research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A molybdenum tris­­(di­thiol­ene) complex coordinates to three bound cobalt centers in three different ways

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, Ontario, L5L 1C6, Canada, and bDepartment of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
*Correspondence e-mail: ulrich.fekl@utoronto.ca

Edited by M. Zeller, Purdue University, USA (Received 18 July 2019; accepted 20 July 2019; online 26 July 2019)

The synthesis and structural characterization of the mol­ecular compound (μ3-benzene-1,2-di­thiol­ato)hexa­carbonyl­bis­(μ3-1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)tricobaltmolybdenum, [Co3Mo(C4F6S2)2(C6H4S2)(CO)6] or Mo(tfd)2(bdt)(Co(CO)2)3 (tfd is 1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolate and bdt is benzene-1,2-di­thiol­ate), are reported. The structure of the mol­ecule contains the molybdenum tris­(di­thiol­ene) complex Mo(tfd)2(bdt) coordinated as a multidentate ligand to three cobalt dicarbonyl units. Each of the three cobalt centers is relatively close to molybdenum, with Co⋯Mo distances of 2.7224 (7), 2.8058 (7), and 2.6320 (6) Å. Additionally, each of the cobalt centers is bound via main-group donor atoms, but each one in a different way: the first cobalt atom is coordinated by two sulfur atoms from different di­thiol­enes (bdt and tfd). The second cobalt atom is coordinated by one sulfur from one tfd and two olefinic carbons from another tfd. The third cobalt is coordinated by one sulfur from bdt and two sulfurs from tfd. This is, to the best of our knowledge, the first structurally characterized example of a molybdenum (tris­)di­thiol­ene complex that coordinates to cobalt. The F atoms of two of the –CF3 groups were refined as disordered over two sets of sites with ratios of refined occupancies of 0.703 (7):0.297 (7) and 0.72 (2):0.28 (2).

1. Chemical context

Sulfur removal from crude petroleum is performed on a large industrial scale through a process called hydro­desulfurization. This involves use of hydrogen gas (the sulfur is removed as H2S) and addition of a catalyst, typically cobalt-doped MoS2 (Hinnemann et al., 2008[Hinnemann, B., Moses, P. G. & Nørskov, J. K. (2008). J. Phys. Condens. Matter, 20, 064236-064244.]). MoS2 is not a mol­ecular compound but rather possesses an extended structure, consisting of close-packed sulfur layers between which molybdenum is sandwiched (Dickinson & Pauling, 1923[Dickinson, R. G. & Pauling, L. (1923). J. Am. Chem. Soc. 45, 1466-1471.]). The coordination geometry around molybdenum is trigonal prismatic. Several attempts to model MoS2 using mol­ecular compounds have been made, often using di­thiol­ene (S2C2R2) ligands, where some examples also contain the hydro­desulfurization-relevant addition of cobalt. Complexes containing molybdenum, cobalt, and one or two (but not three) di­thiol­enes are known. A molybdenum bis­(di­thiol­ene) that coordinates to two cobalt centers has been characterized crystallographically (Nihei et al., 1999[Nihei, M., Nankawa, T., Kurihara, M. & Nishihara, H. (1999). Angew. Chem. Int. Ed. 38, 1098-1100.]; Murata et al., 2006[Murata, M., Habe, S., Araki, S., Namiki, K., Yamada, T., Nakagawa, N., Nankawa, T., Nihei, M., Mizutani, J., Kurihara, M. & Nishihara, H. (2006). Inorg. Chem. 45, 1108-1116.]). The study reports [Mo(bdt)2(CO)2(CpCo)2], where bdt = o-C6H4S2 and Cp = cyclo-C5H5. The methyl­ated analog [Mo(bdt)2(CO)2(Cp*Co)2], where Cp* = cyclo-C5Me5 was also structurally characterized (Muratsugu et al., 2011[Muratsugu, S., Sodeyama, K., Kitamura, F., Tsukada, S., Tada, M., Tsuneyuki, S. & Nishihara, H. (2011). Chem. Sci. 2, 1960-1968.]). An analogous [Mo(ddds)2(CO)2(CpCo)2] was reported by a different group, where ddds is the unusual di­thiol­ene 1,2-dicarba-closo-dodeca­borane-1,2-di­sulfide (Chen et al., 2007[Chen, Y.-Q., Zhang, J., Cai, S., Hou, X.-F., Schumann, H. & Jin, G.-X. (2007). Dalton Trans. pp. 749-758.]). The above contribution also reported a molybdenum mono(di­thiol­ene) complex coordinated to a cobalt fragment, namely [Mo(ddds)(CO)2(py)2(Cp*Co)], where py = pyridine. Coordinating to cobalt a molybdenum tris(di­thioene), that is a compound where three di­thiol­enes are bound to molybdenum, would be inter­esting, because molybdenum tris­(di­thiol­ene)s mimic MoS2 particularly well. Similar to MoS2, they contain molybdenum coordinated to six sulfur atoms, and, also, depending on the oxidation state of the compound, the environment of molybdenum can sometimes be trigonal prismatic (Beswick et al., 2004[Beswick, C. L., Schulman, J. M. & Stiefel, E. I. (2004). Prog. Inorg. Chem. 52, 55-110.]). However, we could not find any structurally characterized example for how a molybdenum tris­(di­thiol­ene) complex can act as ligand for cobalt. Such an example is provided here. In 2007, the mixed di­thiol­ene complex Mo(tfd)2(bdt) [tfd = S2C2(CF3)2], an unsymmetrical tris­(di­thiol­ene), was reported for the first time (Harrison et al., 2007[Harrison, D. J., Lough, A. J., Nguyen, N. & Fekl, U. (2007). Angew. Chem. Int. Ed. 46, 7644-7647.]). Later, this complex, which contains two different di­thiol­enes, was used to create structural models for the active sites of MoS2 hydro­desulfurization catalysts, albeit cobalt-free ones (Nguyen et al., 2010[Nguyen, N., Harrison, D. J., Lough, A. J., De Crisci, A. G. & Fekl, U. (2010). Eur. J. Inorg. Chem. pp. 3577-3585.]). In this current work, we have successfully linked three cobalt centers to one Mo(tfd)2(bdt) mol­ecule. Surprisingly, each of the three cobalt-containing units [each one is a Co(CO)2 fragment] is bound to the molybdenum tris­(di­thiol­ene) center in a different way.

[Scheme 1]

2. Structural commentary

An anisotropic displacement plot showing the structure of the Mo(tfd)2(bdt)(Co(CO)2)3 mol­ecule is shown in Fig. 1[link]. A good starting point for the structural description is considering the core Mo(tfd)2(bdt) substructure first. Molybdenum is coordinated by six sulfur atoms, four from the two tfd ligands, two from the one bdt ligand. The Mo—S distances are fairly normal, ranging from 2.413 (1) Å (Mo1—S5) to 2.457 (1) Å (Mo1—S4). The appearance of the structure is `approximately octa­hedral'. A more qu­anti­tative measure is obtained using the XMXtrans criterion (Beswick et al., 2004[Beswick, C. L., Schulman, J. M. & Stiefel, E. I. (2004). Prog. Inorg. Chem. 52, 55-110.]; Nguyen et al., 2010[Nguyen, N., Harrison, D. J., Lough, A. J., De Crisci, A. G. & Fekl, U. (2010). Eur. J. Inorg. Chem. pp. 3577-3585.]), which indicates that the geometry around molybdenum is 71% octa­hedral (29% trigonal prismatic). The intra-ring C—C distance in the tfd ligand that is not π-coordinated to cobalt (C5—C6) is 1.335 (6) Å, indicating that description as an ene-di­thiol­ate is appropriate (Hosking et al., 2009[Hosking, S., Lough, A. J. & Fekl, U. (2009). Acta Cryst. E65, m759-m760.]). The intra-ring C-C distance in the tfd ligand that is π-coordinated to cobalt (C1—C2) is much longer, at 1.439 (6) Å, but this elongation is expected as an effect of π-coordination to cobalt (Co2). At this point it makes sense to discuss the way in which the Mo(tfd)2(bdt) substructure coordinates to the three cobalt dicarbonyl fragments. Co1 is coordinated by two sulfurs from different di­thiol­enes (bdt and tfd) at bond lengths of 2.225 (1) Å (Co1—S1) and 2.241 (1) Å (Co1—S2), respect­ively. The C2S2 environment of Co1 is nearly tetra­hedral, with very slight distortions. The S1—Co1—S2 angle is slightly wide, at 115.44 (5)°, the C9—Co1—C10 angle is slightly narrow, at 98.4 (3)°. Co2, in contrast, is coordinated by one sulfur from one tfd and two olefinic carbons from another tfd, where bond lengths are 2.256 (1) Å (Co2—S3), 2.010 (4) Å (Co2—C1), and 1.970 (4) (Co2—C2). The coordination geometry of Co2 (not including Mo1 here) is, again, approximately tetra­hedral, where the largest deviation from tetra­hedral geometry are C11—Co2—C12, at 96.3 (2)° and the comparably wide `bite' of the chelating substructure, with Ct1—Co2—S3 measuring 119.7°, where Ct1 is the mid-point between C11 and C12. Another sulfur atom, S4, is relatively close to Co2, but the inter­atomic distance, at 2.767 (1) Å, is considerably longer than the Co2—S3 bond, such that S4 is almost certainly not bonded. Finally, Co3 is coordinated by one sulfur from bdt and two sulfurs from tfd, at distances of 2.234 (1) Å (Co3—S4), 2.239 (1) Å (Co3—S5), and 2.275 (1) Å (Co3—S6). Co3 is surrounded by these three sulfurs and two carbons in an approximately trigonal–bipyramidal fashion. C14 and S4 occupy axial positions, with the C14-Co3-S4 angle being 174.3 (2)°. The three angles in the trigonal plane are 115.38 (4)° (S5—Co3—S6), 118.6 (2)° (S5—Co3—C13), and 124.0 (2)° (S6—Co3—C13). While there is no doubt that the three cobalt atoms are bound by the heteroatoms (sulfur, carbon) of the Mo(tfd)2(bdt) structure, each of the three cobalt atoms is also close to the central molybdenum, and these metal–metal contacts could possibly be bonding as well. The relevant distances are 2.7224 (7) Å (Co1—Mo1), 2.8058 (7) Å (Co2—Mo1), and 2.6320 (6) Å (Co3—Mo1). Such Mo—Co distances are typically considered of a range compatible with Mo—Co bonds (Chen et al., 2007[Chen, Y.-Q., Zhang, J., Cai, S., Hou, X.-F., Schumann, H. & Jin, G.-X. (2007). Dalton Trans. pp. 749-758.]; Curtis et al., 1997[Curtis, D. M., Druker, S. H., Goossen, L. & Kampf, J. W. (1997). Organometallics, 16, 231-235.]; Murata et al., 2006[Murata, M., Habe, S., Araki, S., Namiki, K., Yamada, T., Nakagawa, N., Nankawa, T., Nihei, M., Mizutani, J., Kurihara, M. & Nishihara, H. (2006). Inorg. Chem. 45, 1108-1116.]; Muratsugu et al., 2011[Muratsugu, S., Sodeyama, K., Kitamura, F., Tsukada, S., Tada, M., Tsuneyuki, S. & Nishihara, H. (2011). Chem. Sci. 2, 1960-1968.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of Mo(tfd)2(bdt)(Co(CO)2)3. Anisotropic displacement ellipsoids in this plot, generated with ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), are shown at the 30% level. Hydrogen atoms are shown as spheres of arbitrary radius. For the disordered fluorines on C7 and C8 only one orientation (major component) is shown.

3. Supra­molecular features

Mol­ecules of Mo(tfd)2(bdt)(Co(CO)2)3 pack, without any solvent in the crystal, via contacting van der Waals surfaces. The packing pattern is shown in Fig. 2[link]. Hydrogen atom H17A forms close inter­molecular contacts to an oxygen atom from a neighboring carbonyl and to a fluorine atom of the major disorder component (F11), as well as to a fluorine atom of the minor disorder component (F10A). Details can be found in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O6i 0.95 2.57 3.353 (7) 140
C17—H17A⋯F11ii 0.95 2.62 3.461 (9) 148
C17—H17A⋯F10Aii 0.95 2.55 3.29 (2) 135
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Packing of mol­ecules of Mo(tfd)2(bdt)(Co(CO)2)3, viewed along the b axis.

4. Database survey

The Cambridge Crystallographic Database (version 5.40, including updates up to May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was searched. The search was performed as a substructure search containing the most general di­thiol­ene S–C–C–S substructure (with any kind of bond allowed in the chain), plus a molybdenum and a cobalt atom. Since no specific requirement was imposed with regard to whether or in which way cobalt or molybdenum are bonded to the S–C–C–S structure, hits that do not contain a molybdenum di­thiol­ene complex coordinated to cobalt where manually removed as follows. Seven hits were retrieved: EYUHIQ, JOQWIV, JOQWIV01, SEVMIQ, SEVMOW, TASDAT, OQAMEZ. Out of these, TASDAT and OQAMEZ are not relevant here, since they do not contain a molybdenum di­thiol­ene unit that is directly bonded to cobalt. They contain, respectively, a cobalt-based counter-cation for an anionic molybdenum complex and a nickel bis­(di­thiol­ene) anion as a counter-anion for a molybdenum/cobalt sulfido cluster. The structures EYUHIQ, JOQWIV, JOQWIV01, SEVMIQ and SEVMOW are relevant, since they contain at least one molybdenum di­thiol­ene unit that is directly bonded to cobalt. These structures are all discussed above in the Chemical context (Nihei et al., 1999[Nihei, M., Nankawa, T., Kurihara, M. & Nishihara, H. (1999). Angew. Chem. Int. Ed. 38, 1098-1100.]; Murata et al., 2006[Murata, M., Habe, S., Araki, S., Namiki, K., Yamada, T., Nakagawa, N., Nankawa, T., Nihei, M., Mizutani, J., Kurihara, M. & Nishihara, H. (2006). Inorg. Chem. 45, 1108-1116.]; Muratsugu et al., 2011[Muratsugu, S., Sodeyama, K., Kitamura, F., Tsukada, S., Tada, M., Tsuneyuki, S. & Nishihara, H. (2011). Chem. Sci. 2, 1960-1968.]; Chen et al., 2007[Chen, Y.-Q., Zhang, J., Cai, S., Hou, X.-F., Schumann, H. & Jin, G.-X. (2007). Dalton Trans. pp. 749-758.]).

5. Synthesis and crystallization

Mo(tfd)2(bdt)(Co(CO)2)3 was prepared from Mo(tfd)2(bdt) (Harrison et al., 2007[Harrison, D. J., Lough, A. J., Nguyen, N. & Fekl, U. (2007). Angew. Chem. Int. Ed. 46, 7644-7647.]) and dicobaltocta­carbonyl (obtained from Sigma-Aldrich) as summarized in the Scheme, using air-free conditions and rigorously dried solvents. 48 mg of Mo(tfd)2(bdt) (0.0697 mmol) were dissolved in 18 mL of hexane (dried over Na/benzo­phenone). 60 mg (0.175 mmol) of (Co)2(CO)8 dissolved in 2 mL of hexane were added and the mixture was shaken. The mixture was stored overnight at 243 K in the freezer of a nitro­gen-filled glovebox. The supernatant was deca­nted off, and the black crystals of Mo(tfd)2(bdt)(Co(CO)2)3 were washed twice with 5 mL of cold hexane. Total yield 27 mg (0.026 mmol, 37%). Analysis calculated for Mo1S6C20H4F12Co3O6: C, 23.25; H, 0.39; O, 9.29; S, 18.62. Found: C, 23.70; H, 0.44; O, 9.70; S, 18.80. 1H NMR (400 MHz, C6D6): δ 6.38 (m), 7.02 (m). The compound is paramagnetic. An estimate of the magnetic moment in solution (Evans method) yielded ca 0.9 BM, consistent with one unpaired electron. An EPR spectrum was also obtained, shown in Fig. 3[link].

[Figure 3]
Figure 3
X-band EPR spectrum of Mo(tfd)2(bdt)(Co(CO)2)3 in hexane at 298 K; g = 2.010.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and included in a riding-motion approximation with Uiso(H) = 1.2Ueq(C). The F atoms of the –CF3 groups containing C7 and C8 were refined as disordered over two sets of sites with ratios of refined occupancies of 0.703 (7):0.297 (7) and 0.72 (2):0.28 (2), respectively.

Table 2
Experimental details

Crystal data
Chemical formula [Co3Mo(C4F6S2)2(C6H4S2)(CO)6]
Mr 1033.32
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 22.7465 (5), 12.8779 (5), 23.6033 (6)
β (°) 115.3840 (16)
V3) 6246.5 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.47
Crystal size (mm) 0.32 × 0.12 × 0.10
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.686, 0.798
No. of measured, independent and observed [I > 2σ(I)] reflections 21250, 7102, 5019
Rint 0.046
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.112, 1.07
No. of reflections 7102
No. of parameters 489
No. of restraints 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.09, −0.74
Computer programs: COLLECT (Nonius, 2002[Nonius, B. (2002). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307-326. London: Academic Press.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Benzene-1,2-dithiolato)hexacarbonylbis(µ3-1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)tricobaltmolybdenum top
Crystal data top
[Co3Mo(C4F6S2)2(C6H4S2)(CO)6]F(000) = 3992
Mr = 1033.32Dx = 2.198 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.7465 (5) ÅCell parameters from 21250 reflections
b = 12.8779 (5) Åθ = 3.0–27.5°
c = 23.6033 (6) ŵ = 2.47 mm1
β = 115.3840 (16)°T = 150 K
V = 6246.5 (3) Å3Needle, dark red
Z = 80.32 × 0.12 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
7102 independent reflections
Radiation source: fine-focus sealed tube5019 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.046
φ scans and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 2929
Tmin = 0.686, Tmax = 0.798k = 1616
21250 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.054P)2 + 5.1797P]
where P = (Fo2 + 2Fc2)/3
7102 reflections(Δ/σ)max = 0.001
489 parametersΔρmax = 1.09 e Å3
210 restraintsΔρmin = 0.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.37011 (2)0.67610 (3)0.12477 (2)0.02586 (11)
Co10.32882 (3)0.85549 (5)0.15702 (3)0.03548 (16)
Co20.33267 (3)0.47117 (5)0.13309 (3)0.03083 (16)
Co30.45749 (3)0.63936 (5)0.08184 (3)0.02962 (15)
S10.32447 (5)0.82941 (9)0.06212 (5)0.0297 (2)
S20.36985 (5)0.72385 (9)0.22479 (5)0.0331 (3)
S30.26312 (5)0.60667 (9)0.10435 (5)0.0296 (2)
S40.45637 (5)0.54398 (9)0.16042 (5)0.0301 (2)
S50.35447 (5)0.58534 (9)0.02990 (5)0.0295 (2)
S60.47364 (5)0.76648 (9)0.15395 (5)0.0307 (3)
F10.26591 (12)0.4072 (2)0.02994 (12)0.0493 (7)
F20.35969 (14)0.3736 (2)0.02658 (12)0.0484 (7)
F30.32346 (13)0.2830 (2)0.02808 (12)0.0456 (7)
F40.41197 (15)0.2522 (2)0.14259 (14)0.0581 (8)
F50.46739 (15)0.3033 (2)0.09356 (15)0.0588 (8)
F60.49947 (14)0.3377 (2)0.19160 (14)0.0635 (9)
F70.2282 (2)0.7313 (7)0.2705 (2)0.074 (2)0.703 (7)
F80.3246 (3)0.7860 (5)0.3117 (3)0.0698 (18)0.703 (7)
F90.3064 (4)0.6287 (4)0.3225 (2)0.0766 (19)0.703 (7)
F7A0.2573 (8)0.7953 (11)0.2754 (6)0.072 (4)0.297 (7)
F8A0.3435 (5)0.7165 (15)0.3305 (4)0.063 (3)0.297 (7)
F9A0.2537 (7)0.6372 (10)0.2967 (5)0.063 (3)0.297 (7)
F100.1632 (4)0.5120 (8)0.1246 (4)0.055 (2)0.72 (2)
F110.1431 (3)0.6580 (6)0.1565 (6)0.066 (2)0.72 (2)
F120.1944 (4)0.5381 (9)0.2222 (3)0.068 (2)0.72 (2)
F10A0.1475 (9)0.558 (2)0.1103 (7)0.057 (4)0.28 (2)
F11A0.1543 (10)0.6471 (14)0.1877 (12)0.056 (4)0.28 (2)
F12A0.1972 (10)0.4990 (14)0.2037 (10)0.057 (4)0.28 (2)
O10.3951 (3)1.0559 (4)0.2075 (3)0.112 (2)
O20.19536 (19)0.9067 (4)0.1404 (2)0.0771 (13)
O30.37570 (16)0.4528 (3)0.26994 (14)0.0486 (9)
O40.23791 (19)0.2999 (3)0.09880 (16)0.0587 (11)
O50.56008 (17)0.5074 (3)0.07720 (17)0.0586 (10)
O60.4473 (2)0.7725 (3)0.02293 (17)0.0610 (10)
C10.35680 (19)0.4568 (3)0.06092 (19)0.0304 (10)
C20.41017 (19)0.4338 (4)0.1204 (2)0.0323 (10)
C30.3269 (2)0.3798 (4)0.0090 (2)0.0372 (11)
C40.4467 (2)0.3306 (4)0.1367 (2)0.0423 (12)
C50.29505 (19)0.6793 (4)0.22259 (18)0.0309 (10)
C60.25188 (19)0.6280 (3)0.17312 (19)0.0304 (10)
C70.2880 (2)0.7059 (4)0.2817 (2)0.0437 (12)
C80.1880 (2)0.5842 (4)0.1692 (2)0.0435 (12)
C90.3691 (3)0.9805 (5)0.1880 (3)0.0646 (17)
C100.2465 (3)0.8898 (4)0.1474 (2)0.0495 (13)
C110.3593 (2)0.4622 (4)0.2178 (2)0.0354 (10)
C120.2757 (2)0.3625 (4)0.1124 (2)0.0409 (11)
C130.5214 (2)0.5607 (4)0.0791 (2)0.0370 (11)
C140.4513 (2)0.7229 (4)0.0182 (2)0.0410 (11)
C150.45531 (19)0.8839 (3)0.11004 (19)0.0296 (9)
C160.5057 (2)0.9503 (4)0.1170 (2)0.0398 (11)
H16A0.5490370.9345690.1460450.048*
C170.4928 (2)1.0394 (4)0.0814 (2)0.0512 (14)
H17A0.5275251.0838940.0850700.061*
C180.4294 (2)1.0649 (4)0.0401 (2)0.0442 (12)
H18A0.4208211.1270550.0161680.053*
C190.3788 (2)0.9995 (4)0.0339 (2)0.0347 (10)
H19A0.3354661.0165760.0056000.042*
C200.39134 (19)0.9089 (3)0.06908 (19)0.0291 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02129 (18)0.0321 (2)0.02433 (19)0.00421 (15)0.00990 (15)0.00087 (15)
Co10.0354 (3)0.0368 (4)0.0387 (3)0.0013 (3)0.0202 (3)0.0033 (3)
Co20.0325 (3)0.0345 (4)0.0287 (3)0.0072 (3)0.0162 (3)0.0013 (2)
Co30.0259 (3)0.0351 (4)0.0308 (3)0.0016 (3)0.0149 (2)0.0027 (3)
S10.0216 (5)0.0358 (6)0.0311 (5)0.0030 (4)0.0107 (4)0.0019 (5)
S20.0278 (5)0.0441 (7)0.0269 (5)0.0067 (5)0.0112 (4)0.0048 (5)
S30.0242 (5)0.0394 (7)0.0261 (5)0.0077 (5)0.0117 (4)0.0025 (5)
S40.0286 (5)0.0344 (6)0.0283 (5)0.0017 (5)0.0130 (4)0.0029 (5)
S50.0275 (5)0.0357 (6)0.0269 (5)0.0036 (5)0.0133 (4)0.0001 (5)
S60.0229 (5)0.0362 (7)0.0304 (5)0.0045 (4)0.0088 (4)0.0008 (5)
F10.0445 (15)0.0509 (18)0.0423 (15)0.0106 (14)0.0088 (13)0.0117 (13)
F20.0626 (17)0.0540 (19)0.0453 (15)0.0151 (15)0.0391 (14)0.0152 (13)
F30.0604 (17)0.0358 (16)0.0460 (15)0.0124 (13)0.0281 (13)0.0079 (12)
F40.0690 (19)0.0357 (17)0.074 (2)0.0050 (15)0.0343 (17)0.0094 (15)
F50.073 (2)0.0481 (19)0.072 (2)0.0172 (16)0.0474 (18)0.0034 (15)
F60.0556 (19)0.0473 (19)0.0605 (19)0.0085 (15)0.0008 (16)0.0074 (15)
F70.043 (3)0.130 (6)0.055 (3)0.008 (3)0.027 (2)0.032 (4)
F80.092 (4)0.085 (4)0.054 (3)0.038 (4)0.051 (3)0.038 (3)
F90.124 (5)0.081 (4)0.033 (3)0.019 (4)0.041 (3)0.012 (3)
F7A0.097 (8)0.077 (8)0.052 (6)0.022 (7)0.042 (6)0.017 (6)
F8A0.061 (6)0.106 (9)0.028 (5)0.005 (7)0.025 (5)0.006 (6)
F9A0.083 (8)0.081 (7)0.038 (6)0.025 (7)0.038 (5)0.011 (5)
F100.045 (4)0.069 (5)0.063 (4)0.029 (3)0.035 (3)0.024 (3)
F110.030 (3)0.084 (4)0.084 (5)0.006 (2)0.024 (3)0.006 (4)
F120.062 (3)0.099 (5)0.053 (3)0.032 (4)0.035 (3)0.005 (4)
F10A0.031 (6)0.087 (10)0.052 (7)0.023 (7)0.017 (5)0.012 (7)
F11A0.044 (7)0.067 (7)0.072 (9)0.008 (6)0.039 (7)0.017 (7)
F12A0.055 (6)0.065 (8)0.063 (8)0.014 (7)0.036 (6)0.005 (7)
O10.183 (5)0.076 (4)0.116 (4)0.071 (4)0.102 (4)0.047 (3)
O20.058 (2)0.107 (4)0.082 (3)0.038 (3)0.045 (2)0.027 (3)
O30.053 (2)0.063 (3)0.0311 (18)0.0045 (18)0.0197 (16)0.0060 (16)
O40.078 (3)0.063 (3)0.051 (2)0.042 (2)0.043 (2)0.0207 (19)
O50.052 (2)0.068 (3)0.069 (2)0.020 (2)0.0381 (19)0.012 (2)
O60.091 (3)0.053 (2)0.054 (2)0.002 (2)0.045 (2)0.0113 (19)
C10.031 (2)0.030 (2)0.034 (2)0.0034 (19)0.0177 (19)0.0025 (19)
C20.033 (2)0.034 (3)0.035 (2)0.0041 (19)0.0195 (19)0.0018 (19)
C30.039 (3)0.041 (3)0.037 (2)0.007 (2)0.022 (2)0.003 (2)
C40.048 (3)0.032 (3)0.047 (3)0.007 (2)0.021 (2)0.000 (2)
C50.027 (2)0.039 (3)0.028 (2)0.0028 (19)0.0126 (18)0.0002 (19)
C60.027 (2)0.036 (3)0.031 (2)0.0008 (19)0.0146 (19)0.0010 (19)
C70.044 (3)0.061 (3)0.032 (2)0.001 (3)0.022 (2)0.006 (2)
C80.036 (2)0.059 (3)0.044 (3)0.010 (2)0.024 (2)0.002 (2)
C90.098 (5)0.056 (4)0.065 (4)0.029 (4)0.059 (4)0.022 (3)
C100.058 (3)0.049 (3)0.052 (3)0.010 (3)0.034 (3)0.003 (3)
C110.036 (2)0.034 (3)0.039 (3)0.001 (2)0.019 (2)0.000 (2)
C120.053 (3)0.046 (3)0.032 (2)0.009 (3)0.026 (2)0.008 (2)
C130.034 (2)0.042 (3)0.040 (3)0.003 (2)0.020 (2)0.009 (2)
C140.039 (3)0.045 (3)0.045 (3)0.001 (2)0.024 (2)0.005 (2)
C150.029 (2)0.032 (3)0.030 (2)0.0031 (18)0.0144 (19)0.0032 (18)
C160.026 (2)0.040 (3)0.048 (3)0.008 (2)0.011 (2)0.003 (2)
C170.045 (3)0.042 (3)0.064 (3)0.017 (2)0.021 (3)0.005 (3)
C180.043 (3)0.035 (3)0.050 (3)0.004 (2)0.016 (2)0.009 (2)
C190.029 (2)0.036 (3)0.037 (2)0.002 (2)0.012 (2)0.003 (2)
C200.026 (2)0.034 (3)0.029 (2)0.0074 (18)0.0129 (18)0.0057 (19)
Geometric parameters (Å, º) top
Mo1—S52.4134 (11)F6—C41.339 (5)
Mo1—S12.4179 (11)F7—C71.312 (6)
Mo1—S32.4391 (10)F8—C71.324 (6)
Mo1—S22.4420 (11)F9—C71.321 (6)
Mo1—S62.4461 (11)F7A—C71.322 (10)
Mo1—S42.4571 (11)F8A—C71.300 (10)
Mo1—Co32.6320 (6)F9A—C71.324 (9)
Mo1—Co12.7224 (7)F10—C81.333 (7)
Mo1—Co22.8058 (7)F11—C81.332 (7)
Co1—C101.840 (5)F12—C81.336 (7)
Co1—C91.842 (6)F10A—C81.341 (12)
Co1—S12.2247 (12)F11A—C81.312 (12)
Co1—S22.2414 (13)F12A—C81.329 (12)
Co2—C121.825 (5)O1—C91.127 (7)
Co2—C111.827 (5)O2—C101.125 (6)
Co2—C21.970 (4)O3—C111.130 (5)
Co2—C12.010 (4)O4—C121.122 (5)
Co2—S32.2556 (13)O5—C131.131 (5)
Co2—S42.7671 (11)O6—C141.133 (6)
Co3—C131.796 (5)C1—C21.439 (6)
Co3—C141.803 (5)C1—C31.494 (6)
Co3—S42.2338 (12)C2—C41.528 (7)
Co3—S52.2395 (11)C5—C61.335 (6)
Co3—S62.2749 (13)C5—C71.509 (6)
S1—C201.782 (4)C6—C81.524 (6)
S2—C51.775 (4)C15—C161.383 (6)
S3—C61.770 (4)C15—C201.396 (6)
S4—C21.777 (4)C16—C171.377 (7)
S5—C11.801 (4)C16—H16A0.9500
S6—C151.779 (4)C17—C181.390 (7)
F1—C31.341 (5)C17—H17A0.9500
F2—C31.344 (5)C18—C191.381 (6)
F3—C31.339 (5)C18—H18A0.9500
F4—C41.324 (5)C19—C201.389 (6)
F5—C41.340 (6)C19—H19A0.9500
S5—Mo1—S188.52 (4)C2—S4—Co3102.26 (15)
S5—Mo1—S384.34 (4)C2—S4—Mo199.62 (14)
S1—Mo1—S392.75 (4)Co3—S4—Mo168.07 (3)
S5—Mo1—S2163.43 (4)C2—S4—Co245.16 (13)
S1—Mo1—S2101.96 (4)Co3—S4—Co2111.42 (4)
S3—Mo1—S282.39 (4)Mo1—S4—Co264.65 (3)
S5—Mo1—S6103.47 (4)C1—S5—Co3102.78 (13)
S1—Mo1—S683.85 (4)C1—S5—Mo195.79 (14)
S3—Mo1—S6171.36 (4)Co3—S5—Mo168.78 (3)
S2—Mo1—S690.52 (4)C15—S6—Co3104.69 (14)
S5—Mo1—S476.17 (4)C15—S6—Mo1106.48 (13)
S1—Mo1—S4147.71 (4)Co3—S6—Mo167.65 (3)
S3—Mo1—S4113.36 (4)C2—C1—C3124.1 (4)
S2—Mo1—S4100.13 (4)C2—C1—S5116.8 (3)
S6—Mo1—S472.66 (4)C3—C1—S5110.6 (3)
S5—Mo1—Co352.48 (3)C2—C1—Co267.3 (2)
S1—Mo1—Co396.23 (3)C3—C1—Co2124.2 (3)
S3—Mo1—Co3135.41 (3)S5—C1—Co2106.8 (2)
S2—Mo1—Co3137.11 (3)C1—C2—C4124.4 (4)
S6—Mo1—Co353.08 (3)C1—C2—S4114.4 (3)
S4—Mo1—Co351.93 (3)C4—C2—S4115.3 (3)
S5—Mo1—Co1137.65 (3)C1—C2—Co270.3 (2)
S1—Mo1—Co150.87 (3)C4—C2—Co2126.8 (3)
S3—Mo1—Co186.08 (3)S4—C2—Co295.1 (2)
S2—Mo1—Co151.09 (3)F3—C3—F1106.5 (3)
S6—Mo1—Co185.61 (3)F3—C3—F2106.4 (4)
S4—Mo1—Co1144.34 (3)F1—C3—F2106.0 (3)
Co3—Mo1—Co1131.93 (2)F3—C3—C1114.4 (4)
S5—Mo1—Co271.40 (3)F1—C3—C1111.2 (4)
S1—Mo1—Co2138.35 (3)F2—C3—C1111.9 (4)
S3—Mo1—Co250.35 (3)F4—C4—F6106.2 (4)
S2—Mo1—Co292.44 (3)F4—C4—F5107.4 (4)
S6—Mo1—Co2135.42 (3)F6—C4—F5107.0 (4)
S4—Mo1—Co263.03 (3)F4—C4—C2113.9 (4)
Co3—Mo1—Co299.20 (2)F6—C4—C2110.4 (4)
Co1—Mo1—Co2128.84 (2)F5—C4—C2111.5 (4)
C10—Co1—C998.4 (3)C6—C5—C7126.2 (4)
C10—Co1—S1107.95 (16)C6—C5—S2121.5 (3)
C9—Co1—S1109.32 (18)C7—C5—S2112.3 (3)
C10—Co1—S2111.11 (17)C5—C6—C8124.2 (4)
C9—Co1—S2113.2 (2)C5—C6—S3122.6 (3)
S1—Co1—S2115.44 (5)C8—C6—S3113.3 (3)
C10—Co1—Mo1128.61 (18)F7—C7—F9108.1 (5)
C9—Co1—Mo1132.8 (2)F8A—C7—F7A105.8 (10)
S1—Co1—Mo157.46 (3)F7—C7—F8105.8 (5)
S2—Co1—Mo157.97 (3)F9—C7—F8105.4 (5)
C12—Co2—C1196.3 (2)F8A—C7—F9A107.0 (9)
C12—Co2—C2110.5 (2)F7A—C7—F9A105.6 (10)
C11—Co2—C2104.60 (18)F8A—C7—C5113.3 (6)
C12—Co2—C197.04 (18)F7—C7—C5112.5 (4)
C11—Co2—C1146.99 (18)F9—C7—C5112.2 (4)
C2—Co2—C142.40 (16)F7A—C7—C5110.7 (6)
C12—Co2—S3100.76 (17)F8—C7—C5112.3 (4)
C11—Co2—S3103.81 (15)F9A—C7—C5113.8 (6)
C2—Co2—S3134.51 (14)F11A—C8—F12A105.5 (11)
C1—Co2—S3103.14 (13)F11—C8—F10107.2 (5)
C12—Co2—S4148.89 (16)F11—C8—F12107.0 (6)
C11—Co2—S486.51 (14)F10—C8—F12105.6 (6)
C2—Co2—S439.76 (13)F11A—C8—F10A105.2 (11)
C1—Co2—S466.97 (12)F12A—C8—F10A106.5 (11)
S3—Co2—S4108.66 (4)F11A—C8—C6115.3 (9)
C12—Co2—Mo1154.70 (16)F12A—C8—C6111.9 (9)
C11—Co2—Mo199.65 (15)F11—C8—C6111.6 (5)
C2—Co2—Mo184.29 (13)F10—C8—C6112.1 (5)
C1—Co2—Mo179.96 (12)F12—C8—C6112.9 (5)
S3—Co2—Mo156.37 (3)F10A—C8—C6111.8 (9)
S4—Co2—Mo152.32 (3)O1—C9—Co1178.5 (8)
C13—Co3—C1494.7 (2)O2—C10—Co1177.0 (6)
C13—Co3—S491.03 (14)O3—C11—Co2177.4 (4)
C14—Co3—S4174.25 (15)O4—C12—Co2176.0 (5)
C13—Co3—S5118.60 (16)O5—C13—Co3176.9 (4)
C14—Co3—S592.28 (15)O6—C14—Co3177.6 (5)
S4—Co3—S584.38 (4)C16—C15—C20120.3 (4)
C13—Co3—S6124.00 (15)C16—C15—S6118.8 (3)
C14—Co3—S697.07 (16)C20—C15—S6120.9 (3)
S4—Co3—S680.22 (4)C17—C16—C15119.5 (4)
S5—Co3—S6115.38 (4)C17—C16—H16A120.2
C13—Co3—Mo1150.72 (14)C15—C16—H16A120.2
C14—Co3—Mo1114.26 (15)C16—C17—C18120.8 (4)
S4—Co3—Mo160.00 (3)C16—C17—H17A119.6
S5—Co3—Mo158.74 (3)C18—C17—H17A119.6
S6—Co3—Mo159.27 (3)C19—C18—C17119.7 (4)
C20—S1—Co198.78 (14)C19—C18—H18A120.1
C20—S1—Mo1106.69 (15)C17—C18—H18A120.1
Co1—S1—Mo171.67 (4)C18—C19—C20120.1 (4)
C5—S2—Co197.05 (15)C18—C19—H19A120.0
C5—S2—Mo1106.85 (14)C20—C19—H19A120.0
Co1—S2—Mo170.94 (3)C19—C20—C15119.6 (4)
C6—S3—Co2101.70 (15)C19—C20—S1118.7 (3)
C6—S3—Mo1106.61 (14)C15—C20—S1121.8 (3)
Co2—S3—Mo173.29 (3)
Co3—S5—C1—C220.2 (3)Co2—S3—C6—C579.7 (4)
Mo1—S5—C1—C249.3 (3)Mo1—S3—C6—C53.9 (4)
Co3—S5—C1—C3129.4 (3)Co2—S3—C6—C8101.5 (3)
Mo1—S5—C1—C3161.1 (3)Mo1—S3—C6—C8177.3 (3)
Co3—S5—C1—Co292.78 (16)C6—C5—C7—F8A153.6 (10)
Mo1—S5—C1—Co223.27 (17)S2—C5—C7—F8A26.0 (11)
C3—C1—C2—C44.9 (7)C6—C5—C7—F737.8 (8)
S5—C1—C2—C4140.2 (4)S2—C5—C7—F7142.6 (5)
Co2—C1—C2—C4121.8 (4)C6—C5—C7—F984.4 (7)
C3—C1—C2—S4156.5 (3)S2—C5—C7—F995.2 (5)
S5—C1—C2—S411.4 (4)C6—C5—C7—F7A87.7 (11)
Co2—C1—C2—S486.6 (3)S2—C5—C7—F7A92.7 (10)
C3—C1—C2—Co2116.9 (4)C6—C5—C7—F8157.0 (6)
S5—C1—C2—Co298.0 (3)S2—C5—C7—F823.4 (6)
Co3—S4—C2—C137.5 (3)C6—C5—C7—F9A31.1 (11)
Mo1—S4—C2—C132.0 (3)S2—C5—C7—F9A148.5 (9)
Co2—S4—C2—C170.6 (3)C5—C6—C8—F11A45.7 (14)
Co3—S4—C2—C4116.8 (3)S3—C6—C8—F11A133.1 (14)
Mo1—S4—C2—C4173.7 (3)C5—C6—C8—F12A74.8 (13)
Co2—S4—C2—C4135.1 (4)S3—C6—C8—F12A106.4 (13)
Co3—S4—C2—Co2108.11 (14)C5—C6—C8—F1178.1 (8)
Mo1—S4—C2—Co238.65 (16)S3—C6—C8—F11100.7 (7)
C2—C1—C3—F336.6 (6)C5—C6—C8—F10161.6 (7)
S5—C1—C3—F3176.6 (3)S3—C6—C8—F1019.6 (8)
Co2—C1—C3—F347.6 (5)C5—C6—C8—F1242.4 (9)
C2—C1—C3—F1157.2 (4)S3—C6—C8—F12138.8 (7)
S5—C1—C3—F155.9 (4)C5—C6—C8—F10A165.8 (14)
Co2—C1—C3—F173.1 (5)S3—C6—C8—F10A13.0 (14)
C2—C1—C3—F284.5 (5)Co3—S6—C15—C16108.6 (3)
S5—C1—C3—F262.4 (4)Mo1—S6—C15—C16179.2 (3)
Co2—C1—C3—F2168.6 (3)Co3—S6—C15—C2071.1 (4)
C1—C2—C4—F469.7 (6)Mo1—S6—C15—C200.5 (4)
S4—C2—C4—F4138.9 (3)C20—C15—C16—C172.5 (7)
Co2—C2—C4—F420.4 (6)S6—C15—C16—C17177.3 (4)
C1—C2—C4—F6170.9 (4)C15—C16—C17—C182.0 (8)
S4—C2—C4—F619.5 (5)C16—C17—C18—C190.9 (8)
Co2—C2—C4—F699.0 (4)C17—C18—C19—C200.3 (7)
C1—C2—C4—F552.1 (6)C18—C19—C20—C150.8 (7)
S4—C2—C4—F599.3 (4)C18—C19—C20—S1177.5 (4)
Co2—C2—C4—F5142.3 (3)C16—C15—C20—C191.9 (6)
Co1—S2—C5—C673.6 (4)S6—C15—C20—C19177.9 (3)
Mo1—S2—C5—C61.4 (4)C16—C15—C20—S1176.3 (3)
Co1—S2—C5—C7106.8 (3)S6—C15—C20—S13.9 (5)
Mo1—S2—C5—C7178.9 (3)Co1—S1—C20—C19111.0 (3)
C7—C5—C6—C82.0 (7)Mo1—S1—C20—C19175.6 (3)
S2—C5—C6—C8177.6 (3)Co1—S1—C20—C1567.2 (4)
C7—C5—C6—S3176.7 (4)Mo1—S1—C20—C156.2 (4)
S2—C5—C6—S33.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O6i0.952.573.353 (7)140
C17—H17A···F11ii0.952.623.461 (9)148
C17—H17A···F10Aii0.952.553.29 (2)135
Symmetry codes: (i) x+1, y+2, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

We thank Professors Wolfang Kaim and Biprajit Sarkar (University of Stuttgart) for the use of their EPR spectrometer for the spectrum shown in Fig. 3[link].

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada ; University of Toronto.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeswick, C. L., Schulman, J. M. & Stiefel, E. I. (2004). Prog. Inorg. Chem. 52, 55–110.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChen, Y.-Q., Zhang, J., Cai, S., Hou, X.-F., Schumann, H. & Jin, G.-X. (2007). Dalton Trans. pp. 749–758.  CSD CrossRef Google Scholar
First citationCurtis, D. M., Druker, S. H., Goossen, L. & Kampf, J. W. (1997). Organometallics, 16, 231–235.  CSD CrossRef CAS Google Scholar
First citationDickinson, R. G. & Pauling, L. (1923). J. Am. Chem. Soc. 45, 1466–1471.  CrossRef ICSD CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarrison, D. J., Lough, A. J., Nguyen, N. & Fekl, U. (2007). Angew. Chem. Int. Ed. 46, 7644–7647.  Web of Science CSD CrossRef CAS Google Scholar
First citationHinnemann, B., Moses, P. G. & Nørskov, J. K. (2008). J. Phys. Condens. Matter, 20, 064236–064244.  CrossRef PubMed Google Scholar
First citationHosking, S., Lough, A. J. & Fekl, U. (2009). Acta Cryst. E65, m759–m760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMurata, M., Habe, S., Araki, S., Namiki, K., Yamada, T., Nakagawa, N., Nankawa, T., Nihei, M., Mizutani, J., Kurihara, M. & Nishihara, H. (2006). Inorg. Chem. 45, 1108–1116.  CSD CrossRef PubMed CAS Google Scholar
First citationMuratsugu, S., Sodeyama, K., Kitamura, F., Tsukada, S., Tada, M., Tsuneyuki, S. & Nishihara, H. (2011). Chem. Sci. 2, 1960–1968.  CSD CrossRef CAS Google Scholar
First citationNguyen, N., Harrison, D. J., Lough, A. J., De Crisci, A. G. & Fekl, U. (2010). Eur. J. Inorg. Chem. pp. 3577–3585.  Web of Science CSD CrossRef Google Scholar
First citationNihei, M., Nankawa, T., Kurihara, M. & Nishihara, H. (1999). Angew. Chem. Int. Ed. 38, 1098–1100.  CrossRef CAS Google Scholar
First citationNonius, B. (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter & R. M. Sweet pp. 307–326. London: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds