research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of lapachol acetate 80 years after its first synthesis

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Área Química Orgánica de los Productos Naturales-LAREV, San Lorenzo Campus-UNA, Paraguay, bDepartment of Chemistry, Universidad de los Andes, Cra 1 N° 18A-12, 111711, Bogotá, Colombia, cUniversidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Laboratorio de Análisis Instrumental, Departamento de Química, San Lorenzo Campus-UNA, Paraguay, dLaboratorio de Síntesis Orgánica, DQO, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay, eUniversidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo Campus-UNA, Paraguay, and fCryssmat-Lab/DETEMA, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay
*Correspondence e-mail: leopoldo@fq.edu.uy

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 5 August 2019; accepted 13 August 2019; online 19 August 2019)

Lapachol acetate [systematic name: 3-(3-methyl­but-2-en­yl)-1,4-dioxonaph­thalen-2-yl acetate], C17H16O4, was prepared using a modified high-yield procedure and its crystal structure is reported for the first time 80 years after its first synthesis. The full spectroscopic characterization of the mol­ecule is reported. The mol­ecular conformation shows little difference with other lapachol derivatives and lapachol itself. The packing is directed by inter­molecular ππ and C—H⋯O inter­actions, as described by Hirshfeld surface analysis. The former inter­actions make the largest contributions to the total packing energy in a ratio of 2:1 with respect to the latter.

1. Chemical context

Naphto­quinones are natural products characterized by a naphthalene ring system exhibiting a para-quinone motif in positions 1,4. They are natural pigments and normally substituted by hydroxyl or methyl groups or present as glycosides (Bruneton, 2001[Bruneton, J. (2001). Farmacognosia. Fitoquímica. Plantas medicinales, edited by A. Villar del Fresno, E. Carretero and M. Rebuelta. Spain: ACRIBIA Editorial S. A.]). Among the natural products, they possess remarkable biological activity such as anti­bacterial, anti­fungal, anti­parasitic, anti­viral and anti­cancer (Babula et al., 2007[Babula, P., Adam, V., Havel, L. & Kizek, R. (2007). Ceska Slov Farm Cas Ceske Farm Spolecnosti Slov Farm Spolecnosti, 56, 114-20.]; da Silva & Ferreira, 2016[Silva, F. C. da & Ferreira, V. F. (2016). Curr. Org. Synth. 13, 334-371.]; Miranda et al., 2019[Miranda, S. E., Lemos, J. A., Fernandes, R. S., Ottoni, F. M., Alves, R. J., Ferretti, A., Rubello, D., Cardoso, V. N. & Branco de Barrosa, A. L. (2019). Rev. Esp. Med. Nucl. Ima. 38, 167-172.]; Araújo et al., 2019[Araújo, I. A. C., de Paula, R. C., Alves, C. L., Faria, K. F., Oliveira, M. M., Mendes, G. G., Dias, E. M. F. A., Ribeiro, R. R., Oliveira, A. B. & Silva, S. M. D. (2019). Exp. Parasitol. 199, 67-73.]; Barbosa Coitinho et al., 2019[Barbosa Coitinho, L., Fumagalli, F., da Rosa-Garzon, N. G., da Silva Emery, F. & Cabral, H. (2019). Prep. Biochem. Biotechnol. 49, 459-463.]; Strauch et al., 2019[Strauch, M. A., Tomaz, M. A., Monteiro-Machado, M., Cons, B. L., Patrão-Neto, F. C., Teixeira-Cruz, J. D. M., Tavares-Henriques, M. D. S., Nogueira-Souza, P. D., Gomes, S. L. S., Costa, P. R. R., Schaeffer, E., da Silva, A. J. M. & Melo, P. A. (2019). PLoS One, 14, e0211229.]). Lapachol (2-hy­droxy-3-(3-methyl-but-2-en­yl)[1,4]naphtho­quinone), isolated from Handroanthus Heptaphyllus (Vell.) Mattos, a native species from Paraguay, was studied as a hemisynthetic precursor of lapachol acetate {[3-(3-methyl-but-2-en­yl)-1,4-dioxonaphthalen-2-yl]acetate} for the first time by Cooke et al. (1939[Cooke, R. G., Macbeth, A. K. & Winzor, F. L. (1939). J. Chem. Soc. pp. 878-884.]). Jacobsen & Torsell (1973[Jacobsen, N. & Torsell, K. (1973). Acta Chem. Scand. 27, 3211-3216.]) prepared lapachol acetate using 2-acet­oxy-1,4-naphtho­quinone as a precursor with 79% yield. We developed an optimization of the first synthesis of lapachol acetate developed by Cooke et al. (1939[Cooke, R. G., Macbeth, A. K. & Winzor, F. L. (1939). J. Chem. Soc. pp. 878-884.]), introducing several modifications with the purpose of standardizing it and increasing the yield to 97.5%. Details of the synthesis and the spectroscopic characterization are included in the supporting information. Noting that the crystal structure of lapachol acetate had not been reported, we also undertook the crystallization and structure determination.

2. Structural commentary

The lapachol acetate mol­ecule (Fig. 1[link]) is the ester of lapachol at the alcohol moiety (O2 in Larsen et al., 1992[Larsen, I. K., Andersen, L. A. & Pedersen, B. F. (1992). Acta Cryst. C48, 2009-2013.]). The mol­ecule is composed of three planar groups, the naptho­quinone nucleus comprising atoms C1 to C11, O1, O2 and O4, and two smaller butenyl and acetate residues at the sides. The butenyl and acetate mean planes are inclined to the naphthoquinone mean plane by 65.80 (10) and 78.52 (11)°, respectively. The lapachol acetate mol­ecule shows typical bond distances and angles, and overlaps very closely with the common part of the lapachol mol­ecule in the structure LAPA II reported by Larsen et al. (1992[Larsen, I. K., Andersen, L. A. & Pedersen, B. F. (1992). Acta Cryst. C48, 2009-2013.]) (Fig. 2[link]), with an average deviation of C/O atomic positions of 0.158 Å and a maximum deviation of 0.309 Å for atom O4. This is rather unexpected, since the butenyl moiety shows rotational flexibility around the C3—C11 and C11—C12 bonds. However, in both reported lapachol polymorphs (Larsen et al., 1992[Larsen, I. K., Andersen, L. A. & Pedersen, B. F. (1992). Acta Cryst. C48, 2009-2013.]) and two derivatives (Eyong et al., 2015[Eyong, K. O., Ketsemen, H. L., Ghansenyuy, S. Y. & Folefoc, G. N. (2015). Med. Chem. Res. 24, 965-969.]; da Silva et al., 2012[Silva, E. N. da de Júnior, Melo, I. M. M., Diogo, E. B. T., Costa, V. A., de Souza Filho, J. D., Valença, W. O., Camara, C. A., de Oliveira, R. N., de Araujo, A. S., Emery, F. S., dos Santos, M. R., de Simone, C. A., Menna-Barreto, R. F. S. & de Castro, S. L. (2012). Eur. J. Med. Chem. 52, 304-312.]) reported in the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the same rotational freedom, the dihedral angle between the planar C=C(CH3)2 group and the naphtho­quinone nucleus is close to 70°, as observed in lapachol acetate.

[Scheme 1]
[Figure 1]
Figure 1
ORTEP view of a lapachol acetate mol­ecule with the labelling scheme, and displacement ellipsoids drawn at the 50% probability level. One of the two positions of the disordered C17 methyl group has been omitted for clarity.
[Figure 2]
Figure 2
Overlay of a lapachol acetate (blue) and a lapachol (red) mol­ecule (LAPA II mol­ecule as described by Larsen et al., 1992[Larsen, I. K., Andersen, L. A. & Pedersen, B. F. (1992). Acta Cryst. C48, 2009-2013.]). Only the common C/O atoms were fitted.

3. Supra­molecular features

Crystals of lapachol acetate are held together by weak dipolar and dispersion forces because there is no strong H-donor residue in the mol­ecule. Mol­ecules connect with other units through weak C(sp3)—H⋯O=C hydrogen bonds H11B⋯O4i and H15A⋯O1ii (Table 1[link], Fig. S4a in the supporting information) defining double sheets of mol­ecules parallel to ([\overline{1}]01). The butenyl residue of a screw-rotation-related mol­ecule adds an inter­molecular ππ inter­action with the naphto­quinone residue to the sheets with atoms C12iii and C13iii located at 3.243 and 3.544 Å, respectively, from the naphto­quinone plane (Fig. S4b). Finally, the double sheets stack along the [[\overline{1}]01] direction where naphtho­quinone nuclei of inversion-related mol­ecules display ππ inter­actions. Ring 1 (C1–C4/C10/C9; centroid Cg1) of the mol­ecule is close to ring 2 (C5—C10; centroid Cg2), the Cg2⋯Cg1iv distance being 3.8532 (12) Å); Cg2⋯Cg2iv is the shortest distance [3.8035 (13) Å], with an average perpendicular distance between naphto­quinone planes of 3.3787 (9) Å, as shown in Fig. S4c [symmetry codes: (i) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (ii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (iii) [{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z; (iv) 1 − x, 1 − y, 1 − z). Considering the Hirshfeld (HF) surface (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]) mapped over dnorm (analysis of the contact distances di and de from the HF surface to the nearest atom inside and outside, respectively), these inter­actions in one mol­ecule are shown in Fig. 3[link]a and the sheets of mol­ecules defined by them in Fig. 3[link]b. The 2D fingerprints of lapachol acetate (shown in Fig. S5 of the supporting information) show no particular features other than the aforementioned H⋯O/O⋯H contacts, which comprise 28.2% of the total HF surface, revealing their importance in the formation of the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O4i 0.97 2.55 3.274 (3) 131
C15—H15A⋯O1ii 0.96 2.59 3.485 (3) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
(a) View of the Hirshfeld surface for lapachol acetate mapped over dnorm showing the C—H⋯O hydrogen-bond inter­actions. (b) The mol­ecular structure of lapachol acetate showing the formation of stacked ([\overline{1}]01) sheets.

In order to describe these inter­actions in a whole-of-mol­ecule approach, accurate model energies of the inter­actions between mol­ecules of lapachol acetate in the crystal were analysed. The inter­actions were calculated using the B3LYP/6–31 G(d,p) energy model implemented in CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]), which uses quantum mechanical charge distributions for unperturbed mol­ecules (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). In the calculations, the total energy is modelled as the sum of the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) terms (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). The strongest pairwise inter­action with a total energy of −54.7 kJ mol−1 corresponds to the inter­action between neighbouring aromatic systems, while the mol­ecules connected through a combination of ππ inter­actions between the butenyl and naphto­quinone residues and C11—H11B⋯O4i hydrogen bonds have a total energy of −33.6 kJ mol−1. The weakest inter­action, C15–H15A⋯O1ii, shows a total energy of −18.3 kJ mol−1 (Fig. 4[link]a). The energy framework diagrams for lapachol acetate (Fig. 4[link]b) show that electrostatic forces act to keep pairs of inversion-related chains of mol­ecules joined while dispersion forces act in three dimensions to build the crystal structure. The total energy diagram shows a high resemblance to the dispersion framework, showing that these forces are the most important in the crystal. The inter­action energies for selected mol­ecular pairs in the first coordination sphere around the asymmetric unit are summarized in Table S1 and Fig. S6 of the supporting information.

[Figure 4]
Figure 4
(a) Mol­ecular close contacts and (b) energy-framework diagrams for electrostatic (red) and dispersion (green) contributions to the total inter­action energy (blue) in lapachol acetate crystals.

4. Database survey

Lapachol and its derivatives are rather scarce in the Cambridge Crystal Structure Database (Version 5.40, update 2 of May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with only 31 entries matching the basic C—O framework of lapachol. Two lapachol polymorphs LAPA I and LAPA II (Larsen et al., 1992[Larsen, I. K., Andersen, L. A. & Pedersen, B. F. (1992). Acta Cryst. C48, 2009-2013.]) have been reported at 105 K, as mentioned above. Two additional lapachol derivatives obtained by replacing one H atom have been reported during the current decade: 4-(3-hy­droxy-1,4-dioxo-1,4-di­hydro­naphthalen-2-yl)-2-methyl­but-2-enal (Eyong et al., 2015[Eyong, K. O., Ketsemen, H. L., Ghansenyuy, S. Y. & Folefoc, G. N. (2015). Med. Chem. Res. 24, 965-969.]) is an aldehyde of lapachol at C15 and 3-(3-methyl­but-2-en-1-yl)-1,4-dioxo-1,4-di­hydro­naphthalen-2-yl 4-methyl­benzene­sulfonate (Silva et al., 2012[Silva, E. N. da de Júnior, Melo, I. M. M., Diogo, E. B. T., Costa, V. A., de Souza Filho, J. D., Valença, W. O., Camara, C. A., de Oliveira, R. N., de Araujo, A. S., Emery, F. S., dos Santos, M. R., de Simone, C. A., Menna-Barreto, R. F. S. & de Castro, S. L. (2012). Eur. J. Med. Chem. 52, 304-312.]) is a sulfonate at O2. Lapachol acetate is the third derivative of this kind reported. Some lapachol derivatives where cyclization of the 3-methy-2-butenyl moiety or coordination with metals (as lapacholate) have additionally been reported, but are not related to lapachol acetate.

5. Synthesis and crystallization

Lapachol was obtained from an extract of Handroanthus Heptaphyllus (Vell.) Mattos, the pink trumpet tree (or lapacho negro) as described in the supporting information. 201 mg (0.823 mmol) of lapachol were dissolved in 5 ml of dry acetic anhydride and a catalytic amount of dry zinc chloride (ZnCl2) was added. The suspension was refluxed for 30 min under an inert atmosphere (N2). The solution was allowed to cool and 5 ml of glacial acetic acid and later 50 ml of distilled water were added. The final mixture was refluxed for 10 min and allowed to precipitate overnight. The crude solid was filtered, dried and purified by column chromatography (hexa­ne: AcOEt, 9: 1 v/v) to obtain pure lapachol acetate as yellow crystals (see the detailed description of the obtention of lapachol and the synthesis of lapachol acetate in the supporting information and the detailed spectroscopic study in Figs. S1–S3). Adequate crystals for diffraction were obtained by dissolving a few mg of the solid in a minimum amount of AcOEt in a rubber-stop vial with a syringe needle through the center to promote slow evaporation of the solvent at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and included as riding contributions, with isotropic displacement parameters set at 1.2–1.5 times the Ueq value of the parent atom. The C17 methyl group shows rotational disorder that was modelled with two positions that were refined with a fixed C—H bond distance but with rotational freedom (AFIX 147) converging at occupancies of 0.79 (3) and 0.21 (3).

Table 2
Experimental details

Crystal data
Chemical formula C17H16O4
Mr 284.30
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 12.0914 (8), 9.4741 (6), 12.7761 (9)
β (°) 92.943 (4)
V3) 1461.64 (17)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.75
Crystal size (mm) 0.26 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.654, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 7496, 2996, 1972
Rint 0.038
(sin θ/λ)max−1) 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.03
No. of reflections 2996
No. of parameters 193
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

3-(3-Methylbut-2-enyl)-1,4-dioxonaphthalen-2-yl acetate top
Crystal data top
C17H16O4Dx = 1.292 Mg m3
Mr = 284.30Melting point: 352(1) K
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 12.0914 (8) ÅCell parameters from 7958 reflections
b = 9.4741 (6) Åθ = 4.9–75.7°
c = 12.7761 (9) ŵ = 0.75 mm1
β = 92.943 (4)°T = 296 K
V = 1461.64 (17) Å3Block, yellow
Z = 40.26 × 0.22 × 0.18 mm
F(000) = 600
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
2996 independent reflections
Radiation source: Cu Incoatec microsource1972 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.038
\j and ω scansθmax = 79.2°, θmin = 4.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1315
Tmin = 0.654, Tmax = 0.754k = 119
7496 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.053P)2 + 0.3463P]
where P = (Fo2 + 2Fc2)/3
2996 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.22182 (14)0.34297 (18)0.34233 (12)0.0686 (5)
C10.25877 (15)0.3726 (2)0.42998 (15)0.0468 (5)
O20.17186 (11)0.16221 (16)0.49500 (11)0.0540 (4)
C20.24117 (15)0.2761 (2)0.51890 (15)0.0441 (5)
O30.30987 (14)0.05735 (18)0.41410 (15)0.0756 (5)
C30.28099 (15)0.2973 (2)0.61720 (15)0.0443 (5)
O40.39859 (12)0.43627 (17)0.72673 (11)0.0586 (4)
C40.35332 (15)0.4218 (2)0.64003 (14)0.0440 (5)
C50.42753 (17)0.6488 (2)0.57604 (17)0.0529 (5)
H50.4602520.6638410.6425780.063*
C60.43917 (18)0.7485 (3)0.49821 (19)0.0615 (6)
H60.4799480.8300430.5126190.074*
C70.39054 (19)0.7275 (3)0.39920 (19)0.0612 (6)
H70.3975810.7955060.3475040.073*
C80.33163 (17)0.6057 (3)0.37709 (17)0.0547 (5)
H80.2995070.5912490.3102420.066*
C90.32006 (15)0.5041 (2)0.45465 (15)0.0444 (5)
C100.36737 (15)0.5268 (2)0.55524 (15)0.0426 (4)
C110.26046 (18)0.1969 (2)0.70541 (16)0.0533 (5)
H11A0.2602390.2492750.7706310.064*
H11B0.1880170.1541570.6934260.064*
C120.34630 (17)0.0828 (2)0.71541 (16)0.0505 (5)
H120.3509810.0232690.6579230.061*
C130.41622 (17)0.0566 (2)0.79619 (16)0.0510 (5)
C140.4219 (2)0.1431 (3)0.89505 (18)0.0719 (7)
H14A0.4122250.0826690.9541780.108*
H14B0.3643690.2130710.8913580.108*
H14C0.4926850.1888800.9026820.108*
C150.4952 (2)0.0652 (3)0.7946 (2)0.0684 (7)
H15A0.5696820.0313040.8059370.103*
H15B0.4876940.1116060.7277550.103*
H15C0.4788900.1308270.8489160.103*
C160.2148 (2)0.0591 (2)0.43364 (17)0.0557 (5)
C170.1276 (2)0.0443 (3)0.3994 (2)0.0785 (8)0.79 (3)
H17A0.0729010.0017980.3542790.118*0.79 (3)
H17B0.0931640.0810790.4597260.118*0.79 (3)
H17C0.1605200.1202030.3621940.118*0.79 (3)
C17'0.1276 (2)0.0443 (3)0.3994 (2)0.0785 (8)0.21 (3)
H17D0.0580950.0160880.4259210.118*0.21 (3)
H17E0.1473280.1361380.4260250.118*0.21 (3)
H17F0.1211610.0472590.3242520.118*0.21 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0903 (12)0.0652 (12)0.0484 (8)0.0047 (9)0.0162 (8)0.0054 (8)
C10.0471 (10)0.0480 (12)0.0449 (11)0.0085 (9)0.0009 (8)0.0029 (9)
O20.0536 (8)0.0488 (9)0.0596 (8)0.0054 (7)0.0025 (7)0.0014 (7)
C20.0430 (9)0.0407 (11)0.0486 (10)0.0036 (9)0.0025 (8)0.0002 (9)
O30.0664 (10)0.0607 (12)0.1004 (13)0.0026 (9)0.0100 (9)0.0191 (10)
C30.0449 (10)0.0430 (12)0.0456 (10)0.0058 (9)0.0060 (8)0.0037 (9)
O40.0653 (9)0.0646 (11)0.0452 (8)0.0030 (8)0.0055 (7)0.0027 (7)
C40.0431 (10)0.0448 (12)0.0443 (10)0.0105 (9)0.0051 (8)0.0028 (9)
C50.0557 (12)0.0456 (13)0.0581 (12)0.0034 (10)0.0095 (10)0.0063 (11)
C60.0621 (13)0.0424 (14)0.0813 (16)0.0016 (11)0.0171 (12)0.0029 (12)
C70.0673 (14)0.0464 (14)0.0715 (15)0.0066 (11)0.0198 (12)0.0138 (12)
C80.0571 (12)0.0534 (14)0.0539 (12)0.0109 (11)0.0061 (9)0.0098 (11)
C90.0457 (10)0.0428 (12)0.0452 (10)0.0088 (9)0.0065 (8)0.0049 (9)
C100.0431 (9)0.0373 (11)0.0479 (10)0.0086 (8)0.0078 (8)0.0009 (9)
C110.0566 (12)0.0559 (14)0.0479 (11)0.0022 (10)0.0067 (9)0.0092 (10)
C120.0625 (12)0.0431 (13)0.0458 (10)0.0042 (10)0.0010 (9)0.0028 (9)
C130.0543 (11)0.0490 (13)0.0494 (11)0.0102 (10)0.0005 (9)0.0040 (10)
C140.0739 (15)0.086 (2)0.0545 (13)0.0051 (14)0.0078 (11)0.0076 (13)
C150.0697 (14)0.0583 (16)0.0756 (15)0.0019 (13)0.0109 (12)0.0043 (13)
C160.0658 (13)0.0453 (13)0.0556 (12)0.0005 (11)0.0019 (10)0.0025 (10)
C170.0874 (18)0.0623 (18)0.0851 (18)0.0195 (14)0.0028 (14)0.0071 (15)
C17'0.0874 (18)0.0623 (18)0.0851 (18)0.0195 (14)0.0028 (14)0.0071 (15)
Geometric parameters (Å, º) top
O1—C11.217 (2)C11—C121.500 (3)
C1—C91.476 (3)C11—H11A0.9700
C1—C21.482 (3)C11—H11B0.9700
O2—C161.371 (3)C12—C131.324 (3)
O2—C21.391 (2)C12—H120.9300
C2—C31.337 (3)C13—C151.499 (3)
O3—C161.189 (3)C13—C141.504 (3)
C3—C41.489 (3)C14—H14A0.9600
C3—C111.505 (3)C14—H14B0.9600
O4—C41.218 (2)C14—H14C0.9600
C4—C101.487 (3)C15—H15A0.9600
C5—C61.384 (3)C15—H15B0.9600
C5—C101.384 (3)C15—H15C0.9600
C5—H50.9300C16—C17'1.488 (3)
C6—C71.382 (3)C16—C171.488 (3)
C6—H60.9300C17—H17A0.9600
C7—C81.377 (3)C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C8—C91.394 (3)C17'—H17D0.9600
C8—H80.9300C17'—H17E0.9600
C9—C101.396 (3)C17'—H17F0.9600
O1—C1—C9123.21 (19)H11A—C11—H11B107.9
O1—C1—C2120.2 (2)C13—C12—C11127.8 (2)
C9—C1—C2116.57 (16)C13—C12—H12116.1
C16—O2—C2115.91 (16)C11—C12—H12116.1
C3—C2—O2120.42 (18)C12—C13—C15121.0 (2)
C3—C2—C1124.68 (19)C12—C13—C14123.5 (2)
O2—C2—C1114.76 (16)C15—C13—C14115.45 (19)
C2—C3—C4118.84 (18)C13—C14—H14A109.5
C2—C3—C11122.93 (19)C13—C14—H14B109.5
C4—C3—C11118.16 (17)H14A—C14—H14B109.5
O4—C4—C10121.63 (19)C13—C14—H14C109.5
O4—C4—C3119.97 (19)H14A—C14—H14C109.5
C10—C4—C3118.40 (16)H14B—C14—H14C109.5
C6—C5—C10120.2 (2)C13—C15—H15A109.5
C6—C5—H5119.9C13—C15—H15B109.5
C10—C5—H5119.9H15A—C15—H15B109.5
C7—C6—C5120.4 (2)C13—C15—H15C109.5
C7—C6—H6119.8H15A—C15—H15C109.5
C5—C6—H6119.8H15B—C15—H15C109.5
C8—C7—C6120.0 (2)O3—C16—O2121.9 (2)
C8—C7—H7120.0O3—C16—C17'127.4 (2)
C6—C7—H7120.0O2—C16—C17'110.7 (2)
C7—C8—C9120.2 (2)O3—C16—C17127.4 (2)
C7—C8—H8119.9O2—C16—C17110.7 (2)
C9—C8—H8119.9C16—C17—H17A109.5
C8—C9—C10119.8 (2)C16—C17—H17B109.5
C8—C9—C1119.93 (18)H17A—C17—H17B109.5
C10—C9—C1120.30 (18)C16—C17—H17C109.5
C5—C10—C9119.48 (19)H17A—C17—H17C109.5
C5—C10—C4119.83 (18)H17B—C17—H17C109.5
C9—C10—C4120.69 (19)C16—C17'—H17D109.5
C12—C11—C3112.29 (17)C16—C17'—H17E109.5
C12—C11—H11A109.1H17D—C17'—H17E109.5
C3—C11—H11A109.1C16—C17'—H17F109.5
C12—C11—H11B109.1H17D—C17'—H17F109.5
C3—C11—H11B109.1H17E—C17'—H17F109.5
C16—O2—C2—C3112.3 (2)O1—C1—C9—C10175.23 (19)
C16—O2—C2—C171.8 (2)C2—C1—C9—C106.1 (3)
O1—C1—C2—C3178.0 (2)C6—C5—C10—C91.0 (3)
C9—C1—C2—C33.2 (3)C6—C5—C10—C4178.70 (18)
O1—C1—C2—O26.2 (3)C8—C9—C10—C51.5 (3)
C9—C1—C2—O2172.54 (16)C1—C9—C10—C5177.96 (17)
O2—C2—C3—C4178.93 (16)C8—C9—C10—C4178.22 (17)
C1—C2—C3—C43.4 (3)C1—C9—C10—C42.3 (3)
O2—C2—C3—C114.0 (3)O4—C4—C10—C54.1 (3)
C1—C2—C3—C11179.59 (18)C3—C4—C10—C5175.37 (17)
C2—C3—C4—O4173.37 (18)O4—C4—C10—C9176.20 (18)
C11—C3—C4—O43.8 (3)C3—C4—C10—C94.4 (3)
C2—C3—C4—C107.2 (3)C2—C3—C11—C1288.5 (2)
C11—C3—C4—C10175.65 (17)C4—C3—C11—C1288.5 (2)
C10—C5—C6—C70.3 (3)C3—C11—C12—C13118.3 (2)
C5—C6—C7—C81.1 (3)C11—C12—C13—C15178.2 (2)
C6—C7—C8—C90.6 (3)C11—C12—C13—C141.0 (4)
C7—C8—C9—C100.7 (3)C2—O2—C16—O39.9 (3)
C7—C8—C9—C1178.78 (19)C2—O2—C16—C17'170.81 (18)
O1—C1—C9—C84.2 (3)C2—O2—C16—C17170.81 (18)
C2—C1—C9—C8174.46 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O4i0.972.553.274 (3)131
C15—H15A···O1ii0.962.593.485 (3)156
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are indebted to N. Di Benedetto for her contribution to the single-crystal X-ray diffraction data processing and to G. Cebrián-Torrejón for his assistance in the spectroscopic characterization. Funding for this research was provided by Programa de Desarrollo de Ciencias Basicas - PEDECIBA - Uruguay (grant to Leopoldo Suescun, Enrique Pandolfi); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción (Paraguay).

References

First citationAraújo, I. A. C., de Paula, R. C., Alves, C. L., Faria, K. F., Oliveira, M. M., Mendes, G. G., Dias, E. M. F. A., Ribeiro, R. R., Oliveira, A. B. & Silva, S. M. D. (2019). Exp. Parasitol. 199, 67–73.  PubMed Google Scholar
First citationBabula, P., Adam, V., Havel, L. & Kizek, R. (2007). Ceska Slov Farm Cas Ceske Farm Spolecnosti Slov Farm Spolecnosti, 56, 114–20.  CAS Google Scholar
First citationBarbosa Coitinho, L., Fumagalli, F., da Rosa-Garzon, N. G., da Silva Emery, F. & Cabral, H. (2019). Prep. Biochem. Biotechnol. 49, 459–463.  CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruneton, J. (2001). Farmacognosia. Fitoquímica. Plantas medicinales, edited by A. Villar del Fresno, E. Carretero and M. Rebuelta. Spain: ACRIBIA Editorial S. A.  Google Scholar
First citationCooke, R. G., Macbeth, A. K. & Winzor, F. L. (1939). J. Chem. Soc. pp. 878–884.  CrossRef Google Scholar
First citationEyong, K. O., Ketsemen, H. L., Ghansenyuy, S. Y. & Folefoc, G. N. (2015). Med. Chem. Res. 24, 965–969.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJacobsen, N. & Torsell, K. (1973). Acta Chem. Scand. 27, 3211–3216.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLarsen, I. K., Andersen, L. A. & Pedersen, B. F. (1992). Acta Cryst. C48, 2009–2013.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiranda, S. E., Lemos, J. A., Fernandes, R. S., Ottoni, F. M., Alves, R. J., Ferretti, A., Rubello, D., Cardoso, V. N. & Branco de Barrosa, A. L. (2019). Rev. Esp. Med. Nucl. Ima. 38, 167–172.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, E. N. da de Júnior, Melo, I. M. M., Diogo, E. B. T., Costa, V. A., de Souza Filho, J. D., Valença, W. O., Camara, C. A., de Oliveira, R. N., de Araujo, A. S., Emery, F. S., dos Santos, M. R., de Simone, C. A., Menna-Barreto, R. F. S. & de Castro, S. L. (2012). Eur. J. Med. Chem. 52, 304–312.  PubMed Google Scholar
First citationSilva, F. C. da & Ferreira, V. F. (2016). Curr. Org. Synth. 13, 334–371.  Google Scholar
First citationStrauch, M. A., Tomaz, M. A., Monteiro-Machado, M., Cons, B. L., Patrão-Neto, F. C., Teixeira-Cruz, J. D. M., Tavares-Henriques, M. D. S., Nogueira-Souza, P. D., Gomes, S. L. S., Costa, P. R. R., Schaeffer, E., da Silva, A. J. M. & Melo, P. A. (2019). PLoS One, 14, e0211229.  CrossRef PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds