research communications
A molybdenum tris(dithiolene) complex coordinates to three bound cobalt centers in three different ways
aDepartment of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, Ontario, L5L 1C6, Canada, and bDepartment of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
*Correspondence e-mail: ulrich.fekl@utoronto.ca
The synthesis and structural characterization of the molecular compound (μ3-benzene-1,2-dithiolato)hexacarbonylbis(μ3-1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)tricobaltmolybdenum, [Co3Mo(C4F6S2)2(C6H4S2)(CO)6] or Mo(tfd)2(bdt)(Co(CO)2)3 (tfd is 1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolate and bdt is benzene-1,2-dithiolate), are reported. The structure of the molecule contains the molybdenum tris(dithiolene) complex Mo(tfd)2(bdt) coordinated as a multidentate ligand to three cobalt dicarbonyl units. Each of the three cobalt centers is relatively close to molybdenum, with Co⋯Mo distances of 2.7224 (7), 2.8058 (7), and 2.6320 (6) Å. Additionally, each of the cobalt centers is bound via main-group donor atoms, but each one in a different way: the first cobalt atom is coordinated by two sulfur atoms from different dithiolenes (bdt and tfd). The second cobalt atom is coordinated by one sulfur from one tfd and two olefinic carbons from another tfd. The third cobalt is coordinated by one sulfur from bdt and two sulfurs from tfd. This is, to the best of our knowledge, the first structurally characterized example of a molybdenum (tris)dithiolene complex that coordinates to cobalt. The F atoms of two of the –CF3 groups were refined as disordered over two sets of sites with ratios of refined occupancies of 0.703 (7):0.297 (7) and 0.72 (2):0.28 (2).
Keywords: crystal structure; ligand; dithiolene; metalloligand.
CCDC reference: 1941888
1. Chemical context
Sulfur removal from crude petroleum is performed on a large industrial scale through a process called hydrodesulfurization. This involves use of hydrogen gas (the sulfur is removed as H2S) and addition of a catalyst, typically cobalt-doped MoS2 (Hinnemann et al., 2008). MoS2 is not a molecular compound but rather possesses an extended structure, consisting of close-packed sulfur layers between which molybdenum is sandwiched (Dickinson & Pauling, 1923). The coordination geometry around molybdenum is trigonal prismatic. Several attempts to model MoS2 using molecular compounds have been made, often using dithiolene (S2C2R2) ligands, where some examples also contain the hydrodesulfurization-relevant addition of cobalt. Complexes containing molybdenum, cobalt, and one or two (but not three) dithiolenes are known. A molybdenum bis(dithiolene) that coordinates to two cobalt centers has been characterized crystallographically (Nihei et al., 1999; Murata et al., 2006). The study reports [Mo(bdt)2(CO)2(CpCo)2], where bdt = o-C6H4S2 and Cp = cyclo-C5H5. The methylated analog [Mo(bdt)2(CO)2(Cp*Co)2], where Cp* = cyclo-C5Me5 was also structurally characterized (Muratsugu et al., 2011). An analogous [Mo(ddds)2(CO)2(CpCo)2] was reported by a different group, where ddds is the unusual dithiolene 1,2-dicarba-closo-dodecaborane-1,2-disulfide (Chen et al., 2007). The above contribution also reported a molybdenum mono(dithiolene) complex coordinated to a cobalt fragment, namely [Mo(ddds)(CO)2(py)2(Cp*Co)], where py = pyridine. Coordinating to cobalt a molybdenum tris(dithioene), that is a compound where three dithiolenes are bound to molybdenum, would be interesting, because molybdenum tris(dithiolene)s mimic MoS2 particularly well. Similar to MoS2, they contain molybdenum coordinated to six sulfur atoms, and, also, depending on the of the compound, the environment of molybdenum can sometimes be trigonal prismatic (Beswick et al., 2004). However, we could not find any structurally characterized example for how a molybdenum tris(dithiolene) complex can act as ligand for cobalt. Such an example is provided here. In 2007, the mixed dithiolene complex Mo(tfd)2(bdt) [tfd = S2C2(CF3)2], an unsymmetrical tris(dithiolene), was reported for the first time (Harrison et al., 2007). Later, this complex, which contains two different dithiolenes, was used to create structural models for the active sites of MoS2 hydrodesulfurization catalysts, albeit cobalt-free ones (Nguyen et al., 2010). In this current work, we have successfully linked three cobalt centers to one Mo(tfd)2(bdt) molecule. Surprisingly, each of the three cobalt-containing units [each one is a Co(CO)2 fragment] is bound to the molybdenum tris(dithiolene) center in a different way.
2. Structural commentary
An anisotropic displacement plot showing the structure of the Mo(tfd)2(bdt)(Co(CO)2)3 molecule is shown in Fig. 1. A good starting point for the structural description is considering the core Mo(tfd)2(bdt) first. Molybdenum is coordinated by six sulfur atoms, four from the two tfd ligands, two from the one bdt ligand. The Mo—S distances are fairly normal, ranging from 2.413 (1) Å (Mo1—S5) to 2.457 (1) Å (Mo1—S4). The appearance of the structure is `approximately octahedral'. A more quantitative measure is obtained using the X—M—Xtrans criterion (Beswick et al., 2004; Nguyen et al., 2010), which indicates that the geometry around molybdenum is 71% octahedral (29% trigonal prismatic). The intra-ring C—C distance in the tfd ligand that is not π-coordinated to cobalt (C5—C6) is 1.335 (6) Å, indicating that description as an ene-dithiolate is appropriate (Hosking et al., 2009). The intra-ring C-C distance in the tfd ligand that is π-coordinated to cobalt (C1—C2) is much longer, at 1.439 (6) Å, but this elongation is expected as an effect of π-coordination to cobalt (Co2). At this point it makes sense to discuss the way in which the Mo(tfd)2(bdt) coordinates to the three cobalt dicarbonyl fragments. Co1 is coordinated by two sulfurs from different dithiolenes (bdt and tfd) at bond lengths of 2.225 (1) Å (Co1—S1) and 2.241 (1) Å (Co1—S2), respectively. The C2S2 environment of Co1 is nearly tetrahedral, with very slight distortions. The S1—Co1—S2 angle is slightly wide, at 115.44 (5)°, the C9—Co1—C10 angle is slightly narrow, at 98.4 (3)°. Co2, in contrast, is coordinated by one sulfur from one tfd and two olefinic carbons from another tfd, where bond lengths are 2.256 (1) Å (Co2—S3), 2.010 (4) Å (Co2—C1), and 1.970 (4) (Co2—C2). The coordination geometry of Co2 (not including Mo1 here) is, again, approximately tetrahedral, where the largest deviation from tetrahedral geometry are C11—Co2—C12, at 96.3 (2)° and the comparably wide `bite' of the chelating with Ct1—Co2—S3 measuring 119.7°, where Ct1 is the mid-point between C11 and C12. Another sulfur atom, S4, is relatively close to Co2, but the interatomic distance, at 2.767 (1) Å, is considerably longer than the Co2—S3 bond, such that S4 is almost certainly not bonded. Finally, Co3 is coordinated by one sulfur from bdt and two sulfurs from tfd, at distances of 2.234 (1) Å (Co3—S4), 2.239 (1) Å (Co3—S5), and 2.275 (1) Å (Co3—S6). Co3 is surrounded by these three sulfurs and two carbons in an approximately trigonal–bipyramidal fashion. C14 and S4 occupy axial positions, with the C14-Co3-S4 angle being 174.3 (2)°. The three angles in the trigonal plane are 115.38 (4)° (S5—Co3—S6), 118.6 (2)° (S5—Co3—C13), and 124.0 (2)° (S6—Co3—C13). While there is no doubt that the three cobalt atoms are bound by the heteroatoms (sulfur, carbon) of the Mo(tfd)2(bdt) structure, each of the three cobalt atoms is also close to the central molybdenum, and these metal–metal contacts could possibly be bonding as well. The relevant distances are 2.7224 (7) Å (Co1—Mo1), 2.8058 (7) Å (Co2—Mo1), and 2.6320 (6) Å (Co3—Mo1). Such Mo—Co distances are typically considered of a range compatible with Mo—Co bonds (Chen et al., 2007; Curtis et al., 1997; Murata et al., 2006; Muratsugu et al., 2011).
3. Supramolecular features
Molecules of Mo(tfd)2(bdt)(Co(CO)2)3 pack, without any solvent in the crystal, via contacting van der Waals surfaces. The packing pattern is shown in Fig. 2. Hydrogen atom H17A forms close intermolecular contacts to an oxygen atom from a neighboring carbonyl and to a fluorine atom of the major disorder component (F11), as well as to a fluorine atom of the minor disorder component (F10A). Details can be found in Table 1.
4. Database survey
The Cambridge Crystallographic Database (version 5.40, including updates up to May 2019; Groom et al., 2016) was searched. The search was performed as a search containing the most general dithiolene S–C–C–S (with any kind of bond allowed in the chain), plus a molybdenum and a cobalt atom. Since no specific requirement was imposed with regard to whether or in which way cobalt or molybdenum are bonded to the S–C–C–S structure, hits that do not contain a molybdenum dithiolene complex coordinated to cobalt where manually removed as follows. Seven hits were retrieved: EYUHIQ, JOQWIV, JOQWIV01, SEVMIQ, SEVMOW, TASDAT, OQAMEZ. Out of these, TASDAT and OQAMEZ are not relevant here, since they do not contain a molybdenum dithiolene unit that is directly bonded to cobalt. They contain, respectively, a cobalt-based counter-cation for an anionic molybdenum complex and a nickel bis(dithiolene) anion as a counter-anion for a molybdenum/cobalt sulfido cluster. The structures EYUHIQ, JOQWIV, JOQWIV01, SEVMIQ and SEVMOW are relevant, since they contain at least one molybdenum dithiolene unit that is directly bonded to cobalt. These structures are all discussed above in the Chemical context (Nihei et al., 1999; Murata et al., 2006; Muratsugu et al., 2011; Chen et al., 2007).
5. Synthesis and crystallization
Mo(tfd)2(bdt)(Co(CO)2)3 was prepared from Mo(tfd)2(bdt) (Harrison et al., 2007) and dicobaltoctacarbonyl (obtained from Sigma-Aldrich) as summarized in the Scheme, using air-free conditions and rigorously dried solvents. 48 mg of Mo(tfd)2(bdt) (0.0697 mmol) were dissolved in 18 mL of hexane (dried over Na/benzophenone). 60 mg (0.175 mmol) of (Co)2(CO)8 dissolved in 2 mL of hexane were added and the mixture was shaken. The mixture was stored overnight at 243 K in the freezer of a nitrogen-filled glovebox. The supernatant was decanted off, and the black crystals of Mo(tfd)2(bdt)(Co(CO)2)3 were washed twice with 5 mL of cold hexane. Total yield 27 mg (0.026 mmol, 37%). Analysis calculated for Mo1S6C20H4F12Co3O6: C, 23.25; H, 0.39; O, 9.29; S, 18.62. Found: C, 23.70; H, 0.44; O, 9.70; S, 18.80. 1H NMR (400 MHz, C6D6): δ 6.38 (m), 7.02 (m). The compound is paramagnetic. An estimate of the in solution (Evans method) yielded ca 0.9 BM, consistent with one unpaired electron. An EPR spectrum was also obtained, shown in Fig. 3.
6. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions and included in a riding-motion approximation with Uiso(H) = 1.2Ueq(C). The F atoms of the –CF3 groups containing C7 and C8 were refined as disordered over two sets of sites with ratios of refined occupancies of 0.703 (7):0.297 (7) and 0.72 (2):0.28 (2), respectively.
details are summarized in Table 2Supporting information
CCDC reference: 1941888
https://doi.org/10.1107/S2056989019010363/zl2758sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019010363/zl2758Isup3.hkl
Data collection: COLLECT (Nonius, 2002); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Co3Mo(C4F6S2)2(C6H4S2)(CO)6] | F(000) = 3992 |
Mr = 1033.32 | Dx = 2.198 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.7465 (5) Å | Cell parameters from 21250 reflections |
b = 12.8779 (5) Å | θ = 3.0–27.5° |
c = 23.6033 (6) Å | µ = 2.47 mm−1 |
β = 115.3840 (16)° | T = 150 K |
V = 6246.5 (3) Å3 | Needle, dark red |
Z = 8 | 0.32 × 0.12 × 0.10 mm |
Nonius KappaCCD diffractometer | 7102 independent reflections |
Radiation source: fine-focus sealed tube | 5019 reflections with I > 2σ(I) |
Detector resolution: 9 pixels mm-1 | Rint = 0.046 |
φ scans and ω scans with κ offsets | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −29→29 |
Tmin = 0.686, Tmax = 0.798 | k = −16→16 |
21250 measured reflections | l = −30→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.054P)2 + 5.1797P] where P = (Fo2 + 2Fc2)/3 |
7102 reflections | (Δ/σ)max = 0.001 |
489 parameters | Δρmax = 1.09 e Å−3 |
210 restraints | Δρmin = −0.74 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mo1 | 0.37011 (2) | 0.67610 (3) | 0.12477 (2) | 0.02586 (11) | |
Co1 | 0.32882 (3) | 0.85549 (5) | 0.15702 (3) | 0.03548 (16) | |
Co2 | 0.33267 (3) | 0.47117 (5) | 0.13309 (3) | 0.03083 (16) | |
Co3 | 0.45749 (3) | 0.63936 (5) | 0.08184 (3) | 0.02962 (15) | |
S1 | 0.32447 (5) | 0.82941 (9) | 0.06212 (5) | 0.0297 (2) | |
S2 | 0.36985 (5) | 0.72385 (9) | 0.22479 (5) | 0.0331 (3) | |
S3 | 0.26312 (5) | 0.60667 (9) | 0.10435 (5) | 0.0296 (2) | |
S4 | 0.45637 (5) | 0.54398 (9) | 0.16042 (5) | 0.0301 (2) | |
S5 | 0.35447 (5) | 0.58534 (9) | 0.02990 (5) | 0.0295 (2) | |
S6 | 0.47364 (5) | 0.76648 (9) | 0.15395 (5) | 0.0307 (3) | |
F1 | 0.26591 (12) | 0.4072 (2) | −0.02994 (12) | 0.0493 (7) | |
F2 | 0.35969 (14) | 0.3736 (2) | −0.02658 (12) | 0.0484 (7) | |
F3 | 0.32346 (13) | 0.2830 (2) | 0.02808 (12) | 0.0456 (7) | |
F4 | 0.41197 (15) | 0.2522 (2) | 0.14259 (14) | 0.0581 (8) | |
F5 | 0.46739 (15) | 0.3033 (2) | 0.09356 (15) | 0.0588 (8) | |
F6 | 0.49947 (14) | 0.3377 (2) | 0.19160 (14) | 0.0635 (9) | |
F7 | 0.2282 (2) | 0.7313 (7) | 0.2705 (2) | 0.074 (2) | 0.703 (7) |
F8 | 0.3246 (3) | 0.7860 (5) | 0.3117 (3) | 0.0698 (18) | 0.703 (7) |
F9 | 0.3064 (4) | 0.6287 (4) | 0.3225 (2) | 0.0766 (19) | 0.703 (7) |
F7A | 0.2573 (8) | 0.7953 (11) | 0.2754 (6) | 0.072 (4) | 0.297 (7) |
F8A | 0.3435 (5) | 0.7165 (15) | 0.3305 (4) | 0.063 (3) | 0.297 (7) |
F9A | 0.2537 (7) | 0.6372 (10) | 0.2967 (5) | 0.063 (3) | 0.297 (7) |
F10 | 0.1632 (4) | 0.5120 (8) | 0.1246 (4) | 0.055 (2) | 0.72 (2) |
F11 | 0.1431 (3) | 0.6580 (6) | 0.1565 (6) | 0.066 (2) | 0.72 (2) |
F12 | 0.1944 (4) | 0.5381 (9) | 0.2222 (3) | 0.068 (2) | 0.72 (2) |
F10A | 0.1475 (9) | 0.558 (2) | 0.1103 (7) | 0.057 (4) | 0.28 (2) |
F11A | 0.1543 (10) | 0.6471 (14) | 0.1877 (12) | 0.056 (4) | 0.28 (2) |
F12A | 0.1972 (10) | 0.4990 (14) | 0.2037 (10) | 0.057 (4) | 0.28 (2) |
O1 | 0.3951 (3) | 1.0559 (4) | 0.2075 (3) | 0.112 (2) | |
O2 | 0.19536 (19) | 0.9067 (4) | 0.1404 (2) | 0.0771 (13) | |
O3 | 0.37570 (16) | 0.4528 (3) | 0.26994 (14) | 0.0486 (9) | |
O4 | 0.23791 (19) | 0.2999 (3) | 0.09880 (16) | 0.0587 (11) | |
O5 | 0.56008 (17) | 0.5074 (3) | 0.07720 (17) | 0.0586 (10) | |
O6 | 0.4473 (2) | 0.7725 (3) | −0.02293 (17) | 0.0610 (10) | |
C1 | 0.35680 (19) | 0.4568 (3) | 0.06092 (19) | 0.0304 (10) | |
C2 | 0.41017 (19) | 0.4338 (4) | 0.1204 (2) | 0.0323 (10) | |
C3 | 0.3269 (2) | 0.3798 (4) | 0.0090 (2) | 0.0372 (11) | |
C4 | 0.4467 (2) | 0.3306 (4) | 0.1367 (2) | 0.0423 (12) | |
C5 | 0.29505 (19) | 0.6793 (4) | 0.22259 (18) | 0.0309 (10) | |
C6 | 0.25188 (19) | 0.6280 (3) | 0.17312 (19) | 0.0304 (10) | |
C7 | 0.2880 (2) | 0.7059 (4) | 0.2817 (2) | 0.0437 (12) | |
C8 | 0.1880 (2) | 0.5842 (4) | 0.1692 (2) | 0.0435 (12) | |
C9 | 0.3691 (3) | 0.9805 (5) | 0.1880 (3) | 0.0646 (17) | |
C10 | 0.2465 (3) | 0.8898 (4) | 0.1474 (2) | 0.0495 (13) | |
C11 | 0.3593 (2) | 0.4622 (4) | 0.2178 (2) | 0.0354 (10) | |
C12 | 0.2757 (2) | 0.3625 (4) | 0.1124 (2) | 0.0409 (11) | |
C13 | 0.5214 (2) | 0.5607 (4) | 0.0791 (2) | 0.0370 (11) | |
C14 | 0.4513 (2) | 0.7229 (4) | 0.0182 (2) | 0.0410 (11) | |
C15 | 0.45531 (19) | 0.8839 (3) | 0.11004 (19) | 0.0296 (9) | |
C16 | 0.5057 (2) | 0.9503 (4) | 0.1170 (2) | 0.0398 (11) | |
H16A | 0.549037 | 0.934569 | 0.146045 | 0.048* | |
C17 | 0.4928 (2) | 1.0394 (4) | 0.0814 (2) | 0.0512 (14) | |
H17A | 0.527525 | 1.083894 | 0.085070 | 0.061* | |
C18 | 0.4294 (2) | 1.0649 (4) | 0.0401 (2) | 0.0442 (12) | |
H18A | 0.420821 | 1.127055 | 0.016168 | 0.053* | |
C19 | 0.3788 (2) | 0.9995 (4) | 0.0339 (2) | 0.0347 (10) | |
H19A | 0.335466 | 1.016576 | 0.005600 | 0.042* | |
C20 | 0.39134 (19) | 0.9089 (3) | 0.06908 (19) | 0.0291 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.02129 (18) | 0.0321 (2) | 0.02433 (19) | −0.00421 (15) | 0.00990 (15) | −0.00087 (15) |
Co1 | 0.0354 (3) | 0.0368 (4) | 0.0387 (3) | −0.0013 (3) | 0.0202 (3) | −0.0033 (3) |
Co2 | 0.0325 (3) | 0.0345 (4) | 0.0287 (3) | −0.0072 (3) | 0.0162 (3) | −0.0013 (2) |
Co3 | 0.0259 (3) | 0.0351 (4) | 0.0308 (3) | −0.0016 (3) | 0.0149 (2) | 0.0027 (3) |
S1 | 0.0216 (5) | 0.0358 (6) | 0.0311 (5) | −0.0030 (4) | 0.0107 (4) | 0.0019 (5) |
S2 | 0.0278 (5) | 0.0441 (7) | 0.0269 (5) | −0.0067 (5) | 0.0112 (4) | −0.0048 (5) |
S3 | 0.0242 (5) | 0.0394 (7) | 0.0261 (5) | −0.0077 (5) | 0.0117 (4) | −0.0025 (5) |
S4 | 0.0286 (5) | 0.0344 (6) | 0.0283 (5) | −0.0017 (5) | 0.0130 (4) | 0.0029 (5) |
S5 | 0.0275 (5) | 0.0357 (6) | 0.0269 (5) | −0.0036 (5) | 0.0133 (4) | −0.0001 (5) |
S6 | 0.0229 (5) | 0.0362 (7) | 0.0304 (5) | −0.0045 (4) | 0.0088 (4) | 0.0008 (5) |
F1 | 0.0445 (15) | 0.0509 (18) | 0.0423 (15) | −0.0106 (14) | 0.0088 (13) | −0.0117 (13) |
F2 | 0.0626 (17) | 0.0540 (19) | 0.0453 (15) | −0.0151 (15) | 0.0391 (14) | −0.0152 (13) |
F3 | 0.0604 (17) | 0.0358 (16) | 0.0460 (15) | −0.0124 (13) | 0.0281 (13) | −0.0079 (12) |
F4 | 0.0690 (19) | 0.0357 (17) | 0.074 (2) | −0.0050 (15) | 0.0343 (17) | 0.0094 (15) |
F5 | 0.073 (2) | 0.0481 (19) | 0.072 (2) | 0.0172 (16) | 0.0474 (18) | 0.0034 (15) |
F6 | 0.0556 (19) | 0.0473 (19) | 0.0605 (19) | 0.0085 (15) | −0.0008 (16) | 0.0074 (15) |
F7 | 0.043 (3) | 0.130 (6) | 0.055 (3) | 0.008 (3) | 0.027 (2) | −0.032 (4) |
F8 | 0.092 (4) | 0.085 (4) | 0.054 (3) | −0.038 (4) | 0.051 (3) | −0.038 (3) |
F9 | 0.124 (5) | 0.081 (4) | 0.033 (3) | 0.019 (4) | 0.041 (3) | 0.012 (3) |
F7A | 0.097 (8) | 0.077 (8) | 0.052 (6) | 0.022 (7) | 0.042 (6) | −0.017 (6) |
F8A | 0.061 (6) | 0.106 (9) | 0.028 (5) | −0.005 (7) | 0.025 (5) | −0.006 (6) |
F9A | 0.083 (8) | 0.081 (7) | 0.038 (6) | −0.025 (7) | 0.038 (5) | −0.011 (5) |
F10 | 0.045 (4) | 0.069 (5) | 0.063 (4) | −0.029 (3) | 0.035 (3) | −0.024 (3) |
F11 | 0.030 (3) | 0.084 (4) | 0.084 (5) | 0.006 (2) | 0.024 (3) | −0.006 (4) |
F12 | 0.062 (3) | 0.099 (5) | 0.053 (3) | −0.032 (4) | 0.035 (3) | 0.005 (4) |
F10A | 0.031 (6) | 0.087 (10) | 0.052 (7) | −0.023 (7) | 0.017 (5) | −0.012 (7) |
F11A | 0.044 (7) | 0.067 (7) | 0.072 (9) | −0.008 (6) | 0.039 (7) | −0.017 (7) |
F12A | 0.055 (6) | 0.065 (8) | 0.063 (8) | −0.014 (7) | 0.036 (6) | 0.005 (7) |
O1 | 0.183 (5) | 0.076 (4) | 0.116 (4) | −0.071 (4) | 0.102 (4) | −0.047 (3) |
O2 | 0.058 (2) | 0.107 (4) | 0.082 (3) | 0.038 (3) | 0.045 (2) | 0.027 (3) |
O3 | 0.053 (2) | 0.063 (3) | 0.0311 (18) | 0.0045 (18) | 0.0197 (16) | 0.0060 (16) |
O4 | 0.078 (3) | 0.063 (3) | 0.051 (2) | −0.042 (2) | 0.043 (2) | −0.0207 (19) |
O5 | 0.052 (2) | 0.068 (3) | 0.069 (2) | 0.020 (2) | 0.0381 (19) | 0.012 (2) |
O6 | 0.091 (3) | 0.053 (2) | 0.054 (2) | −0.002 (2) | 0.045 (2) | 0.0113 (19) |
C1 | 0.031 (2) | 0.030 (2) | 0.034 (2) | −0.0034 (19) | 0.0177 (19) | −0.0025 (19) |
C2 | 0.033 (2) | 0.034 (3) | 0.035 (2) | −0.0041 (19) | 0.0195 (19) | −0.0018 (19) |
C3 | 0.039 (3) | 0.041 (3) | 0.037 (2) | −0.007 (2) | 0.022 (2) | −0.003 (2) |
C4 | 0.048 (3) | 0.032 (3) | 0.047 (3) | −0.007 (2) | 0.021 (2) | 0.000 (2) |
C5 | 0.027 (2) | 0.039 (3) | 0.028 (2) | −0.0028 (19) | 0.0126 (18) | 0.0002 (19) |
C6 | 0.027 (2) | 0.036 (3) | 0.031 (2) | 0.0008 (19) | 0.0146 (19) | 0.0010 (19) |
C7 | 0.044 (3) | 0.061 (3) | 0.032 (2) | −0.001 (3) | 0.022 (2) | −0.006 (2) |
C8 | 0.036 (2) | 0.059 (3) | 0.044 (3) | −0.010 (2) | 0.024 (2) | −0.002 (2) |
C9 | 0.098 (5) | 0.056 (4) | 0.065 (4) | −0.029 (4) | 0.059 (4) | −0.022 (3) |
C10 | 0.058 (3) | 0.049 (3) | 0.052 (3) | 0.010 (3) | 0.034 (3) | 0.003 (3) |
C11 | 0.036 (2) | 0.034 (3) | 0.039 (3) | −0.001 (2) | 0.019 (2) | 0.000 (2) |
C12 | 0.053 (3) | 0.046 (3) | 0.032 (2) | −0.009 (3) | 0.026 (2) | −0.008 (2) |
C13 | 0.034 (2) | 0.042 (3) | 0.040 (3) | 0.003 (2) | 0.020 (2) | 0.009 (2) |
C14 | 0.039 (3) | 0.045 (3) | 0.045 (3) | −0.001 (2) | 0.024 (2) | −0.005 (2) |
C15 | 0.029 (2) | 0.032 (3) | 0.030 (2) | −0.0031 (18) | 0.0144 (19) | −0.0032 (18) |
C16 | 0.026 (2) | 0.040 (3) | 0.048 (3) | −0.008 (2) | 0.011 (2) | 0.003 (2) |
C17 | 0.045 (3) | 0.042 (3) | 0.064 (3) | −0.017 (2) | 0.021 (3) | 0.005 (3) |
C18 | 0.043 (3) | 0.035 (3) | 0.050 (3) | −0.004 (2) | 0.016 (2) | 0.009 (2) |
C19 | 0.029 (2) | 0.036 (3) | 0.037 (2) | −0.002 (2) | 0.012 (2) | −0.003 (2) |
C20 | 0.026 (2) | 0.034 (3) | 0.029 (2) | −0.0074 (18) | 0.0129 (18) | −0.0057 (19) |
Mo1—S5 | 2.4134 (11) | F6—C4 | 1.339 (5) |
Mo1—S1 | 2.4179 (11) | F7—C7 | 1.312 (6) |
Mo1—S3 | 2.4391 (10) | F8—C7 | 1.324 (6) |
Mo1—S2 | 2.4420 (11) | F9—C7 | 1.321 (6) |
Mo1—S6 | 2.4461 (11) | F7A—C7 | 1.322 (10) |
Mo1—S4 | 2.4571 (11) | F8A—C7 | 1.300 (10) |
Mo1—Co3 | 2.6320 (6) | F9A—C7 | 1.324 (9) |
Mo1—Co1 | 2.7224 (7) | F10—C8 | 1.333 (7) |
Mo1—Co2 | 2.8058 (7) | F11—C8 | 1.332 (7) |
Co1—C10 | 1.840 (5) | F12—C8 | 1.336 (7) |
Co1—C9 | 1.842 (6) | F10A—C8 | 1.341 (12) |
Co1—S1 | 2.2247 (12) | F11A—C8 | 1.312 (12) |
Co1—S2 | 2.2414 (13) | F12A—C8 | 1.329 (12) |
Co2—C12 | 1.825 (5) | O1—C9 | 1.127 (7) |
Co2—C11 | 1.827 (5) | O2—C10 | 1.125 (6) |
Co2—C2 | 1.970 (4) | O3—C11 | 1.130 (5) |
Co2—C1 | 2.010 (4) | O4—C12 | 1.122 (5) |
Co2—S3 | 2.2556 (13) | O5—C13 | 1.131 (5) |
Co2—S4 | 2.7671 (11) | O6—C14 | 1.133 (6) |
Co3—C13 | 1.796 (5) | C1—C2 | 1.439 (6) |
Co3—C14 | 1.803 (5) | C1—C3 | 1.494 (6) |
Co3—S4 | 2.2338 (12) | C2—C4 | 1.528 (7) |
Co3—S5 | 2.2395 (11) | C5—C6 | 1.335 (6) |
Co3—S6 | 2.2749 (13) | C5—C7 | 1.509 (6) |
S1—C20 | 1.782 (4) | C6—C8 | 1.524 (6) |
S2—C5 | 1.775 (4) | C15—C16 | 1.383 (6) |
S3—C6 | 1.770 (4) | C15—C20 | 1.396 (6) |
S4—C2 | 1.777 (4) | C16—C17 | 1.377 (7) |
S5—C1 | 1.801 (4) | C16—H16A | 0.9500 |
S6—C15 | 1.779 (4) | C17—C18 | 1.390 (7) |
F1—C3 | 1.341 (5) | C17—H17A | 0.9500 |
F2—C3 | 1.344 (5) | C18—C19 | 1.381 (6) |
F3—C3 | 1.339 (5) | C18—H18A | 0.9500 |
F4—C4 | 1.324 (5) | C19—C20 | 1.389 (6) |
F5—C4 | 1.340 (6) | C19—H19A | 0.9500 |
S5—Mo1—S1 | 88.52 (4) | C2—S4—Co3 | 102.26 (15) |
S5—Mo1—S3 | 84.34 (4) | C2—S4—Mo1 | 99.62 (14) |
S1—Mo1—S3 | 92.75 (4) | Co3—S4—Mo1 | 68.07 (3) |
S5—Mo1—S2 | 163.43 (4) | C2—S4—Co2 | 45.16 (13) |
S1—Mo1—S2 | 101.96 (4) | Co3—S4—Co2 | 111.42 (4) |
S3—Mo1—S2 | 82.39 (4) | Mo1—S4—Co2 | 64.65 (3) |
S5—Mo1—S6 | 103.47 (4) | C1—S5—Co3 | 102.78 (13) |
S1—Mo1—S6 | 83.85 (4) | C1—S5—Mo1 | 95.79 (14) |
S3—Mo1—S6 | 171.36 (4) | Co3—S5—Mo1 | 68.78 (3) |
S2—Mo1—S6 | 90.52 (4) | C15—S6—Co3 | 104.69 (14) |
S5—Mo1—S4 | 76.17 (4) | C15—S6—Mo1 | 106.48 (13) |
S1—Mo1—S4 | 147.71 (4) | Co3—S6—Mo1 | 67.65 (3) |
S3—Mo1—S4 | 113.36 (4) | C2—C1—C3 | 124.1 (4) |
S2—Mo1—S4 | 100.13 (4) | C2—C1—S5 | 116.8 (3) |
S6—Mo1—S4 | 72.66 (4) | C3—C1—S5 | 110.6 (3) |
S5—Mo1—Co3 | 52.48 (3) | C2—C1—Co2 | 67.3 (2) |
S1—Mo1—Co3 | 96.23 (3) | C3—C1—Co2 | 124.2 (3) |
S3—Mo1—Co3 | 135.41 (3) | S5—C1—Co2 | 106.8 (2) |
S2—Mo1—Co3 | 137.11 (3) | C1—C2—C4 | 124.4 (4) |
S6—Mo1—Co3 | 53.08 (3) | C1—C2—S4 | 114.4 (3) |
S4—Mo1—Co3 | 51.93 (3) | C4—C2—S4 | 115.3 (3) |
S5—Mo1—Co1 | 137.65 (3) | C1—C2—Co2 | 70.3 (2) |
S1—Mo1—Co1 | 50.87 (3) | C4—C2—Co2 | 126.8 (3) |
S3—Mo1—Co1 | 86.08 (3) | S4—C2—Co2 | 95.1 (2) |
S2—Mo1—Co1 | 51.09 (3) | F3—C3—F1 | 106.5 (3) |
S6—Mo1—Co1 | 85.61 (3) | F3—C3—F2 | 106.4 (4) |
S4—Mo1—Co1 | 144.34 (3) | F1—C3—F2 | 106.0 (3) |
Co3—Mo1—Co1 | 131.93 (2) | F3—C3—C1 | 114.4 (4) |
S5—Mo1—Co2 | 71.40 (3) | F1—C3—C1 | 111.2 (4) |
S1—Mo1—Co2 | 138.35 (3) | F2—C3—C1 | 111.9 (4) |
S3—Mo1—Co2 | 50.35 (3) | F4—C4—F6 | 106.2 (4) |
S2—Mo1—Co2 | 92.44 (3) | F4—C4—F5 | 107.4 (4) |
S6—Mo1—Co2 | 135.42 (3) | F6—C4—F5 | 107.0 (4) |
S4—Mo1—Co2 | 63.03 (3) | F4—C4—C2 | 113.9 (4) |
Co3—Mo1—Co2 | 99.20 (2) | F6—C4—C2 | 110.4 (4) |
Co1—Mo1—Co2 | 128.84 (2) | F5—C4—C2 | 111.5 (4) |
C10—Co1—C9 | 98.4 (3) | C6—C5—C7 | 126.2 (4) |
C10—Co1—S1 | 107.95 (16) | C6—C5—S2 | 121.5 (3) |
C9—Co1—S1 | 109.32 (18) | C7—C5—S2 | 112.3 (3) |
C10—Co1—S2 | 111.11 (17) | C5—C6—C8 | 124.2 (4) |
C9—Co1—S2 | 113.2 (2) | C5—C6—S3 | 122.6 (3) |
S1—Co1—S2 | 115.44 (5) | C8—C6—S3 | 113.3 (3) |
C10—Co1—Mo1 | 128.61 (18) | F7—C7—F9 | 108.1 (5) |
C9—Co1—Mo1 | 132.8 (2) | F8A—C7—F7A | 105.8 (10) |
S1—Co1—Mo1 | 57.46 (3) | F7—C7—F8 | 105.8 (5) |
S2—Co1—Mo1 | 57.97 (3) | F9—C7—F8 | 105.4 (5) |
C12—Co2—C11 | 96.3 (2) | F8A—C7—F9A | 107.0 (9) |
C12—Co2—C2 | 110.5 (2) | F7A—C7—F9A | 105.6 (10) |
C11—Co2—C2 | 104.60 (18) | F8A—C7—C5 | 113.3 (6) |
C12—Co2—C1 | 97.04 (18) | F7—C7—C5 | 112.5 (4) |
C11—Co2—C1 | 146.99 (18) | F9—C7—C5 | 112.2 (4) |
C2—Co2—C1 | 42.40 (16) | F7A—C7—C5 | 110.7 (6) |
C12—Co2—S3 | 100.76 (17) | F8—C7—C5 | 112.3 (4) |
C11—Co2—S3 | 103.81 (15) | F9A—C7—C5 | 113.8 (6) |
C2—Co2—S3 | 134.51 (14) | F11A—C8—F12A | 105.5 (11) |
C1—Co2—S3 | 103.14 (13) | F11—C8—F10 | 107.2 (5) |
C12—Co2—S4 | 148.89 (16) | F11—C8—F12 | 107.0 (6) |
C11—Co2—S4 | 86.51 (14) | F10—C8—F12 | 105.6 (6) |
C2—Co2—S4 | 39.76 (13) | F11A—C8—F10A | 105.2 (11) |
C1—Co2—S4 | 66.97 (12) | F12A—C8—F10A | 106.5 (11) |
S3—Co2—S4 | 108.66 (4) | F11A—C8—C6 | 115.3 (9) |
C12—Co2—Mo1 | 154.70 (16) | F12A—C8—C6 | 111.9 (9) |
C11—Co2—Mo1 | 99.65 (15) | F11—C8—C6 | 111.6 (5) |
C2—Co2—Mo1 | 84.29 (13) | F10—C8—C6 | 112.1 (5) |
C1—Co2—Mo1 | 79.96 (12) | F12—C8—C6 | 112.9 (5) |
S3—Co2—Mo1 | 56.37 (3) | F10A—C8—C6 | 111.8 (9) |
S4—Co2—Mo1 | 52.32 (3) | O1—C9—Co1 | 178.5 (8) |
C13—Co3—C14 | 94.7 (2) | O2—C10—Co1 | 177.0 (6) |
C13—Co3—S4 | 91.03 (14) | O3—C11—Co2 | 177.4 (4) |
C14—Co3—S4 | 174.25 (15) | O4—C12—Co2 | 176.0 (5) |
C13—Co3—S5 | 118.60 (16) | O5—C13—Co3 | 176.9 (4) |
C14—Co3—S5 | 92.28 (15) | O6—C14—Co3 | 177.6 (5) |
S4—Co3—S5 | 84.38 (4) | C16—C15—C20 | 120.3 (4) |
C13—Co3—S6 | 124.00 (15) | C16—C15—S6 | 118.8 (3) |
C14—Co3—S6 | 97.07 (16) | C20—C15—S6 | 120.9 (3) |
S4—Co3—S6 | 80.22 (4) | C17—C16—C15 | 119.5 (4) |
S5—Co3—S6 | 115.38 (4) | C17—C16—H16A | 120.2 |
C13—Co3—Mo1 | 150.72 (14) | C15—C16—H16A | 120.2 |
C14—Co3—Mo1 | 114.26 (15) | C16—C17—C18 | 120.8 (4) |
S4—Co3—Mo1 | 60.00 (3) | C16—C17—H17A | 119.6 |
S5—Co3—Mo1 | 58.74 (3) | C18—C17—H17A | 119.6 |
S6—Co3—Mo1 | 59.27 (3) | C19—C18—C17 | 119.7 (4) |
C20—S1—Co1 | 98.78 (14) | C19—C18—H18A | 120.1 |
C20—S1—Mo1 | 106.69 (15) | C17—C18—H18A | 120.1 |
Co1—S1—Mo1 | 71.67 (4) | C18—C19—C20 | 120.1 (4) |
C5—S2—Co1 | 97.05 (15) | C18—C19—H19A | 120.0 |
C5—S2—Mo1 | 106.85 (14) | C20—C19—H19A | 120.0 |
Co1—S2—Mo1 | 70.94 (3) | C19—C20—C15 | 119.6 (4) |
C6—S3—Co2 | 101.70 (15) | C19—C20—S1 | 118.7 (3) |
C6—S3—Mo1 | 106.61 (14) | C15—C20—S1 | 121.8 (3) |
Co2—S3—Mo1 | 73.29 (3) | ||
Co3—S5—C1—C2 | 20.2 (3) | Co2—S3—C6—C5 | 79.7 (4) |
Mo1—S5—C1—C2 | −49.3 (3) | Mo1—S3—C6—C5 | 3.9 (4) |
Co3—S5—C1—C3 | −129.4 (3) | Co2—S3—C6—C8 | −101.5 (3) |
Mo1—S5—C1—C3 | 161.1 (3) | Mo1—S3—C6—C8 | −177.3 (3) |
Co3—S5—C1—Co2 | 92.78 (16) | C6—C5—C7—F8A | 153.6 (10) |
Mo1—S5—C1—Co2 | 23.27 (17) | S2—C5—C7—F8A | −26.0 (11) |
C3—C1—C2—C4 | 4.9 (7) | C6—C5—C7—F7 | −37.8 (8) |
S5—C1—C2—C4 | −140.2 (4) | S2—C5—C7—F7 | 142.6 (5) |
Co2—C1—C2—C4 | 121.8 (4) | C6—C5—C7—F9 | 84.4 (7) |
C3—C1—C2—S4 | 156.5 (3) | S2—C5—C7—F9 | −95.2 (5) |
S5—C1—C2—S4 | 11.4 (4) | C6—C5—C7—F7A | −87.7 (11) |
Co2—C1—C2—S4 | −86.6 (3) | S2—C5—C7—F7A | 92.7 (10) |
C3—C1—C2—Co2 | −116.9 (4) | C6—C5—C7—F8 | −157.0 (6) |
S5—C1—C2—Co2 | 98.0 (3) | S2—C5—C7—F8 | 23.4 (6) |
Co3—S4—C2—C1 | −37.5 (3) | C6—C5—C7—F9A | 31.1 (11) |
Mo1—S4—C2—C1 | 32.0 (3) | S2—C5—C7—F9A | −148.5 (9) |
Co2—S4—C2—C1 | 70.6 (3) | C5—C6—C8—F11A | 45.7 (14) |
Co3—S4—C2—C4 | 116.8 (3) | S3—C6—C8—F11A | −133.1 (14) |
Mo1—S4—C2—C4 | −173.7 (3) | C5—C6—C8—F12A | −74.8 (13) |
Co2—S4—C2—C4 | −135.1 (4) | S3—C6—C8—F12A | 106.4 (13) |
Co3—S4—C2—Co2 | −108.11 (14) | C5—C6—C8—F11 | 78.1 (8) |
Mo1—S4—C2—Co2 | −38.65 (16) | S3—C6—C8—F11 | −100.7 (7) |
C2—C1—C3—F3 | 36.6 (6) | C5—C6—C8—F10 | −161.6 (7) |
S5—C1—C3—F3 | −176.6 (3) | S3—C6—C8—F10 | 19.6 (8) |
Co2—C1—C3—F3 | −47.6 (5) | C5—C6—C8—F12 | −42.4 (9) |
C2—C1—C3—F1 | 157.2 (4) | S3—C6—C8—F12 | 138.8 (7) |
S5—C1—C3—F1 | −55.9 (4) | C5—C6—C8—F10A | 165.8 (14) |
Co2—C1—C3—F1 | 73.1 (5) | S3—C6—C8—F10A | −13.0 (14) |
C2—C1—C3—F2 | −84.5 (5) | Co3—S6—C15—C16 | −108.6 (3) |
S5—C1—C3—F2 | 62.4 (4) | Mo1—S6—C15—C16 | −179.2 (3) |
Co2—C1—C3—F2 | −168.6 (3) | Co3—S6—C15—C20 | 71.1 (4) |
C1—C2—C4—F4 | −69.7 (6) | Mo1—S6—C15—C20 | 0.5 (4) |
S4—C2—C4—F4 | 138.9 (3) | C20—C15—C16—C17 | −2.5 (7) |
Co2—C2—C4—F4 | 20.4 (6) | S6—C15—C16—C17 | 177.3 (4) |
C1—C2—C4—F6 | 170.9 (4) | C15—C16—C17—C18 | 2.0 (8) |
S4—C2—C4—F6 | 19.5 (5) | C16—C17—C18—C19 | −0.9 (8) |
Co2—C2—C4—F6 | −99.0 (4) | C17—C18—C19—C20 | 0.3 (7) |
C1—C2—C4—F5 | 52.1 (6) | C18—C19—C20—C15 | −0.8 (7) |
S4—C2—C4—F5 | −99.3 (4) | C18—C19—C20—S1 | 177.5 (4) |
Co2—C2—C4—F5 | 142.3 (3) | C16—C15—C20—C19 | 1.9 (6) |
Co1—S2—C5—C6 | 73.6 (4) | S6—C15—C20—C19 | −177.9 (3) |
Mo1—S2—C5—C6 | 1.4 (4) | C16—C15—C20—S1 | −176.3 (3) |
Co1—S2—C5—C7 | −106.8 (3) | S6—C15—C20—S1 | 3.9 (5) |
Mo1—S2—C5—C7 | −178.9 (3) | Co1—S1—C20—C19 | −111.0 (3) |
C7—C5—C6—C8 | −2.0 (7) | Mo1—S1—C20—C19 | 175.6 (3) |
S2—C5—C6—C8 | 177.6 (3) | Co1—S1—C20—C15 | 67.2 (4) |
C7—C5—C6—S3 | 176.7 (4) | Mo1—S1—C20—C15 | −6.2 (4) |
S2—C5—C6—S3 | −3.7 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17A···O6i | 0.95 | 2.57 | 3.353 (7) | 140 |
C17—H17A···F11ii | 0.95 | 2.62 | 3.461 (9) | 148 |
C17—H17A···F10Aii | 0.95 | 2.55 | 3.29 (2) | 135 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x+1/2, y+1/2, z. |
Acknowledgements
We thank Professors Wolfang Kaim and Biprajit Sarkar (University of Stuttgart) for the use of their EPR spectrometer for the spectrum shown in Fig. 3.
Funding information
Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada ; University of Toronto.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Beswick, C. L., Schulman, J. M. & Stiefel, E. I. (2004). Prog. Inorg. Chem. 52, 55–110. Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Chen, Y.-Q., Zhang, J., Cai, S., Hou, X.-F., Schumann, H. & Jin, G.-X. (2007). Dalton Trans. pp. 749–758. CSD CrossRef Google Scholar
Curtis, D. M., Druker, S. H., Goossen, L. & Kampf, J. W. (1997). Organometallics, 16, 231–235. CSD CrossRef CAS Google Scholar
Dickinson, R. G. & Pauling, L. (1923). J. Am. Chem. Soc. 45, 1466–1471. CrossRef ICSD CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harrison, D. J., Lough, A. J., Nguyen, N. & Fekl, U. (2007). Angew. Chem. Int. Ed. 46, 7644–7647. Web of Science CSD CrossRef CAS Google Scholar
Hinnemann, B., Moses, P. G. & Nørskov, J. K. (2008). J. Phys. Condens. Matter, 20, 064236–064244. CrossRef PubMed Google Scholar
Hosking, S., Lough, A. J. & Fekl, U. (2009). Acta Cryst. E65, m759–m760. Web of Science CSD CrossRef IUCr Journals Google Scholar
Murata, M., Habe, S., Araki, S., Namiki, K., Yamada, T., Nakagawa, N., Nankawa, T., Nihei, M., Mizutani, J., Kurihara, M. & Nishihara, H. (2006). Inorg. Chem. 45, 1108–1116. CSD CrossRef PubMed CAS Google Scholar
Muratsugu, S., Sodeyama, K., Kitamura, F., Tsukada, S., Tada, M., Tsuneyuki, S. & Nishihara, H. (2011). Chem. Sci. 2, 1960–1968. CSD CrossRef CAS Google Scholar
Nguyen, N., Harrison, D. J., Lough, A. J., De Crisci, A. G. & Fekl, U. (2010). Eur. J. Inorg. Chem. pp. 3577–3585. Web of Science CSD CrossRef Google Scholar
Nihei, M., Nankawa, T., Kurihara, M. & Nishihara, H. (1999). Angew. Chem. Int. Ed. 38, 1098–1100. CrossRef CAS Google Scholar
Nonius, B. (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307–326. London: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.