research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and computational studies of 5-[(prop-2-en-1-yl)sulfan­yl]-1-[2-(tri­fluoro­meth­yl)phen­yl]-1H-tetra­zole

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodia Str, 6, 79005 L'viv, Ukraine, and bDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
*Correspondence e-mail: yurii.slyvka@lnu.edu.ua

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 July 2019; accepted 14 August 2019; online 23 August 2019)

The title compound, C11H9F3N4S, was synthesized from 2-(tri­fluoro­meth­yl)aniline by a multi-step reaction. It crystallizes in the non-centrosymmetric space group Pna21, with one mol­ecule in the asymmetric unit, and is constructed from a pair of aromatic rings [2-(tri­fluoro­meth­yl)phenyl and tetra­zole], which are twisted by 76.8 (1)° relative to each other because of significant steric hindrance of the tri­fluoro­methyl group at the ortho position of the benzene ring. In the crystal, very weak C—H⋯N and C—H⋯F hydrogen bonds and aromatic ππ stacking inter­actions link the mol­ecules into a three-dimensional network. To further analyse the inter­molecular inter­actions, a Hirshfeld surface analysis, as well as inter­action energy calculations, were performed.

1. Chemical context

Tetra­zoles are a well-known class of aromatic five-membered heterocycles, which have been investigated since the end of the 19th century. Their biological properties, including anti­viral, anti­cancer, anti-tuberculosis, anti­fungal and anti­oxidant activities have been shown by numerous studies (see, for example, Ostrovskii et al., 2017[Ostrovskii, V. A., Popova, E. A. & Trifonov, R. E. (2017). Advances in Heterocyclic Chemistry, Vol. 123, edited by Eric F. V. Scriven & Christopher A. Ramsden, ch. 1, Developments in Tetrazole Chemistry (2009-16), pp. 1-62. New York: Academic Press.]). They also are increasingly regarded as efficient and selective inhibitors of enzymes governing the metabolic processes in the human body (Pegklidou et al., 2010[Pegklidou, K., Koukoulitsa, C., Nicolaou, I. & Demopoulos, V. (2010). Bioorg. Med. Chem. 18, 2107-2114.]; Al-Hourani et al., 2012[Al-Hourani, B. J., Sharma, S. K., Suresh, M. & Wuest, F. (2012). Bioorg. Med. Chem. Lett. 22, 2235-2238.]; Aggarwal et al., 2016[Aggarwal, S., Mahapatra, M. K., Kumar, R., Bhardwaj, T. R., Hartmann, R. W., Haupenthal, J. & Kumar, M. (2016). Bioorg. Med. Chem. 24, 779-788.]).

Tetra­zoles are well established as suitable precursors for the construction of other nitro­gen-containing heterocycles such as pyrimidines (Shyyka et al., 2018[Shyyka, O. Ya., Pokhodylo, N. T., Slyvka, Yu. I., Goreshnik, E. A. & Obushak, M. D. (2018). Tetrahedron Lett. 59, 1112-1115.]; Pokhodylo et al., 2015[Pokhodylo, N. T., Shyyka, O. Ya., Matiychuk, V. S. & Obushak, M. D. (2015). ACS Comb. Sci. 17, 399-403.]), as well as being widely used as ligands in their own right to generate coordination compounds (Gaponik et al., 2006[Gaponik, P. N., Voitekhovich, S. V. & Ivashkevich, O. A. (2006). Russ. Chem. Rev. 75, 507-539.]; Aromí et al., 2011[Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]). For example, allyl derivatives of 1H-tetra­zole-5-thiols have been used for the preparation of copper(I) π,σ-complexes possessing non-linear optical properties (Slyvka et al., 2018[Slyvka, Yu., Fedorchuk, A. A., Pokhodylo, N. T., Lis, T., Kityk, I. V. & Mys'kiv, M. G. (2018). Polyhedron, 147, 86-93.], 2019[Slyvka, Yu., Goreshnik, E., Veryasov, G., Morozov, D., Fedorchuk, A. A., Pokhodylo, N., Kityk, I. & Mys'kiv, M. (2019). J. Coord. Chem. 72, 1049-1063.]). Among these, three copper(I) π,σ-coordination compounds, [Cu2(C11H9F3N4S)2(CF3SO3)2] (Slyvka, 2015[Slyvka, Yu. I. (2015). J. Struct. Chem. 56, 998-999.]), [Cu(C11H9F3N4S)2]BF4 and [Cu(C11H9F3N4S)(NH2SO3)(MeOH)] based on 5-[(prop-2-en-1-yl)sulfan­yl]-1-[2-(tri­fluoro­meth­yl)phen­yl]-1H-tetra­zole (I)[link] (C11H9F3N4S) have been reported recently (Slyvka et al., 2019[Slyvka, Yu., Goreshnik, E., Veryasov, G., Morozov, D., Fedorchuk, A. A., Pokhodylo, N., Kityk, I. & Mys'kiv, M. (2019). J. Coord. Chem. 72, 1049-1063.]). As part of our ongoing studies in this area, the synthesis and structure of the title compound, (I)[link], are reported here.

2. Structural commentary

The title compound crystallizes in the non-centrosymmetric space group Pna21, with one mol­ecule in the asymmetric unit. As shown in Fig. 1[link], it is constructed from two aromatic rings [2-(tri­fluoro­meth­yl)phenyl and tetra­zole rings], which are twisted relative to each other by 76.8 (1)° because of the significant steric hindrance of the tri­fluoro­methyl group attached to C10. This dihedral angle is comparable with the analogous parameter in the same ligand when it is π,σ-coordinated to a copper atom in [Cu(C11H9F3N4S)2]BF4 [dihedral angle = 78.0 (1)°] and [Cu(C11H9F3N4S)(NH2SO3)(MeOH)] [85.5 (1)°] (Slyvka et al., 2019[Slyvka, Yu., Goreshnik, E., Veryasov, G., Morozov, D., Fedorchuk, A. A., Pokhodylo, N., Kityk, I. & Mys'kiv, M. (2019). J. Coord. Chem. 72, 1049-1063.]). The (prop-2-en-1-yl)sulfanyl group in (I)[link] has an anti­clinal conformation relative to the C2—C3 bond and a synclinal conformation relative to the S1—C2 bond. The S1—C2—C3—C4 and C1— S1—C2—C3 torsion angles are 117.0 (3) and 75.0 (2)°, respectively.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

As shown in Fig. 2[link] and listed in Table 1[link], the crystal structure of (I)[link] features several weak inter­molecular inter­actions. The hydrogen atoms of the (prop-2-en-1-yl)sulfanyl group are involved in C—H⋯N bonding with the tetra­zole ring of an adjacent mol­ecule; these bonds link independent mol­ecules into layers (Fig. 3[link]). The layers are inter­connected by C—H⋯F contacts into a three-dimensional network (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯N3i 0.99 2.58 3.464 (3) 148
C2—H2B⋯N2ii 0.99 2.69 3.666 (4) 169
C3—H3⋯F3iii 0.95 2.71 3.351 (3) 125
C4—H4A⋯N3i 0.95 2.67 3.491 (3) 145
C4—H4B⋯F1iv 0.95 2.47 3.355 (3) 155
C6—H6⋯N4iii 0.95 2.76 3.601 (3) 148
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The hydrogen-bonding of mol­ecules in (I)[link]. Hydrogen bonds are shown as dashed lines. The symmetry codes are as in Table 1.
[Figure 3]
Figure 3
A C—H⋯N-bonded layer in the structure of compound (I)[link].
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of the title compound.

4. Hirshfeld surface analysis and computational study

To further analyse the inter­molecular inter­actions between the mol­ecules of (I)[link], Hirshfeld surface analysis through the mapping of the normalized contact distance (dnorm) as well as calculation of the inter­action energies were performed using CrystalExplorer (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The most prominent inter­actions among the allyl group H atoms and tetra­zole N atoms as well as among allylic H atoms and F atoms of neighbouring mol­ecules can be seen in the Hirshfeld surface plot as the red areas (Fig. 5[link]a). Fingerprint plots were produced to show the inter­molecular surface bond distances with the regions highlighted for C—H⋯F (Fig. 5[link]b) and C—H⋯N (Fig. 5[link]c) inter­actions. The contribution to the surface area for H⋯H contacts is 19.8%.

[Figure 5]
Figure 5
(a) Hirshfeld surface for mol­ecule of (I)[link] mapped with dnorm over the range −0.15 to 1.2 showing C—H⋯N and C—H⋯F hydrogen-bonded contacts. Fingerprint plots for mol­ecule resolved into (b) F⋯H/H⋯F and (c) N⋯H/H⋯N contacts. Neighbouring mol­ecules associated with close contacts are also shown.

The inter­action energies in (I)[link] were calculated using a dispersion-corrected CE-B3LYP/6-31G(d,p) quantum level of theory, as available in CrystalExplorer. The total inter­molecular energy is the sum of energies of four main components, viz. electrostatic, polarization, dispersion and exchange-repulsion factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). The total calculated energy of the inter­molecular inter­actions of (I)[link] is −115.9 kJ mol. From Table 2[link], one can see the highest energy value (–36.2 kJ mol) covers C—H⋯N and C—H⋯F inter­actions with the neighbouring mol­ecule generated by the symmetry code −x + 1, −y + 1, z − [{1\over 2}]. The inter­actions between the neighbouring 2-(tri­fluoro­meth­yl)phenyl rings stacked along [100] cover −25.7 kJ mol−1 and are mainly dispersive in nature.

Table 2
Inter­action energies (kJ mol−1) for selected close contacts in the crystal of (I)

Contact Eelectrostatic Epolarization Edispersion Eexchange-repulsion Etotal Symmetry operation
C4—H4B⋯F1 −1.4 −0.3 −5.2 5.7 −2.6 -x + [{3\over 2}], y + [{1\over 2}], z + [{1\over 2}]
C4—H4A⋯N3/C2—H2A⋯N3 −12.0 −4.1 −13.4 16.6 −17.1 x + 1, y, z
C2—H2B⋯N2/C3—H3⋯F3/C4—H4B⋯F3 −14.6 −5.3 −31.0 16.4 −36.2 -x + 1, −y + 1, z − [{1\over 2}]
(CF3C6H4–)⋯(CF3C6H4–) −5.0 −1.9 −31.8 14.1 −25.7 x − [{1\over 2}], −y + [{1\over 2}], z

5. Database survey

A survey of the Cambridge Structural Database (CSD version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) confirmed that 1-aryl substituted 5-[(prop-2-en-1-yl)sulfan­yl]-1H-tetra­zoles are known only as ligands in the structures of copper(I) and silver(I) π-complexes. In the crystal structures of bis­[μ2-η2-5-(allyl­sulfan­yl)-1-phenyl-1H-tetra­zole]di­aqua­disilver bis(tetra­fluoro­borate) (refcode HAHTIV; Slyvka et al., 2011[Slyvka, Yu., Pavlyuk, O., Pokhodylo, N., Ardan, B., Mazej, Z. & Goreshnik, E. (2011). Acta Chim. Slov. 58, 134-138.]), bis­{μ-η2-1-phenyl-5-[(prop-2-en-1-yl)sulfan­yl]-1H-tetra­zole}di­aquadicopper bis­(tetra­fluoro­borate) (JAHCON; Slyvka et al., 2010[Slyvka, Yu., Pokhodylo, N., Savka, R., Mazej, Z., Mys'kiv, M. & Goreshnik, E. (2010). Chem. Met. Alloys, 2, 130-137.]), bis­{μ-η2-1-(4-chloro­phen­yl)-5-[(prop-2-en-1-yl)sulfan­yl]-1H-tetra­zole}di­aqua­dicopper bis­(tetra­fluoro­borate) ethanol solvate (JAHCUT; Slyvka et al., 2010[Slyvka, Yu., Pokhodylo, N., Savka, R., Mazej, Z., Mys'kiv, M. & Goreshnik, E. (2010). Chem. Met. Alloys, 2, 130-137.]) and bis­{μ-5-[(prop-2-en-1-yl)sulfan­yl]-1-[2-(tri­fluoro­meth­yl)phen­yl]-1H-tetra­zole}bis­(tri­fluoro­methane­sulfonato)­dicopper (JADHII; Slyvka, 2015[Slyvka, Yu. I. (2015). J. Struct. Chem. 56, 998-999.]), the tetra­zole moieties are bonded to the metal ions through two heterocyclic nitro­gen atoms and the allylic C=C bond in the chelate-bridging mode. In catena-{(μ-sulfamato){η2-1-(3,5-di­methyl­phen­yl)-5-[(prop-2-en-1-yl)sulfan­yl]-1H-tetra­zole}copper(I)} (ZEYRUT; Slyvka et al., 2018[Slyvka, Yu., Fedorchuk, A. A., Pokhodylo, N. T., Lis, T., Kityk, I. V. & Mys'kiv, M. G. (2018). Polyhedron, 147, 86-93.]) (VI), the organic mol­ecule is coordinated to the copper atom by the allylic C=C bond and the only tetra­zole nitro­gen atom. As a result of the presence of back-donation from an occupied 3d metal orbital to a low-lying empty π* orbital of the olefin, in all these compounds the double bond of the (prop-2-en-1-yl)sulfanyl group is slightly elongated to 1.35–1.38 Å, in comparison with noncoordinated olefin bond value. The other S-substituted 1-phenyl-1H-tetra­zole-5-thiol structures in the Cambridge Structural Database have different alkyl substit­uents, such as 2-naphthyl (TICRAY; Alves et al., 1996[Alves, J. A. C., Dillon, C. J. & Johnstone, R. A. W. (1996). Acta Cryst. C52, 3163-3165.]), 1,7,7-tri­methylbi­cyclo­[2.2.1]hept-2-yl (GIJRAU; Bodrov et al., 2013[Bodrov, A. V., Nikitina, L. E., Startseva, V. A., Lodochnikova, O. A., Musin, R. Z. & Gnezdilov, O. I. (2013). Russ. J. Gen. Chem. 83, 80-86.]) and benzoyl (BAZVAA; Kim et al., 2003[Kim, Y. J., Han, J.-T., Kang, S., Han, W. S. & Lee, S. W. (2003). Dalton Trans. pp. 3357-3364.]).

6. Synthesis and crystallization

The title compound was synthesized from 2-(tri­fluoro­meth­yl)aniline by a multi-step reaction. Commercially available 2-(tri­fluoro­meth­yl)aniline (1.611 g, 0.010 mol) was dissolved in the minimum amount of benzene and treated with carbon di­sulfide (0.7 ml, 0.01 mol) and tri­ethyl­amine (1.4 ml, 0.010 mol). The solution was cooled to 273 K and left for 5 d. After complete precipitation of the tri­ethyl­ammonium di­thio­carbamate salt, the solution was filtered. The solid was washed with anhydrous ether and air-dried for about 10 min. The salt was then dissolved in about 7.5 ml of chloro­form, treated with 1.4 ml of tri­ethyl­amine and cooled to 273 K. To this solution was added ethyl chloro­formate (1.02 ml, 0.01 mol) dropwise over a 15 min period under intensive stirring. The resulting solution was stirred at 273 K for 10 min and allowed to warm to room temperature over 1 h. The chloro­form solution was washed with 3 M HCI and twice with water and dried over Na2SO4. The chloro­form was evaporated and the 1-iso­thio­cyanato-2-(tri­fluoro­meth­yl)benzene was distilled in vacuo.

The obtained iso­thio­cyanate (1.016 g, 5.0 mmol) was mixed with water (10 ml) and NaN3 (0.71 g, 0.011 mol) and refluxed under intensive stirring until the suspension disappeared. The solution was cooled to room temperature and washed with TBME. The water fraction was separated and acidified with 3 M HCl (Caution! During the acidification beware of toxic HN3 gas). The sediment of 1-[2-(tri­fluoro­meth­yl)phen­yl]-1H-tetra­zole-5-thiol was separated by filtration and used for alkyl­ation without further purification.

1-[2-(Tri­fluoro­meth­yl)phen­yl]-1H-tetra­zole-5-thiol (0.985g, 0.004 mol) was dissolved in a solution of KOH (0.22 g, 0.004 mol) in ethanol (10 ml). To the solution allyl bromide (0.43 ml, 0.005 mole) was added and the mixture was heated at 323 K for 1 h. The solvent was removed in vacuo and to the residue was added water (5 ml) and di­chloro­methane (10 ml). The di­chloro­methane was separated and removed to give the title compound. Colourless blocks of (I)[link] were obtained by recrystallization from an ethanol solution, m.p. 336 K.

NMR 1H (400 MHz, DMSO-d6), δ, p.p.m. 8.03 (d, J = 7.3 Hz, 1H, HPh-3), 7.98–7.88 (m, 2H, HPh-4,5), 7.71 (d, J = 7.3 Hz, 1H, HPh-6), 5.94 (td, J = 16.8, 7.2Hz, 1H, =CH), 5.36 (d, J = 16.8 Hz, 1H, =CH2), 5.18 (d, J = 9.9 Hz, 1H, =CH2), 3.98 (d, J = 6.9 Hz, 2H, CH2). Analysis calculated for C11H9F3N4S: C, 46.15; H, 3.17; N, 19.57; S, 11.20; found: C, 45.97; H, 3.04; N, 19.49; S, 11.27.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically and refined using riding model, with C—H = 0.95 or 0.99 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C11H9F3N4S
Mr 286.28
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 150
a, b, c (Å) 7.6595 (3), 20.9841 (7), 7.8641 (3)
V3) 1263.98 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.35 × 0.24 × 0.15
 
Data collection
Diffractometer Rigaku Oxford Diffraction New Gemini, Dual, Cu at home/near, Atlas
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.929, 0.969
No. of measured, independent and observed [I > 2σ(I)] reflections 28170, 3094, 2730
Rint 0.059
(sin θ/λ)max−1) 0.680
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.079, 1.07
No. of reflections 3094
No. of parameters 172
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.22
Absolute structure Flack x determined using 1094 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.07 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5-[(Prop-2-en-1-yl)sulfanyl]-1-[2-(trifluoromethyl)phenyl]-1H-tetrazole top
Crystal data top
C11H9F3N4SDx = 1.504 Mg m3
Mr = 286.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 9726 reflections
a = 7.6595 (3) Åθ = 3.9–28.4°
b = 20.9841 (7) ŵ = 0.28 mm1
c = 7.8641 (3) ÅT = 150 K
V = 1263.98 (8) Å3Block, colourless
Z = 40.35 × 0.24 × 0.15 mm
F(000) = 584
Data collection top
Rigaku Oxford Diffraction New Gemini, Dual, Cu at home/near, Atlas
diffractometer
2730 reflections with I > 2σ(I)
Detector resolution: 10.6426 pixels mm-1Rint = 0.059
ω scansθmax = 28.9°, θmin = 2.8°
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2018)
h = 1010
Tmin = 0.929, Tmax = 0.969k = 2828
28170 measured reflectionsl = 1010
3094 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.4395P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.23 e Å3
3094 reflectionsΔρmin = 0.22 e Å3
172 parametersAbsolute structure: Flack x determined using 1094 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.07 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups 2.a Secondary CH2 refined with riding coordinates: C2(H2A,H2B) 2.b Aromatic/amide H refined with riding coordinates: C3(H3), C6(H6), C7(H7), C8(H8), C9(H9) 2.c X=CH2 refined with riding coordinates: C4(H4A,H4B)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.82933 (7)0.43951 (3)0.47114 (11)0.02848 (15)
F10.4353 (3)0.24877 (9)0.1989 (3)0.0619 (6)
F20.5490 (3)0.34169 (11)0.2020 (2)0.0590 (6)
F30.2811 (3)0.32951 (12)0.2643 (3)0.0614 (6)
N10.4878 (3)0.41022 (10)0.5110 (3)0.0263 (5)
N20.3257 (3)0.43591 (10)0.4866 (5)0.0357 (6)
N30.3518 (3)0.49149 (11)0.4245 (4)0.0406 (7)
N40.5253 (3)0.50465 (11)0.4058 (3)0.0348 (6)
C10.6066 (3)0.45334 (10)0.4616 (4)0.0252 (5)
C20.9068 (3)0.51253 (12)0.3701 (3)0.0264 (5)
H2A1.0300610.5066470.3355730.032*
H2B0.8374820.5203560.2659750.032*
C30.8943 (3)0.56925 (10)0.4825 (5)0.0301 (5)
H30.7818490.5824870.5192350.036*
C41.0299 (4)0.60194 (13)0.5336 (4)0.0378 (7)
H4A1.1438850.5897500.4988370.045*
H4B1.0144150.6378720.6055610.045*
C50.5129 (3)0.34687 (11)0.5739 (3)0.0253 (5)
C60.5647 (4)0.33874 (16)0.7405 (4)0.0363 (7)
H60.5807100.3746160.8124780.044*
C70.5933 (5)0.27776 (17)0.8017 (4)0.0436 (8)
H70.6318750.2718280.9153630.052*
C80.5662 (4)0.22597 (15)0.6992 (5)0.0427 (8)
H80.5836100.1842880.7432240.051*
C90.5136 (4)0.23375 (13)0.5317 (4)0.0370 (7)
H90.4951460.1975140.4616020.044*
C100.4879 (3)0.29472 (11)0.4665 (4)0.0278 (5)
C110.4394 (4)0.30342 (14)0.2845 (4)0.0373 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0220 (3)0.0207 (2)0.0428 (3)0.0028 (2)0.0018 (3)0.0025 (4)
F10.1032 (19)0.0361 (10)0.0464 (12)0.0050 (11)0.0153 (12)0.0163 (10)
F20.0844 (16)0.0638 (14)0.0287 (10)0.0314 (12)0.0085 (10)0.0003 (10)
F30.0620 (13)0.0750 (15)0.0472 (11)0.0155 (11)0.0163 (10)0.0005 (11)
N10.0222 (10)0.0226 (10)0.0341 (14)0.0019 (8)0.0027 (9)0.0039 (9)
N20.0222 (9)0.0327 (11)0.0522 (16)0.0065 (8)0.0027 (12)0.0053 (13)
N30.0282 (12)0.0328 (13)0.0607 (19)0.0074 (9)0.0022 (11)0.0004 (11)
N40.0269 (12)0.0265 (11)0.0511 (15)0.0058 (9)0.0015 (11)0.0045 (11)
C10.0223 (10)0.0218 (10)0.0317 (13)0.0029 (8)0.0014 (14)0.0030 (13)
C20.0260 (13)0.0243 (13)0.0290 (14)0.0003 (10)0.0015 (11)0.0011 (10)
C30.0306 (12)0.0228 (11)0.0368 (14)0.0022 (9)0.0041 (15)0.0025 (14)
C40.0427 (16)0.0251 (13)0.0456 (18)0.0011 (12)0.0008 (13)0.0017 (12)
C50.0232 (12)0.0229 (12)0.0297 (14)0.0001 (10)0.0053 (11)0.0001 (11)
C60.0404 (17)0.0397 (17)0.0288 (16)0.0005 (14)0.0036 (13)0.0043 (13)
C70.049 (2)0.051 (2)0.0311 (16)0.0076 (15)0.0049 (14)0.0108 (14)
C80.0466 (18)0.0338 (15)0.0477 (19)0.0052 (13)0.0142 (15)0.0146 (15)
C90.0415 (16)0.0257 (13)0.0440 (17)0.0033 (12)0.0099 (13)0.0025 (12)
C100.0279 (11)0.0237 (11)0.0318 (13)0.0034 (9)0.0055 (14)0.0005 (13)
C110.0489 (19)0.0294 (15)0.0337 (16)0.0053 (13)0.0017 (13)0.0046 (12)
Geometric parameters (Å, º) top
S1—C11.732 (2)C3—C41.308 (4)
S1—C21.825 (3)C4—H4A0.9500
F1—C111.330 (3)C4—H4B0.9500
F2—C111.331 (4)C5—C61.380 (4)
F3—C111.340 (4)C5—C101.396 (4)
N1—N21.367 (3)C6—H60.9500
N1—C11.341 (3)C6—C71.384 (5)
N1—C51.431 (3)C7—H70.9500
N2—N31.280 (3)C7—C81.369 (5)
N3—N41.365 (3)C8—H80.9500
N4—C11.319 (3)C8—C91.387 (5)
C2—H2A0.9900C9—H90.9500
C2—H2B0.9900C9—C101.392 (4)
C2—C31.486 (4)C10—C111.490 (4)
C3—H30.9500
C1—S1—C299.24 (12)C6—C5—C10121.1 (2)
N2—N1—C5122.5 (2)C10—C5—N1120.0 (2)
C1—N1—N2108.0 (2)C5—C6—H6120.3
C1—N1—C5129.5 (2)C5—C6—C7119.3 (3)
N3—N2—N1105.7 (2)C7—C6—H6120.3
N2—N3—N4112.2 (2)C6—C7—H7119.8
C1—N4—N3105.0 (2)C8—C7—C6120.4 (3)
N1—C1—S1122.86 (17)C8—C7—H7119.8
N4—C1—S1128.06 (19)C7—C8—H8119.7
N4—C1—N1109.1 (2)C7—C8—C9120.6 (3)
S1—C2—H2A109.0C9—C8—H8119.7
S1—C2—H2B109.0C8—C9—H9120.0
H2A—C2—H2B107.8C8—C9—C10120.0 (3)
C3—C2—S1113.13 (19)C10—C9—H9120.0
C3—C2—H2A109.0C5—C10—C11121.3 (2)
C3—C2—H2B109.0C9—C10—C5118.5 (3)
C2—C3—H3118.3C9—C10—C11120.1 (3)
C4—C3—C2123.5 (2)F1—C11—F2106.8 (3)
C4—C3—H3118.3F1—C11—F3105.7 (3)
C3—C4—H4A120.0F1—C11—C10112.7 (2)
C3—C4—H4B120.0F2—C11—F3105.5 (3)
H4A—C4—H4B120.0F2—C11—C10112.6 (2)
C6—C5—N1118.8 (2)F3—C11—C10112.9 (2)
S1—C2—C3—C4117.0 (3)C5—N1—N2—N3177.7 (2)
N1—N2—N3—N40.0 (4)C5—N1—C1—S11.9 (4)
N1—C5—C6—C7178.5 (3)C5—N1—C1—N4177.3 (2)
N1—C5—C10—C9179.9 (2)C5—C6—C7—C81.6 (5)
N1—C5—C10—C111.5 (4)C5—C10—C11—F1174.8 (2)
N2—N1—C1—S1179.8 (3)C5—C10—C11—F253.9 (4)
N2—N1—C1—N40.6 (3)C5—C10—C11—F365.4 (3)
N2—N1—C5—C6104.5 (3)C6—C5—C10—C91.1 (4)
N2—N1—C5—C1076.6 (3)C6—C5—C10—C11177.3 (3)
N2—N3—N4—C10.3 (4)C6—C7—C8—C91.4 (5)
N3—N4—C1—S1179.7 (2)C7—C8—C9—C100.0 (5)
N3—N4—C1—N10.6 (3)C8—C9—C10—C51.2 (4)
C1—S1—C2—C375.0 (2)C8—C9—C10—C11177.2 (3)
C1—N1—N2—N30.4 (4)C9—C10—C11—F13.6 (4)
C1—N1—C5—C677.8 (4)C9—C10—C11—F2124.5 (3)
C1—N1—C5—C10101.1 (3)C9—C10—C11—F3116.2 (3)
C2—S1—C1—N1175.3 (2)C10—C5—C6—C70.3 (4)
C2—S1—C1—N43.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N3i0.992.583.464 (3)148
C2—H2B···N2ii0.992.693.666 (4)169
C3—H3···F3iii0.952.713.351 (3)125
C4—H4A···N3i0.952.673.491 (3)145
C4—H4B···F1iv0.952.473.355 (3)155
C6—H6···N4iii0.952.763.601 (3)148
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z1/2; (iii) x+1, y+1, z+1/2; (iv) x+3/2, y+1/2, z+1/2.
Interaction energies (kJ mol-1) for selected close contacts in the crystal of (I) top
ContactEelectrostaticEpolarizationEdispersionEexchange-repulsionEtotalSymmetry operation
C4—H4B···F1-1.4-0.3-5.25.7-2.6-x + 3/2, y + 1/2, z + 1/2
C4—H4A···N3/C2—H2A···N3-12.0-4.1-13.416.6-17.1x + 1, y, z
C2—H2B···N2/C3—H3···F3/C4—H4B···F3-14.6-5.3-31.016.4-36.2-x + 1, -y + 1, z - 1/2
(CF3C6H4–)···(CF3C6H4–)-5.0-1.9-31.814.1-25.7x - 1/2, -y + 1/2, z
 

Funding information

EG gratefully acknowledges financial support from the Slovenian Research Agency (ARRS).

References

First citationAggarwal, S., Mahapatra, M. K., Kumar, R., Bhardwaj, T. R., Hartmann, R. W., Haupenthal, J. & Kumar, M. (2016). Bioorg. Med. Chem. 24, 779–788.  CrossRef CAS PubMed Google Scholar
First citationAl-Hourani, B. J., Sharma, S. K., Suresh, M. & Wuest, F. (2012). Bioorg. Med. Chem. Lett. 22, 2235–2238.  CAS PubMed Google Scholar
First citationAlves, J. A. C., Dillon, C. J. & Johnstone, R. A. W. (1996). Acta Cryst. C52, 3163–3165.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.  Google Scholar
First citationBodrov, A. V., Nikitina, L. E., Startseva, V. A., Lodochnikova, O. A., Musin, R. Z. & Gnezdilov, O. I. (2013). Russ. J. Gen. Chem. 83, 80–86.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaponik, P. N., Voitekhovich, S. V. & Ivashkevich, O. A. (2006). Russ. Chem. Rev. 75, 507–539.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKim, Y. J., Han, J.-T., Kang, S., Han, W. S. & Lee, S. W. (2003). Dalton Trans. pp. 3357–3364.  CSD CrossRef Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationOstrovskii, V. A., Popova, E. A. & Trifonov, R. E. (2017). Advances in Heterocyclic Chemistry, Vol. 123, edited by Eric F. V. Scriven & Christopher A. Ramsden, ch. 1, Developments in Tetrazole Chemistry (2009–16), pp. 1–62. New York: Academic Press.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPegklidou, K., Koukoulitsa, C., Nicolaou, I. & Demopoulos, V. (2010). Bioorg. Med. Chem. 18, 2107–2114.  CrossRef CAS PubMed Google Scholar
First citationPokhodylo, N. T., Shyyka, O. Ya., Matiychuk, V. S. & Obushak, M. D. (2015). ACS Comb. Sci. 17, 399–403.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShyyka, O. Ya., Pokhodylo, N. T., Slyvka, Yu. I., Goreshnik, E. A. & Obushak, M. D. (2018). Tetrahedron Lett. 59, 1112–1115.  CSD CrossRef CAS Google Scholar
First citationSlyvka, Yu., Fedorchuk, A. A., Pokhodylo, N. T., Lis, T., Kityk, I. V. & Mys'kiv, M. G. (2018). Polyhedron, 147, 86–93.  CSD CrossRef CAS Google Scholar
First citationSlyvka, Yu., Goreshnik, E., Veryasov, G., Morozov, D., Fedorchuk, A. A., Pokhodylo, N., Kityk, I. & Mys'kiv, M. (2019). J. Coord. Chem. 72, 1049–1063.  CSD CrossRef CAS Google Scholar
First citationSlyvka, Yu., Pavlyuk, O., Pokhodylo, N., Ardan, B., Mazej, Z. & Goreshnik, E. (2011). Acta Chim. Slov. 58, 134–138.  CAS PubMed Google Scholar
First citationSlyvka, Yu., Pokhodylo, N., Savka, R., Mazej, Z., Mys'kiv, M. & Goreshnik, E. (2010). Chem. Met. Alloys, 2, 130–137.  Google Scholar
First citationSlyvka, Yu. I. (2015). J. Struct. Chem. 56, 998–999.  CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds