research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and magnetic properties of bis­­[butyl­tris­­(1H-pyrazol-1-yl)borato]iron(II)

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine, and bUkrOrgSyntez Ltd, Chervonotkatska Street 67, Kyiv 02094, Ukraine
*Correspondence e-mail: mcs@univ.kiev.ua

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 15 July 2019; accepted 9 August 2019; online 20 August 2019)

The asymmetric unit of the title compound, [Fe(C13H18BN6)2], contains two half independent complex mol­ecules. In each complex, the FeII atom is located on an inversion center and is surrounded by two scorpionate ligand butyl­tris­(1H-pyrazol-1-yl)borate mol­ecules that coordinate to the iron(II) ion through the N atoms of the pyrazole groups. The two independent complex mol­ecules differ essentially in the conformation of the butyl substituents. In the crystal, the complex mol­ecules are linked by a series of C—H⋯π inter­actions, which generate a supra­molecular three-dimensional structure. At 120 K, the average Fe—N bond distance is 1.969 Å, indicating the low-spin state of the iron(II) atom, which does not change upon heating, as demonstrated by high-temperature magnetic susceptibility measurements.

1. Chemical context

Scorpionates, coordination metal complexes of poly(1-pyrazol­yl)borates, have been studied intensively since the pioneering work of Trofimenko (1999[Trofimenko, S. (1999). Scorpionates - the Coordination Chemistry of Polypyrazylborate Ligands. London: Imperial College Press.]). Iron(II) derivatives are particularly inter­esting because of the spin-state crossover between 1A1 low-spin (LS) and 5T2g high-spin (HS) observed for several scorpionate ligands (Long et al., 2004[Long, G. J., Grandjean, F. & Reger, D. L. (2004). Top. Curr. Chem. 233, 91-122.]; Halcrow, 2007[Halcrow, M. A. (2007). Polyhedron, 26, 3523-3576.]). Complexes of this type are sensitive to the effects induced by substituents on the electronic structure of the ligand and/or steric crowding (Hamon et al., 2008[Hamon, P., Thépot, J. Y., Le Floch, M., Boulon, M. E., Cador, O., Golhen, S., Ouahab, L., Fadel, L., Saillard, J. Y. & Hamon, J. R. (2008). Angew. Chem. Int. Ed. 47, 8687-8691.]). The prototypical [Fe(HB(pz)3)2], the LS compound at 295 K, undergoes a spin-state crossover to the HS state upon heating to ca 420 K (Long et al., 2004[Long, G. J., Grandjean, F. & Reger, D. L. (2004). Top. Curr. Chem. 233, 91-122.]). Introducing methyl substituents to the pyrazole moieties decreases the ligand field and shifts the spin crossover down in temperature or completely stabilizes the high-spin state of the iron(II) ion (Long et al., 2004[Long, G. J., Grandjean, F. & Reger, D. L. (2004). Top. Curr. Chem. 233, 91-122.]). In contrast, scorpionate ligands bearing an organic substituent instead of the hydrogen atom on the hub boron atom demonstrate stabilization of the low-spin state and shift of the spin transition to the higher temperature range (Hamon et al., 2008[Hamon, P., Thépot, J. Y., Le Floch, M., Boulon, M. E., Cador, O., Golhen, S., Ouahab, L., Fadel, L., Saillard, J. Y. & Hamon, J. R. (2008). Angew. Chem. Int. Ed. 47, 8687-8691.]).

Our continuing inter­est consists of a study of iron(II) complexes bearing alkyl chains (Seredyuk, 2012[Seredyuk, M. (2012). Inorg. Chim. Acta, 380, 65-71.]; Seredyuk et al., 2006[Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385-390.], 2010[Seredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Verdaguer, M., Villain, F. & Gütlich, P. (2010). Inorg. Chem. 49, 10022-10031.], 2016[Seredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627-39635.]) and those based on azol ligands (Seredyuk et al., 2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2015[Seredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424-7432.]). Here we report on the synthesis, crystal structure and magnetic properties of an alkyl­ated charge-neutral iron(II) complex based on the scorpionate ligand butyl­tris­(1H-pyrazol-1-yl)borate.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains two half independent complex mol­ecules. In each complex, the FeII atom, that is located on an inversion center, is surrounded by two scorpionate ligands; each one providing three pyrazole moieties coordinated in a fac mode, thus a pseudo-octa­hedral [FeN6] coordination polyhedron is formed (Fig. 1[link]). The two complex mol­ecules differ essentially in the conformation of the butyl groups. One of the methyl­ene groups of the butyl substituents of the Fe1-based complex shows a gauche conformation, whilst the remaining two methyl­ene groups are in the trans conformation. Oppositely, the three methyl­ene groups of the butyl substituent of the Fe2-based mol­ecule are close to a trans conformation (Fig. 1[link]).

[Figure 1]
Figure 1
Mol­ecular structure of the two complex mol­ecules of the title compound showing the atom labelling [symmetry codes: (i) −x, −y, −z + 1; (ii) −x + 1, −y, −z + 1]. Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms have been omitted.

The average Fe—N bond length is 1.969 Å (Table 1[link]), a typical value for the low-spin state of the iron(II) ion (Gütlich & Goodwin, 2004[Gütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1-47.]). The average trigonal distortion parameters Φ = Σ124(60 - θi)/24, where θi is the angle generated by superposition of two opposite faces of the octa­hedron (Chang et al. 1990[Chang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814-6827.],) and Σ = Σ112(|ϕi − 90|), where ϕi are the deviations from 90° of the cis-N—Fe—N angles in the coordination sphere (Drew et al. 1995[Drew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035-1038.]), are 1.27 and 24.38°, respectively, which correspond to a relatively low distortion of the coordination polyhedron and are typical for the low-spin state of iron(II) (Guionneau et al., 2004[Guionneau, P., Marchivie, M., Bravic, G., Létard, J. F. & Chasseau, D. (2004). Top. Curr. Chem. 234, 97-128.]). The averaged volume of the coordination polyhedron is equal to 10.155 Å3.

Table 1
Selected bond lengths (Å)

Fe1—N1 1.956 (2) Fe2—N9 1.963 (2)
Fe1—N2 1.969 (3) Fe2—N7 1.977 (3)
Fe1—N3 1.971 (2) Fe2—N8 1.977 (2)

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯π inter­actions (Fig. 2[link], Table 2[link]). The pyrazole–butyl or but­yl–butyl contacts link the individual complex mol­ecules to form layers parallel to the bc plane. The layers are linked by C—H⋯π pyrazole–pyrazole inter­actions (Table 2[link]), leading to the formation of a supra­molecular three-dimensional structure, as shown in Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 and Cg11 are the centroids of rings N2/N5/C4–C6 and N8/N11/C17–C19, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg11 0.93 3.00 3.674 (4) 131
C12—H12ACg2i 0.97 2.87 3.703 (3) 145
C26—H26CCg11ii 0.96 2.84 3.720 (4) 153
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound, with the C—H⋯π contacts (see Table 2[link] for details) represented by dashed lines. For clarity, only the H atoms involved are shown, as blue balls for the Fe1 complex mol­ecule and red balls for the Fe2 complex mol­ecule.

4. Magnetic measurements

Variable-temperature magnetic susceptibility measurements were performed on single crystals (20 mg) of the title compound using a Quantum Design MPMS2 superconducting quantum inter­ference device (SQUID) susceptometer operating at 1 T in the temperature range 10–400 K. Experimental susceptibilities were corrected for the diamagnetism of the holder (gelatine capsule) and of the constituent atoms by the application of Pascal's constants. The magnetic behaviour of the compound recorded at 2 K min−1 is shown in Fig. 3[link] in the form of χMT versus T (χM is the molar magnetic susceptibility and T is the temperature). At 300 K, the χMT value is close to zero, and on heating the value remains constant up to 400 K. This corroborates well with the observed short average Fe—N bond length at 120 K and identifies the low-spin state of the central iron(II) ion.

[Figure 3]
Figure 3
χMT versus T plot for the title compound.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes containing the iron(II) ion based on a scorpionate ligand with a tri(1H-pyrazol-1-yl)borate fragment yielded 39 hits, with Fe—N bond lengths lying in the ranges 1.956–1.995 and 2.162–2.246 Å, respectively, for the low- and high-spin states of the iron(II) ion.

6. Synthesis and crystallization

The butyl­tris­(1H-pyrazol-1-yl)borate ligand and the title compound were synthesized according to the reported procedures (Reger & Tarquini, 1982[Reger, D. L. & Tarquini, M. E. (1982). Inorg. Chem. 21, 840-842.]; Myers et al., 2008[Myers, W. K., Duesler, E. N. & Tierney, D. L. (2008). Inorg. Chem. 47, 6701-6710.]). The slow diffusion of hexane vapour into a chloro­form solution of the title compound led to the separation of orange well-shaped crystals.

Elemental analysis for C26H36B2FeN12 (found): C, 52.56; H, 6.11; N, 28.29%; (calculated): C, 52.22; H, 6.05; N, 28.38%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C13H18BN6)2]
Mr 594.14
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 16.0762 (4), 10.1827 (2), 18.3410 (3)
β (°) 108.785 (2)
V3) 2842.48 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.57
Crystal size (mm) 0.08 × 0.04 × 0.04
 
Data collection
Diffractometer Agilent SuperNova Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.769, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17726, 7222, 4596
Rint 0.053
(sin θ/λ)max−1) 0.700
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.184, 0.78
No. of reflections 7222
No. of parameters 373
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.71
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Bis[butyltris(1H-pyrazol-1-yl)borato]iron(II) top
Crystal data top
[Fe(C13H18BN6)2]F(000) = 1248
Mr = 594.14Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.0762 (4) ÅCell parameters from 2385 reflections
b = 10.1827 (2) Åθ = 3.9–24.7°
c = 18.3410 (3) ŵ = 0.57 mm1
β = 108.785 (2)°T = 120 K
V = 2842.48 (11) Å3Prismatic, orange
Z = 40.08 × 0.04 × 0.04 mm
Data collection top
Agilent SuperNova Sapphire3
diffractometer
4596 reflections with I > 2σ(I)
φ scans and ω scans with κ offsetRint = 0.053
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
θmax = 29.8°, θmin = 2.9°
Tmin = 0.769, Tmax = 1.000h = 2121
17726 measured reflectionsk = 1214
7222 independent reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 0.78 w = 1/[σ2(Fo2) + (0.1086P)2 + 7.1302P]
where P = (Fo2 + 2Fc2)/3
7222 reflections(Δ/σ)max = 0.042
373 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.71 e Å3
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.21 (release 14-08-2012 CrysAlis171 .NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.500000.0155 (2)
Fe20.500000.000000.500000.0164 (2)
N10.08358 (16)0.1221 (2)0.43205 (13)0.0180 (7)
N20.07144 (17)0.0187 (2)0.43129 (14)0.0190 (7)
N30.06259 (17)0.1526 (2)0.55863 (13)0.0186 (7)
N40.05505 (17)0.2339 (2)0.40633 (13)0.0191 (7)
N50.09021 (17)0.1412 (3)0.40957 (14)0.0195 (7)
N60.07608 (17)0.2625 (2)0.52172 (13)0.0185 (7)
C10.1716 (2)0.1239 (3)0.40482 (17)0.0233 (9)
C20.2013 (2)0.2375 (3)0.36109 (18)0.0256 (9)
C30.1259 (2)0.3041 (3)0.36344 (17)0.0238 (9)
C40.1166 (2)0.0672 (3)0.40370 (17)0.0232 (9)
C50.1659 (2)0.0017 (3)0.36471 (18)0.0257 (10)
C60.1480 (2)0.1291 (3)0.37018 (17)0.0219 (9)
C70.0940 (2)0.1777 (3)0.63425 (16)0.0211 (8)
C80.1281 (2)0.3052 (3)0.64677 (17)0.0212 (8)
C90.1151 (2)0.3554 (3)0.57409 (17)0.0215 (8)
C100.0694 (2)0.3998 (3)0.40007 (17)0.0229 (9)
C110.0458 (2)0.4211 (3)0.31252 (17)0.0281 (10)
C120.0626 (2)0.5604 (3)0.28979 (18)0.0263 (9)
C130.1591 (3)0.5980 (4)0.3142 (2)0.0374 (11)
B10.0458 (2)0.2628 (4)0.43210 (18)0.0196 (9)
N70.42396 (17)0.1237 (3)0.53253 (14)0.0206 (7)
N80.42220 (17)0.0242 (2)0.39276 (14)0.0191 (7)
N90.56735 (17)0.1520 (2)0.48428 (14)0.0199 (7)
N100.39344 (17)0.2352 (2)0.49125 (14)0.0200 (7)
N110.39382 (16)0.1463 (2)0.36572 (14)0.0175 (7)
N120.52540 (17)0.2641 (2)0.45014 (14)0.0195 (7)
C140.3881 (2)0.1201 (3)0.58890 (18)0.0254 (9)
C150.3332 (2)0.2279 (4)0.58413 (19)0.0292 (10)
C160.3382 (2)0.2988 (3)0.52117 (17)0.0229 (9)
C170.3881 (2)0.0589 (3)0.33497 (17)0.0222 (9)
C180.3368 (2)0.0083 (3)0.26958 (18)0.0234 (9)
C190.3418 (2)0.1382 (3)0.29165 (17)0.0214 (8)
C200.6534 (2)0.1765 (3)0.50184 (17)0.0228 (9)
C210.6682 (2)0.3032 (3)0.48037 (18)0.0262 (9)
C220.5852 (2)0.3555 (3)0.44766 (17)0.0241 (9)
C230.3840 (2)0.4040 (3)0.38150 (18)0.0245 (9)
C240.4056 (2)0.4516 (3)0.30977 (17)0.0240 (9)
C250.4168 (2)0.6000 (3)0.30874 (18)0.0244 (9)
C260.4399 (2)0.6506 (3)0.2394 (2)0.0299 (10)
B20.4229 (2)0.2666 (3)0.42016 (19)0.0194 (9)
H10.207800.058900.413700.0280*
H20.259200.262400.336000.0310*
H30.123700.384000.339600.0280*
H40.115400.157900.409600.0280*
H50.202800.038600.340300.0310*
H60.171700.198100.350100.0260*
H70.093400.118900.672900.0250*
H80.153800.347000.693800.0250*
H90.130700.439200.563000.0260*
H10A0.041000.468900.419800.0280*
H10B0.132200.412900.422700.0280*
H11A0.079700.360200.292700.0340*
H11B0.015800.400300.288200.0340*
H12A0.037900.568900.234300.0320*
H12B0.032100.621700.312700.0320*
H13A0.164600.686500.298300.0450*
H13B0.189600.539600.290400.0450*
H13C0.184000.591600.369200.0450*
H140.398300.054700.626100.0310*
H150.300400.248000.616200.0350*
H160.308700.376700.502700.0270*
H170.397100.149300.337700.0270*
H180.305900.026900.221700.0280*
H190.314100.208200.260800.0260*
H200.697600.116600.525300.0270*
H210.721900.343600.486600.0310*
H220.572600.439600.427300.0290*
H23A0.320500.399400.367800.0290*
H23B0.403700.471300.420700.0290*
H24A0.459300.409600.308600.0290*
H24B0.358700.425200.263900.0290*
H25A0.362700.641400.309300.0290*
H25B0.462800.626100.355300.0290*
H26A0.445700.744400.242400.0360*
H26B0.394200.626900.192900.0360*
H26C0.494400.612300.239200.0360*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0161 (3)0.0176 (3)0.0129 (3)0.0013 (2)0.0048 (2)0.0009 (2)
Fe20.0173 (3)0.0149 (3)0.0166 (3)0.0033 (2)0.0051 (2)0.0013 (2)
N10.0194 (12)0.0201 (12)0.0148 (11)0.0013 (10)0.0061 (9)0.0020 (10)
N20.0184 (12)0.0223 (13)0.0163 (11)0.0013 (10)0.0057 (9)0.0019 (10)
N30.0209 (12)0.0192 (12)0.0156 (11)0.0009 (10)0.0059 (9)0.0000 (10)
N40.0213 (13)0.0182 (12)0.0168 (11)0.0016 (10)0.0049 (10)0.0020 (10)
N50.0219 (13)0.0216 (13)0.0152 (11)0.0002 (10)0.0064 (9)0.0022 (10)
N60.0225 (13)0.0176 (12)0.0148 (11)0.0008 (10)0.0052 (9)0.0008 (10)
C10.0200 (15)0.0247 (16)0.0244 (15)0.0014 (12)0.0062 (12)0.0010 (13)
C20.0200 (15)0.0265 (17)0.0261 (15)0.0064 (13)0.0017 (12)0.0035 (14)
C30.0256 (16)0.0216 (16)0.0203 (14)0.0063 (13)0.0021 (12)0.0014 (12)
C40.0229 (16)0.0256 (16)0.0209 (14)0.0070 (13)0.0068 (12)0.0007 (13)
C50.0232 (16)0.0352 (19)0.0218 (15)0.0076 (14)0.0114 (12)0.0010 (14)
C60.0217 (15)0.0277 (17)0.0168 (13)0.0007 (13)0.0068 (11)0.0007 (12)
C70.0214 (15)0.0262 (16)0.0153 (13)0.0045 (12)0.0052 (11)0.0005 (12)
C80.0205 (15)0.0241 (16)0.0181 (13)0.0010 (12)0.0050 (11)0.0052 (12)
C90.0221 (15)0.0223 (15)0.0201 (14)0.0033 (12)0.0069 (12)0.0012 (12)
C100.0250 (16)0.0249 (16)0.0184 (14)0.0029 (13)0.0063 (12)0.0003 (13)
C110.0348 (18)0.0306 (18)0.0174 (14)0.0065 (15)0.0065 (13)0.0004 (13)
C120.0299 (17)0.0262 (17)0.0230 (15)0.0048 (14)0.0088 (13)0.0075 (14)
C130.040 (2)0.039 (2)0.0321 (18)0.0056 (17)0.0101 (16)0.0066 (17)
B10.0233 (17)0.0221 (17)0.0139 (14)0.0010 (14)0.0067 (12)0.0001 (13)
N70.0216 (13)0.0199 (13)0.0198 (12)0.0046 (10)0.0058 (10)0.0027 (10)
N80.0209 (13)0.0164 (12)0.0191 (12)0.0039 (10)0.0051 (10)0.0000 (10)
N90.0206 (13)0.0176 (12)0.0207 (12)0.0013 (10)0.0055 (10)0.0020 (10)
N100.0203 (12)0.0174 (12)0.0219 (12)0.0050 (10)0.0063 (10)0.0011 (10)
N110.0191 (12)0.0160 (12)0.0177 (11)0.0035 (10)0.0065 (9)0.0020 (10)
N120.0226 (13)0.0154 (12)0.0199 (12)0.0013 (10)0.0059 (10)0.0014 (10)
C140.0303 (17)0.0257 (16)0.0233 (15)0.0061 (14)0.0128 (13)0.0063 (13)
C150.0294 (18)0.0345 (19)0.0278 (16)0.0075 (15)0.0151 (14)0.0001 (15)
C160.0212 (15)0.0241 (16)0.0229 (14)0.0057 (12)0.0065 (12)0.0012 (13)
C170.0260 (16)0.0176 (15)0.0223 (14)0.0016 (12)0.0070 (12)0.0036 (12)
C180.0245 (16)0.0224 (16)0.0210 (14)0.0017 (12)0.0042 (12)0.0010 (12)
C190.0236 (15)0.0190 (15)0.0195 (14)0.0009 (12)0.0040 (12)0.0047 (12)
C200.0176 (14)0.0288 (17)0.0213 (14)0.0033 (12)0.0052 (11)0.0018 (13)
C210.0240 (16)0.0284 (17)0.0259 (15)0.0044 (13)0.0077 (13)0.0010 (14)
C220.0307 (17)0.0195 (15)0.0208 (14)0.0063 (13)0.0067 (12)0.0009 (12)
C230.0306 (17)0.0177 (15)0.0227 (15)0.0064 (13)0.0051 (13)0.0004 (12)
C240.0296 (17)0.0204 (15)0.0206 (14)0.0036 (13)0.0061 (12)0.0012 (13)
C250.0272 (17)0.0207 (15)0.0268 (15)0.0010 (13)0.0108 (13)0.0020 (13)
C260.0372 (19)0.0220 (16)0.0335 (17)0.0024 (14)0.0155 (15)0.0002 (14)
B20.0199 (16)0.0185 (16)0.0187 (15)0.0007 (13)0.0047 (12)0.0011 (13)
Geometric parameters (Å, º) top
Fe1—N11.956 (2)N9—N121.370 (3)
Fe1—N21.969 (3)C9—H90.9300
Fe1—N31.971 (2)N9—C201.339 (4)
Fe1—N1i1.956 (2)C10—H10A0.9700
Fe1—N2i1.969 (3)N10—C161.350 (4)
Fe1—N3i1.971 (2)N10—B21.557 (4)
Fe2—N9ii1.963 (2)C10—H10B0.9700
Fe2—N91.963 (2)N11—C191.349 (4)
Fe2—N71.977 (3)C11—H11A0.9700
Fe2—N81.977 (2)C11—H11B0.9700
Fe2—N7ii1.977 (3)N11—B21.554 (4)
Fe2—N8ii1.977 (2)C12—H12A0.9700
N1—C11.341 (4)C12—H12B0.9700
N1—N41.367 (3)N12—C221.349 (4)
N2—N51.372 (4)N12—B21.560 (4)
N2—C41.336 (4)C13—H13A0.9600
N3—N61.361 (3)C13—H13B0.9600
N3—C71.339 (4)C13—H13C0.9600
N4—B11.564 (4)C14—C151.394 (5)
N4—C31.360 (4)C15—C161.386 (5)
N5—C61.354 (4)C17—C181.396 (4)
N5—B11.550 (5)C18—C191.378 (4)
N6—C91.350 (4)C20—C211.392 (4)
N6—B11.557 (4)C21—C221.382 (5)
C1—C21.401 (4)C23—C241.543 (4)
C2—C31.378 (5)C23—B21.602 (4)
C4—C51.396 (5)C24—C251.523 (4)
C5—C61.373 (4)C25—C261.525 (5)
C7—C81.399 (4)C14—H140.9300
C8—C91.379 (4)C15—H150.9300
C10—C111.542 (4)C16—H160.9300
C10—B11.606 (5)C17—H170.9300
C11—C121.527 (4)C18—H180.9300
C12—C131.519 (6)C19—H190.9300
C1—H10.9300C20—H200.9300
C2—H20.9300C21—H210.9300
C3—H30.9300C22—H220.9300
C4—H40.9300C23—H23A0.9700
C5—H50.9300C23—H23B0.9700
C6—H60.9300C24—H24A0.9700
N7—N101.365 (4)C24—H24B0.9700
N7—C141.337 (4)C25—H25A0.9700
C7—H70.9300C25—H25B0.9700
C8—H80.9300C26—H26A0.9600
N8—C171.329 (4)C26—H26B0.9600
N8—N111.362 (3)C26—H26C0.9600
N1—Fe1—N287.32 (10)N6—C9—H9126.00
N1—Fe1—N388.38 (9)C8—C9—H9126.00
N1—Fe1—N1i180.00N12—N9—C20105.8 (2)
N1—Fe1—N2i92.68 (10)C16—N10—B2131.2 (2)
N1—Fe1—N3i91.62 (9)C11—C10—H10B107.00
N2—Fe1—N388.42 (10)B1—C10—H10B107.00
N1i—Fe1—N292.68 (10)H10A—C10—H10B107.00
N2—Fe1—N2i180.00B1—C10—H10A107.00
N2—Fe1—N3i91.58 (10)N7—N10—C16109.8 (2)
N1i—Fe1—N391.62 (9)N7—N10—B2118.9 (2)
N2i—Fe1—N391.58 (10)C11—C10—H10A107.00
N3—Fe1—N3i180.00N8—N11—C19109.7 (2)
N1i—Fe1—N2i87.32 (10)N8—N11—B2119.3 (2)
N1i—Fe1—N3i88.38 (9)C19—N11—B2131.0 (2)
N2i—Fe1—N3i88.42 (10)C12—C11—H11A109.00
N7—Fe2—N8ii91.93 (10)C10—C11—H11A109.00
N7—Fe2—N9ii91.96 (11)C10—C11—H11B109.00
N8—Fe2—N987.58 (10)C12—C11—H11B109.00
N7ii—Fe2—N891.93 (10)H11A—C11—H11B108.00
N8—Fe2—N8ii180.00N9—N12—C22109.8 (3)
N8—Fe2—N9ii92.42 (10)C11—C12—H12A109.00
N7ii—Fe2—N991.96 (11)C11—C12—H12B109.00
N8ii—Fe2—N992.42 (10)C13—C12—H12A109.00
N9—Fe2—N9ii180.00C13—C12—H12B109.00
N7ii—Fe2—N8ii88.07 (10)H12A—C12—H12B108.00
N7ii—Fe2—N9ii88.04 (11)C22—N12—B2131.3 (2)
N8ii—Fe2—N9ii87.58 (10)N9—N12—B2118.9 (2)
N7—Fe2—N888.07 (10)C12—C13—H13B109.00
N7—Fe2—N988.04 (11)C12—C13—H13C109.00
N7—Fe2—N7ii180.00H13A—C13—H13C110.00
Fe1—N1—N4120.8 (2)H13B—C13—H13C110.00
Fe1—N1—C1132.2 (2)H13A—C13—H13B109.00
N4—N1—C1106.9 (2)C12—C13—H13A109.00
Fe1—N2—N5120.13 (19)N7—C14—C15110.6 (3)
Fe1—N2—C4132.79 (19)C14—C15—C16104.9 (3)
N5—N2—C4106.7 (3)N10—C16—C15108.1 (3)
Fe1—N3—N6120.79 (17)N8—C17—C18110.5 (3)
Fe1—N3—C7132.2 (2)C17—C18—C19104.8 (3)
N6—N3—C7106.9 (2)N11—C19—C18108.3 (3)
N1—N4—C3109.0 (3)N9—C20—C21111.2 (3)
N1—N4—B1118.9 (2)C20—C21—C22104.5 (3)
C3—N4—B1132.0 (3)N12—C22—C21108.6 (3)
N2—N5—B1119.0 (3)C24—C23—B2119.3 (3)
C6—N5—B1132.0 (3)C23—C24—C25112.5 (3)
N2—N5—C6109.0 (3)C24—C25—C26114.0 (3)
C9—N6—B1131.7 (3)N10—B2—N11105.5 (2)
N3—N6—C9109.5 (2)N10—B2—N12105.8 (2)
N3—N6—B1118.8 (2)N10—B2—C23111.7 (2)
N1—C1—C2110.4 (3)N11—B2—N12106.2 (2)
C1—C2—C3104.7 (3)N11—B2—C23114.2 (2)
N4—C3—C2108.9 (3)N12—B2—C23112.8 (2)
N2—C4—C5110.4 (3)N7—C14—H14125.00
C4—C5—C6105.0 (3)C15—C14—H14125.00
N5—C6—C5108.9 (3)C14—C15—H15128.00
N3—C7—C8110.1 (3)C16—C15—H15128.00
C7—C8—C9104.8 (3)N10—C16—H16126.00
N6—C9—C8108.6 (3)C15—C16—H16126.00
C11—C10—B1119.7 (3)N8—C17—H17125.00
C10—C11—C12114.2 (3)C18—C17—H17125.00
C11—C12—C13114.0 (3)C17—C18—H18128.00
N4—B1—N5106.9 (3)C19—C18—H18128.00
N4—B1—N6105.1 (2)N11—C19—H19126.00
N4—B1—C10113.4 (3)C18—C19—H19126.00
N5—B1—N6105.4 (2)N9—C20—H20124.00
N5—B1—C10114.4 (3)C21—C20—H20124.00
N6—B1—C10111.0 (3)C20—C21—H21128.00
N1—C1—H1125.00C22—C21—H21128.00
C2—C1—H1125.00N12—C22—H22126.00
C1—C2—H2128.00C21—C22—H22126.00
C3—C2—H2128.00C24—C23—H23A108.00
N4—C3—H3125.00C24—C23—H23B108.00
C2—C3—H3126.00B2—C23—H23A107.00
N2—C4—H4125.00B2—C23—H23B108.00
C5—C4—H4125.00H23A—C23—H23B107.00
C4—C5—H5128.00C23—C24—H24A109.00
C6—C5—H5127.00C23—C24—H24B109.00
N5—C6—H6126.00C25—C24—H24A109.00
C5—C6—H6126.00C25—C24—H24B109.00
Fe2—N7—N10120.6 (2)H24A—C24—H24B108.00
N3—C7—H7125.00C24—C25—H25A109.00
C8—C7—H7125.00C24—C25—H25B109.00
N10—N7—C14106.5 (3)C26—C25—H25A109.00
Fe2—N7—C14132.8 (2)C26—C25—H25B109.00
C9—C8—H8128.00H25A—C25—H25B108.00
C7—C8—H8128.00C25—C26—H26A110.00
Fe2—N8—N11120.43 (17)C25—C26—H26B109.00
Fe2—N8—C17132.88 (19)C25—C26—H26C109.00
N11—N8—C17106.7 (2)H26A—C26—H26B109.00
Fe2—N9—N12120.7 (2)H26A—C26—H26C109.00
Fe2—N9—C20133.5 (2)H26B—C26—H26C109.00
N2—Fe1—N1—N445.0 (2)N2—N5—B1—N660.6 (3)
N2—Fe1—N1—C1138.6 (3)C6—N5—B1—N6119.3 (3)
N3—Fe1—N1—N443.5 (2)C6—N5—B1—N4129.3 (3)
N3—Fe1—N1—C1132.9 (3)C6—N5—B1—C102.9 (4)
N2i—Fe1—N1—N4135.0 (2)N2—N5—B1—C10177.3 (2)
N2i—Fe1—N1—C141.4 (3)C9—N6—B1—N5126.1 (4)
N3i—Fe1—N1—N4136.5 (2)N3—N6—B1—N554.5 (3)
N3i—Fe1—N1—C147.1 (3)N3—N6—B1—N458.3 (3)
N1—Fe1—N2—N548.8 (2)C9—N6—B1—N4121.2 (4)
N1—Fe1—N2—C4138.9 (3)B1—N6—C9—C8179.9 (3)
N3—Fe1—N2—N539.7 (2)N3—N6—B1—C10178.8 (3)
N3—Fe1—N2—C4132.7 (3)C9—N6—B1—C101.8 (5)
N1i—Fe1—N2—N5131.2 (2)N3—N6—C9—C80.5 (4)
N1i—Fe1—N2—C441.1 (3)N1—C1—C2—C30.1 (4)
N3i—Fe1—N2—N5140.3 (2)C1—C2—C3—N40.0 (3)
N3i—Fe1—N2—C447.3 (3)N2—C4—C5—C60.0 (4)
N1—Fe1—N3—N642.0 (2)C4—C5—C6—N50.7 (4)
N1—Fe1—N3—C7133.5 (3)N3—C7—C8—C90.2 (4)
N2—Fe1—N3—N645.4 (2)C7—C8—C9—N60.4 (4)
N2—Fe1—N3—C7139.1 (3)B1—C10—C11—C12173.6 (3)
N1i—Fe1—N3—N6138.0 (2)C11—C10—B1—N560.5 (4)
N1i—Fe1—N3—C746.5 (3)C11—C10—B1—N6179.6 (3)
N2i—Fe1—N3—N6134.6 (2)C11—C10—B1—N462.5 (4)
N2i—Fe1—N3—C740.9 (3)C10—C11—C12—C1367.1 (4)
N9—Fe2—N8—N1144.3 (2)Fe2—N7—N10—C16175.6 (2)
N9—Fe2—N8—C17135.2 (3)Fe2—N7—N10—B22.7 (3)
N7ii—Fe2—N8—N11136.2 (2)C14—N7—N10—C160.9 (3)
N7ii—Fe2—N8—C1743.3 (3)C14—N7—N10—B2179.3 (3)
N9ii—Fe2—N8—N11135.7 (2)Fe2—N7—C14—C15175.1 (2)
N9ii—Fe2—N8—C1744.8 (3)N10—N7—C14—C150.8 (4)
N7—Fe2—N9—N1242.2 (2)Fe2—N8—N11—C19179.9 (2)
N7—Fe2—N9—C20136.2 (3)Fe2—N8—N11—B20.3 (4)
N8—Fe2—N9—N1246.0 (2)C17—N8—N11—C190.5 (4)
N8—Fe2—N9—C20135.7 (3)C17—N8—N11—B2179.9 (3)
N7ii—Fe2—N9—N12137.8 (2)Fe2—N8—C17—C18179.7 (2)
N7ii—Fe2—N9—C2043.8 (3)N11—N8—C17—C180.2 (4)
N8ii—Fe2—N9—N12134.1 (2)Fe2—N9—N12—C22178.28 (19)
N8ii—Fe2—N9—C2044.3 (3)Fe2—N9—N12—B23.0 (3)
N9ii—Fe2—N7—C1441.0 (3)C20—N9—N12—C220.5 (3)
N7—Fe2—N8—N1143.8 (2)C20—N9—N12—B2178.2 (2)
N7—Fe2—N8—C17136.7 (3)Fe2—N9—C20—C21178.0 (2)
N9—Fe2—N7—N1045.5 (2)N12—N9—C20—C210.6 (3)
N9—Fe2—N7—C14139.0 (3)N7—N10—C16—C150.7 (4)
N8ii—Fe2—N7—N10137.8 (2)B2—N10—C16—C15178.7 (3)
N8ii—Fe2—N7—C1446.7 (3)C16—N10—B2—N12127.7 (3)
N9ii—Fe2—N7—N10134.5 (2)N7—N10—B2—C23177.5 (3)
N8—Fe2—N7—N1042.2 (2)C16—N10—B2—C234.6 (4)
N8—Fe2—N7—C14133.3 (3)C16—N10—B2—N11120.0 (3)
Fe1—N1—N4—C3177.10 (19)N7—N10—B2—N1254.3 (3)
Fe1—N1—N4—B10.0 (3)N7—N10—B2—N1157.9 (3)
C1—N1—N4—C30.1 (3)N8—N11—B2—N1056.3 (3)
C1—N1—N4—B1177.3 (2)C19—N11—B2—N10123.2 (3)
Fe1—N1—C1—C2176.6 (2)C19—N11—B2—C230.3 (5)
N4—N1—C1—C20.1 (3)B2—N11—C19—C18179.8 (3)
N5—N2—C4—C50.7 (3)C19—N11—B2—N12124.7 (3)
Fe1—N2—N5—C6173.0 (2)N8—N11—B2—C23179.3 (3)
Fe1—N2—N5—B16.9 (3)N8—N11—B2—N1255.7 (3)
C4—N2—N5—C61.2 (3)N8—N11—C19—C180.6 (4)
C4—N2—N5—B1178.9 (3)C22—N12—B2—N10123.8 (3)
Fe1—N2—C4—C5172.4 (2)N9—N12—B2—N1153.9 (3)
C7—N3—N6—C90.4 (4)N9—N12—B2—N1057.9 (3)
C7—N3—N6—B1179.9 (3)N9—N12—C22—C210.3 (3)
Fe1—N3—C7—C8175.8 (2)B2—N12—C22—C21178.2 (3)
N6—N3—C7—C80.1 (4)C22—N12—B2—C231.4 (4)
Fe1—N3—N6—C9176.2 (2)C22—N12—B2—N11124.5 (3)
Fe1—N3—N6—B13.4 (4)N9—N12—B2—C23179.7 (2)
N1—N4—C3—C20.1 (3)N7—C14—C15—C160.4 (4)
C3—N4—B1—N6119.8 (3)C14—C15—C16—N100.2 (4)
B1—N4—C3—C2176.7 (3)N8—C17—C18—C190.2 (4)
N1—N4—B1—N656.6 (3)C17—C18—C19—N110.5 (4)
C3—N4—B1—C101.5 (4)N9—C20—C21—C220.4 (4)
N1—N4—B1—N555.1 (3)C20—C21—C22—N120.1 (3)
C3—N4—B1—N5128.5 (3)B2—C23—C24—C25144.3 (3)
N1—N4—B1—C10177.9 (2)C24—C23—B2—N1261.3 (4)
N2—N5—B1—N450.9 (3)C24—C23—B2—N10179.6 (3)
N2—N5—C6—C51.2 (3)C24—C23—B2—N1160.1 (4)
B1—N5—C6—C5178.9 (3)C23—C24—C25—C26178.9 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg11 are the centroids of rings N2/N5/C4–C6 and N8/N11/C17–C19, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg110.933.003.674 (4)131
C12—H12A···Cg2iii0.972.873.703 (3)145
C26—H26C···Cg11iv0.962.843.720 (4)153
Symmetry codes: (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: H2020 Marie Skłodowska-Curie Actions (grant No. 734322).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationChang, H. R., McCusker, J. K., Toftlund, H., Wilson, S. R., Trautwein, A. X., Winkler, H. & Hendrickson, D. N. (1990). J. Am. Chem. Soc. 112, 6814–6827.  CSD CrossRef CAS Web of Science Google Scholar
First citationDrew, M. G. B., Harding, C. J., McKee, V., Morgan, G. G. & Nelson, J. (1995). J. Chem. Soc. Chem. Commun. pp. 1035–1038.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuionneau, P., Marchivie, M., Bravic, G., Létard, J. F. & Chasseau, D. (2004). Top. Curr. Chem. 234, 97–128.  Web of Science CrossRef CAS Google Scholar
First citationGütlich, P. & Goodwin, H. A. (2004). Top. Curr. Chem. 233, 1–47.  Google Scholar
First citationHalcrow, M. A. (2007). Polyhedron, 26, 3523–3576.  Web of Science CrossRef CAS Google Scholar
First citationHamon, P., Thépot, J. Y., Le Floch, M., Boulon, M. E., Cador, O., Golhen, S., Ouahab, L., Fadel, L., Saillard, J. Y. & Hamon, J. R. (2008). Angew. Chem. Int. Ed. 47, 8687–8691.  CSD CrossRef CAS Google Scholar
First citationLong, G. J., Grandjean, F. & Reger, D. L. (2004). Top. Curr. Chem. 233, 91–122.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMyers, W. K., Duesler, E. N. & Tierney, D. L. (2008). Inorg. Chem. 47, 6701–6710.  CSD CrossRef PubMed CAS Google Scholar
First citationReger, D. L. & Tarquini, M. E. (1982). Inorg. Chem. 21, 840–842.  CrossRef CAS Google Scholar
First citationSeredyuk, M. (2012). Inorg. Chim. Acta, 380, 65–71.  CSD CrossRef CAS Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Ksenofontov, V., Galyametdinov, Y., Verdaguer, M., Villain, F. & Gütlich, P. (2010). Inorg. Chem. 49, 10022–10031.  CrossRef CAS PubMed Google Scholar
First citationSeredyuk, M., Gaspar, A. B., Ksenofontov, V., Reiman, S., Galyametdinov, Y., Haase, W., Rentschler, E. & Gütlich, P. (2006). Hyperfine Interact. 166, 385–390.  CrossRef Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSeredyuk, M., Piñeiro-López, L., Muñoz, M. C., Martínez-Casado, F. J., Molnár, G., Rodriguez-Velamazán, J. A., Bousseksou, A. & Real, J. A. (2015). Inorg. Chem. 54, 7424–7432.  CSD CrossRef CAS PubMed Google Scholar
First citationSeredyuk, M., Znovjyak, K., Muñoz, M. C., Galyametdinov, Y., Fritsky, I. O. & Real, J. A. (2016). RSC Adv. 6, 39627–39635.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrofimenko, S. (1999). Scorpionates – the Coordination Chemistry of Polypyrazylborate Ligands. London: Imperial College Press.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds