)°. In the case of riluzole, the torsion angles of the four different mol­ecules in the asymmetric unit show that in three cases the tri­fluoro­meth­oxy group is perpendicular to the riluzole mol­ecular plane and only in one mol­ecule does the –OCF3 group lie in the same mol­ecular plane. The crystal structure of riluzole primarily consists of strong N—H⋯N hydrogen bonds along with weak C—H⋯F, C—H⋯S, F⋯F, C⋯C and C⋯S inter­actions, while that of its salt is stabilized by strong [N—H]+⋯Cl and weak C—H⋯Cl, N—H⋯S, C—H⋯F, C⋯C, S⋯N and S⋯Cl inter­actions.

1. Chemical Context

Crystals are composed of an infinite array of atoms or mol­ecules arranged in a regular pattern in space. Such crystals form assemblies of supra­molecules (Desiraju, 2013[Desiraju, G. R. (2013). J. Am. Chem. Soc. 135, 9952-9967.]; Yan & Huang, 2010[Yan, Y. & Huang, J. (2010). Coord. Chem. Rev. 254, 1072-1080.]). These supra­molecular assemblies are formed by the involvement of certain inter­molecular inter­actions (Mondal, Kiran et al., 2017[Mondal, P. K., Kiran, M. S. R. N., Ramamurty, U. & Chopra, D. (2017). Chem. Eur. J. 23, 1023-1027.]). The study of these inter­molecular inter­actions is significant in both chemistry (Raynal et al., 2014[Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. (2014). Chem. Soc. Rev. 43, 1660-1733.]) and biology (Ball & Maechling, 2009[Ball, V. & Maechling, C. (2009). Int. J. Mol. Sci. 10, 3283-3315.]). Some of the major inter­molecular inter­actions are hydrogen-bonding, dipole–dipole, van der Waals and halogen inter­actions (Paulini et al., 2005[Paulini, R., Müller, K. & Diederich, F. (2005). Angew. Chem. Int. Ed. 44, 1788-1805.]). Understanding the essential mol­ecular inter­actions and synthons involved in the early stages of nucleation is very important in determining the formation of crystals (Davey et al., 2013[Davey, R. J., Schroeder, S. L. M. & ter Horst, J. H. (2013). Angew. Chem. Int. Ed. 52, 2166-2179.]). These packing trends and supra­molecular synthons can also repeat themselves in other crystal structures with similar functional groups. The phenomenon of polymorphism is also a common occurrence because of the possible presence of diverse combinations of inter­molecular inter­actions (Cruz-Cabeza & Bernstein, 2014[Cruz-Cabeza, A. J. & Bernstein, J. (2014). Chem. Rev. 114, 2170-2191.]).

Riluzole (RZ) is the only available drug used for the treatment of amyotrophic lateral sclerosis (ALS) and diseases like Parkinson's disease, Huntington's disease and other mood and anxiety disorders (Nakane et al., 2016[Nakane, S., Izumi, Y., Oda, M., Kaji, R. & Matsuo, H. (2016). Intern. Med. 55, 1985-1990.]). Even though riluzole is a most important pharmaceutical drug (Doble, 1996[Doble, A. (1996). Neurology, 47, S233-S241.]), no crystal structure of pure riluzole has been obtained to date, although several methods have been tried in the past (Mondal, Rao, et al., 2017[Mondal, P. K., Rao, V., Mittapalli, S. & Chopra, D. (2017). Cryst. Growth Des. 17, 1938-1946.]; Mondal et al., 2018[Mondal, P. K., Rao, V. & Chopra, D. (2018). CrystEngComm, 20, 2079-2083.]; Thomas et al., 2019[Thomas, S. P., Kumar, V., Alhameedi, K. & Guru Row, T. N. (2019). Chem. Eur. J. 25, 3591-3597.]; Yadav et al., 2018[Yadav, B., Balasubramanian, S., Chavan, R. B., Thipparaboina, R., Naidu, V. G. M. & Shastri, N. R. (2018). Cryst. Growth Des. 18, 1047-1061.]).

[Scheme 1]

In this work, we have been successful in obtaining crystals of riluzole along with those of its hydro­chloride salt. An in-depth analysis of the two crystal structures has been performed and the role of strong hydrogen bonds and weak inter­molecular inter­actions in the crystal lattice has been established.

2. Structural commentary

The riluzolium chloride salt crystallizes in the P21/c space group with one riluzolium cation (RZH+) and a chloride anion (Cl) in the asymmetric unit while the riluzole mol­ecule crystallizes in the centrosymmetric triclinic P[\overline{1}] space group with Z′ = 4. The asymmetric unit of riluzolium chloride (Fig. 1[link]) shows a riluzolium ion with a chloride ion held via [N—H]+⋯Cl inter­actions between the riluzolium cation and the chloride anion. On the other hand, the asymmetric unit of riluzole (Fig. 2[link]) comprises four mol­ecules, wherein each pair is perpendicular to the other pair, with parallel pairs being held together by C⋯C, C⋯O and C⋯S inter­molecular contacts and each pair is connected with the other pair via C—H⋯π or C—H⋯S hydrogen-bonding inter­actions. The conformations of riluzole and of the riluzolium cation in the crystal packing are preserved except for the conformational changes that occur in the –OCF3 group. The main difference between the two mol­ecular structures can be seen from the magnitude of the torsion angles Ci—Cj—Ok—Cl, Table 1[link] (Mondal, Rao et al., 2017[Mondal, P. K., Rao, V., Mittapalli, S. & Chopra, D. (2017). Cryst. Growth Des. 17, 1938-1946.]; Mondal et al., 2018[Mondal, P. K., Rao, V. & Chopra, D. (2018). CrystEngComm, 20, 2079-2083.]; Thomas et al., 2019[Thomas, S. P., Kumar, V., Alhameedi, K. & Guru Row, T. N. (2019). Chem. Eur. J. 25, 3591-3597.]; Yadav et al., 2018[Yadav, B., Balasubramanian, S., Chavan, R. B., Thipparaboina, R., Naidu, V. G. M. & Shastri, N. R. (2018). Cryst. Growth Des. 18, 1047-1061.]). Both the structures in the current study crystallized in a centrosymmetric space group. Hence, only torsion angles within the 0 to 180° range are significant. In the crystal structure of RZHCl, the torsion angle relative to the –OCF3 moiety is 107.4 (3)°, which means that the tri­fluoro­meth­oxy group is roughly perpendicular to the mol­ecular plane of the riluzolium ion. The corresponding torsion angles for the four different riluzole mol­ecules in the asymmetric unit of the crystal structure of RZ are −86.2 (4), 91.9 (3), −96.4 (3)° (when the –OCF3 group is perpendicular to the mol­ecular plane of riluzole) and 167.6 (2)° (for one mol­ecule when the group is in the same mol­ecular plane).

Table 1
List of torsion angles (°)

Compound Ci—Cj—Ok—Cl Torsion
RZHCl C4—C5—O1—C8 107.4 (3)
RZ C4—C5—O1—C8 −86.2 (4)
  C12—C13—O2—C16 91.9 (3)
  C20—C21—O3—C24 167.6 (2)
  C28—C29—O4—C32 −96.4 (3)
[Figure 1]
Figure 1
ORTEP view of riluzolium chloride drawn with 50% ellipsoidal probability. The dotted lines depict inter­molecular inter­actions in the asymmetric unit.
[Figure 2]
Figure 2
ORTEP view of riluzole drawn with 50% ellipsoidal probability. The dotted lines depict inter­molecular inter­actions in the asymmetric unit.

3. Supra­molecular features

The riluzolium ion forms hydrogen-bonding inter­actions (Table 2[link]) with a chloride ion via strong N1—H1A⋯Cl1 (2.15 Å, 154°), N2—H2⋯Cl1 (2.35 Å, 139°) and N1—H1B⋯Cl1 (2.14 Å, 175°) inter­actions (Motifs I and II, Fig. 3[link]) along with weak C—H⋯Cl and S⋯Cl inter­actions (Motif III), forming a mol­ecular sheet down the ab plane. Riluzolinium mol­ecules in parallel planes are connected by weak C⋯C and C⋯S inter­actions (Motif V, Fig. 4[link]). Two such chains along the b axis are connected via motif IV, the dimer based on two symmetry-related C—H⋯F–Csp3 inter­actions, which yields an R22(12) graph-set motif. The importance of such inter­actions has been evidenced in the crystal structures of –F- and –CF3-containing benzanilides (Panini et al., 2016[Panini, P., Gonnade, R. G. & Chopra, D. (2016). New J. Chem. 40, 4981-5001.]). The crystal structure of riluzole consists of strong as well as weak inter­actions between the corresponding riluzole mol­ecules. Similar types of inter­actions are grouped together as motifs, in both parallel and perpendicularly aligned mol­ecules in the asymmetric unit. Strong N—H⋯N hydrogen-bonded R22(8) dimers are obtained (Motifs I to III; Figs. 5[link], 6[link]), leading to the formation of chains along the b-axis direction. [Motifs I(a) and I(b); Fig. 5[link]]. In addition, the amine nitro­gen forms hydrogen-bonding inter­actions with the amine hydrogen of another riluzole mol­ecule [Motifs II(a) and II(b); Fig. 5[link]]. The ring nitro­gen atom was found to form hydrogen bonds with the amine hydrogens [Motifs III(a) and III(b)] along with other weak C—H⋯F, N—H⋯C, and C⋯S inter­actions. Mol­ecular motifs IV(a), IV(b), and V(af), show the presence of short and highly directional inter­actions involving organic fluorine, such as the Csp3—F⋯H–Csp2 (2.46 Å, 161°; 2.41 Å, 161°) hydrogen bond and the Csp3—F⋯F—Csp3 (2.907 Å, 137°, 107°; 2.923 Å, 115°, 120°; 2.845 Å, 127°, 127°) inter­actions [Figs. 5[link] and 6[link]], in the crystal packing and these structural features are indeed noteworthy. Furthermore, we have also observed sulfur forming weak C—H⋯S and C⋯S inter­actions (Motifs VII and VIII) in addition to the presence of weak C⋯O, C⋯C (Motif VI), and C—H⋯C inter­actions (Motif IX) (Fig. 6[link]).

Table 2
Inter­molecular inter­actions (Å, °) in the crystal structure of the RZHCl salt and RZ

Motif number Symmetry Code Possible involved inter­actions Geometry
RZHCL      
I x, y, z N1—H1A⋯Cl1 2.15, 154
    N2—H2⋯Cl1 2.35, 139
II x, [{1\over 2}] + y, [{1\over 2}] − z N1—H1B⋯Cl1 2.14, 175
III x, 1 + y, z C6—H6⋯Cl1 2.60, 135
    S1⋯Cl1 3.340 (2)
IV 1 − x, 2 − y, 2 − z C4—H4⋯F1 2.57, 147
V x, [{3\over 2}] − y, [{1\over 2}] + z C5⋯C2 3.289 (7)
    C6⋯C1 3.292 (7)
    C7⋯S1 3.456 (6)
       
RZ      
I(a) x, 2 − y, 2 − z N7—H7B⋯N6 1.89, 170
    N5—H5B⋯N8 2.03, 175
I(b) 1 − x, 1 − y, 2 − z N3—H3B⋯N2 1.92, 167
    N1—H1B⋯N4 2.06, 170
II(a) x, 1 − y, 2 − z N7—H7A⋯N1 2.14, 169
II(b) 1 − x, 1 − y, 2 − z N3—H3A⋯N5 2.15, 171
III(a) 1 + x, −1 + y, z N1—H1A⋯N8 2.49, 155
    N1—H1A⋯C25 2.77, 130
    S1⋯C31 3.336 (1)
    S1⋯C26 3.430 (1)
III(b) −1 + x, y, z N5—H5A⋯N4 2.53, 159
    N5—H5A⋯C9 2.75, 140
    C10⋯S3 3.372 (1)
    C15⋯S3 3.311 (1)
    C22—H22⋯F4 2.44, 164
IV(a) −1 + x, y, z C4—H4⋯F4 2.46, 161
IV(b) 1 + x, y, z C20—H20⋯F12 2.41, 161
V(a) x, 2 − y, 1 − z F1⋯F10 2.907 (1), 137, 107
V(b) x, −1 + y, z F3⋯F10 2.923 (1), 115, 120
    C27—H27⋯C2 2.81, 129
V(c) x, 2 − y, 1 − z F9⋯F9 2.845 (1), 127, 127
V(d) 1 − x, 1 − y, 1 − z F2⋯F5 2.954 (1), 143, 119
V(e) 1 − x, 2 − y, 1 − z F6⋯F7 2.946 (1), 142, 111
V(f) x, 2 − y, 1 − z F11⋯F9 3.071 (1), 129, 97
VI x, y, z C5⋯O2 3.179 (1)
    C7⋯C14 3.308 (1)
VII x, y, z C3—H3⋯S3 2.84, 145
VIII x, y, z C17⋯S4 3.460 (1)
    C23⋯C30 3.295 (1)
IX x, y, z C12—H12⋯C18 2.82, 124
    C12—H12⋯C23 2.80, 133
The normalized values of hydrogen atoms given by PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) were used for the hydrogen-bonding (Taylor & Kennard, 1983[Taylor, R. & Kennard, O. (1983). Acta Cryst. B39, 133-138.]) analysis.
[Figure 3]
Figure 3
A comparative view of the packing of riluzolium chloride represented via N—H⋯Cl, C—H⋯Cl, C—H⋯F, and S⋯Cl inter­molecular inter­actions. Dotted pale-blue lines depict the inter­molecular inter­actions.
[Figure 4]
Figure 4
A comparative view of the packing of riluzolium chloride represented via C⋯C and C⋯S inter­molecular inter­actions. Dotted pale-blue lines depict the inter­molecular inter­actions.
[Figure 5]
Figure 5
Packing of mol­ecules with strong N—H⋯N dimers formed along the bc plane with weak C—H⋯S and F⋯F inter­actions in riluzole. Dotted lines depict the inter­molecular inter­actions, and different colours for C atoms have been used for Z′ > 1.
[Figure 6]
Figure 6
Packing of mol­ecules with weak C—H⋯F, C—H⋯S, F⋯F, C⋯C, C⋯O, C—H⋯C and C⋯S inter­actions in riluzole. Dotted lines depict the inter­molecular inter­actions, and different colours for C atoms have been used for Z′ > 1.

The electrostatic potentials (ESP) (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]) were mapped on the Hirshfeld surfaces for RZHCl (Fig. 7[link]a), and for the four mol­ecules in RZ (Fig. 7[link]b, front and back views). These were calculated using HF/6-31G** ab initio wave functions via the program Gaussian09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian09. Gaussian Inc., Wallingford, Connecticut, USA.]). The ESP map allows a qu­anti­tative understanding of the nature of electron-rich and electron-deficient sites in the mol­ecule to be obtained. As expected in all the RZ mol­ecules, the electronegative regions are around the nitro­gen, oxygen, fluorine, and sulfur atoms. The corresponding electropositive regions were observed around the N—H and C—H bonds.

[Figure 7]
Figure 7
Electrostatic potential (ESP) mapped on the Hirshfeld surfaces of (a) the RZHCl salt and (b) RZ (four mol­ecules), over the range −0.05 au (red) through 0.0 (white) to 0.05 au (blue).

4. Database analysis

Recently, Thomas and coworkers (Thomas et al., 2019[Thomas, S. P., Kumar, V., Alhameedi, K. & Guru Row, T. N. (2019). Chem. Eur. J. 25, 3591-3597.]) reported the ubiquity of a robust, directional S⋯O chalcogen-bonded synthon and have probed the electronic nature in a series of co-crystals and salts of the drug riluzole. The S⋯O bond order for chalcogen bonding was found to be one-third of a single bond (minimum 0.10 to maximum 0.35), and these are short (2.90 to 3.40 Å) and directional (<C—S⋯O = 160–179°) in nature. In another recent study, performed on the drug riluzole, the riluzole mol­ecules (CCDC codes YEPJIP and YEPJOV; Yadav et al., 2018[Yadav, B., Balasubramanian, S., Chavan, R. B., Thipparaboina, R., Naidu, V. G. M. & Shastri, N. R. (2018). Cryst. Growth Des. 18, 1047-1061.]) also display the presence of S⋯O chalcogen-bonded synthons (S⋯O distances = 3.39 and 3.42 Å, respectively). However, in the current study, S⋯O chalcogen-bonded synthons were not observed.

5. Synthesis and crystallization

Riluzole was obtained from Rallis India Ltd, and different solvents were used to crystallize it, along with two additives, namely L-Glutamic acid (LGA) and D-Glutamic acid (DGA), which were obtained from Sigma Aldrich and used directly without further purification. The crystallization of riluzole was conducted with LGA and DGA, by the solvent-drop grinding method. Grinding was carried out for 15-20 minutes, with the dropwise addition of methanol at an inter­val of 5 min in an agate mortar and pestle. The slow evaporation method was conducted both at low temperature (278 K) in a refrigerator and also at room temperature with 5 mg of granulated material for each crystallization. This resulted in the formation of plate-like crystals of riluzole from methanol. The riluzole crystals were collected from the crystallization beaker under the polarizing microscope and used for single crystal XRD experiments. No further experiments to evaluate the role of additives have been performed and these are not within the scope of the current work.

Riluzolium chloride was obtained by grinding concentrated HCl (35%) with riluzole in a 1:1 molar ratio for 10-15 minutes and the powder obtained was recrystallized from different solvents. 5 mg of granulated material was used for each crystallization. In particular, crystals of riluzolium chloride were obtained from di­chloro­methane (DCM).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms attached to the carbon atoms and sp2 nitro­gen atoms were placed in calculated positions (C–H = 0.95 Å and Nsp2—H = 0.88 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, Nsp2). Hydrogen atoms attached to sp3 nitro­gen atoms were located in difference-Fourier maps (Nsp3—H = 0.81–0.91 Å). The normalized values of hydrogen atoms given by PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) were used for the hydrogen-bonding (Taylor & Kennard, 1983[Taylor, R. & Kennard, O. (1983). Acta Cryst. B39, 133-138.]) analysis.

Table 3
Experimental details

  RZHCl RZ
Crystal data
Chemical formula C8H6ClF3N2OS+·Cl C8H5F3N2OS
Mr 270.66 234.20
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 15.737 (8), 8.526 (4), 7.761 (4) 8.0824 (19), 11.788 (3), 19.745 (5)
α, β, γ (°) 90, 100.45 (2), 90 78.449 (9), 84.378 (8), 89.318 (9)
V3) 1024.0 (9) 1834.2 (8)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.60 0.37
Crystal size (mm) 0.39 × 0.08 × 0.05 0.20 × 0.20 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.572, 0.746 0.553, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 5326, 2037, 1344 29801, 6730, 4593
Rint 0.104 0.117
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.157, 1.08 0.056, 0.130, 1.03
No. of reflections 2037 6730
No. of parameters 153 573
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.65, −0.60 0.51, −0.47
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker, (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and WinGX (Farrugia, 2012).

2-Amino-6-(trifluoromethoxy)-1,3-benzothiazol-3-ium chloride (RZHCl) top
Crystal data top
C8H6ClF3N2OS+·ClF(000) = 544
Mr = 270.66Dx = 1.756 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.737 (8) ÅCell parameters from 2658 reflections
b = 8.526 (4) Åθ = 2.7–29.8°
c = 7.761 (4) ŵ = 0.60 mm1
β = 100.45 (2)°T = 100 K
V = 1024.0 (9) Å3Plates, colorless
Z = 40.39 × 0.08 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1344 reflections with I > 2σ(I)
φ and ω scansRint = 0.104
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 2.6°
Tmin = 0.572, Tmax = 0.746h = 1919
5326 measured reflectionsk = 1010
2037 independent reflectionsl = 99
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0525P)2 + 1.7896P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2037 reflectionsΔρmax = 0.65 e Å3
153 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09861 (8)0.78340 (12)0.44751 (16)0.0149 (3)
Cl10.12321 (8)0.16795 (12)0.39066 (17)0.0221 (4)
F10.4624 (2)1.1822 (3)0.8833 (5)0.0363 (9)
O10.3711 (2)0.9930 (3)0.8688 (4)0.0181 (8)
N20.1688 (2)0.5156 (4)0.5297 (5)0.0127 (9)
H20.17700.41360.53740.015*
F20.3640 (3)1.1687 (4)0.6555 (5)0.0637 (13)
N10.0427 (3)0.4997 (5)0.3216 (6)0.0207 (10)
H1B0.004 (4)0.546 (5)0.254 (7)0.020 (14)*
H1A0.051 (4)0.396 (7)0.319 (8)0.040 (17)*
F30.4660 (3)1.0022 (4)0.6932 (6)0.0696 (15)
C20.2266 (3)0.6230 (5)0.6236 (6)0.0140 (10)
C70.1975 (3)0.7775 (5)0.5902 (6)0.0126 (10)
C10.1005 (3)0.5799 (5)0.4278 (7)0.0147 (11)
C60.2447 (3)0.9045 (5)0.6695 (6)0.0139 (11)
H60.22531.00950.64920.017*
C30.3029 (3)0.5914 (5)0.7342 (6)0.0164 (11)
H30.32220.48660.75670.020*
C50.3213 (3)0.8689 (5)0.7791 (7)0.0160 (11)
C40.3515 (3)0.7175 (5)0.8127 (7)0.0183 (11)
H40.40500.69960.88890.022*
C80.4151 (4)1.0835 (6)0.7748 (8)0.0293 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0197 (7)0.0091 (5)0.0146 (7)0.0011 (5)0.0001 (5)0.0011 (4)
Cl10.0307 (8)0.0110 (5)0.0215 (7)0.0016 (5)0.0037 (6)0.0011 (5)
F10.037 (2)0.0304 (16)0.039 (2)0.0181 (14)0.0001 (16)0.0117 (15)
O10.022 (2)0.0206 (16)0.011 (2)0.0081 (14)0.0011 (15)0.0053 (13)
N20.017 (2)0.0075 (16)0.013 (2)0.0012 (15)0.0002 (17)0.0001 (15)
F20.069 (3)0.053 (2)0.057 (3)0.034 (2)0.019 (2)0.032 (2)
N10.022 (3)0.0119 (19)0.025 (3)0.0015 (18)0.003 (2)0.0025 (18)
F30.076 (3)0.057 (2)0.095 (4)0.039 (2)0.067 (3)0.046 (2)
C20.023 (3)0.010 (2)0.009 (3)0.0002 (18)0.004 (2)0.0002 (18)
C70.012 (3)0.014 (2)0.013 (3)0.0005 (18)0.005 (2)0.0038 (18)
C10.020 (3)0.008 (2)0.017 (3)0.0040 (19)0.007 (2)0.0006 (18)
C60.023 (3)0.011 (2)0.009 (3)0.0013 (18)0.007 (2)0.0002 (18)
C30.026 (3)0.012 (2)0.011 (3)0.0027 (19)0.003 (2)0.0012 (18)
C50.025 (3)0.015 (2)0.011 (3)0.0073 (19)0.011 (2)0.0031 (18)
C40.015 (3)0.024 (2)0.015 (3)0.003 (2)0.002 (2)0.004 (2)
C80.034 (4)0.024 (3)0.030 (4)0.013 (2)0.006 (3)0.007 (2)
Geometric parameters (Å, º) top
S1—C71.739 (5)N1—H1A0.89 (6)
S1—C11.742 (4)F3—C81.306 (6)
F1—C81.321 (6)C2—C31.371 (7)
O1—C81.338 (6)C2—C71.403 (6)
O1—C51.422 (5)C7—C61.392 (6)
N2—C11.332 (6)C6—C51.376 (7)
N2—C21.398 (6)C6—H60.9500
N2—H20.8800C3—C41.393 (7)
F2—C81.328 (7)C3—H30.9500
N1—C11.305 (6)C5—C41.384 (6)
N1—H1B0.91 (6)C4—H40.9500
C7—S1—C190.0 (2)C5—C6—H6122.0
C8—O1—C5117.1 (4)C7—C6—H6122.0
C1—N2—C2114.7 (4)C2—C3—C4118.1 (4)
C1—N2—H2122.6C2—C3—H3121.0
C2—N2—H2122.6C4—C3—H3121.0
C1—N1—H1B122 (3)C6—C5—C4123.7 (4)
C1—N1—H1A116 (4)C6—C5—O1118.8 (4)
H1B—N1—H1A121 (5)C4—C5—O1117.5 (5)
C3—C2—N2127.6 (4)C5—C4—C3119.7 (5)
C3—C2—C7121.3 (4)C5—C4—H4120.2
N2—C2—C7111.0 (4)C3—C4—H4120.2
C6—C7—C2121.2 (4)F3—C8—F1108.8 (5)
C6—C7—S1127.1 (3)F3—C8—F2107.4 (5)
C2—C7—S1111.7 (3)F1—C8—F2107.3 (4)
N1—C1—N2123.7 (4)F3—C8—O1112.5 (4)
N1—C1—S1123.8 (4)F1—C8—O1107.9 (5)
N2—C1—S1112.5 (3)F2—C8—O1112.8 (5)
C5—C6—C7116.1 (4)
6-(Trifluoromethoxy)-1,3-benzothiazol-2-amine (RZ) top
Crystal data top
C8H5F3N2OSZ = 8
Mr = 234.20F(000) = 944
Triclinic, P1Dx = 1.696 Mg m3
a = 8.0824 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.788 (3) ÅCell parameters from 7465 reflections
c = 19.745 (5) Åθ = 2.8–28.3°
α = 78.449 (9)°µ = 0.37 mm1
β = 84.378 (8)°T = 100 K
γ = 89.318 (9)°Plates, colorless
V = 1834.2 (8) Å30.20 × 0.20 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
4593 reflections with I > 2σ(I)
φ and ω scansRint = 0.117
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.5°, θmin = 2.1°
Tmin = 0.553, Tmax = 0.746h = 98
29801 measured reflectionsk = 1414
6730 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.7369P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6730 reflectionsΔρmax = 0.51 e Å3
573 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56739 (12)0.27424 (7)0.80617 (4)0.0194 (2)
S20.83832 (12)0.45174 (7)0.89575 (4)0.0186 (2)
S30.00146 (12)0.76611 (7)0.82003 (4)0.0193 (2)
S40.30623 (12)0.95409 (7)0.89386 (4)0.0176 (2)
F10.2905 (3)0.5228 (2)0.48186 (10)0.0538 (8)
F20.2508 (4)0.3698 (2)0.56134 (13)0.0681 (9)
F30.0949 (4)0.5160 (3)0.56353 (12)0.0628 (8)
F40.9015 (3)0.7039 (2)0.62797 (11)0.0427 (6)
F50.7172 (3)0.7514 (2)0.55647 (10)0.0405 (6)
F60.7410 (3)0.84532 (19)0.63754 (10)0.0451 (7)
F70.3242 (3)0.9755 (2)0.48390 (10)0.0476 (7)
F80.3079 (4)0.8212 (2)0.56344 (11)0.0504 (8)
F90.0973 (4)0.9316 (2)0.54890 (11)0.0527 (7)
F100.1373 (3)1.3300 (2)0.63105 (11)0.0463 (7)
F110.0685 (3)1.2372 (2)0.54945 (10)0.0422 (7)
F120.2758 (3)1.1814 (2)0.62482 (11)0.0538 (8)
O10.3591 (3)0.5281 (2)0.58387 (11)0.0280 (6)
O20.6333 (3)0.6668 (2)0.66125 (11)0.0231 (6)
O30.3167 (4)0.9962 (2)0.58944 (12)0.0331 (7)
O40.0152 (3)1.1590 (2)0.65325 (11)0.0253 (6)
N10.4995 (5)0.2583 (3)0.94561 (15)0.0191 (7)
H1A0.599 (5)0.237 (3)0.9497 (16)0.017 (10)*
H1B0.463 (5)0.292 (4)0.980 (2)0.042 (13)*
N20.3463 (4)0.3895 (2)0.86966 (13)0.0167 (6)
N30.7894 (4)0.4741 (3)1.02897 (15)0.0215 (7)
H3A0.847 (5)0.414 (3)1.0362 (18)0.030 (12)*
H3B0.743 (5)0.504 (3)1.0596 (19)0.029 (12)*
N40.6520 (4)0.6036 (2)0.94687 (13)0.0179 (7)
N50.0104 (5)0.7614 (3)0.95743 (15)0.0185 (7)
H5A0.090 (6)0.728 (3)0.9646 (18)0.033 (12)*
H5B0.041 (7)0.795 (4)0.987 (2)0.068 (18)*
N60.1865 (4)0.8916 (2)0.87642 (13)0.0175 (7)
N70.2997 (4)0.9781 (3)1.02592 (15)0.0218 (7)
H7A0.362 (5)0.915 (3)1.0386 (16)0.016 (9)*
H7B0.266 (5)1.009 (3)1.0575 (18)0.027 (11)*
N80.1349 (4)1.1049 (2)0.93992 (13)0.0171 (6)
C10.4623 (5)0.3124 (3)0.88061 (16)0.0185 (8)
C20.3336 (5)0.4262 (3)0.79884 (16)0.0172 (8)
C120.5408 (5)0.7238 (3)0.76878 (16)0.0192 (8)
H120.4751600.7822150.7440040.023*
C230.1382 (4)0.8618 (3)0.76540 (16)0.0160 (8)
C200.3703 (5)1.0258 (3)0.69917 (17)0.0230 (8)
H200.4503041.0819770.6754800.028*
C140.7326 (5)0.5640 (3)0.76693 (16)0.0192 (8)
H140.7962590.5146460.7420270.023*
C190.3441 (5)1.0046 (3)0.77075 (17)0.0205 (8)
H190.4050891.0464230.7965810.025*
C90.7506 (4)0.5159 (3)0.96437 (16)0.0160 (8)
C300.1529 (5)1.0603 (3)0.76231 (16)0.0175 (8)
H300.2074681.0101010.7393740.021*
C310.1760 (4)1.0495 (3)0.83368 (16)0.0153 (7)
C250.2392 (4)1.0181 (3)0.96022 (16)0.0156 (7)
C260.0953 (4)1.1236 (3)0.86839 (15)0.0146 (7)
C110.5392 (5)0.7088 (3)0.84009 (16)0.0196 (8)
H110.4717940.7569260.8645940.023*
C100.6358 (4)0.6237 (3)0.87584 (16)0.0160 (8)
C170.0717 (5)0.8133 (3)0.89124 (16)0.0173 (8)
C220.1616 (5)0.8820 (3)0.69313 (16)0.0209 (8)
H220.0998410.8411390.6670170.025*
C60.4514 (5)0.4040 (3)0.68358 (17)0.0206 (8)
H60.5265570.3681100.6544130.025*
C150.7294 (4)0.5499 (3)0.83875 (16)0.0164 (8)
C320.1223 (5)1.2251 (4)0.61556 (18)0.0308 (10)
C70.4453 (5)0.3729 (3)0.75555 (16)0.0174 (8)
C280.0382 (5)1.2201 (3)0.75845 (16)0.0208 (8)
H280.1123661.2775980.7315900.025*
C180.2277 (4)0.9216 (3)0.80461 (16)0.0158 (8)
C160.7463 (5)0.7402 (3)0.62168 (17)0.0275 (9)
C50.3445 (5)0.4888 (3)0.65630 (16)0.0202 (8)
C130.6395 (5)0.6524 (3)0.73365 (16)0.0183 (8)
C30.2279 (5)0.5104 (3)0.76902 (17)0.0204 (8)
H30.1513490.5464620.7976090.025*
C290.0478 (5)1.1467 (3)0.72619 (16)0.0195 (8)
C210.2789 (5)0.9644 (3)0.66162 (16)0.0216 (8)
C270.0141 (5)1.2081 (3)0.82977 (16)0.0199 (8)
H270.0717411.2572340.8523710.024*
C40.2335 (5)0.5424 (3)0.69743 (17)0.0239 (9)
H40.1615710.6006810.6766980.029*
C80.2511 (6)0.4824 (4)0.54838 (19)0.0387 (11)
C240.2624 (6)0.9305 (4)0.54759 (18)0.0347 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0208 (6)0.0135 (5)0.0253 (4)0.0032 (4)0.0030 (4)0.0070 (3)
S20.0197 (6)0.0137 (5)0.0232 (4)0.0015 (4)0.0018 (4)0.0061 (3)
S30.0192 (6)0.0156 (5)0.0245 (4)0.0047 (4)0.0002 (4)0.0084 (3)
S40.0187 (6)0.0141 (4)0.0211 (4)0.0028 (4)0.0018 (3)0.0062 (3)
F10.054 (2)0.084 (2)0.0219 (12)0.0105 (15)0.0067 (11)0.0060 (12)
F20.123 (3)0.0444 (18)0.0446 (15)0.0135 (17)0.0252 (16)0.0176 (13)
F30.0352 (19)0.114 (3)0.0434 (15)0.0000 (17)0.0094 (12)0.0228 (15)
F40.0258 (16)0.0544 (16)0.0435 (13)0.0024 (13)0.0007 (11)0.0014 (11)
F50.0532 (19)0.0484 (15)0.0201 (11)0.0052 (13)0.0036 (10)0.0066 (10)
F60.079 (2)0.0220 (13)0.0322 (12)0.0116 (12)0.0033 (12)0.0042 (10)
F70.066 (2)0.0562 (17)0.0188 (11)0.0080 (14)0.0006 (11)0.0043 (10)
F80.081 (2)0.0370 (15)0.0331 (13)0.0120 (14)0.0028 (12)0.0117 (11)
F90.042 (2)0.080 (2)0.0350 (13)0.0092 (15)0.0155 (11)0.0022 (12)
F100.067 (2)0.0360 (15)0.0338 (13)0.0146 (13)0.0077 (12)0.0008 (11)
F110.0503 (18)0.0570 (16)0.0177 (11)0.0113 (13)0.0014 (10)0.0041 (10)
F120.0317 (18)0.087 (2)0.0378 (13)0.0198 (15)0.0083 (11)0.0024 (13)
O10.0260 (18)0.0327 (16)0.0232 (13)0.0004 (12)0.0024 (11)0.0001 (11)
O20.0265 (17)0.0262 (14)0.0180 (12)0.0072 (12)0.0043 (10)0.0059 (10)
O30.043 (2)0.0345 (16)0.0208 (13)0.0110 (14)0.0025 (12)0.0043 (11)
O40.0307 (18)0.0277 (15)0.0175 (12)0.0016 (12)0.0001 (11)0.0053 (10)
N10.017 (2)0.0176 (17)0.0231 (16)0.0009 (14)0.0057 (13)0.0040 (13)
N20.0180 (19)0.0115 (15)0.0211 (14)0.0006 (13)0.0026 (12)0.0044 (11)
N30.025 (2)0.0198 (18)0.0203 (17)0.0073 (15)0.0038 (14)0.0047 (14)
N40.0171 (19)0.0159 (16)0.0211 (14)0.0022 (13)0.0013 (12)0.0049 (11)
N50.020 (2)0.0126 (16)0.0225 (16)0.0034 (14)0.0000 (13)0.0035 (12)
N60.0194 (19)0.0119 (15)0.0216 (15)0.0002 (13)0.0030 (12)0.0035 (11)
N70.025 (2)0.0221 (18)0.0192 (16)0.0118 (15)0.0006 (13)0.0063 (14)
N80.0158 (18)0.0155 (15)0.0206 (14)0.0016 (13)0.0003 (12)0.0058 (11)
C10.022 (2)0.0091 (17)0.0248 (18)0.0068 (16)0.0001 (15)0.0051 (14)
C20.020 (2)0.0097 (17)0.0231 (17)0.0044 (15)0.0002 (14)0.0057 (13)
C120.016 (2)0.0176 (19)0.0242 (18)0.0021 (15)0.0072 (14)0.0014 (14)
C230.013 (2)0.0126 (17)0.0223 (17)0.0006 (14)0.0010 (14)0.0045 (14)
C200.023 (2)0.0146 (19)0.031 (2)0.0085 (16)0.0002 (16)0.0028 (15)
C140.022 (2)0.0131 (18)0.0241 (18)0.0049 (15)0.0008 (15)0.0086 (14)
C190.019 (2)0.0169 (19)0.0269 (18)0.0057 (16)0.0052 (15)0.0067 (15)
C90.011 (2)0.0144 (18)0.0234 (18)0.0043 (15)0.0009 (14)0.0076 (14)
C300.017 (2)0.0162 (18)0.0224 (18)0.0032 (15)0.0052 (14)0.0096 (14)
C310.016 (2)0.0071 (16)0.0226 (17)0.0007 (14)0.0020 (14)0.0029 (13)
C250.011 (2)0.0148 (18)0.0234 (18)0.0001 (15)0.0042 (14)0.0087 (14)
C260.013 (2)0.0110 (17)0.0211 (17)0.0046 (14)0.0037 (14)0.0048 (13)
C110.018 (2)0.0162 (19)0.0263 (18)0.0031 (16)0.0001 (15)0.0090 (14)
C100.017 (2)0.0096 (17)0.0207 (17)0.0047 (15)0.0005 (14)0.0032 (13)
C170.018 (2)0.0110 (18)0.0242 (18)0.0026 (15)0.0032 (14)0.0055 (14)
C220.021 (2)0.021 (2)0.0221 (18)0.0004 (16)0.0032 (15)0.0083 (15)
C60.020 (2)0.0185 (19)0.0258 (18)0.0041 (16)0.0014 (15)0.0100 (15)
C150.014 (2)0.0098 (17)0.0252 (18)0.0031 (14)0.0018 (14)0.0033 (13)
C320.031 (3)0.038 (3)0.022 (2)0.006 (2)0.0008 (17)0.0034 (17)
C70.014 (2)0.0132 (18)0.0260 (18)0.0011 (15)0.0028 (14)0.0069 (14)
C280.016 (2)0.020 (2)0.0247 (18)0.0007 (16)0.0038 (14)0.0022 (15)
C180.015 (2)0.0106 (17)0.0230 (17)0.0040 (15)0.0040 (14)0.0054 (13)
C160.035 (3)0.025 (2)0.0230 (19)0.0025 (19)0.0042 (16)0.0054 (16)
C50.018 (2)0.021 (2)0.0207 (17)0.0041 (16)0.0023 (14)0.0020 (14)
C130.018 (2)0.0164 (18)0.0205 (17)0.0068 (15)0.0032 (14)0.0029 (14)
C30.018 (2)0.0160 (19)0.0272 (18)0.0005 (16)0.0005 (15)0.0062 (15)
C290.022 (2)0.0186 (19)0.0182 (17)0.0042 (16)0.0004 (14)0.0060 (14)
C210.020 (2)0.022 (2)0.0218 (18)0.0005 (16)0.0002 (15)0.0027 (14)
C270.023 (2)0.0149 (18)0.0236 (18)0.0006 (16)0.0042 (15)0.0062 (14)
C40.022 (2)0.0169 (19)0.033 (2)0.0006 (16)0.0065 (16)0.0024 (15)
C80.042 (3)0.052 (3)0.022 (2)0.001 (2)0.0040 (18)0.0069 (19)
C240.044 (3)0.038 (3)0.021 (2)0.000 (2)0.0057 (18)0.0024 (17)
Geometric parameters (Å, º) top
S1—C71.739 (4)N6—C181.399 (4)
S1—C11.759 (3)N7—C251.335 (4)
S2—C151.740 (3)N7—H7A0.88 (4)
S2—C91.766 (3)N7—H7B0.85 (4)
S3—C231.736 (3)N8—C251.307 (4)
S3—C171.766 (3)N8—C261.391 (4)
S4—C311.742 (3)C2—C31.381 (5)
S4—C251.768 (3)C2—C71.411 (4)
F1—C81.313 (4)C12—C111.383 (4)
F2—C81.300 (5)C12—C131.391 (5)
F3—C81.342 (5)C12—H120.9500
F4—C161.330 (5)C23—C221.393 (4)
F5—C161.312 (4)C23—C181.400 (5)
F6—C161.337 (4)C20—C191.381 (4)
F7—C241.315 (4)C20—C211.398 (5)
F8—C241.320 (5)C20—H200.9500
F9—C241.332 (5)C14—C131.374 (5)
F10—C321.334 (4)C14—C151.392 (4)
F11—C321.315 (4)C14—H140.9500
F12—C321.331 (5)C19—C181.387 (5)
O1—C81.351 (5)C19—H190.9500
O1—C51.406 (4)C30—C291.371 (5)
O2—C161.342 (5)C30—C311.383 (4)
O2—C131.411 (4)C30—H300.9500
O3—C241.345 (5)C31—C261.413 (5)
O3—C211.403 (4)C26—C271.393 (5)
O4—C321.337 (5)C11—C101.386 (5)
O4—C291.417 (4)C11—H110.9500
N1—C11.374 (4)C10—C151.414 (4)
N1—H1A0.84 (4)C22—C211.376 (5)
N1—H1B0.88 (4)C22—H220.9500
N2—C11.301 (4)C6—C51.375 (5)
N2—C21.392 (4)C6—C71.391 (5)
N3—C91.338 (4)C6—H60.9500
N3—H3A0.84 (4)C28—C271.381 (4)
N3—H3B0.82 (4)C28—C291.400 (5)
N4—C91.309 (4)C28—H280.9500
N4—C101.394 (4)C5—C41.383 (5)
N5—C171.374 (4)C3—C41.384 (5)
N5—H5A0.89 (5)C3—H30.9500
N5—H5B0.82 (5)C27—H270.9500
N6—C171.288 (4)C4—H40.9500
C7—S1—C188.72 (16)N6—C17—N5124.8 (3)
C15—S2—C988.86 (16)N6—C17—S3116.1 (2)
C23—S3—C1788.43 (16)N5—C17—S3119.0 (3)
C31—S4—C2588.76 (16)C21—C22—C23116.4 (3)
C8—O1—C5116.5 (3)C21—C22—H22121.8
C16—O2—C13115.7 (3)C23—C22—H22121.8
C24—O3—C21120.0 (3)C5—C6—C7117.4 (3)
C32—O4—C29115.5 (3)C5—C6—H6121.3
C1—N1—H1A117 (2)C7—C6—H6121.3
C1—N1—H1B116 (3)C14—C15—C10121.6 (3)
H1A—N1—H1B110 (4)C14—C15—S2128.8 (3)
C1—N2—C2110.8 (3)C10—C15—S2109.6 (2)
C9—N3—H3A119 (2)F11—C32—F12108.3 (3)
C9—N3—H3B116 (3)F11—C32—F10108.5 (3)
H3A—N3—H3B124 (4)F12—C32—F10105.5 (3)
C9—N4—C10110.5 (3)F11—C32—O4108.7 (3)
C17—N5—H5A120 (2)F12—C32—O4113.5 (3)
C17—N5—H5B112 (4)F10—C32—O4112.2 (3)
H5A—N5—H5B119 (4)C6—C7—C2121.2 (3)
C17—N6—C18110.7 (3)C6—C7—S1129.0 (3)
C25—N7—H7A123 (2)C2—C7—S1109.7 (2)
C25—N7—H7B118 (3)C27—C28—C29119.2 (3)
H7A—N7—H7B118 (3)C27—C28—H28120.4
C25—N8—C26110.3 (3)C29—C28—H28120.4
N2—C1—N1123.7 (3)C19—C18—N6125.9 (3)
N2—C1—S1116.0 (2)C19—C18—C23119.3 (3)
N1—C1—S1120.2 (3)N6—C18—C23114.8 (3)
C3—C2—N2126.0 (3)F5—C16—F4108.6 (3)
C3—C2—C7119.2 (3)F5—C16—F6108.1 (3)
N2—C2—C7114.7 (3)F4—C16—F6105.8 (3)
C11—C12—C13119.4 (3)F5—C16—O2108.7 (3)
C11—C12—H12120.3F4—C16—O2112.8 (3)
C13—C12—H12120.3F6—C16—O2112.7 (3)
C22—C23—C18122.5 (3)C6—C5—C4122.6 (3)
C22—C23—S3127.6 (3)C6—C5—O1118.0 (3)
C18—C23—S3109.9 (2)C4—C5—O1119.2 (3)
C19—C20—C21119.9 (3)C14—C13—C12122.9 (3)
C19—C20—H20120.1C14—C13—O2119.0 (3)
C21—C20—H20120.1C12—C13—O2117.9 (3)
C13—C14—C15117.0 (3)C2—C3—C4119.9 (3)
C13—C14—H14121.5C2—C3—H3120.0
C15—C14—H14121.5C4—C3—H3120.0
C20—C19—C18119.4 (3)C30—C29—C28123.0 (3)
C20—C19—H19120.3C30—C29—O4119.3 (3)
C18—C19—H19120.3C28—C29—O4117.6 (3)
N4—C9—N3124.9 (3)C22—C21—C20122.6 (3)
N4—C9—S2115.9 (2)C22—C21—O3123.8 (3)
N3—C9—S2119.2 (3)C20—C21—O3113.6 (3)
C29—C30—C31117.0 (3)C28—C27—C26119.7 (3)
C29—C30—H30121.5C28—C27—H27120.2
C31—C30—H30121.5C26—C27—H27120.2
C30—C31—C26122.0 (3)C5—C4—C3119.6 (3)
C30—C31—S4128.6 (3)C5—C4—H4120.2
C26—C31—S4109.3 (2)C3—C4—H4120.2
N8—C25—N7124.8 (3)F2—C8—F1110.3 (3)
N8—C25—S4116.0 (2)F2—C8—F3107.3 (4)
N7—C25—S4119.2 (3)F1—C8—F3107.0 (3)
N8—C26—C27125.4 (3)F2—C8—O1113.1 (4)
N8—C26—C31115.6 (3)F1—C8—O1107.9 (4)
C27—C26—C31119.0 (3)F3—C8—O1111.2 (3)
C12—C11—C10120.0 (3)F7—C24—F8109.2 (3)
C12—C11—H11120.0F7—C24—F9107.8 (3)
C10—C11—H11120.0F8—C24—F9107.4 (4)
C11—C10—N4125.7 (3)F7—C24—O3107.2 (4)
C11—C10—C15119.0 (3)F8—C24—O3113.3 (3)
N4—C10—C15115.2 (3)F9—C24—O3111.9 (3)
C2—N2—C1—N1178.1 (3)N2—C2—C7—C6177.6 (3)
C2—N2—C1—S10.9 (4)C3—C2—C7—S1178.1 (3)
C7—S1—C1—N20.8 (3)N2—C2—C7—S10.2 (4)
C7—S1—C1—N1178.1 (3)C1—S1—C7—C6177.0 (3)
C1—N2—C2—C3177.3 (4)C1—S1—C7—C20.6 (3)
C1—N2—C2—C70.4 (4)C20—C19—C18—N6179.3 (3)
C17—S3—C23—C22179.0 (3)C20—C19—C18—C230.6 (5)
C17—S3—C23—C180.2 (3)C17—N6—C18—C19178.7 (3)
C21—C20—C19—C180.5 (5)C17—N6—C18—C230.1 (4)
C10—N4—C9—N3179.1 (3)C22—C23—C18—C190.2 (5)
C10—N4—C9—S21.7 (4)S3—C23—C18—C19178.6 (3)
C15—S2—C9—N41.2 (3)C22—C23—C18—N6179.0 (3)
C15—S2—C9—N3179.6 (3)S3—C23—C18—N60.2 (4)
C29—C30—C31—C260.1 (5)C13—O2—C16—F5175.2 (3)
C29—C30—C31—S4177.0 (3)C13—O2—C16—F464.3 (4)
C25—S4—C31—C30178.7 (3)C13—O2—C16—F655.4 (4)
C25—S4—C31—C261.3 (3)C7—C6—C5—C40.2 (6)
C26—N8—C25—N7179.3 (3)C7—C6—C5—O1174.7 (3)
C26—N8—C25—S42.5 (4)C8—O1—C5—C698.8 (4)
C31—S4—C25—N82.3 (3)C8—O1—C5—C486.2 (4)
C31—S4—C25—N7179.4 (3)C15—C14—C13—C122.1 (5)
C25—N8—C26—C27179.1 (3)C15—C14—C13—O2177.3 (3)
C25—N8—C26—C311.4 (4)C11—C12—C13—C142.3 (5)
C30—C31—C26—N8177.9 (3)C11—C12—C13—O2177.5 (3)
S4—C31—C26—N80.2 (4)C16—O2—C13—C1492.6 (4)
C30—C31—C26—C271.7 (5)C16—O2—C13—C1292.0 (4)
S4—C31—C26—C27179.3 (3)N2—C2—C3—C4177.0 (3)
C13—C12—C11—C100.3 (5)C7—C2—C3—C40.6 (5)
C12—C11—C10—N4176.5 (3)C31—C30—C29—C281.8 (5)
C12—C11—C10—C152.7 (5)C31—C30—C29—O4177.8 (3)
C9—N4—C10—C11179.1 (3)C27—C28—C29—C301.8 (5)
C9—N4—C10—C151.6 (4)C27—C28—C29—O4177.8 (3)
C18—N6—C17—N5176.4 (3)C32—O4—C29—C3087.5 (4)
C18—N6—C17—S30.1 (4)C32—O4—C29—C2896.3 (4)
C23—S3—C17—N60.2 (3)C23—C22—C21—C200.3 (5)
C23—S3—C17—N5176.5 (3)C23—C22—C21—O3179.3 (3)
C18—C23—C22—C210.3 (5)C19—C20—C21—C220.0 (6)
S3—C23—C22—C21178.8 (3)C19—C20—C21—O3179.0 (3)
C13—C14—C15—C100.5 (5)C24—O3—C21—C2213.4 (6)
C13—C14—C15—S2177.1 (3)C24—O3—C21—C20167.6 (4)
C11—C10—C15—C142.9 (5)C29—C28—C27—C260.1 (5)
N4—C10—C15—C14176.5 (3)N8—C26—C27—C28177.7 (3)
C11—C10—C15—S2179.9 (3)C31—C26—C27—C281.7 (5)
N4—C10—C15—S20.7 (4)C6—C5—C4—C30.1 (6)
C9—S2—C15—C14177.1 (3)O1—C5—C4—C3174.9 (3)
C9—S2—C15—C100.2 (3)C2—C3—C4—C50.5 (5)
C29—O4—C32—F11174.4 (3)C5—O1—C8—F253.5 (5)
C29—O4—C32—F1265.1 (4)C5—O1—C8—F1175.7 (3)
C29—O4—C32—F1054.4 (4)C5—O1—C8—F367.2 (4)
C5—C6—C7—C20.1 (5)C21—O3—C24—F7175.9 (3)
C5—C6—C7—S1177.3 (3)C21—O3—C24—F855.4 (5)
C3—C2—C7—C60.3 (5)C21—O3—C24—F966.1 (4)
Intermolecular interactions (Å, °) in the crystal structure of the RZHCl salt and RZ top
Motif numberSymmetry CodePossible involved interactionsGeometry
RZHCL
Ix, y, zN1—H1A···Cl12.15, 154
N2—H2···Cl12.35, 139
II-x, 1/2 + y, 1/2 - zN1—H1B···Cl12.14, 175
IIIx, 1 + y, zC6—H6···Cl12.60, 135
S1···Cl13.340 (2)
IV1-x, 2 - y, 2 - zC4—H4···F12.57, 147
Vx, 3/2 - y, 1/2 + zC5···C23.289 (7)
C6···C13.292 (7)
C7···S13.456 (6)
RZ
I(a)-x, 2 - y, 2 - zN7—H7B···N61.89, 170
N5—H5B···N82.03, 175
I(b)1-x, 1 - y, 2 - zN3—H3B···N21.92, 167
N1—H1B···N42.06, 170
II(a)-x, 1 - y, 2 - zN7—H7A···N12.14, 169
II(b)1-x, 1 - y, 2 - zN3—H3A···N52.15, 171
III(a)1+x, -1 + y, zN1—H1A···N82.49, 155
N1—H1A···C252.77, 130
S1···C313.336 (1)
S1···C263.430 (1)
III(b)-1+x, y, zN5—H5A···N42.53, 159
N5—H5A···C92.75, 140
C10···S33.372 (1)
C15···S33.311 (1)
C22—H22···F42.44, 164
IV(a)-1+x, y, zC4—H4···F42.46, 161
IV(b)1+x, y, zC20—H20···F122.41, 161
V(a)-x, 2 - y, 1 - zF1···F102.907 (1), 137, 107
V(b)x, -1 + y, zF3···F102.923 (1), 115, 120
C27—H27···C22.81, 129
V(c)-x, 2 - y, 1 - zF9···F92.845 (1), 127, 127
V(d)1 - x, 1 - y, 1 - zF2···F52.954 (1), 143, 119
V(e)1 - x, 2 - y, 1 - zF6···F72.946 (1), 142, 111
V(f)-x, 2 - y, 1 - zF11···F93.071 (1), 129, 97
VIx, y, zC5···O23.179 (1)
C7···C143.308 (1)
VIIx, y, zC3—H3···S32.84, 145
VIIIx, y, zC17···S43.460 (1)
C23···C303.295 (1)
IXx, y, zC12—H12···C182.82, 124
C12—H12···C232.80, 133
The normalized values of hydrogen atoms given by PARST (Nardelli, 1995) were used for the hydrogen-bonding (Taylor & Kennard, 1983) analysis.
List of torsion angles (°) top
CompoundCi—Cj—Ok—ClTorsion
RZHClC4—C5—O1—C8107.4 (3)
RZC4—C5—O1—C8-86.2 (4)
C12—C13—O2—C1691.9 (3)
C20—C21—O3—C24167.6 (2)
C28—C29—O4—C32-96.4 (3)
 

Acknowledgements

We thank IISER Bhopal for research facilities and infrastructure.

Funding information

DC thanks the DST-SERB Scheme for funding. PKM thanks CSIR-India for a senior research fellowship.

References

First citationBall, V. & Maechling, C. (2009). Int. J. Mol. Sci. 10, 3283–3315.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker, (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCruz-Cabeza, A. J. & Bernstein, J. (2014). Chem. Rev. 114, 2170–2191.  Web of Science CAS PubMed Google Scholar
First citationDavey, R. J., Schroeder, S. L. M. & ter Horst, J. H. (2013). Angew. Chem. Int. Ed. 52, 2166–2179.  Web of Science CrossRef CAS Google Scholar
First citationDesiraju, G. R. (2013). J. Am. Chem. Soc. 135, 9952–9967.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDoble, A. (1996). Neurology, 47, S233–S241.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian09. Gaussian Inc., Wallingford, Connecticut, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMondal, P. K., Kiran, M. S. R. N., Ramamurty, U. & Chopra, D. (2017). Chem. Eur. J. 23, 1023–1027.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMondal, P. K., Rao, V. & Chopra, D. (2018). CrystEngComm, 20, 2079–2083.  Web of Science CSD CrossRef CAS Google Scholar
First citationMondal, P. K., Rao, V., Mittapalli, S. & Chopra, D. (2017). Cryst. Growth Des. 17, 1938–1946.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakane, S., Izumi, Y., Oda, M., Kaji, R. & Matsuo, H. (2016). Intern. Med. 55, 1985–1990.  Web of Science CrossRef PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPanini, P., Gonnade, R. G. & Chopra, D. (2016). New J. Chem. 40, 4981–5001.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaulini, R., Müller, K. & Diederich, F. (2005). Angew. Chem. Int. Ed. 44, 1788–1805.  Web of Science CrossRef CAS Google Scholar
First citationRaynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. (2014). Chem. Soc. Rev. 43, 1660–1733.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTaylor, R. & Kennard, O. (1983). Acta Cryst. B39, 133–138.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationThomas, S. P., Kumar, V., Alhameedi, K. & Guru Row, T. N. (2019). Chem. Eur. J. 25, 3591–3597.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYadav, B., Balasubramanian, S., Chavan, R. B., Thipparaboina, R., Naidu, V. G. M. & Shastri, N. R. (2018). Cryst. Growth Des. 18, 1047–1061.  Web of Science CSD CrossRef CAS Google Scholar
First citationYan, Y. & Huang, J. (2010). Coord. Chem. Rev. 254, 1072–1080.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds