research communications
and Hirshfeld surface analysis of lapachol acetate 80 years after its first synthesis
aUniversidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Área Química Orgánica de los Productos Naturales-LAREV, San Lorenzo Campus-UNA, Paraguay, bDepartment of Chemistry, Universidad de los Andes, Cra 1 N° 18A-12, 111711, Bogotá, Colombia, cUniversidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Laboratorio de Análisis Instrumental, Departamento de Química, San Lorenzo Campus-UNA, Paraguay, dLaboratorio de Síntesis Orgánica, DQO, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay, eUniversidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo Campus-UNA, Paraguay, and fCryssmat-Lab/DETEMA, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, Montevideo 11800, Uruguay
*Correspondence e-mail: leopoldo@fq.edu.uy
Lapachol acetate [systematic name: 3-(3-methylbut-2-enyl)-1,4-dioxonaphthalen-2-yl acetate], C17H16O4, was prepared using a modified high-yield procedure and its is reported for the first time 80 years after its first synthesis. The full spectroscopic characterization of the molecule is reported. The molecular conformation shows little difference with other lapachol derivatives and lapachol itself. The packing is directed by intermolecular π–π and C—H⋯O interactions, as described by Hirshfeld surface analysis. The former interactions make the largest contributions to the total packing energy in a ratio of 2:1 with respect to the latter.
Keywords: crystal structure; naphthoquinone; lapachol acetate; synthesis; Hirshfeld analysis.
CCDC reference: 1947085
1. Chemical context
Naphtoquinones are natural products characterized by a naphthalene ring system exhibiting a para-quinone motif in positions 1,4. They are natural pigments and normally substituted by hydroxyl or methyl groups or present as (Bruneton, 2001). Among the natural products, they possess remarkable biological activity such as antibacterial, antifungal, antiparasitic, antiviral and anticancer (Babula et al., 2007; da Silva & Ferreira, 2016; Miranda et al., 2019; Araújo et al., 2019; Barbosa Coitinho et al., 2019; Strauch et al., 2019). Lapachol (2-hydroxy-3-(3-methyl-but-2-enyl)[1,4]naphthoquinone), isolated from Handroanthus Heptaphyllus (Vell.) Mattos, a native species from Paraguay, was studied as a hemisynthetic precursor of lapachol acetate {[3-(3-methyl-but-2-enyl)-1,4-dioxonaphthalen-2-yl]acetate} for the first time by Cooke et al. (1939). Jacobsen & Torsell (1973) prepared lapachol acetate using 2-acetoxy-1,4-naphthoquinone as a precursor with 79% yield. We developed an optimization of the first synthesis of lapachol acetate developed by Cooke et al. (1939), introducing several modifications with the purpose of standardizing it and increasing the yield to 97.5%. Details of the synthesis and the spectroscopic characterization are included in the supporting information. Noting that the of lapachol acetate had not been reported, we also undertook the crystallization and structure determination.
2. Structural commentary
The lapachol acetate molecule (Fig. 1) is the ester of lapachol at the alcohol moiety (O2 in Larsen et al., 1992). The molecule is composed of three planar groups, the napthoquinone nucleus comprising atoms C1 to C11, O1, O2 and O4, and two smaller butenyl and acetate residues at the sides. The butenyl and acetate mean planes are inclined to the naphthoquinone mean plane by 65.80 (10) and 78.52 (11)°, respectively. The lapachol acetate molecule shows typical bond distances and angles, and overlaps very closely with the common part of the lapachol molecule in the structure LAPA II reported by Larsen et al. (1992) (Fig. 2), with an average deviation of C/O atomic positions of 0.158 Å and a maximum deviation of 0.309 Å for atom O4. This is rather unexpected, since the butenyl moiety shows rotational flexibility around the C3—C11 and C11—C12 bonds. However, in both reported lapachol polymorphs (Larsen et al., 1992) and two derivatives (Eyong et al., 2015; da Silva et al., 2012) reported in the CSD (Groom et al., 2016) with the same rotational freedom, the dihedral angle between the planar C=C(CH3)2 group and the naphthoquinone nucleus is close to 70°, as observed in lapachol acetate.
3. Supramolecular features
Crystals of lapachol acetate are held together by weak dipolar and dispersion forces because there is no strong H-donor residue in the molecule. Molecules connect with other units through weak C(sp3)—H⋯O=C hydrogen bonds H11B⋯O4i and H15A⋯O1ii (Table 1, Fig. S4a in the supporting information) defining double sheets of molecules parallel to (01). The butenyl residue of a screw-rotation-related molecule adds an intermolecular π–π interaction with the naphtoquinone residue to the sheets with atoms C12iii and C13iii located at 3.243 and 3.544 Å, respectively, from the naphtoquinone plane (Fig. S4b). Finally, the double sheets stack along the [01] direction where naphthoquinone nuclei of inversion-related molecules display π–π interactions. Ring 1 (C1–C4/C10/C9; centroid Cg1) of the molecule is close to ring 2 (C5—C10; centroid Cg2), the Cg2⋯Cg1iv distance being 3.8532 (12) Å); Cg2⋯Cg2iv is the shortest distance [3.8035 (13) Å], with an average perpendicular distance between naphtoquinone planes of 3.3787 (9) Å, as shown in Fig. S4c [symmetry codes: (i) −x + , y − , −z + ; (ii) x + , −y + , z + ; (iii) − x, + y, − z; (iv) 1 − x, 1 − y, 1 − z). Considering the Hirshfeld (HF) surface (Turner et al., 2017) mapped over dnorm (analysis of the contact distances di and de from the HF surface to the nearest atom inside and outside, respectively), these interactions in one molecule are shown in Fig. 3a and the sheets of molecules defined by them in Fig. 3b. The 2D fingerprints of lapachol acetate (shown in Fig. S5 of the supporting information) show no particular features other than the aforementioned H⋯O/O⋯H contacts, which comprise 28.2% of the total HF surface, revealing their importance in the formation of the crystal.
|
In order to describe these interactions in a whole-of-molecule approach, accurate model energies of the interactions between molecules of lapachol acetate in the crystal were analysed. The interactions were calculated using the B3LYP/6–31 G(d,p) energy model implemented in CrystalExplorer (Turner et al., 2017), which uses quantum mechanical charge distributions for unperturbed molecules (Mackenzie et al., 2017). In the calculations, the total energy is modelled as the sum of the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) terms (Mackenzie et al., 2017). The strongest pairwise interaction with a total energy of −54.7 kJ mol−1 corresponds to the interaction between neighbouring aromatic systems, while the molecules connected through a combination of π–π interactions between the butenyl and naphtoquinone residues and C11—H11B⋯O4i hydrogen bonds have a total energy of −33.6 kJ mol−1. The weakest interaction, C15–H15A⋯O1ii, shows a total energy of −18.3 kJ mol−1 (Fig. 4a). The energy framework diagrams for lapachol acetate (Fig. 4b) show that electrostatic forces act to keep pairs of inversion-related chains of molecules joined while dispersion forces act in three dimensions to build the The total energy diagram shows a high resemblance to the dispersion framework, showing that these forces are the most important in the crystal. The interaction energies for selected molecular pairs in the first coordination sphere around the are summarized in Table S1 and Fig. S6 of the supporting information.
4. Database survey
Lapachol and its derivatives are rather scarce in the Cambridge et al., 2016) with only 31 entries matching the basic C—O framework of lapachol. Two lapachol polymorphs LAPA I and LAPA II (Larsen et al., 1992) have been reported at 105 K, as mentioned above. Two additional lapachol derivatives obtained by replacing one H atom have been reported during the current decade: 4-(3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-2-methylbut-2-enal (Eyong et al., 2015) is an aldehyde of lapachol at C15 and 3-(3-methylbut-2-en-1-yl)-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-methylbenzenesulfonate (Silva et al., 2012) is a sulfonate at O2. Lapachol acetate is the third derivative of this kind reported. Some lapachol derivatives where of the 3-methy-2-butenyl moiety or coordination with metals (as lapacholate) have additionally been reported, but are not related to lapachol acetate.
Database (Version 5.40, update 2 of May 2019; Groom5. Synthesis and crystallization
Lapachol was obtained from an extract of Handroanthus Heptaphyllus (Vell.) Mattos, the pink trumpet tree (or lapacho negro) as described in the supporting information. 201 mg (0.823 mmol) of lapachol were dissolved in 5 ml of dry acetic anhydride and a catalytic amount of dry zinc chloride (ZnCl2) was added. The suspension was refluxed for 30 min under an inert atmosphere (N2). The solution was allowed to cool and 5 ml of glacial acetic acid and later 50 ml of distilled water were added. The final mixture was refluxed for 10 min and allowed to precipitate overnight. The crude solid was filtered, dried and purified by (hexane: AcOEt, 9: 1 v/v) to obtain pure lapachol acetate as yellow crystals (see the detailed description of the obtention of lapachol and the synthesis of lapachol acetate in the supporting information and the detailed spectroscopic study in Figs. S1–S3). Adequate crystals for diffraction were obtained by dissolving a few mg of the solid in a minimum amount of AcOEt in a rubber-stop vial with a syringe needle through the center to promote slow evaporation of the solvent at room temperature.
6. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and included as riding contributions, with isotropic displacement parameters set at 1.2–1.5 times the Ueq value of the parent atom. The C17 methyl group shows rotational disorder that was modelled with two positions that were refined with a fixed C—H bond distance but with rotational freedom (AFIX 147) converging at occupancies of 0.79 (3) and 0.21 (3).
details are summarized in Table 2Supporting information
CCDC reference: 1947085
https://doi.org/10.1107/S2056989019011393/ex2023sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019011393/ex2023Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019011393/ex2023Isup3.cml
Details of synthesis, spectroscopic characterization and intermolecular interactions of lapachol acetate. DOI: https://doi.org/10.1107/S2056989019011393/ex2023sup4.pdf
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C17H16O4 | Dx = 1.292 Mg m−3 |
Mr = 284.30 | Melting point: 352(1) K |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 12.0914 (8) Å | Cell parameters from 7958 reflections |
b = 9.4741 (6) Å | θ = 4.9–75.7° |
c = 12.7761 (9) Å | µ = 0.75 mm−1 |
β = 92.943 (4)° | T = 296 K |
V = 1461.64 (17) Å3 | Block, yellow |
Z = 4 | 0.26 × 0.22 × 0.18 mm |
F(000) = 600 |
Bruker D8 Venture/Photon 100 CMOS diffractometer | 2996 independent reflections |
Radiation source: Cu Incoatec microsource | 1972 reflections with I > 2σ(I) |
Detector resolution: 10.4167 pixels mm-1 | Rint = 0.038 |
\j and ω scans | θmax = 79.2°, θmin = 4.9° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −13→15 |
Tmin = 0.654, Tmax = 0.754 | k = −11→9 |
7496 measured reflections | l = −16→15 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.053P)2 + 0.3463P] where P = (Fo2 + 2Fc2)/3 |
2996 reflections | (Δ/σ)max < 0.001 |
193 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.22182 (14) | 0.34297 (18) | 0.34233 (12) | 0.0686 (5) | |
C1 | 0.25877 (15) | 0.3726 (2) | 0.42998 (15) | 0.0468 (5) | |
O2 | 0.17186 (11) | 0.16221 (16) | 0.49500 (11) | 0.0540 (4) | |
C2 | 0.24117 (15) | 0.2761 (2) | 0.51890 (15) | 0.0441 (5) | |
O3 | 0.30987 (14) | 0.05735 (18) | 0.41410 (15) | 0.0756 (5) | |
C3 | 0.28099 (15) | 0.2973 (2) | 0.61720 (15) | 0.0443 (5) | |
O4 | 0.39859 (12) | 0.43627 (17) | 0.72673 (11) | 0.0586 (4) | |
C4 | 0.35332 (15) | 0.4218 (2) | 0.64003 (14) | 0.0440 (5) | |
C5 | 0.42753 (17) | 0.6488 (2) | 0.57604 (17) | 0.0529 (5) | |
H5 | 0.460252 | 0.663841 | 0.642578 | 0.063* | |
C6 | 0.43917 (18) | 0.7485 (3) | 0.49821 (19) | 0.0615 (6) | |
H6 | 0.479948 | 0.830043 | 0.512619 | 0.074* | |
C7 | 0.39054 (19) | 0.7275 (3) | 0.39920 (19) | 0.0612 (6) | |
H7 | 0.397581 | 0.795506 | 0.347504 | 0.073* | |
C8 | 0.33163 (17) | 0.6057 (3) | 0.37709 (17) | 0.0547 (5) | |
H8 | 0.299507 | 0.591249 | 0.310242 | 0.066* | |
C9 | 0.32006 (15) | 0.5041 (2) | 0.45465 (15) | 0.0444 (5) | |
C10 | 0.36737 (15) | 0.5268 (2) | 0.55524 (15) | 0.0426 (4) | |
C11 | 0.26046 (18) | 0.1969 (2) | 0.70541 (16) | 0.0533 (5) | |
H11A | 0.260239 | 0.249275 | 0.770631 | 0.064* | |
H11B | 0.188017 | 0.154157 | 0.693426 | 0.064* | |
C12 | 0.34630 (17) | 0.0828 (2) | 0.71541 (16) | 0.0505 (5) | |
H12 | 0.350981 | 0.023269 | 0.657923 | 0.061* | |
C13 | 0.41622 (17) | 0.0566 (2) | 0.79619 (16) | 0.0510 (5) | |
C14 | 0.4219 (2) | 0.1431 (3) | 0.89505 (18) | 0.0719 (7) | |
H14A | 0.412225 | 0.082669 | 0.954178 | 0.108* | |
H14B | 0.364369 | 0.213071 | 0.891358 | 0.108* | |
H14C | 0.492685 | 0.188880 | 0.902682 | 0.108* | |
C15 | 0.4952 (2) | −0.0652 (3) | 0.7946 (2) | 0.0684 (7) | |
H15A | 0.569682 | −0.031304 | 0.805937 | 0.103* | |
H15B | 0.487694 | −0.111606 | 0.727755 | 0.103* | |
H15C | 0.478890 | −0.130827 | 0.848916 | 0.103* | |
C16 | 0.2148 (2) | 0.0591 (2) | 0.43364 (17) | 0.0557 (5) | |
C17 | 0.1276 (2) | −0.0443 (3) | 0.3994 (2) | 0.0785 (8) | 0.79 (3) |
H17A | 0.072901 | 0.001798 | 0.354279 | 0.118* | 0.79 (3) |
H17B | 0.093164 | −0.081079 | 0.459726 | 0.118* | 0.79 (3) |
H17C | 0.160520 | −0.120203 | 0.362194 | 0.118* | 0.79 (3) |
C17' | 0.1276 (2) | −0.0443 (3) | 0.3994 (2) | 0.0785 (8) | 0.21 (3) |
H17D | 0.058095 | −0.016088 | 0.425921 | 0.118* | 0.21 (3) |
H17E | 0.147328 | −0.136138 | 0.426025 | 0.118* | 0.21 (3) |
H17F | 0.121161 | −0.047259 | 0.324252 | 0.118* | 0.21 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0903 (12) | 0.0652 (12) | 0.0484 (8) | −0.0047 (9) | −0.0162 (8) | 0.0054 (8) |
C1 | 0.0471 (10) | 0.0480 (12) | 0.0449 (11) | 0.0085 (9) | −0.0009 (8) | 0.0029 (9) |
O2 | 0.0536 (8) | 0.0488 (9) | 0.0596 (8) | −0.0054 (7) | 0.0025 (7) | −0.0014 (7) |
C2 | 0.0430 (9) | 0.0407 (11) | 0.0486 (10) | 0.0036 (9) | 0.0025 (8) | 0.0002 (9) |
O3 | 0.0664 (10) | 0.0607 (12) | 0.1004 (13) | 0.0026 (9) | 0.0100 (9) | −0.0191 (10) |
C3 | 0.0449 (10) | 0.0430 (12) | 0.0456 (10) | 0.0058 (9) | 0.0060 (8) | 0.0037 (9) |
O4 | 0.0653 (9) | 0.0646 (11) | 0.0452 (8) | 0.0030 (8) | −0.0055 (7) | −0.0027 (7) |
C4 | 0.0431 (10) | 0.0448 (12) | 0.0443 (10) | 0.0105 (9) | 0.0051 (8) | −0.0028 (9) |
C5 | 0.0557 (12) | 0.0456 (13) | 0.0581 (12) | 0.0034 (10) | 0.0095 (10) | −0.0063 (11) |
C6 | 0.0621 (13) | 0.0424 (14) | 0.0813 (16) | −0.0016 (11) | 0.0171 (12) | −0.0029 (12) |
C7 | 0.0673 (14) | 0.0464 (14) | 0.0715 (15) | 0.0066 (11) | 0.0198 (12) | 0.0138 (12) |
C8 | 0.0571 (12) | 0.0534 (14) | 0.0539 (12) | 0.0109 (11) | 0.0061 (9) | 0.0098 (11) |
C9 | 0.0457 (10) | 0.0428 (12) | 0.0452 (10) | 0.0088 (9) | 0.0065 (8) | 0.0049 (9) |
C10 | 0.0431 (9) | 0.0373 (11) | 0.0479 (10) | 0.0086 (8) | 0.0078 (8) | −0.0009 (9) |
C11 | 0.0566 (12) | 0.0559 (14) | 0.0479 (11) | −0.0022 (10) | 0.0067 (9) | 0.0092 (10) |
C12 | 0.0625 (12) | 0.0431 (13) | 0.0458 (10) | −0.0042 (10) | 0.0010 (9) | 0.0028 (9) |
C13 | 0.0543 (11) | 0.0490 (13) | 0.0494 (11) | −0.0102 (10) | −0.0005 (9) | 0.0040 (10) |
C14 | 0.0739 (15) | 0.086 (2) | 0.0545 (13) | −0.0051 (14) | −0.0078 (11) | −0.0076 (13) |
C15 | 0.0697 (14) | 0.0583 (16) | 0.0756 (15) | 0.0019 (13) | −0.0109 (12) | 0.0043 (13) |
C16 | 0.0658 (13) | 0.0453 (13) | 0.0556 (12) | −0.0005 (11) | −0.0019 (10) | 0.0025 (10) |
C17 | 0.0874 (18) | 0.0623 (18) | 0.0851 (18) | −0.0195 (14) | −0.0028 (14) | −0.0071 (15) |
C17' | 0.0874 (18) | 0.0623 (18) | 0.0851 (18) | −0.0195 (14) | −0.0028 (14) | −0.0071 (15) |
O1—C1 | 1.217 (2) | C11—C12 | 1.500 (3) |
C1—C9 | 1.476 (3) | C11—H11A | 0.9700 |
C1—C2 | 1.482 (3) | C11—H11B | 0.9700 |
O2—C16 | 1.371 (3) | C12—C13 | 1.324 (3) |
O2—C2 | 1.391 (2) | C12—H12 | 0.9300 |
C2—C3 | 1.337 (3) | C13—C15 | 1.499 (3) |
O3—C16 | 1.189 (3) | C13—C14 | 1.504 (3) |
C3—C4 | 1.489 (3) | C14—H14A | 0.9600 |
C3—C11 | 1.505 (3) | C14—H14B | 0.9600 |
O4—C4 | 1.218 (2) | C14—H14C | 0.9600 |
C4—C10 | 1.487 (3) | C15—H15A | 0.9600 |
C5—C6 | 1.384 (3) | C15—H15B | 0.9600 |
C5—C10 | 1.384 (3) | C15—H15C | 0.9600 |
C5—H5 | 0.9300 | C16—C17' | 1.488 (3) |
C6—C7 | 1.382 (3) | C16—C17 | 1.488 (3) |
C6—H6 | 0.9300 | C17—H17A | 0.9600 |
C7—C8 | 1.377 (3) | C17—H17B | 0.9600 |
C7—H7 | 0.9300 | C17—H17C | 0.9600 |
C8—C9 | 1.394 (3) | C17'—H17D | 0.9600 |
C8—H8 | 0.9300 | C17'—H17E | 0.9600 |
C9—C10 | 1.396 (3) | C17'—H17F | 0.9600 |
O1—C1—C9 | 123.21 (19) | H11A—C11—H11B | 107.9 |
O1—C1—C2 | 120.2 (2) | C13—C12—C11 | 127.8 (2) |
C9—C1—C2 | 116.57 (16) | C13—C12—H12 | 116.1 |
C16—O2—C2 | 115.91 (16) | C11—C12—H12 | 116.1 |
C3—C2—O2 | 120.42 (18) | C12—C13—C15 | 121.0 (2) |
C3—C2—C1 | 124.68 (19) | C12—C13—C14 | 123.5 (2) |
O2—C2—C1 | 114.76 (16) | C15—C13—C14 | 115.45 (19) |
C2—C3—C4 | 118.84 (18) | C13—C14—H14A | 109.5 |
C2—C3—C11 | 122.93 (19) | C13—C14—H14B | 109.5 |
C4—C3—C11 | 118.16 (17) | H14A—C14—H14B | 109.5 |
O4—C4—C10 | 121.63 (19) | C13—C14—H14C | 109.5 |
O4—C4—C3 | 119.97 (19) | H14A—C14—H14C | 109.5 |
C10—C4—C3 | 118.40 (16) | H14B—C14—H14C | 109.5 |
C6—C5—C10 | 120.2 (2) | C13—C15—H15A | 109.5 |
C6—C5—H5 | 119.9 | C13—C15—H15B | 109.5 |
C10—C5—H5 | 119.9 | H15A—C15—H15B | 109.5 |
C7—C6—C5 | 120.4 (2) | C13—C15—H15C | 109.5 |
C7—C6—H6 | 119.8 | H15A—C15—H15C | 109.5 |
C5—C6—H6 | 119.8 | H15B—C15—H15C | 109.5 |
C8—C7—C6 | 120.0 (2) | O3—C16—O2 | 121.9 (2) |
C8—C7—H7 | 120.0 | O3—C16—C17' | 127.4 (2) |
C6—C7—H7 | 120.0 | O2—C16—C17' | 110.7 (2) |
C7—C8—C9 | 120.2 (2) | O3—C16—C17 | 127.4 (2) |
C7—C8—H8 | 119.9 | O2—C16—C17 | 110.7 (2) |
C9—C8—H8 | 119.9 | C16—C17—H17A | 109.5 |
C8—C9—C10 | 119.8 (2) | C16—C17—H17B | 109.5 |
C8—C9—C1 | 119.93 (18) | H17A—C17—H17B | 109.5 |
C10—C9—C1 | 120.30 (18) | C16—C17—H17C | 109.5 |
C5—C10—C9 | 119.48 (19) | H17A—C17—H17C | 109.5 |
C5—C10—C4 | 119.83 (18) | H17B—C17—H17C | 109.5 |
C9—C10—C4 | 120.69 (19) | C16—C17'—H17D | 109.5 |
C12—C11—C3 | 112.29 (17) | C16—C17'—H17E | 109.5 |
C12—C11—H11A | 109.1 | H17D—C17'—H17E | 109.5 |
C3—C11—H11A | 109.1 | C16—C17'—H17F | 109.5 |
C12—C11—H11B | 109.1 | H17D—C17'—H17F | 109.5 |
C3—C11—H11B | 109.1 | H17E—C17'—H17F | 109.5 |
C16—O2—C2—C3 | −112.3 (2) | O1—C1—C9—C10 | −175.23 (19) |
C16—O2—C2—C1 | 71.8 (2) | C2—C1—C9—C10 | 6.1 (3) |
O1—C1—C2—C3 | 178.0 (2) | C6—C5—C10—C9 | 1.0 (3) |
C9—C1—C2—C3 | −3.2 (3) | C6—C5—C10—C4 | −178.70 (18) |
O1—C1—C2—O2 | −6.2 (3) | C8—C9—C10—C5 | −1.5 (3) |
C9—C1—C2—O2 | 172.54 (16) | C1—C9—C10—C5 | 177.96 (17) |
O2—C2—C3—C4 | −178.93 (16) | C8—C9—C10—C4 | 178.22 (17) |
C1—C2—C3—C4 | −3.4 (3) | C1—C9—C10—C4 | −2.3 (3) |
O2—C2—C3—C11 | 4.0 (3) | O4—C4—C10—C5 | −4.1 (3) |
C1—C2—C3—C11 | 179.59 (18) | C3—C4—C10—C5 | 175.37 (17) |
C2—C3—C4—O4 | −173.37 (18) | O4—C4—C10—C9 | 176.20 (18) |
C11—C3—C4—O4 | 3.8 (3) | C3—C4—C10—C9 | −4.4 (3) |
C2—C3—C4—C10 | 7.2 (3) | C2—C3—C11—C12 | 88.5 (2) |
C11—C3—C4—C10 | −175.65 (17) | C4—C3—C11—C12 | −88.5 (2) |
C10—C5—C6—C7 | 0.3 (3) | C3—C11—C12—C13 | 118.3 (2) |
C5—C6—C7—C8 | −1.1 (3) | C11—C12—C13—C15 | 178.2 (2) |
C6—C7—C8—C9 | 0.6 (3) | C11—C12—C13—C14 | −1.0 (4) |
C7—C8—C9—C10 | 0.7 (3) | C2—O2—C16—O3 | 9.9 (3) |
C7—C8—C9—C1 | −178.78 (19) | C2—O2—C16—C17' | −170.81 (18) |
O1—C1—C9—C8 | 4.2 (3) | C2—O2—C16—C17 | −170.81 (18) |
C2—C1—C9—C8 | −174.46 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O4i | 0.97 | 2.55 | 3.274 (3) | 131 |
C15—H15A···O1ii | 0.96 | 2.59 | 3.485 (3) | 156 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
The authors are indebted to N. Di Benedetto for her contribution to the single-crystal X-ray diffraction data processing and to G. Cebrián-Torrejón for his assistance in the spectroscopic characterization. Funding for this research was provided by Programa de Desarrollo de Ciencias Basicas - PEDECIBA - Uruguay (grant to Leopoldo Suescun, Enrique Pandolfi); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción (Paraguay).
References
Araújo, I. A. C., de Paula, R. C., Alves, C. L., Faria, K. F., Oliveira, M. M., Mendes, G. G., Dias, E. M. F. A., Ribeiro, R. R., Oliveira, A. B. & Silva, S. M. D. (2019). Exp. Parasitol. 199, 67–73. PubMed Google Scholar
Babula, P., Adam, V., Havel, L. & Kizek, R. (2007). Ceska Slov Farm Cas Ceske Farm Spolecnosti Slov Farm Spolecnosti, 56, 114–20. CAS Google Scholar
Barbosa Coitinho, L., Fumagalli, F., da Rosa-Garzon, N. G., da Silva Emery, F. & Cabral, H. (2019). Prep. Biochem. Biotechnol. 49, 459–463. CrossRef CAS PubMed Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruneton, J. (2001). Farmacognosia. Fitoquímica. Plantas medicinales, edited by A. Villar del Fresno, E. Carretero and M. Rebuelta. Spain: ACRIBIA Editorial S. A. Google Scholar
Cooke, R. G., Macbeth, A. K. & Winzor, F. L. (1939). J. Chem. Soc. pp. 878–884. CrossRef Google Scholar
Eyong, K. O., Ketsemen, H. L., Ghansenyuy, S. Y. & Folefoc, G. N. (2015). Med. Chem. Res. 24, 965–969. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jacobsen, N. & Torsell, K. (1973). Acta Chem. Scand. 27, 3211–3216. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Larsen, I. K., Andersen, L. A. & Pedersen, B. F. (1992). Acta Cryst. C48, 2009–2013. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miranda, S. E., Lemos, J. A., Fernandes, R. S., Ottoni, F. M., Alves, R. J., Ferretti, A., Rubello, D., Cardoso, V. N. & Branco de Barrosa, A. L. (2019). Rev. Esp. Med. Nucl. Ima. 38, 167–172. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, E. N. da de Júnior, Melo, I. M. M., Diogo, E. B. T., Costa, V. A., de Souza Filho, J. D., Valença, W. O., Camara, C. A., de Oliveira, R. N., de Araujo, A. S., Emery, F. S., dos Santos, M. R., de Simone, C. A., Menna-Barreto, R. F. S. & de Castro, S. L. (2012). Eur. J. Med. Chem. 52, 304–312. PubMed Google Scholar
Silva, F. C. da & Ferreira, V. F. (2016). Curr. Org. Synth. 13, 334–371. Google Scholar
Strauch, M. A., Tomaz, M. A., Monteiro-Machado, M., Cons, B. L., Patrão-Neto, F. C., Teixeira-Cruz, J. D. M., Tavares-Henriques, M. D. S., Nogueira-Souza, P. D., Gomes, S. L. S., Costa, P. R. R., Schaeffer, E., da Silva, A. J. M. & Melo, P. A. (2019). PLoS One, 14, e0211229. CrossRef PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.