research communications
a-methyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dithione
and Hirshfeld surface analysis of a new dithioglycoluril: 1,4-bis(4-methoxyphenyl)-3aDepartment of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria, and bSchool of Chemical Sciences, the University of Auckland Private Bag 92019, Auckland 1142, New Zealand
*Correspondence e-mail: obinna.okpareke@unn.edu.ng
In the title dithioglycoluril derivative, C19H20N4O3S2, there is a difference in the torsion angles between the thioimidazole moiety and the methoxyphenyl groups on either side of the molecule [C—N—Car—Car = 116.9 (2) and −86.1 (3)°, respectively]. The N—C—N bond angle on one side of the dithioglycoluril moiety is slightly smaller compared to that on the opposite side, [110.9 (2)° cf. 112.0 (2)°], probably as a result of the of the methyl group. In the crystal, N—H⋯S hydrogen bonds link adjacent molecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯S hydrogen bonds, forming layers parallel to the bc plane. The layers are then linked by C—H⋯π interactions, leading to the formation of a three-dimensional supramolecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the molecular interactions in the crystal.
Keywords: crystal structure; thioglycoluril; imidazole; cinnamoyl chloride; isothiocyanate; N—H⋯S hydrogen bonding; C—H⋯π interactions.
CCDC reference: 1906113
1. Chemical context
Heterocycles with five-membered rings containing two nitrogen atoms in the 1,3 positions and three carbon atoms in the ring are known as imidazoles. Most imidazoles, except for the N-substituted derivatives, have a distinct pyrrole type and pyridine-type annular nitrogen atoms. The isolation of imidazole derivatives has been documented (Beyer et al., 2011; Zeng et al., 2003; Dawood et al., 2010). Glycolurils, tetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-diones, are well-known imidazole derivatives of great research interest. As well as serving as building blocks in the preparation of many organic compounds and supramolecular synthons (Burnett et al., 2003; Kravchenko et al., 2018), they have also been reported to behave as nootropic (Ryzhkina et al., 2013), neurotropic (Berlyand et al., 2013) and anxiolytic agents (Kravchenko et al., 2018). Some derivatives are used as flame-resistant materials (Sal'keeva et al., 2016; Zharkov et al., 2015) and gelators (Tiefenbacher et al., 2011). While several glycoluril analogues have been synthesized and characterized, reports on dithioglycolurils are quite rare. In the course of our search for thioureas with bioactivity, we had intended to isolate (2E)-N-[(4-methoxyphenyl)carbamothioyl]-3-phenylprop-2-enamide using well-documented methods (Asegbeloyin et al., 2018; Douglass & Dains, 1934; Oyeka et al., 2018); however, we obtained crystals of 1,4-bis(4-methoxyphenyl)-3a-methyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dithione, a new dithioglycoluril. As a result of the importance of glucolurils and their analogues and our current interest in the construction of novel heterocycles with good bioactivity (Asegbeloyin et al., 2019), we decided to investigate the title compound, and we report herein on its synthesis, and Hirshfeld surface analysis.
2. Structural commentary
The molecular structure and conformation of the title compound is shown in Fig. 1. The two imidazole rings, N1/N2/C1–C3 and N3/N4/C2/C3/C5, are inclined to each other by 62.16 (12)°, while the 4-methoxyphenyl rings (C6–C11 and C13–C18) are inclined to each other by 29.36 (12)°. The latter rings are inclined to the imidazole ring to which they are attached by 62.51 (11) and 89.16 (12)°, respectively. Hence, the two ends of the molecule are orientated differently, as shown by the difference in the torsion angles between the thioimidazole moiety and the methoxyphenyl groups; C2—N3—C6—C11 and C3—N1—C13—C14 are 116.9 (2) and −86.1 (3)°, respectively.
The thione C=S bond lengths of 1.674 (2) Å are longer than those in previous reports where all N atoms were substituted (Deng et al., 2010; Wang et al., 2011; Wu & Sun, 2009; Zhang et al., 2011). The C—N bonds around the thione moiety [C1—N1, C1—N2, C5—N3 and C5—N4 = 1.350 (3), 1.357 (3), 1.355 (3) and 1.353 (3) Å, respectively] are significantly shorter than the average C—N single bond length of 1.48 Å (Oyeka et al., 2018), as has also been observed in other thioglycoluril systems (Wu & Sun, 2009; Zhang et al., 2011) and acyl thiourea derivatives (Asegbeloyin et al., 2018; Oyeka et al., 2018). This is probably due to the conjugation between the π-electrons on C=S and the lone pairs of electrons on the nitrogen atoms. The C—C bond lengths of the aromatic rings are typical of sp2-hybridized carbons while the C2—C3 bond of the thioglycoluril moiety [1.542 (3) Å] shows sp3 These bond lengths are consistent with previous reports for thioglycourils and acylthioureas (Binzet et al., 2009; Oyeka et al., 2018; Wang & Xi, 2009; Yang, 2010). The imidazole carbon atoms, C2 and C3, each have a distorted tetrahedral geometry with the N1—C3—N4 and N2—C2—N3 bond angles being 112.0 (4) and 112.9 (2)°, respectively. The bond angles between the N-methoxyphenyl nitrogen atom and the aromatic ring, C5—N3—C6 and C1—N1—C13, are 124.8 (2) and 126.1 (2)°, respectively.
3. Supramolecular features
In the crystal, N—H⋯S hydrogen bonds link neighbouring molecules to form chains propagating along the c-axis direction (Table 1 and Fig. 2). The chains are linked by C—H⋯S hydrogen bonds, forming layers parallel to the bc plane (Fig. 3 and Table 1). In turn, the layers are linked by C—H⋯π interactions involving a methoxy methyl H atom (H12B) and a 4-methoxyphenyl ring (C13–C18); see Table 1. These interactions result in the formation of a supramolecular three-dimensional architecture (Fig. 3).
3.1. Hirshfeld Surface Analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). In the Hirshfeld surface mapped over dnorm (Fig. 4), the red spots indicate contacts shorter than the sum of the van der Waals radii with negative dnorm, blue regions represent contacts longer than the sum of van der Waals radii with negative dnorm, while white regions correspond to intermolecular distances close to the sum of the van der Waals radii with dnorm equal to zero. The most intense red spots on the surface of the title compound are found around the thione S and N—H groups of the compound, which play a role in the hydrogen bonding interactions in the crystal (Table 1 and Fig. 2). The less intense red spots (Fig. 4), are observed around the ring carbon atoms resulting from C—H⋯S and C—H⋯π short contacts. The two-dimensional fingerprint plots (Fig. 5) show the overall contribution of the various interactions and those delineated into H⋯H, S⋯H/H⋯S, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts. Apart from the non-directional H⋯H contacts (41.3%), the highest contribution to the Hirshfeld surface is from S⋯H/H⋯S contacts (26.1%).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.39, February 2019) for thioglycoluril found two molecules similar to the title compound: 1,6-dipivaloyl-3,3a,4,6a-tetramethyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dithione (refcode ADEMOL; Duspara et al., 2001) and 1,6-diacetyl-3,4,7,8-tetramethyl-2,5-dithiogylcoluril (SOLQIT; Cow, 1998). In both compounds, large polar groups are substituted on adjacent sides of the imidazole ring, resulting in and distortion of the C—N—C angles. The C—N—C bond angles between the thione carbon and the N-substituted groups are ca 119.8 and 125.4° in ADEMOL and 122.6 and 125.4° in SOLQIT. In the title compound, the C5—N3—C6 and C1—N1—C13 bond angles are 124.8 (2) and 126.1 (2)°, respectively, showing only little distortion. The thione bond lengths [C5=S2 and C1=S1 are both 1.674 (2) Å] in the title compound are longer than in the reference compounds (1.650–1.664 Å). This is probably due to the fact that all of the imidazole nitrogen atoms in the reference compounds are substituted. The presence of unsubstituted imidazole nitrogens in the title compound promotes conjugation between the lone pairs of electrons on the nitrogen atom and the C=S π-electrons and hence stretches the C=S bond. The C—N bond lengths around the thione group of the title compound [1.350 (3)–1.357 (3) Å] are shorter than the corresponding bonds in the reference compounds (ca 1.367–1.397 Å). The other C—N bonds and the C—C bonds in the thiogylcouril moiety are similar to those of the title compound.
5. Synthesis and crystallization
The title compound was synthesized according to the reported method (Asegbeloyin et al., 2018; Douglass & Dains, 1934; Oyeka et al., 2018). A solution of cinnamoyl chloride (0.02 mol) dissolved in 40 ml acetone was mixed with a 30 ml acetone solution of potassium thiocyanate (0.02 mol). The reaction mixture was refluxed for 30 min to give a suspension of cinnamoyl isothiocyanate, which was then left to cool to room temperature. 4-Methoxyaniline (0.02 mol) was dissolved in 40 ml of acetone and the resulting solution was mixed with the suspension of cinnamoyl isothiocyanate, and the mixture was stirred for 2 h. The resultant lemon–green solution was filtered and left at room temperature for 96 h to obtain colourless plate-like crystals of the title compound.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed at idealized positions (N—H = 0.86 Å, C—H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C,N) for other H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1906113
https://doi.org/10.1107/S2056989019010764/ex2021sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019010764/ex2021Isup2.hkl
supporting information. DOI: https://doi.org/10.1107/S2056989019010764/ex2021sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019010764/ex2021Isup4.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C19H20N4O2S2 | F(000) = 840 |
Mr = 400.51 | Dx = 1.398 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 13.1955 (3) Å | Cell parameters from 11825 reflections |
b = 10.0157 (2) Å | θ = 3.4–73.8° |
c = 14.5476 (3) Å | µ = 2.73 mm−1 |
β = 98.329 (2)° | T = 100 K |
V = 1902.36 (7) Å3 | Plate, clear colourless |
Z = 4 | 0.12 × 0.05 × 0.01 mm |
Rigaku Oxford Diffraction XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer | 3824 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3267 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.053 |
ω scans | θmax = 74.2°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −16→15 |
Tmin = 0.735, Tmax = 1.000 | k = −12→12 |
25390 measured reflections | l = −18→15 |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.156 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.22 | (Δ/σ)max = 0.001 |
3824 reflections | Δρmax = 0.63 e Å−3 |
247 parameters | Δρmin = −0.53 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S2 | 0.42015 (4) | 0.63758 (5) | 0.56357 (4) | 0.02883 (19) | |
S1 | 0.69303 (4) | 0.64039 (6) | 0.20550 (4) | 0.03272 (19) | |
O2 | 0.05235 (12) | 0.52239 (19) | 0.24656 (13) | 0.0411 (4) | |
O1 | 1.06251 (13) | 0.6869 (2) | 0.55605 (14) | 0.0501 (5) | |
N3 | 0.42969 (13) | 0.73812 (19) | 0.39262 (13) | 0.0282 (4) | |
N1 | 0.66847 (13) | 0.76111 (19) | 0.36715 (13) | 0.0282 (4) | |
N4 | 0.56744 (13) | 0.7746 (2) | 0.49428 (13) | 0.0302 (4) | |
H4 | 0.607926 | 0.773181 | 0.546222 | 0.036* | |
N2 | 0.52813 (13) | 0.7489 (2) | 0.26451 (13) | 0.0321 (4) | |
H2 | 0.488712 | 0.728354 | 0.214118 | 0.039* | |
C6 | 0.33311 (15) | 0.6860 (2) | 0.35217 (14) | 0.0278 (4) | |
C5 | 0.47370 (15) | 0.7169 (2) | 0.48150 (15) | 0.0269 (4) | |
C13 | 0.77144 (15) | 0.7412 (2) | 0.41232 (15) | 0.0285 (5) | |
C2 | 0.49454 (16) | 0.8198 (2) | 0.34048 (15) | 0.0288 (5) | |
H2A | 0.462130 | 0.905134 | 0.320659 | 0.035* | |
C9 | 0.14274 (16) | 0.5846 (2) | 0.27955 (16) | 0.0326 (5) | |
C1 | 0.62924 (16) | 0.7179 (2) | 0.28148 (15) | 0.0290 (4) | |
C3 | 0.59244 (16) | 0.8391 (2) | 0.41109 (16) | 0.0294 (5) | |
C11 | 0.31898 (16) | 0.5490 (2) | 0.34585 (16) | 0.0326 (5) | |
H11 | 0.373181 | 0.491552 | 0.365398 | 0.039* | |
C10 | 0.22374 (17) | 0.4982 (2) | 0.31029 (17) | 0.0355 (5) | |
H10 | 0.213660 | 0.406289 | 0.306848 | 0.043* | |
C8 | 0.15769 (17) | 0.7205 (3) | 0.28276 (17) | 0.0346 (5) | |
H8 | 0.104211 | 0.778010 | 0.261024 | 0.041* | |
C7 | 0.25360 (17) | 0.7716 (3) | 0.31882 (17) | 0.0345 (5) | |
H7 | 0.264271 | 0.863400 | 0.320503 | 0.041* | |
C14 | 0.84562 (18) | 0.8354 (3) | 0.40334 (17) | 0.0370 (5) | |
H14 | 0.829035 | 0.910173 | 0.366309 | 0.044* | |
C16 | 0.96858 (17) | 0.7111 (3) | 0.50581 (18) | 0.0383 (6) | |
C15 | 0.94482 (18) | 0.8197 (3) | 0.44908 (17) | 0.0393 (6) | |
H15 | 0.994904 | 0.882321 | 0.441325 | 0.047* | |
C18 | 0.79544 (19) | 0.6308 (2) | 0.4673 (2) | 0.0383 (6) | |
H18 | 0.745801 | 0.566657 | 0.473044 | 0.046* | |
C4 | 0.62578 (19) | 0.9834 (3) | 0.42760 (19) | 0.0391 (6) | |
H4A | 0.685302 | 0.986734 | 0.474091 | 0.059* | |
H4B | 0.571319 | 1.033392 | 0.448355 | 0.059* | |
H4C | 0.641782 | 1.021121 | 0.370769 | 0.059* | |
C12 | −0.03793 (18) | 0.6032 (3) | 0.2306 (2) | 0.0427 (6) | |
H12A | −0.033051 | 0.663519 | 0.180189 | 0.064* | |
H12B | −0.044452 | 0.653243 | 0.285733 | 0.064* | |
H12C | −0.096868 | 0.546930 | 0.215268 | 0.064* | |
C17 | 0.8940 (2) | 0.6156 (3) | 0.5143 (2) | 0.0432 (6) | |
H17 | 0.910343 | 0.541071 | 0.551726 | 0.052* | |
C19 | 1.14391 (19) | 0.7756 (4) | 0.5431 (2) | 0.0588 (9) | |
H19A | 1.151078 | 0.778830 | 0.478399 | 0.088* | |
H19B | 1.206604 | 0.744313 | 0.578239 | 0.088* | |
H19C | 1.128777 | 0.863354 | 0.563931 | 0.088* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S2 | 0.0231 (3) | 0.0352 (3) | 0.0281 (3) | −0.00311 (18) | 0.0035 (2) | 0.00066 (19) |
S1 | 0.0274 (3) | 0.0385 (3) | 0.0323 (3) | 0.0050 (2) | 0.0046 (2) | −0.0049 (2) |
O2 | 0.0238 (8) | 0.0425 (10) | 0.0540 (11) | 0.0022 (7) | −0.0052 (7) | −0.0128 (8) |
O1 | 0.0242 (8) | 0.0612 (13) | 0.0617 (12) | 0.0036 (8) | −0.0043 (8) | −0.0093 (10) |
N3 | 0.0207 (8) | 0.0359 (10) | 0.0283 (9) | −0.0014 (7) | 0.0043 (7) | 0.0021 (7) |
N1 | 0.0203 (8) | 0.0334 (10) | 0.0313 (9) | 0.0005 (7) | 0.0049 (7) | −0.0038 (7) |
N4 | 0.0218 (8) | 0.0410 (11) | 0.0281 (9) | −0.0041 (7) | 0.0050 (7) | −0.0020 (8) |
N2 | 0.0223 (8) | 0.0439 (11) | 0.0298 (10) | 0.0034 (8) | 0.0028 (7) | −0.0014 (8) |
C6 | 0.0218 (10) | 0.0368 (12) | 0.0245 (10) | 0.0012 (8) | 0.0031 (8) | −0.0011 (9) |
C5 | 0.0219 (9) | 0.0290 (10) | 0.0299 (10) | 0.0014 (8) | 0.0037 (8) | −0.0034 (8) |
C13 | 0.0230 (10) | 0.0336 (11) | 0.0294 (11) | −0.0037 (8) | 0.0055 (8) | −0.0073 (9) |
C2 | 0.0253 (10) | 0.0321 (11) | 0.0298 (11) | 0.0019 (8) | 0.0069 (8) | 0.0021 (9) |
C9 | 0.0251 (11) | 0.0397 (12) | 0.0319 (11) | 0.0037 (9) | 0.0006 (8) | −0.0074 (9) |
C1 | 0.0279 (10) | 0.0298 (10) | 0.0295 (11) | −0.0001 (8) | 0.0055 (8) | 0.0012 (8) |
C3 | 0.0261 (10) | 0.0322 (11) | 0.0318 (11) | −0.0005 (8) | 0.0101 (8) | −0.0035 (9) |
C11 | 0.0248 (10) | 0.0362 (12) | 0.0349 (12) | 0.0074 (9) | −0.0020 (8) | −0.0034 (9) |
C10 | 0.0291 (11) | 0.0322 (12) | 0.0430 (13) | 0.0016 (9) | −0.0027 (9) | −0.0046 (10) |
C8 | 0.0251 (10) | 0.0397 (13) | 0.0378 (12) | 0.0081 (9) | 0.0012 (9) | 0.0006 (10) |
C7 | 0.0286 (11) | 0.0341 (12) | 0.0397 (12) | 0.0022 (9) | 0.0010 (9) | 0.0007 (10) |
C14 | 0.0289 (11) | 0.0451 (13) | 0.0368 (12) | −0.0083 (10) | 0.0041 (9) | 0.0045 (10) |
C16 | 0.0259 (11) | 0.0487 (14) | 0.0395 (13) | 0.0019 (10) | 0.0018 (9) | −0.0091 (11) |
C15 | 0.0282 (11) | 0.0519 (15) | 0.0387 (13) | −0.0098 (10) | 0.0074 (9) | −0.0026 (11) |
C18 | 0.0281 (11) | 0.0340 (12) | 0.0517 (15) | −0.0039 (9) | 0.0020 (10) | −0.0011 (10) |
C4 | 0.0382 (12) | 0.0334 (12) | 0.0478 (14) | −0.0015 (10) | 0.0128 (10) | −0.0048 (10) |
C12 | 0.0240 (11) | 0.0507 (15) | 0.0518 (15) | 0.0035 (10) | 0.0002 (10) | −0.0070 (12) |
C17 | 0.0343 (13) | 0.0375 (13) | 0.0557 (16) | 0.0026 (10) | −0.0005 (11) | 0.0040 (11) |
C19 | 0.0237 (12) | 0.103 (3) | 0.0501 (16) | −0.0083 (14) | 0.0054 (11) | −0.0106 (16) |
S2—C5 | 1.674 (2) | C9—C8 | 1.375 (4) |
S1—C1 | 1.674 (2) | C3—C4 | 1.520 (3) |
O2—C9 | 1.370 (3) | C11—H11 | 0.9300 |
O2—C12 | 1.431 (3) | C11—C10 | 1.385 (3) |
O1—C16 | 1.366 (3) | C10—H10 | 0.9300 |
O1—C19 | 1.427 (4) | C8—H8 | 0.9300 |
N3—C6 | 1.423 (3) | C8—C7 | 1.395 (3) |
N3—C5 | 1.355 (3) | C7—H7 | 0.9300 |
N3—C2 | 1.472 (3) | C14—H14 | 0.9300 |
N1—C13 | 1.435 (3) | C14—C15 | 1.389 (3) |
N1—C1 | 1.350 (3) | C16—C15 | 1.374 (4) |
N1—C3 | 1.487 (3) | C16—C17 | 1.391 (4) |
N4—H4 | 0.8600 | C15—H15 | 0.9300 |
N4—C5 | 1.353 (3) | C18—H18 | 0.9300 |
N4—C3 | 1.451 (3) | C18—C17 | 1.388 (4) |
N2—H2 | 0.8600 | C4—H4A | 0.9600 |
N2—C2 | 1.437 (3) | C4—H4B | 0.9600 |
N2—C1 | 1.357 (3) | C4—H4C | 0.9600 |
C6—C11 | 1.386 (3) | C12—H12A | 0.9600 |
C6—C7 | 1.387 (3) | C12—H12B | 0.9600 |
C13—C14 | 1.379 (3) | C12—H12C | 0.9600 |
C13—C18 | 1.374 (3) | C17—H17 | 0.9300 |
C2—H2A | 0.9800 | C19—H19A | 0.9600 |
C2—C3 | 1.542 (3) | C19—H19B | 0.9600 |
C9—C10 | 1.398 (3) | C19—H19C | 0.9600 |
C9—O2—C12 | 117.5 (2) | C10—C11—H11 | 120.2 |
C16—O1—C19 | 117.4 (2) | C9—C10—H10 | 119.9 |
C6—N3—C2 | 122.93 (17) | C11—C10—C9 | 120.1 (2) |
C5—N3—C6 | 124.84 (18) | C11—C10—H10 | 119.9 |
C5—N3—C2 | 112.21 (17) | C9—C8—H8 | 120.2 |
C13—N1—C3 | 121.96 (18) | C9—C8—C7 | 119.6 (2) |
C1—N1—C13 | 126.11 (18) | C7—C8—H8 | 120.2 |
C1—N1—C3 | 111.89 (17) | C6—C7—C8 | 120.3 (2) |
C5—N4—H4 | 123.6 | C6—C7—H7 | 119.9 |
C5—N4—C3 | 112.89 (18) | C8—C7—H7 | 119.9 |
C3—N4—H4 | 123.6 | C13—C14—H14 | 119.7 |
C2—N2—H2 | 123.9 | C13—C14—C15 | 120.6 (2) |
C1—N2—H2 | 123.9 | C15—C14—H14 | 119.7 |
C1—N2—C2 | 112.18 (18) | O1—C16—C15 | 124.9 (2) |
C11—C6—N3 | 119.63 (19) | O1—C16—C17 | 115.4 (2) |
C11—C6—C7 | 120.1 (2) | C15—C16—C17 | 119.7 (2) |
C7—C6—N3 | 120.3 (2) | C14—C15—H15 | 120.2 |
N3—C5—S2 | 126.03 (16) | C16—C15—C14 | 119.7 (2) |
N4—C5—S2 | 125.21 (16) | C16—C15—H15 | 120.2 |
N4—C5—N3 | 108.73 (19) | C13—C18—H18 | 120.1 |
C14—C13—N1 | 119.9 (2) | C13—C18—C17 | 119.7 (2) |
C18—C13—N1 | 120.11 (19) | C17—C18—H18 | 120.1 |
C18—C13—C14 | 119.9 (2) | C3—C4—H4A | 109.5 |
N3—C2—H2A | 112.0 | C3—C4—H4B | 109.5 |
N3—C2—C3 | 102.70 (17) | C3—C4—H4C | 109.5 |
N2—C2—N3 | 112.86 (19) | H4A—C4—H4B | 109.5 |
N2—C2—H2A | 112.0 | H4A—C4—H4C | 109.5 |
N2—C2—C3 | 104.61 (17) | H4B—C4—H4C | 109.5 |
C3—C2—H2A | 112.0 | O2—C12—H12A | 109.5 |
O2—C9—C10 | 114.6 (2) | O2—C12—H12B | 109.5 |
O2—C9—C8 | 125.1 (2) | O2—C12—H12C | 109.5 |
C8—C9—C10 | 120.2 (2) | H12A—C12—H12B | 109.5 |
N1—C1—S1 | 126.59 (16) | H12A—C12—H12C | 109.5 |
N1—C1—N2 | 109.29 (19) | H12B—C12—H12C | 109.5 |
N2—C1—S1 | 124.11 (17) | C16—C17—H17 | 119.8 |
N1—C3—C2 | 101.56 (17) | C18—C17—C16 | 120.3 (2) |
N1—C3—C4 | 111.68 (18) | C18—C17—H17 | 119.8 |
N4—C3—N1 | 111.96 (19) | O1—C19—H19A | 109.5 |
N4—C3—C2 | 103.31 (17) | O1—C19—H19B | 109.5 |
N4—C3—C4 | 112.76 (19) | O1—C19—H19C | 109.5 |
C4—C3—C2 | 114.8 (2) | H19A—C19—H19B | 109.5 |
C6—C11—H11 | 120.2 | H19A—C19—H19C | 109.5 |
C10—C11—C6 | 119.7 (2) | H19B—C19—H19C | 109.5 |
Cg is the centroid of the C13–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···S2i | 0.86 | 2.62 | 3.265 (2) | 133 |
N4—H4···S1ii | 0.86 | 2.57 | 3.382 (2) | 157 |
C7—H7···S1iii | 0.93 | 2.87 | 3.786 (3) | 170 |
C12—H12B···Cgiv | 0.96 | 2.99 | 3.893 (3) | 157 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x−1, y, z. |
Acknowledgements
The authors acknowledge the School of Chemical Sciences at the University of Auckland for
measurements.References
Asegbeloyin, J. N., Izuogu, D. C., Oyeka, E. E., Okpareke, O. C. & Ibezim, A. (2019). J. Mol. Struct. 1175, 219–229. Web of Science CSD CrossRef CAS Google Scholar
Asegbeloyin, J. N., Oyeka, E. E., Okpareke, O. & Ibezim, A. (2018). J. Mol. Struct. 1153, 69–77. Web of Science CSD CrossRef CAS Google Scholar
Berlyand, A. S., Lebedev, O. V. & Prokopov, A. A. (2013). Pharm. Chem. J. 47, 176–178. Web of Science CrossRef CAS Google Scholar
Beyer, A., Reucher, C. M. M. & Bolm, C. (2011). Org. Lett. 13, 2876–2879. Web of Science CrossRef CAS PubMed Google Scholar
Binzet, G., Külcü, N., Flörke, U. & Arslan, H. (2009). J. Coord. Chem. 62, 3454–3462. Web of Science CSD CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Burnett, C. A., Lagona, J., Wu, A., Shaw, J. A., Coady, D., Fettinger, J. C., Day, A. I. & Isaacs, L. (2003). Tetrahedron, 59, 1961–1970. Web of Science CSD CrossRef CAS Google Scholar
Cow, C. N. (1998). Chem. Commun. pp. 1147–1148. Web of Science CSD CrossRef Google Scholar
Dawood, K. M., Elwan, N. M., Farahat, A. A. & Abdel-Wahab, B. F. (2010). J. Heterocycl. Chem. 47, 243-267. CAS Google Scholar
Deng, C., Shu, W. & Zhang, D. (2010). Acta Cryst. E66, o1524. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Douglass, I. B. & Dains, F. (1934). J. Am. Chem. Soc. 56, 719–721. CrossRef CAS Google Scholar
Duspara, P. A., Matta, C. F., Jenkins, S. I. & Harrison, P. H. (2001). Org. Lett. 3, 495–498. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kravchenko, A. N., Baranov, V. V. & Gazieva, G. A. (2018). Russ. Chem. Rev. 87, 89–108. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Oyeka, E. E., Asegbeloyin, J. N., Babahan, I., Eboma, B., Okpareke, O., Lane, J., Ibezim, A., Bıyık, H. H., Törün, B. & Izuogu, D. C. (2018). J. Mol. Struct. 1168, 153–164. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2018). Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Ryzhkina, I. S., Kiseleva, Y. V., Mishina, O. A., Timosheva, A. P., Sergeeva, S. Y., Kravchenko, A. N. & Konovalov, A. I. (2013). Mendeleev Commun. 23, 262–264. Web of Science CrossRef CAS Google Scholar
Sal'keeva, L., Bakibaev, A. A., Khasenova, G., Taishibekova, Y. K., Sugralina, L., Minaeva, Y. V. & Sal'keeva, A. (2016). Russ. J. Appl. Chem. 89, 132–139. CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tiefenbacher, K., Dube, H., Ajami, D. & Rebek, J. (2011). Chem. Commun. 47, 7341–7343. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Wang, M., Wang, J. & Xiang, J. (2011). Acta Cryst. E67, o2060. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, Z. & Xi, H. (2009). Acta Cryst. E65, o1426. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wu, Y. & Sun, Y. (2009). Acta Cryst. E65, o1715. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, Y. (2010). Acta Cryst. E66, o1673. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, Q., Li, P., Chen, X., Wang, X. & Liu, H. (2011). Acta Cryst. E67, o1673. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zharkov, M. N., Kuchurov, I. V., Fomenkov, I. V., Zlotin, S. G. & Tartakovsky, V. A. (2015). Mendeleev Commun. 25, 15–16. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.