research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a new di­thio­glycoluril: 1,4-bis­­(4-meth­­oxy­phen­yl)-3a-methyl­tetra­hydro­imidazo[4,5-d]imidazole-2,5(1H,3H)-di­thione

CROSSMARK_Color_square_no_text.svg

aDepartment of Pure and Industrial Chemistry, University of Nigeria, Nsukka 410001, Enugu State, Nigeria, and bSchool of Chemical Sciences, the University of Auckland Private Bag 92019, Auckland 1142, New Zealand
*Correspondence e-mail: obinna.okpareke@unn.edu.ng

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 8 May 2019; accepted 1 August 2019; online 6 August 2019)

In the title di­thio­glycoluril derivative, C19H20N4O3S2, there is a difference in the torsion angles between the thio­imidazole moiety and the meth­oxy­phenyl groups on either side of the mol­ecule [C—N—Car—Car = 116.9 (2) and −86.1 (3)°, respectively]. The N—C—N bond angle on one side of the di­thio­glycoluril moiety is slightly smaller compared to that on the opposite side, [110.9 (2)° cf. 112.0 (2)°], probably as a result of the steric effect of the methyl group. In the crystal, N—H⋯S hydrogen bonds link adjacent mol­ecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯S hydrogen bonds, forming layers parallel to the bc plane. The layers are then linked by C—H⋯π inter­actions, leading to the formation of a three-dimensional supra­molecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the mol­ecular inter­actions in the crystal.

1. Chemical context

Heterocycles with five-membered rings containing two nitro­gen atoms in the 1,3 positions and three carbon atoms in the ring are known as imidazoles. Most imidazoles, except for the N-substituted derivatives, have a distinct pyrrole type and pyridine-type annular nitro­gen atoms. The isolation of imidazole derivatives has been documented (Beyer et al., 2011[Beyer, A., Reucher, C. M. M. & Bolm, C. (2011). Org. Lett. 13, 2876-2879.]; Zeng et al., 2003[Zeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657-1659.]; Dawood et al., 2010[Dawood, K. M., Elwan, N. M., Farahat, A. A. & Abdel-Wahab, B. F. (2010). J. Heterocycl. Chem. 47, 243-267.]). Glycolurils, tetra­hydro­imidazo[4,5-d]imidazole-2,5(1H,3H)-diones, are well-known imidazole derivatives of great research inter­est. As well as serving as building blocks in the preparation of many organic compounds and supra­molecular synthons (Burnett et al., 2003[Burnett, C. A., Lagona, J., Wu, A., Shaw, J. A., Coady, D., Fettinger, J. C., Day, A. I. & Isaacs, L. (2003). Tetrahedron, 59, 1961-1970.]; Kravchenko et al., 2018[Kravchenko, A. N., Baranov, V. V. & Gazieva, G. A. (2018). Russ. Chem. Rev. 87, 89-108.]), they have also been reported to behave as nootropic (Ryzhkina et al., 2013[Ryzhkina, I. S., Kiseleva, Y. V., Mishina, O. A., Timosheva, A. P., Sergeeva, S. Y., Kravchenko, A. N. & Konovalov, A. I. (2013). Mendeleev Commun. 23, 262-264.]), neurotropic (Berlyand et al., 2013[Berlyand, A. S., Lebedev, O. V. & Prokopov, A. A. (2013). Pharm. Chem. J. 47, 176-178.]) and anxiolytic agents (Kravchenko et al., 2018[Kravchenko, A. N., Baranov, V. V. & Gazieva, G. A. (2018). Russ. Chem. Rev. 87, 89-108.]). Some derivatives are used as flame-resistant materials (Sal'keeva et al., 2016[Sal'keeva, L., Bakibaev, A. A., Khasenova, G., Taishibekova, Y. K., Sugralina, L., Minaeva, Y. V. & Sal'keeva, A. (2016). Russ. J. Appl. Chem. 89, 132-139.]; Zharkov et al., 2015[Zharkov, M. N., Kuchurov, I. V., Fomenkov, I. V., Zlotin, S. G. & Tartakovsky, V. A. (2015). Mendeleev Commun. 25, 15-16.]) and gelators (Tiefenbacher et al., 2011[Tiefenbacher, K., Dube, H., Ajami, D. & Rebek, J. (2011). Chem. Commun. 47, 7341-7343.]). While several glycoluril analogues have been synthesized and characterized, reports on di­thio­glycolurils are quite rare. In the course of our search for thio­ureas with bioactivity, we had intended to isolate (2E)-N-[(4-meth­oxy­phen­yl)carbamo­thio­yl]-3-phenyl­prop-2-enamide using well-documented methods (Asegbeloyin et al., 2018[Asegbeloyin, J. N., Oyeka, E. E., Okpareke, O. & Ibezim, A. (2018). J. Mol. Struct. 1153, 69-77.]; Douglass & Dains, 1934[Douglass, I. B. & Dains, F. (1934). J. Am. Chem. Soc. 56, 719-721.]; Oyeka et al., 2018[Oyeka, E. E., Asegbeloyin, J. N., Babahan, I., Eboma, B., Okpareke, O., Lane, J., Ibezim, A., Bıyık, H. H., Törün, B. & Izuogu, D. C. (2018). J. Mol. Struct. 1168, 153-164.]); however, we obtained crystals of 1,4-bis­(4-meth­oxy­phen­yl)-3a-methyl­tetra­hydro­imidazo[4,5-d]imidazole-2,5(1H,3H)-di­thione, a new di­thio­glycoluril. As a result of the importance of glucolurils and their analogues and our current inter­est in the construction of novel heterocycles with good bioactivity (Asegbeloyin et al., 2019[Asegbeloyin, J. N., Izuogu, D. C., Oyeka, E. E., Okpareke, O. C. & Ibezim, A. (2019). J. Mol. Struct. 1175, 219-229.]), we decided to investigate the title compound, and we report herein on its synthesis, crystal structure and Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure and conformation of the title compound is shown in Fig. 1[link]. The two imidazole rings, N1/N2/C1–C3 and N3/N4/C2/C3/C5, are inclined to each other by 62.16 (12)°, while the 4-meth­oxy­phenyl rings (C6–C11 and C13–C18) are inclined to each other by 29.36 (12)°. The latter rings are inclined to the imidazole ring to which they are attached by 62.51 (11) and 89.16 (12)°, respectively. Hence, the two ends of the mol­ecule are orientated differently, as shown by the difference in the torsion angles between the thio­imidazole moiety and the meth­oxy­phenyl groups; C2—N3—C6—C11 and C3—N1—C13—C14 are 116.9 (2) and −86.1 (3)°, respectively.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The thione C=S bond lengths of 1.674 (2) Å are longer than those in previous reports where all N atoms were substituted (Deng et al., 2010[Deng, C., Shu, W. & Zhang, D. (2010). Acta Cryst. E66, o1524.]; Wang et al., 2011[Wang, M., Wang, J. & Xiang, J. (2011). Acta Cryst. E67, o2060.]; Wu & Sun, 2009[Wu, Y. & Sun, Y. (2009). Acta Cryst. E65, o1715.]; Zhang et al., 2011[Zhang, Q., Li, P., Chen, X., Wang, X. & Liu, H. (2011). Acta Cryst. E67, o1673.]). The C—N bonds around the thione moiety [C1—N1, C1—N2, C5—N3 and C5—N4 = 1.350 (3), 1.357 (3), 1.355 (3) and 1.353 (3) Å, respectively] are significantly shorter than the average C—N single bond length of 1.48 Å (Oyeka et al., 2018[Oyeka, E. E., Asegbeloyin, J. N., Babahan, I., Eboma, B., Okpareke, O., Lane, J., Ibezim, A., Bıyık, H. H., Törün, B. & Izuogu, D. C. (2018). J. Mol. Struct. 1168, 153-164.]), as has also been observed in other thio­glycoluril systems (Wu & Sun, 2009[Wu, Y. & Sun, Y. (2009). Acta Cryst. E65, o1715.]; Zhang et al., 2011[Zhang, Q., Li, P., Chen, X., Wang, X. & Liu, H. (2011). Acta Cryst. E67, o1673.]) and acyl thio­urea derivatives (Asegbeloyin et al., 2018[Asegbeloyin, J. N., Oyeka, E. E., Okpareke, O. & Ibezim, A. (2018). J. Mol. Struct. 1153, 69-77.]; Oyeka et al., 2018[Oyeka, E. E., Asegbeloyin, J. N., Babahan, I., Eboma, B., Okpareke, O., Lane, J., Ibezim, A., Bıyık, H. H., Törün, B. & Izuogu, D. C. (2018). J. Mol. Struct. 1168, 153-164.]). This is probably due to the conjugation between the π-electrons on C=S and the lone pairs of electrons on the nitro­gen atoms. The C—C bond lengths of the aromatic rings are typical of sp2-hybridized carbons while the C2—C3 bond of the thio­glycoluril moiety [1.542 (3) Å] shows sp3 hybridization. These bond lengths are consistent with previous reports for thio­glycourils and acyl­thio­ureas (Binzet et al., 2009[Binzet, G., Külcü, N., Flörke, U. & Arslan, H. (2009). J. Coord. Chem. 62, 3454-3462.]; Oyeka et al., 2018[Oyeka, E. E., Asegbeloyin, J. N., Babahan, I., Eboma, B., Okpareke, O., Lane, J., Ibezim, A., Bıyık, H. H., Törün, B. & Izuogu, D. C. (2018). J. Mol. Struct. 1168, 153-164.]; Wang & Xi, 2009[Wang, Z. & Xi, H. (2009). Acta Cryst. E65, o1426.]; Yang, 2010[Yang, Y. (2010). Acta Cryst. E66, o1673.]). The imidazole carbon atoms, C2 and C3, each have a distorted tetra­hedral geometry with the N1—C3—N4 and N2—C2—N3 bond angles being 112.0 (4) and 112.9 (2)°, respectively. The bond angles between the N-meth­oxy­phenyl nitro­gen atom and the aromatic ring, C5—N3—C6 and C1—N1—C13, are 124.8 (2) and 126.1 (2)°, respectively.

3. Supra­molecular features

In the crystal, N—H⋯S hydrogen bonds link neighbouring mol­ecules to form chains propagating along the c-axis direction (Table 1[link] and Fig. 2[link]). The chains are linked by C—H⋯S hydrogen bonds, forming layers parallel to the bc plane (Fig. 3[link] and Table 1[link]). In turn, the layers are linked by C—H⋯π inter­actions involving a meth­oxy methyl H atom (H12B) and a 4-meth­oxy­phenyl ring (C13–C18); see Table 1[link]. These inter­actions result in the formation of a supra­molecular three-dimensional architecture (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S2i 0.86 2.62 3.265 (2) 133
N4—H4⋯S1ii 0.86 2.57 3.382 (2) 157
C7—H7⋯S1iii 0.93 2.87 3.786 (3) 170
C12—H12BCgiv 0.96 2.99 3.893 (3) 157
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z.
[Figure 2]
Figure 2
A view along the b axis of the N—H⋯S hydrogen-bonded chain in the crystal of the title compound.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions are represented by blue arrows (see Table 1[link] for details). For clarity, H atoms not involved in these inter­actions have been omitted.

3.1. Hirshfeld Surface Analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). In the Hirshfeld surface mapped over dnorm (Fig. 4[link]), the red spots indicate contacts shorter than the sum of the van der Waals radii with negative dnorm, blue regions represent contacts longer than the sum of van der Waals radii with negative dnorm, while white regions correspond to inter­molecular distances close to the sum of the van der Waals radii with dnorm equal to zero. The most intense red spots on the surface of the title compound are found around the thione S and N—H groups of the compound, which play a role in the hydrogen bonding inter­actions in the crystal (Table 1[link] and Fig. 2[link]). The less intense red spots (Fig. 4[link]), are observed around the ring carbon atoms resulting from C—H⋯S and C—H⋯π short contacts. The two-dimensional fingerprint plots (Fig. 5[link]) show the overall contribution of the various inter­actions and those delineated into H⋯H, S⋯H/H⋯S, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts. Apart from the non-directional H⋯H contacts (41.3%), the highest contribution to the Hirshfeld surface is from S⋯H/H⋯S contacts (26.1%).

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped over dnorm, with an arbitrary colour scale of −0.3207 to 1.4281.
[Figure 5]
Figure 5
(a) The full two-dimensional fingerprint plot of the title compound, and fingerprint plots delineated into (b) H⋯H, (c) S⋯H/H⋯S, (d) C⋯H/H⋯C, (e) O⋯H/H⋯O and (f) N⋯H/H⋯N contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, February 2019) for thio­glycoluril found two mol­ecules similar to the title compound: 1,6-dipivaloyl-3,3a,4,6a-tetra­methyl­tetra­hydro­imidazo[4,5-d]imidazole-2,5(1H,3H)-di­thione (refcode ADEMOL; Duspara et al., 2001[Duspara, P. A., Matta, C. F., Jenkins, S. I. & Harrison, P. H. (2001). Org. Lett. 3, 495-498.]) and 1,6-diacetyl-3,4,7,8-tetra­methyl-2,5-di­thio­gylcoluril (SOLQIT; Cow, 1998[Cow, C. N. (1998). Chem. Commun. pp. 1147-1148.]). In both compounds, large polar groups are substituted on adjacent sides of the imidazole ring, resulting in steric hindrance and distortion of the C—N—C angles. The C—N—C bond angles between the thione carbon and the N-substituted groups are ca 119.8 and 125.4° in ADEMOL and 122.6 and 125.4° in SOLQIT. In the title compound, the C5—N3—C6 and C1—N1—C13 bond angles are 124.8 (2) and 126.1 (2)°, respectively, showing only little distortion. The thione bond lengths [C5=S2 and C1=S1 are both 1.674 (2) Å] in the title compound are longer than in the reference compounds (1.650–1.664 Å). This is probably due to the fact that all of the imidazole nitro­gen atoms in the reference compounds are substituted. The presence of unsubstituted imidazole nitrogens in the title compound promotes conjugation between the lone pairs of electrons on the nitro­gen atom and the C=S π-electrons and hence stretches the C=S bond. The C—N bond lengths around the thione group of the title compound [1.350 (3)–1.357 (3) Å] are shorter than the corresponding bonds in the reference compounds (ca 1.367–1.397 Å). The other C—N bonds and the C—C bonds in the thio­gylcouril moiety are similar to those of the title compound.

5. Synthesis and crystallization

The title compound was synthesized according to the reported method (Asegbeloyin et al., 2018[Asegbeloyin, J. N., Oyeka, E. E., Okpareke, O. & Ibezim, A. (2018). J. Mol. Struct. 1153, 69-77.]; Douglass & Dains, 1934[Douglass, I. B. & Dains, F. (1934). J. Am. Chem. Soc. 56, 719-721.]; Oyeka et al., 2018[Oyeka, E. E., Asegbeloyin, J. N., Babahan, I., Eboma, B., Okpareke, O., Lane, J., Ibezim, A., Bıyık, H. H., Törün, B. & Izuogu, D. C. (2018). J. Mol. Struct. 1168, 153-164.]). A solution of cinnamoyl chloride (0.02 mol) dissolved in 40 ml acetone was mixed with a 30 ml acetone solution of potassium thio­cyanate (0.02 mol). The reaction mixture was refluxed for 30 min to give a suspension of cinnamoyl iso­thio­cyanate, which was then left to cool to room temperature. 4-Meth­oxy­aniline (0.02 mol) was dissolved in 40 ml of acetone and the resulting solution was mixed with the suspension of cinnamoyl iso­thio­cyanate, and the mixture was stirred for 2 h. The resultant lemon–green solution was filtered and left at room temperature for 96 h to obtain colourless plate-like crystals of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed at idealized positions (N—H = 0.86 Å, C—H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C,N) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C19H20N4O2S2
Mr 400.51
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.1955 (3), 10.0157 (2), 14.5476 (3)
β (°) 98.329 (2)
V3) 1902.36 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.73
Crystal size (mm) 0.12 × 0.05 × 0.01
 
Data collection
Diffractometer Rigaku Oxford Diffraction XtaLAB Synergy, Dualflex, Pilatus 200K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.735, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25390, 3824, 3267
Rint 0.053
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.156, 1.22
No. of reflections 3824
No. of parameters 247
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.53
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). Rigaku Oxford Diffraction, Yarnton, England.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,4-Bis(4-methoxyphenyl)-3a-methyltetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dithione top
Crystal data top
C19H20N4O2S2F(000) = 840
Mr = 400.51Dx = 1.398 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.1955 (3) ÅCell parameters from 11825 reflections
b = 10.0157 (2) Åθ = 3.4–73.8°
c = 14.5476 (3) ŵ = 2.73 mm1
β = 98.329 (2)°T = 100 K
V = 1902.36 (7) Å3Plate, clear colourless
Z = 40.12 × 0.05 × 0.01 mm
Data collection top
Rigaku Oxford Diffraction XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
3824 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3267 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.053
ω scansθmax = 74.2°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1615
Tmin = 0.735, Tmax = 1.000k = 1212
25390 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
3824 reflectionsΔρmax = 0.63 e Å3
247 parametersΔρmin = 0.53 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.42015 (4)0.63758 (5)0.56357 (4)0.02883 (19)
S10.69303 (4)0.64039 (6)0.20550 (4)0.03272 (19)
O20.05235 (12)0.52239 (19)0.24656 (13)0.0411 (4)
O11.06251 (13)0.6869 (2)0.55605 (14)0.0501 (5)
N30.42969 (13)0.73812 (19)0.39262 (13)0.0282 (4)
N10.66847 (13)0.76111 (19)0.36715 (13)0.0282 (4)
N40.56744 (13)0.7746 (2)0.49428 (13)0.0302 (4)
H40.6079260.7731810.5462220.036*
N20.52813 (13)0.7489 (2)0.26451 (13)0.0321 (4)
H20.4887120.7283540.2141180.039*
C60.33311 (15)0.6860 (2)0.35217 (14)0.0278 (4)
C50.47370 (15)0.7169 (2)0.48150 (15)0.0269 (4)
C130.77144 (15)0.7412 (2)0.41232 (15)0.0285 (5)
C20.49454 (16)0.8198 (2)0.34048 (15)0.0288 (5)
H2A0.4621300.9051340.3206590.035*
C90.14274 (16)0.5846 (2)0.27955 (16)0.0326 (5)
C10.62924 (16)0.7179 (2)0.28148 (15)0.0290 (4)
C30.59244 (16)0.8391 (2)0.41109 (16)0.0294 (5)
C110.31898 (16)0.5490 (2)0.34585 (16)0.0326 (5)
H110.3731810.4915520.3653980.039*
C100.22374 (17)0.4982 (2)0.31029 (17)0.0355 (5)
H100.2136600.4062890.3068480.043*
C80.15769 (17)0.7205 (3)0.28276 (17)0.0346 (5)
H80.1042110.7780100.2610240.041*
C70.25360 (17)0.7716 (3)0.31882 (17)0.0345 (5)
H70.2642710.8634000.3205030.041*
C140.84562 (18)0.8354 (3)0.40334 (17)0.0370 (5)
H140.8290350.9101730.3663090.044*
C160.96858 (17)0.7111 (3)0.50581 (18)0.0383 (6)
C150.94482 (18)0.8197 (3)0.44908 (17)0.0393 (6)
H150.9949040.8823210.4413250.047*
C180.79544 (19)0.6308 (2)0.4673 (2)0.0383 (6)
H180.7458010.5666570.4730440.046*
C40.62578 (19)0.9834 (3)0.42760 (19)0.0391 (6)
H4A0.6853020.9867340.4740910.059*
H4B0.5713191.0333920.4483550.059*
H4C0.6417821.0211210.3707690.059*
C120.03793 (18)0.6032 (3)0.2306 (2)0.0427 (6)
H12A0.0330510.6635190.1801890.064*
H12B0.0444520.6532430.2857330.064*
H12C0.0968680.5469300.2152680.064*
C170.8940 (2)0.6156 (3)0.5143 (2)0.0432 (6)
H170.9103430.5410710.5517260.052*
C191.14391 (19)0.7756 (4)0.5431 (2)0.0588 (9)
H19A1.1510780.7788300.4783990.088*
H19B1.2066040.7443130.5782390.088*
H19C1.1287770.8633540.5639310.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0231 (3)0.0352 (3)0.0281 (3)0.00311 (18)0.0035 (2)0.00066 (19)
S10.0274 (3)0.0385 (3)0.0323 (3)0.0050 (2)0.0046 (2)0.0049 (2)
O20.0238 (8)0.0425 (10)0.0540 (11)0.0022 (7)0.0052 (7)0.0128 (8)
O10.0242 (8)0.0612 (13)0.0617 (12)0.0036 (8)0.0043 (8)0.0093 (10)
N30.0207 (8)0.0359 (10)0.0283 (9)0.0014 (7)0.0043 (7)0.0021 (7)
N10.0203 (8)0.0334 (10)0.0313 (9)0.0005 (7)0.0049 (7)0.0038 (7)
N40.0218 (8)0.0410 (11)0.0281 (9)0.0041 (7)0.0050 (7)0.0020 (8)
N20.0223 (8)0.0439 (11)0.0298 (10)0.0034 (8)0.0028 (7)0.0014 (8)
C60.0218 (10)0.0368 (12)0.0245 (10)0.0012 (8)0.0031 (8)0.0011 (9)
C50.0219 (9)0.0290 (10)0.0299 (10)0.0014 (8)0.0037 (8)0.0034 (8)
C130.0230 (10)0.0336 (11)0.0294 (11)0.0037 (8)0.0055 (8)0.0073 (9)
C20.0253 (10)0.0321 (11)0.0298 (11)0.0019 (8)0.0069 (8)0.0021 (9)
C90.0251 (11)0.0397 (12)0.0319 (11)0.0037 (9)0.0006 (8)0.0074 (9)
C10.0279 (10)0.0298 (10)0.0295 (11)0.0001 (8)0.0055 (8)0.0012 (8)
C30.0261 (10)0.0322 (11)0.0318 (11)0.0005 (8)0.0101 (8)0.0035 (9)
C110.0248 (10)0.0362 (12)0.0349 (12)0.0074 (9)0.0020 (8)0.0034 (9)
C100.0291 (11)0.0322 (12)0.0430 (13)0.0016 (9)0.0027 (9)0.0046 (10)
C80.0251 (10)0.0397 (13)0.0378 (12)0.0081 (9)0.0012 (9)0.0006 (10)
C70.0286 (11)0.0341 (12)0.0397 (12)0.0022 (9)0.0010 (9)0.0007 (10)
C140.0289 (11)0.0451 (13)0.0368 (12)0.0083 (10)0.0041 (9)0.0045 (10)
C160.0259 (11)0.0487 (14)0.0395 (13)0.0019 (10)0.0018 (9)0.0091 (11)
C150.0282 (11)0.0519 (15)0.0387 (13)0.0098 (10)0.0074 (9)0.0026 (11)
C180.0281 (11)0.0340 (12)0.0517 (15)0.0039 (9)0.0020 (10)0.0011 (10)
C40.0382 (12)0.0334 (12)0.0478 (14)0.0015 (10)0.0128 (10)0.0048 (10)
C120.0240 (11)0.0507 (15)0.0518 (15)0.0035 (10)0.0002 (10)0.0070 (12)
C170.0343 (13)0.0375 (13)0.0557 (16)0.0026 (10)0.0005 (11)0.0040 (11)
C190.0237 (12)0.103 (3)0.0501 (16)0.0083 (14)0.0054 (11)0.0106 (16)
Geometric parameters (Å, º) top
S2—C51.674 (2)C9—C81.375 (4)
S1—C11.674 (2)C3—C41.520 (3)
O2—C91.370 (3)C11—H110.9300
O2—C121.431 (3)C11—C101.385 (3)
O1—C161.366 (3)C10—H100.9300
O1—C191.427 (4)C8—H80.9300
N3—C61.423 (3)C8—C71.395 (3)
N3—C51.355 (3)C7—H70.9300
N3—C21.472 (3)C14—H140.9300
N1—C131.435 (3)C14—C151.389 (3)
N1—C11.350 (3)C16—C151.374 (4)
N1—C31.487 (3)C16—C171.391 (4)
N4—H40.8600C15—H150.9300
N4—C51.353 (3)C18—H180.9300
N4—C31.451 (3)C18—C171.388 (4)
N2—H20.8600C4—H4A0.9600
N2—C21.437 (3)C4—H4B0.9600
N2—C11.357 (3)C4—H4C0.9600
C6—C111.386 (3)C12—H12A0.9600
C6—C71.387 (3)C12—H12B0.9600
C13—C141.379 (3)C12—H12C0.9600
C13—C181.374 (3)C17—H170.9300
C2—H2A0.9800C19—H19A0.9600
C2—C31.542 (3)C19—H19B0.9600
C9—C101.398 (3)C19—H19C0.9600
C9—O2—C12117.5 (2)C10—C11—H11120.2
C16—O1—C19117.4 (2)C9—C10—H10119.9
C6—N3—C2122.93 (17)C11—C10—C9120.1 (2)
C5—N3—C6124.84 (18)C11—C10—H10119.9
C5—N3—C2112.21 (17)C9—C8—H8120.2
C13—N1—C3121.96 (18)C9—C8—C7119.6 (2)
C1—N1—C13126.11 (18)C7—C8—H8120.2
C1—N1—C3111.89 (17)C6—C7—C8120.3 (2)
C5—N4—H4123.6C6—C7—H7119.9
C5—N4—C3112.89 (18)C8—C7—H7119.9
C3—N4—H4123.6C13—C14—H14119.7
C2—N2—H2123.9C13—C14—C15120.6 (2)
C1—N2—H2123.9C15—C14—H14119.7
C1—N2—C2112.18 (18)O1—C16—C15124.9 (2)
C11—C6—N3119.63 (19)O1—C16—C17115.4 (2)
C11—C6—C7120.1 (2)C15—C16—C17119.7 (2)
C7—C6—N3120.3 (2)C14—C15—H15120.2
N3—C5—S2126.03 (16)C16—C15—C14119.7 (2)
N4—C5—S2125.21 (16)C16—C15—H15120.2
N4—C5—N3108.73 (19)C13—C18—H18120.1
C14—C13—N1119.9 (2)C13—C18—C17119.7 (2)
C18—C13—N1120.11 (19)C17—C18—H18120.1
C18—C13—C14119.9 (2)C3—C4—H4A109.5
N3—C2—H2A112.0C3—C4—H4B109.5
N3—C2—C3102.70 (17)C3—C4—H4C109.5
N2—C2—N3112.86 (19)H4A—C4—H4B109.5
N2—C2—H2A112.0H4A—C4—H4C109.5
N2—C2—C3104.61 (17)H4B—C4—H4C109.5
C3—C2—H2A112.0O2—C12—H12A109.5
O2—C9—C10114.6 (2)O2—C12—H12B109.5
O2—C9—C8125.1 (2)O2—C12—H12C109.5
C8—C9—C10120.2 (2)H12A—C12—H12B109.5
N1—C1—S1126.59 (16)H12A—C12—H12C109.5
N1—C1—N2109.29 (19)H12B—C12—H12C109.5
N2—C1—S1124.11 (17)C16—C17—H17119.8
N1—C3—C2101.56 (17)C18—C17—C16120.3 (2)
N1—C3—C4111.68 (18)C18—C17—H17119.8
N4—C3—N1111.96 (19)O1—C19—H19A109.5
N4—C3—C2103.31 (17)O1—C19—H19B109.5
N4—C3—C4112.76 (19)O1—C19—H19C109.5
C4—C3—C2114.8 (2)H19A—C19—H19B109.5
C6—C11—H11120.2H19A—C19—H19C109.5
C10—C11—C6119.7 (2)H19B—C19—H19C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···S2i0.862.623.265 (2)133
N4—H4···S1ii0.862.573.382 (2)157
C7—H7···S1iii0.932.873.786 (3)170
C12—H12B···Cgiv0.962.993.893 (3)157
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y, z.
 

Acknowledgements

The authors acknowledge the School of Chemical Sciences at the University of Auckland for X-ray intensity measurements.

References

First citationAsegbeloyin, J. N., Izuogu, D. C., Oyeka, E. E., Okpareke, O. C. & Ibezim, A. (2019). J. Mol. Struct. 1175, 219–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationAsegbeloyin, J. N., Oyeka, E. E., Okpareke, O. & Ibezim, A. (2018). J. Mol. Struct. 1153, 69–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationBerlyand, A. S., Lebedev, O. V. & Prokopov, A. A. (2013). Pharm. Chem. J. 47, 176–178.  Web of Science CrossRef CAS Google Scholar
First citationBeyer, A., Reucher, C. M. M. & Bolm, C. (2011). Org. Lett. 13, 2876–2879.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBinzet, G., Külcü, N., Flörke, U. & Arslan, H. (2009). J. Coord. Chem. 62, 3454–3462.  Web of Science CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBurnett, C. A., Lagona, J., Wu, A., Shaw, J. A., Coady, D., Fettinger, J. C., Day, A. I. & Isaacs, L. (2003). Tetrahedron, 59, 1961–1970.  Web of Science CSD CrossRef CAS Google Scholar
First citationCow, C. N. (1998). Chem. Commun. pp. 1147–1148.  Web of Science CSD CrossRef Google Scholar
First citationDawood, K. M., Elwan, N. M., Farahat, A. A. & Abdel-Wahab, B. F. (2010). J. Heterocycl. Chem. 47, 243-267.  CAS Google Scholar
First citationDeng, C., Shu, W. & Zhang, D. (2010). Acta Cryst. E66, o1524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDouglass, I. B. & Dains, F. (1934). J. Am. Chem. Soc. 56, 719–721.  CrossRef CAS Google Scholar
First citationDuspara, P. A., Matta, C. F., Jenkins, S. I. & Harrison, P. H. (2001). Org. Lett. 3, 495–498.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKravchenko, A. N., Baranov, V. V. & Gazieva, G. A. (2018). Russ. Chem. Rev. 87, 89–108.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOyeka, E. E., Asegbeloyin, J. N., Babahan, I., Eboma, B., Okpareke, O., Lane, J., Ibezim, A., Bıyık, H. H., Törün, B. & Izuogu, D. C. (2018). J. Mol. Struct. 1168, 153–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRyzhkina, I. S., Kiseleva, Y. V., Mishina, O. A., Timosheva, A. P., Sergeeva, S. Y., Kravchenko, A. N. & Konovalov, A. I. (2013). Mendeleev Commun. 23, 262–264.  Web of Science CrossRef CAS Google Scholar
First citationSal'keeva, L., Bakibaev, A. A., Khasenova, G., Taishibekova, Y. K., Sugralina, L., Minaeva, Y. V. & Sal'keeva, A. (2016). Russ. J. Appl. Chem. 89, 132–139.  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTiefenbacher, K., Dube, H., Ajami, D. & Rebek, J. (2011). Chem. Commun. 47, 7341–7343.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWang, M., Wang, J. & Xiang, J. (2011). Acta Cryst. E67, o2060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Z. & Xi, H. (2009). Acta Cryst. E65, o1426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, Y. & Sun, Y. (2009). Acta Cryst. E65, o1715.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Y. (2010). Acta Cryst. E66, o1673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Q., Li, P., Chen, X., Wang, X. & Liu, H. (2011). Acta Cryst. E67, o1673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZharkov, M. N., Kuchurov, I. V., Fomenkov, I. V., Zlotin, S. G. & Tartakovsky, V. A. (2015). Mendeleev Commun. 25, 15–16.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds