research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The fumarate salts of the N-iso­propyl-N-methyl derivatives of DMT and psilocin

CROSSMARK_Color_square_no_text.svg

aCaamTech, LLC, 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA, and b285 Old Westport Rd., North Dartmouth, MA, 02747, USA
*Correspondence e-mail: andrew@caam.tech

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 July 2019; accepted 12 August 2019; online 16 August 2019)

The solid-state structures of the salts of two substituted tryptamines, namely N-isopropyl-N-methyl­tryptaminium (MiPT) fumarate {systematic name: [2-(1H-indol-3-yl)eth­yl](meth­yl)propan-2-yl­aza­nium 3-carb­oxy­prop-2-enoate}, C14H21N2+·C4H3O4, and 4-hy­droxy-N-isopropyl-N-methyl­tryptaminium (4-HO-MiPT) fumarate monohydrate {systematic name: [2-(4-hy­droxy-1H-indol-3-yl)eth­yl](meth­yl)propan-2-yl­aza­nium 3-carb­oxy­prop-2-enoate monohydrate}, C14H21N2O+·C4H3O4·H2O, are reported. Both salts possess a proton­ated tryptammonium cation and a 3-carb­oxy­acrylate (hydrogen fumarate) anion in the asymmetric unit; the 4-HO-MiPT structure also contains a water mol­ecule of crystallization. Both cations feature disorder of the side chain over two orientations, in a 0.630 (3):0.370 (3) ratio for MiPT and a 0.775 (5):0.225 (5) ratio for 4-HO-MiPT. In both extended structures, N—H⋯O and O—H⋯O hydrogen bonds generate infinite two-dimensional networks.

1. Chemical context

N,N-di­methyl­tryptamine (DMT) and its derivatives have been used by humans for centuries because of their psychoactive, entheogenic, or hallucinogenic effects, or combinations thereof (Cameron & Olson, 2018[Cameron, L. P. & Olson, D. E. (2018). ACS Chem. Neurosci. 9, 2344-2357.]). Psilocybin, the 4-phosphate variant of DMT, is arguably its most studied derivative. Psilocybin is one of several naturally occurring psychoactive tryptamines found in `magic' mushrooms. When consumed by humans, psilocybin serves as a prodrug of psilocin. Upon digestion, psilocybin hydrolyses to generate psilocin, the 4-hy­droxy derivative of DMT. Psilocin is a potent seratonin 2a-agonist, which is responsible for its psychoactive properties (Dinis-Oliveira, 2017[Dinis-Oliveira, R. J. (2017). Drug Metab. Rev. 49, 84-91.]; Nichols, 2012[Nichols, D. E. (2012). WIREs Membr. Transp. Signal. 1, 559-579.]). Psychoactive tryptamines like DMT and psilocin have garnered significant inter­est recently because of their potential for treating mood disorders, including depression, anxiety, addiction, and post-traumatic stress disorder (PTSD) (Johnson & Griffiths, 2017[Johnson, M. W. & Griffiths, R. R. (2017). Neurotherapeutics 14, 734-740.]; Carhart-Harris & Goodwin, 2017[Carhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacology, 42, 2105-2113.]).

Altering the chemical structure within this class of compounds can dramatically influence the potency and action of the drugs. For example, merely changing the N,N-dialkyl groups on DMT can modify its psychoactive properties: increasing the chain length of the two alkyl groups of the tryptamine to larger than n-butyl dramatically reduces or eliminates the psychoactive effects (Bradley & Johnston, 1970[Bradley, R. J. & Johnston, V. S. (1970). Origin and Mechanism of Hallucinations, edited by W. Keup, pp. 333-344. New York: Plenum Press.]).

The synthesis of N-methyl-N-iso­propyl­tryptamine (MiPT) was reported in 1981 (Repke et al., 1981[Repke, D. B., Ferguson, W. J. & Bates, D. K. (1981). J. Heterocycl. Chem. 18, 175-179.]). In 1985, Repke and co-workers reported that of the compounds in the series of N,N-dialkyl-4-hy­droxy­tryptamines, the N-methyl-N-isopropyl derivative (4-HO-MiPT) is the most potent based upon qualitative effects on humans (Repke et al., 1985[Repke, D. B., Grotjahn, D. B. & Shulgin, A. T. (1985). J. Med. Chem. 28, 892-896.]). Later qu­an­ti­tative studies showed the N-methyl-N-isopropyl deriv­atives of DMT and psilocin to be more potent as seratonin-1A, −2A and −2B receptors compared to the analogous dimethyl compounds (McKenna et al., 1990[McKenna, D. J., Repke, D. B., Lo, L. & Peroutka, S. J. (1990). Neuropharmacology, 29, 193-198.]).

[Scheme 1]

Improving our understanding of how these drugs inter­act with particular biological receptors requires a complete understanding of their chemical structures. Given their therapeutic potential and the significant structure–activity relationship between them, further studies would benefit from better understanding of their chemical structures. Responding to this unmet need, we report the crystal structures of the fumarate salts of MiPT and 4-HO-MiPT herein.

2. Structural commentary

The mol­ecular structure of MiPT fumarate is shown on the left of Fig. 1[link]. The asymmetric unit contains one N-methyl-N-iso­propyl­tryptammonium (C14H21N2+) cation and one 3-carb­oxy­acrylate (C4H3O4) anion. The indole ring system of the cation is near planar with an r.m.s. deviation from planarity of 0.006 Å. The singly protonated fumarate anion is in the trans configuration and is slightly distorted from planarity with an r.m.s. deviation of 0.133 Å and a carboxyl­ate twist angle of 18.370 (5)°. The N-methyl-N-iso­propyl­ammonium group is disordered over two orientations in a 0.630 (3):0.370 (3) ratio.

[Figure 1]
Figure 1
The mol­ecular structure of MiPT fumarate (left) and HO-MiPT fumarate (right), showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Dashed bonds indicate a disordered component in the structures. Hydrogen bonds are shown as dashed lines.

The mol­ecular structure of 4-HO-MiPT fumarate monohydrate is shown on the right of Fig. 1[link]. The asymmetric unit contains one 4-hy­droxy-N-methyl-N-iso­propyl­trypt­ammo­nium (C14H21N2O+) cation, one 3-carb­oxy­acrylate anion and one water mol­ecule of crystallization. The indole ring system of the cation is close to planar with an r.m.s. deviation of 0.021 Å. The singly protonated fumarate anion is also near planar with an r.m.s. deviation of 0.049 Å. The N-methyl-N-iso­propyl­ammonium group shows a similar disorder to the MiPT structure over two orientations in a 0.775 (5):0.225 (5) ratio.

3. Supra­molecular features

In the extended structure of MiPT fumarate, the N-methyl-N-iso­propyl­amine and fumarate ions are linked into infinite two-dimensional networks lying parallel to the (010) plane through N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]). The proton of the ammonium cation forms a hydrogen bond with one of the oxygen atoms of the deprotonated –CO2 group of the 3-carb­oxy­acrylate ion. The carb­oxy­lic acid proton forms a hydrogen bond with an oxygen atom of an adjacent 3-carb­oxy­acrylate anion. The N—H grouping of the indole ring also hydrogen bonds to one of the oxygen atoms of the 3-carb­oxy­acrylate anion. The hydrogen bonding is shown on the left in Fig. 2[link], and the packing of MiPT fumarate is shown on the left in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °) for MiPT[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.87 (1) 1.66 (1) 2.5316 (18) 176 (3)
N1—H1⋯O1ii 0.87 (1) 2.04 (1) 2.874 (2) 160 (2)
N2—H2⋯O2 0.88 (1) 1.79 (1) 2.667 (3) 173 (3)
N2A—H2A⋯O2 0.88 (1) 1.81 (2) 2.670 (5) 167 (6)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The hydrogen bonding of the fumarate ion in the structure of MiPT (left) and HO-MiPT (right). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. Only one component of the amine disorder is shown. Symmetry codes: (i) x, [{3\over 2}] − y, −[{1\over 2}] + z (ii) x, [{3\over 2}] − y, [{1\over 2}] + z (iii) −1 + x, [{3\over 2}] − y, −[{1\over 2}] + z (iv) [{3\over 2}] − x, [{1\over 2}] − y, 1 − z (v) x, −1 + y, z (vi) 1 − x, 2 − y, −z.
[Figure 3]
Figure 3
The crystal packing of MiPT fumarate (left), viewed along the a axis, and the crystal packing of HO-MiPT fumarate (right), viewed along the b axis. The hydrogen bonds (Tables 1[link] and 2[link]) are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. Only one component of the amine disorder is shown.

In the structure of 4-HO-MiPT fumarate, there are N—H⋯O and O—H⋯O hydrogen bonds that link together the cations and anions as well as the water mol­ecules of crystallization (Table 2[link]). The result is a two-dimensional network lying parallel to the ([\overline{2}]01) plane. The proton of the ammonium cation forms a bifurcated N—H⋯(O,O) hydrogen bond with the deprotonated –CO2 group of the 3-carb­oxy­acrylate ion. The hydrogen of the hy­droxy group also hydrogen bonds to the same oxygen atom of the anion. The carb­oxy­lic acid proton hydrogen bonds with a water mol­ecule in the structure. Two other water mol­ecules form hydrogen bonds with two different oxygen atoms of the anion. The hydrogen bonding is shown on the right in Fig. 2[link], and the packing of 4-HO-MiPT fumarate is shown on the right in Fig. 3[link].

Table 2
Hydrogen-bond geometry (Å, °) for 4-HO-MiPT[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.88 (1) 2.51 (2) 3.085 (2) 124 (2)
N2—H2⋯O3i 0.88 (1) 1.89 (1) 2.775 (2) 178 (2)
N2A—H2A⋯O3i 0.87 (1) 1.85 (2) 2.717 (6) 172 (8)
O1—H1⋯O3 0.87 (2) 1.79 (3) 2.6512 (17) 172 (2)
O4—H4A⋯O1W 0.93 (3) 1.66 (3) 2.579 (2) 167 (3)
O1W—H1WA⋯O5ii 0.84 (3) 1.98 (3) 2.779 (2) 160 (2)
O1W—H1WB⋯O2iii 0.87 (3) 1.74 (3) 2.599 (2) 170 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+2, -z; (iii) x, y+1, z.

4. Database survey

The MiPT structure described above is a derivative of DMT (N,N-di­methyl­tryptamine), which has been structurally characterized (Falkenberg, 1972[Falkenberg, G. (1972). Acta Cryst. B28, 3075-3083.]), as well as its close derivative MPT, N-methyl-N-propyl­tryptamine (Chadeayne et al. 2019b[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x190962.]). In both cases, these were crystallized as free bases, while MiPT is the fumarate salt. In the case of 4-HO-MiPT, the most closely related mol­ecule is psilocin, which has been structurally characterized (Petcher & Weber, 1974[Petcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946-948.]), as well as psilocybin (Weber & Petcher, 1974[Weber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942-946.]). Psilocin was reported as the free base and psilocybin was reported as a zwitterionic mol­ecule, while the structure of 4-HO-MiPT reported here is the hydrated fumarate salt. Two different ionic structures of the 4-acet­oxy derivative of DMT have been reported as fumarate salts (Chadeayne et al. 2019a[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900-902.],c[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019c). Psychedelic Science Review, https://psychedelicreview. com/the-crystal-structure-of-4-aco-dmt-fumarate/]). The metrical parameters of the tryptammonium cations for MiPT and 4-HO-MiPT are consistent with those of the other tryptammonium structures reported.

5. Synthesis and crystallization

Single crystals suitable for X-ray analysis were obtained from the slow evaporation of aqueous solutions of commercial samples of N-methyl-N-iso­propyl­tryptammonium fumarate and 4-hy­droxy-N-methyl-N-iso­propyl­tryptammonium fumarate (The Indole Shop).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). The following restraints were applied: C—N = 1.54±0.01, N—H = 0.87±0.01, O—H = 0.86±0.01 Å. N- and O-bound H atoms were refined with Uiso(H) = 1.5Ueq(N,O). In the MiPT fumarate, the N-methyl-N-iso­propyl­aminium group is disordered. It is modeled as two components: N2 and C11–C14 with an occupancy of 0.630 (3) and N2A and C11A–C14A with an occupancy of 0.370 (3). 4-HO MiPT fumarate exhibits a similar disorder of the N-methyl-N-iso­propyl­aminium group that is modeled as two components: N2, C11--C14 with an occupancy of 0.775 (5) and N2A, C11A–C14A with an occupancy of 0.225 (5).

Table 3
Experimental details

  MiPT 4-HO-MiPT
Crystal data
Chemical formula C14H21N2+·C4H3O4 C14H21N2O+·C4H3O4·H2O
Mr 332.39 366.41
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 200 200
a, b, c (Å) 9.852 (2), 12.789 (2), 14.875 (3) 29.507 (3), 8.7445 (8), 17.3659 (18)
β (°) 106.932 (7) 123.389 (3)
V3) 1793.0 (6) 3741.2 (7)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.10
Crystal size (mm) 0.20 × 0.18 × 0.05 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.687, 0.745 0.719, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 36899, 3297, 2605 70395, 3458, 2978
Rint 0.052 0.041
(sin θ/λ)max−1) 0.604 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.127, 1.06 0.041, 0.096, 1.08
No. of reflections 3297 3458
No. of parameters 240 320
No. of restraints 8 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.26 0.22, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

[2-(1H-Indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate (MiPT) top
Crystal data top
C14H21N2+·C4H3O4F(000) = 712
Mr = 332.39Dx = 1.231 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.852 (2) ÅCell parameters from 9752 reflections
b = 12.789 (2) Åθ = 3.0–25.3°
c = 14.875 (3) ŵ = 0.09 mm1
β = 106.932 (7)°T = 200 K
V = 1793.0 (6) Å3BLOCK, colourless
Z = 40.20 × 0.18 × 0.05 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2605 reflections with I > 2σ(I)
φ and ω scansRint = 0.052
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.4°, θmin = 3.0°
Tmin = 0.687, Tmax = 0.745h = 1111
36899 measured reflectionsk = 1515
3297 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0488P)2 + 1.0971P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.26 e Å3
3297 reflectionsΔρmin = 0.25 e Å3
240 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
8 restraintsExtinction coefficient: 0.039 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.17442 (15)0.78060 (11)0.58471 (8)0.0395 (4)
O20.21577 (18)0.61007 (12)0.58250 (9)0.0521 (4)
O30.19484 (17)0.72434 (11)0.25829 (9)0.0442 (4)
H3A0.184 (3)0.724 (2)0.1982 (8)0.066*
O40.1592 (2)0.55393 (12)0.24156 (11)0.0731 (6)
N10.88917 (17)0.64452 (13)1.00719 (12)0.0382 (4)
H10.9809 (11)0.6526 (17)1.0259 (15)0.046*
N20.3185 (3)0.5163 (2)0.74864 (18)0.0303 (7)0.630 (3)
H20.281 (3)0.551 (2)0.6962 (14)0.036*0.630 (3)
C110.3410 (4)0.4055 (3)0.7190 (2)0.0443 (4)0.630 (3)
H110.38290.36400.77750.053*0.630 (3)
C120.2020 (4)0.3543 (3)0.6666 (3)0.0443 (4)0.630 (3)
H12A0.22100.29050.63590.066*0.630 (3)
H12B0.14590.40270.61910.066*0.630 (3)
H12C0.14900.33650.71100.066*0.630 (3)
C130.4553 (5)0.4179 (4)0.6694 (3)0.0443 (4)0.630 (3)
H13A0.54010.44930.71270.066*0.630 (3)
H13B0.42000.46310.61430.066*0.630 (3)
H13C0.47940.34910.64930.066*0.630 (3)
C140.2176 (6)0.5221 (4)0.8107 (4)0.0443 (4)0.630 (3)
H14A0.21120.59460.83040.066*0.630 (3)
H14B0.25450.47790.86640.066*0.630 (3)
H14C0.12320.49740.77490.066*0.630 (3)
N2A0.3757 (5)0.4914 (4)0.7207 (3)0.0342 (11)0.370 (3)
H2A0.336 (6)0.533 (4)0.674 (3)0.041*0.370 (3)
C11A0.2757 (6)0.4302 (5)0.7616 (4)0.0443 (4)0.370 (3)
H11A0.33020.38220.81240.053*0.370 (3)
C12A0.1685 (8)0.3698 (6)0.6867 (5)0.0443 (4)0.370 (3)
H12D0.21310.30660.67100.066*0.370 (3)
H12E0.13410.41340.63050.066*0.370 (3)
H12F0.08870.35000.70990.066*0.370 (3)
C13A0.4250 (8)0.4028 (6)0.6507 (5)0.0443 (4)0.370 (3)
H13D0.51660.42340.64260.066*0.370 (3)
H13E0.35320.40060.58920.066*0.370 (3)
H13F0.43360.33350.68000.066*0.370 (3)
C14A0.1952 (10)0.5037 (7)0.7980 (7)0.0443 (4)0.370 (3)
H14D0.13340.46590.82790.066*0.370 (3)
H14E0.13730.54670.74650.066*0.370 (3)
H14F0.26010.54870.84450.066*0.370 (3)
C10.8135 (2)0.57049 (15)0.94651 (13)0.0380 (5)
H1A0.85360.51930.91560.046*
C20.7970 (2)0.70501 (14)1.03799 (13)0.0333 (4)
C30.8232 (2)0.78851 (15)1.10072 (14)0.0411 (5)
H30.91690.81301.12930.049*
C40.7083 (2)0.83418 (16)1.11972 (16)0.0475 (5)
H40.72300.89111.16250.057*
C50.5702 (2)0.79874 (17)1.07743 (16)0.0468 (5)
H50.49290.83231.09160.056*
C60.5444 (2)0.71618 (15)1.01564 (14)0.0392 (5)
H60.45010.69260.98740.047*
C70.6584 (2)0.66727 (14)0.99481 (12)0.0317 (4)
C80.6725 (2)0.58089 (14)0.93698 (12)0.0343 (4)
C90.5561 (2)0.51227 (15)0.87944 (13)0.0410 (5)
H9A0.49720.48770.91900.049*
H9B0.59820.45020.85810.049*
C100.4622 (2)0.56961 (15)0.79425 (13)0.0413 (5)
H10A0.51410.57590.74660.050*0.630 (3)
H10B0.44460.64120.81350.050*0.630 (3)
H10C0.52210.61290.76570.050*0.370 (3)
H10D0.39670.61670.81430.050*0.370 (3)
C150.19062 (19)0.69693 (15)0.54455 (12)0.0311 (4)
C160.17850 (19)0.70575 (15)0.44231 (12)0.0314 (4)
H160.15950.77250.41330.038*
C170.1928 (2)0.62619 (16)0.39115 (13)0.0379 (5)
H170.21240.56000.42120.045*
C180.1807 (2)0.63118 (15)0.28967 (13)0.0366 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0506 (8)0.0474 (8)0.0207 (6)0.0070 (6)0.0106 (6)0.0012 (6)
O20.0820 (12)0.0477 (9)0.0241 (7)0.0098 (8)0.0117 (7)0.0083 (6)
O30.0714 (10)0.0420 (8)0.0197 (7)0.0031 (7)0.0143 (7)0.0007 (6)
O40.1495 (19)0.0411 (9)0.0324 (8)0.0018 (10)0.0323 (10)0.0061 (7)
N10.0326 (9)0.0421 (9)0.0379 (9)0.0025 (7)0.0068 (7)0.0066 (7)
N20.0357 (16)0.0298 (14)0.0220 (14)0.0031 (12)0.0034 (12)0.0004 (11)
C110.0445 (12)0.0460 (10)0.0386 (10)0.0045 (7)0.0064 (7)0.0135 (8)
C120.0445 (12)0.0460 (10)0.0386 (10)0.0045 (7)0.0064 (7)0.0135 (8)
C130.0445 (12)0.0460 (10)0.0386 (10)0.0045 (7)0.0064 (7)0.0135 (8)
C140.0445 (12)0.0460 (10)0.0386 (10)0.0045 (7)0.0064 (7)0.0135 (8)
N2A0.040 (3)0.033 (3)0.025 (2)0.002 (2)0.002 (2)0.000 (2)
C11A0.0445 (12)0.0460 (10)0.0386 (10)0.0045 (7)0.0064 (7)0.0135 (8)
C12A0.0445 (12)0.0460 (10)0.0386 (10)0.0045 (7)0.0064 (7)0.0135 (8)
C13A0.0445 (12)0.0460 (10)0.0386 (10)0.0045 (7)0.0064 (7)0.0135 (8)
C14A0.0445 (12)0.0460 (10)0.0386 (10)0.0045 (7)0.0064 (7)0.0135 (8)
C10.0453 (12)0.0365 (10)0.0305 (10)0.0001 (9)0.0084 (9)0.0056 (8)
C20.0369 (10)0.0314 (9)0.0296 (9)0.0035 (8)0.0066 (8)0.0005 (7)
C30.0431 (11)0.0376 (11)0.0385 (11)0.0104 (9)0.0055 (9)0.0081 (9)
C40.0602 (14)0.0360 (11)0.0467 (12)0.0029 (10)0.0159 (11)0.0117 (9)
C50.0477 (13)0.0433 (12)0.0514 (13)0.0043 (10)0.0175 (10)0.0052 (10)
C60.0346 (10)0.0393 (11)0.0409 (11)0.0028 (8)0.0069 (9)0.0015 (9)
C70.0360 (10)0.0288 (9)0.0264 (9)0.0031 (7)0.0029 (8)0.0020 (7)
C80.0419 (11)0.0313 (9)0.0252 (9)0.0041 (8)0.0025 (8)0.0006 (7)
C90.0505 (12)0.0342 (10)0.0288 (10)0.0102 (9)0.0033 (9)0.0004 (8)
C100.0500 (12)0.0360 (10)0.0291 (10)0.0150 (9)0.0025 (9)0.0034 (8)
C150.0283 (9)0.0436 (11)0.0201 (9)0.0028 (8)0.0049 (7)0.0025 (8)
C160.0340 (10)0.0384 (10)0.0208 (9)0.0026 (8)0.0063 (7)0.0036 (7)
C170.0505 (12)0.0392 (10)0.0237 (9)0.0066 (9)0.0104 (8)0.0038 (8)
C180.0478 (12)0.0392 (11)0.0232 (9)0.0067 (9)0.0108 (8)0.0008 (8)
Geometric parameters (Å, º) top
O1—C151.258 (2)C12A—H12F0.9800
O2—C151.238 (2)C13A—H13D0.9800
O3—H3A0.869 (10)C13A—H13E0.9800
O3—C181.302 (2)C13A—H13F0.9800
O4—C181.202 (2)C14A—H14D0.9800
N1—H10.870 (10)C14A—H14E0.9800
N1—C11.369 (2)C14A—H14F0.9800
N1—C21.369 (3)C1—H1A0.9500
N2—H20.880 (10)C1—C81.361 (3)
N2—C111.518 (4)C2—C31.392 (3)
N2—C141.543 (7)C2—C71.414 (3)
N2—C101.540 (3)C3—H30.9500
C11—H111.0000C3—C41.375 (3)
C11—C121.513 (5)C4—H40.9500
C11—C131.523 (6)C4—C51.397 (3)
C12—H12A0.9800C5—H50.9500
C12—H12B0.9800C5—C61.374 (3)
C12—H12C0.9800C6—H60.9500
C13—H13A0.9800C6—C71.397 (3)
C13—H13B0.9800C7—C81.432 (3)
C13—H13C0.9800C8—C91.499 (3)
C14—H14A0.9800C9—H9A0.9900
C14—H14B0.9800C9—H9B0.9900
C14—H14C0.9800C9—C101.522 (3)
N2A—H2A0.876 (10)C10—H10A0.9900
N2A—C11A1.518 (6)C10—H10B0.9900
N2A—C13A1.702 (10)C10—H10C0.9900
N2A—C101.543 (4)C10—H10D0.9900
C11A—H11A1.0000C15—C161.495 (2)
C11A—C12A1.506 (9)C16—H160.9500
C11A—C14A1.433 (12)C16—C171.303 (3)
C12A—H12D0.9800C17—H170.9500
C12A—H12E0.9800C17—C181.481 (3)
C18—O3—H3A111.8 (17)C11A—C14A—H14E109.5
C1—N1—H1127.4 (15)C11A—C14A—H14F109.5
C2—N1—H1123.6 (15)H14D—C14A—H14E109.5
C2—N1—C1108.93 (16)H14D—C14A—H14F109.5
C11—N2—H2106 (2)H14E—C14A—H14F109.5
C11—N2—C14113.1 (3)N1—C1—H1A124.9
C11—N2—C10110.3 (3)C8—C1—N1110.14 (17)
C14—N2—H2109 (2)C8—C1—H1A124.9
C10—N2—H2105 (2)N1—C2—C3130.27 (18)
C10—N2—C14112.6 (2)N1—C2—C7107.58 (16)
N2—C11—H11107.5C3—C2—C7122.15 (18)
N2—C11—C13103.6 (3)C2—C3—H3121.3
C12—C11—N2111.5 (3)C4—C3—C2117.45 (19)
C12—C11—H11107.5C4—C3—H3121.3
C12—C11—C13118.8 (3)C3—C4—H4119.3
C13—C11—H11107.5C3—C4—C5121.44 (19)
C11—C12—H12A109.5C5—C4—H4119.3
C11—C12—H12B109.5C4—C5—H5119.4
C11—C12—H12C109.5C6—C5—C4121.1 (2)
H12A—C12—H12B109.5C6—C5—H5119.4
H12A—C12—H12C109.5C5—C6—H6120.4
H12B—C12—H12C109.5C5—C6—C7119.22 (19)
C11—C13—H13A109.5C7—C6—H6120.4
C11—C13—H13B109.5C2—C7—C8106.62 (17)
C11—C13—H13C109.5C6—C7—C2118.61 (17)
H13A—C13—H13B109.5C6—C7—C8134.76 (18)
H13A—C13—H13C109.5C1—C8—C7106.73 (16)
H13B—C13—H13C109.5C1—C8—C9126.19 (18)
N2—C14—H14A109.5C7—C8—C9127.05 (18)
N2—C14—H14B109.5C8—C9—H9A109.3
N2—C14—H14C109.5C8—C9—H9B109.3
H14A—C14—H14B109.5C8—C9—C10111.81 (16)
H14A—C14—H14C109.5H9A—C9—H9B107.9
H14B—C14—H14C109.5C10—C9—H9A109.3
C11A—N2A—H2A116 (4)C10—C9—H9B109.3
C11A—N2A—C13A103.7 (4)N2—C10—H10A108.7
C11A—N2A—C10109.8 (4)N2—C10—H10B108.7
C13A—N2A—H2A94 (4)N2A—C10—H10C109.5
C10—N2A—H2A101 (4)N2A—C10—H10D109.5
C10—N2A—C13A131.9 (5)C9—C10—N2114.26 (17)
N2A—C11A—H11A110.5C9—C10—N2A110.7 (2)
C12A—C11A—N2A111.4 (5)C9—C10—H10A108.7
C12A—C11A—H11A110.5C9—C10—H10B108.7
C14A—C11A—N2A107.9 (6)C9—C10—H10C109.5
C14A—C11A—H11A110.5C9—C10—H10D109.5
C14A—C11A—C12A105.7 (5)H10A—C10—H10B107.6
C11A—C12A—H12D109.5H10C—C10—H10D108.1
C11A—C12A—H12E109.5O1—C15—C16115.80 (16)
C11A—C12A—H12F109.5O2—C15—O1125.66 (16)
H12D—C12A—H12E109.5O2—C15—C16118.53 (17)
H12D—C12A—H12F109.5C15—C16—H16118.5
H12E—C12A—H12F109.5C17—C16—C15123.04 (17)
N2A—C13A—H13D109.5C17—C16—H16118.5
N2A—C13A—H13E109.5C16—C17—H17117.6
N2A—C13A—H13F109.5C16—C17—C18124.86 (18)
H13D—C13A—H13E109.5C18—C17—H17117.6
H13D—C13A—H13F109.5O3—C18—C17114.82 (16)
H13E—C13A—H13F109.5O4—C18—O3123.88 (17)
C11A—C14A—H14D109.5O4—C18—C17121.30 (18)
O1—C15—C16—C17179.92 (19)C2—C7—C8—C9177.68 (18)
O2—C15—C16—C170.2 (3)C3—C2—C7—C60.4 (3)
N1—C1—C8—C70.4 (2)C3—C2—C7—C8178.93 (18)
N1—C1—C8—C9177.70 (17)C3—C4—C5—C60.5 (3)
N1—C2—C3—C4179.1 (2)C4—C5—C6—C70.2 (3)
N1—C2—C7—C6179.60 (16)C5—C6—C7—C20.3 (3)
N1—C2—C7—C80.2 (2)C5—C6—C7—C8178.9 (2)
C11—N2—C10—C957.8 (3)C6—C7—C8—C1179.6 (2)
C14—N2—C11—C1257.6 (4)C6—C7—C8—C91.5 (3)
C14—N2—C11—C13173.6 (3)C7—C2—C3—C40.1 (3)
C14—N2—C10—C969.7 (3)C7—C8—C9—C1071.3 (3)
C11A—N2A—C10—C963.3 (5)C8—C9—C10—N2163.3 (2)
C13A—N2A—C11A—C12A47.0 (6)C8—C9—C10—N2A162.0 (3)
C13A—N2A—C11A—C14A162.6 (6)C10—N2—C11—C12175.2 (3)
C13A—N2A—C10—C968.0 (6)C10—N2—C11—C1346.4 (3)
C1—N1—C2—C3179.1 (2)C10—N2A—C11A—C12A168.1 (4)
C1—N1—C2—C70.0 (2)C10—N2A—C11A—C14A52.4 (6)
C1—C8—C9—C10111.0 (2)C15—C16—C17—C18179.57 (18)
C2—N1—C1—C80.2 (2)C16—C17—C18—O318.9 (3)
C2—C3—C4—C50.3 (3)C16—C17—C18—O4160.9 (2)
C2—C7—C8—C10.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.87 (1)1.66 (1)2.5316 (18)176 (3)
N1—H1···O1ii0.87 (1)2.04 (1)2.874 (2)160 (2)
N2—H2···O20.88 (1)1.79 (1)2.667 (3)173 (3)
N2A—H2A···O20.88 (1)1.81 (2)2.670 (5)167 (6)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2.
[2-(4-Hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium 3-carboxyprop-2-enoate monohydrate (4-HO-MiPT) top
Crystal data top
C14H21N2O+·C4H3O4·H2OF(000) = 1568
Mr = 366.41Dx = 1.301 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 29.507 (3) ÅCell parameters from 9718 reflections
b = 8.7445 (8) Åθ = 2.9–25.3°
c = 17.3659 (18) ŵ = 0.10 mm1
β = 123.389 (3)°T = 200 K
V = 3741.2 (7) Å3BLOCK, colourless
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2978 reflections with I > 2σ(I)
φ and ω scansRint = 0.041
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.4°, θmin = 3.1°
Tmin = 0.719, Tmax = 0.745h = 3535
70395 measured reflectionsk = 1010
3458 independent reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0299P)2 + 3.9177P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.22 e Å3
3458 reflectionsΔρmin = 0.20 e Å3
320 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
12 restraintsExtinction coefficient: 0.0081 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.69858 (5)0.51214 (13)0.50306 (8)0.0369 (3)
O1W0.52724 (8)1.07404 (17)0.09877 (11)0.0664 (5)
O20.56158 (8)0.24517 (15)0.24314 (9)0.0786 (6)
O30.61162 (5)0.35608 (13)0.37801 (7)0.0421 (3)
O40.54759 (7)0.80247 (15)0.16809 (9)0.0621 (4)
O50.49277 (7)0.70299 (16)0.03041 (9)0.0718 (5)
N10.77812 (6)0.83838 (17)0.75125 (10)0.0411 (4)
C10.73684 (6)0.67519 (16)0.63265 (10)0.0277 (3)
C20.69254 (6)0.58832 (17)0.56519 (10)0.0304 (3)
C30.64541 (7)0.58566 (19)0.56435 (11)0.0376 (4)
H30.61530.52690.51910.045*
C40.64171 (7)0.6688 (2)0.62958 (12)0.0420 (4)
H40.60880.66500.62740.050*
C50.68368 (7)0.7552 (2)0.69635 (12)0.0410 (4)
H50.68070.81050.74050.049*
C60.73117 (7)0.75834 (18)0.69665 (10)0.0337 (4)
C70.81267 (7)0.81061 (19)0.72352 (11)0.0376 (4)
H70.84770.85470.75070.045*
C80.78980 (6)0.71090 (17)0.65144 (10)0.0303 (3)
C90.81461 (7)0.65950 (17)0.60004 (11)0.0327 (4)
H9A0.84490.72890.61500.039*
H9B0.78710.66730.53300.039*
C100.83576 (7)0.49632 (18)0.62290 (11)0.0319 (4)
H10A0.85860.48390.69070.038*0.775 (5)
H10B0.80460.42530.59840.038*0.775 (5)
H10C0.810 (3)0.427 (9)0.621 (5)0.038*0.225 (5)
H10D0.868 (3)0.486 (9)0.684 (5)0.038*0.225 (5)
N20.86881 (10)0.4538 (2)0.58322 (14)0.0299 (6)0.775 (5)
H20.8759 (9)0.3557 (13)0.5963 (16)0.036*0.775 (5)
C110.83717 (10)0.4648 (2)0.47872 (14)0.0347 (7)0.775 (5)
H110.83090.57550.46150.042*0.775 (5)
C120.8709 (2)0.3979 (9)0.4448 (4)0.0500 (13)0.775 (5)
H12A0.90400.45840.46920.075*0.775 (5)
H12B0.84970.40030.37720.075*0.775 (5)
H12C0.88060.29190.46610.075*0.775 (5)
C130.7823 (3)0.3875 (9)0.4349 (4)0.0421 (12)0.775 (5)
H13A0.76330.39160.36760.063*0.775 (5)
H13B0.76070.44030.45390.063*0.775 (5)
H13C0.78740.28050.45490.063*0.775 (5)
C140.92160 (18)0.5366 (7)0.6263 (3)0.0410 (10)0.775 (5)
H14A0.93640.55380.69180.062*0.775 (5)
H14B0.91580.63520.59540.062*0.775 (5)
H14C0.94720.47520.62010.062*0.775 (5)
N2A0.8395 (3)0.4167 (7)0.5478 (5)0.032 (2)0.225 (5)
H2A0.855 (3)0.327 (4)0.567 (5)0.038*0.225 (5)
C11A0.8776 (3)0.5046 (8)0.5319 (6)0.038 (2)0.225 (5)
H11A0.85840.59980.49740.046*0.225 (5)
C12A0.8893 (9)0.410 (3)0.4699 (16)0.063 (6)0.225 (5)
H12D0.91640.46260.46350.094*0.225 (5)
H12E0.85580.39700.40890.094*0.225 (5)
H12F0.90330.30890.49780.094*0.225 (5)
C13A0.9288 (7)0.554 (3)0.6248 (13)0.080 (8)0.225 (5)
H13D0.95580.59490.61400.120*0.225 (5)
H13E0.94400.46550.66600.120*0.225 (5)
H13F0.91900.63310.65320.120*0.225 (5)
C14A0.7888 (8)0.371 (3)0.4588 (10)0.041 (4)0.225 (5)
H14D0.76060.34510.46990.061*0.225 (5)
H14E0.79630.28190.43320.061*0.225 (5)
H14F0.77640.45610.41500.061*0.225 (5)
C150.57935 (7)0.36013 (18)0.29127 (11)0.0373 (4)
C160.56391 (6)0.51453 (18)0.24727 (11)0.0348 (4)
H160.57620.60170.28640.042*
C170.53429 (7)0.53709 (19)0.15761 (11)0.0380 (4)
H170.51930.44990.11880.046*
C180.52272 (7)0.68853 (19)0.11306 (11)0.0378 (4)
H1A0.7846 (8)0.902 (3)0.7946 (15)0.061 (6)*
H1WA0.5221 (10)1.123 (3)0.0534 (18)0.075 (8)*
H1WB0.5371 (10)1.140 (3)0.1427 (18)0.073 (7)*
H10.6684 (10)0.469 (3)0.4607 (17)0.076 (8)*
H4A0.5378 (13)0.894 (4)0.135 (2)0.125 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0456 (7)0.0314 (6)0.0333 (6)0.0030 (5)0.0214 (6)0.0072 (5)
O1W0.1121 (14)0.0383 (8)0.0472 (9)0.0134 (8)0.0428 (9)0.0065 (7)
O20.1293 (14)0.0301 (7)0.0322 (7)0.0008 (8)0.0165 (8)0.0033 (6)
O30.0499 (7)0.0332 (6)0.0275 (6)0.0026 (5)0.0113 (5)0.0022 (5)
O40.0913 (11)0.0326 (7)0.0362 (7)0.0040 (7)0.0184 (7)0.0013 (6)
O50.0944 (11)0.0447 (8)0.0316 (7)0.0044 (8)0.0063 (7)0.0075 (6)
N10.0512 (9)0.0411 (8)0.0336 (7)0.0029 (7)0.0251 (7)0.0114 (6)
C10.0364 (8)0.0237 (7)0.0244 (7)0.0042 (6)0.0176 (6)0.0041 (6)
C20.0403 (9)0.0228 (7)0.0280 (7)0.0045 (6)0.0188 (7)0.0062 (6)
C30.0365 (9)0.0355 (9)0.0369 (9)0.0011 (7)0.0178 (7)0.0061 (7)
C40.0406 (9)0.0463 (10)0.0458 (10)0.0100 (8)0.0281 (8)0.0130 (8)
C50.0519 (10)0.0441 (10)0.0381 (9)0.0115 (8)0.0318 (9)0.0051 (8)
C60.0442 (9)0.0309 (8)0.0281 (8)0.0057 (7)0.0212 (7)0.0028 (6)
C70.0390 (9)0.0385 (9)0.0351 (8)0.0027 (7)0.0202 (7)0.0034 (7)
C80.0371 (8)0.0264 (8)0.0282 (7)0.0030 (6)0.0183 (7)0.0022 (6)
C90.0404 (9)0.0301 (8)0.0328 (8)0.0045 (7)0.0234 (7)0.0043 (6)
C100.0418 (9)0.0312 (8)0.0288 (8)0.0047 (7)0.0233 (7)0.0045 (6)
N20.0369 (13)0.0259 (10)0.0279 (11)0.0045 (9)0.0186 (10)0.0037 (8)
C110.0512 (17)0.0285 (11)0.0276 (12)0.0075 (10)0.0237 (12)0.0049 (9)
C120.070 (3)0.048 (2)0.048 (3)0.005 (2)0.043 (3)0.0000 (18)
C130.045 (2)0.037 (2)0.029 (2)0.006 (2)0.0113 (18)0.001 (2)
C140.043 (2)0.0354 (18)0.048 (2)0.0057 (17)0.0271 (19)0.0075 (14)
N2A0.037 (4)0.026 (4)0.030 (4)0.010 (3)0.018 (4)0.005 (3)
C11A0.045 (5)0.035 (4)0.039 (5)0.004 (4)0.027 (5)0.004 (3)
C12A0.090 (15)0.071 (10)0.056 (12)0.002 (11)0.058 (12)0.009 (9)
C13A0.039 (8)0.090 (14)0.068 (12)0.036 (7)0.002 (8)0.003 (10)
C14A0.033 (6)0.046 (8)0.025 (8)0.016 (5)0.005 (5)0.014 (7)
C150.0455 (9)0.0306 (8)0.0286 (8)0.0031 (7)0.0159 (7)0.0008 (7)
C160.0399 (9)0.0279 (8)0.0311 (8)0.0002 (7)0.0161 (7)0.0021 (6)
C170.0415 (9)0.0301 (8)0.0303 (8)0.0006 (7)0.0121 (7)0.0014 (7)
C180.0395 (9)0.0344 (9)0.0293 (8)0.0016 (7)0.0125 (7)0.0008 (7)
Geometric parameters (Å, º) top
O1—C21.3606 (18)N2—C111.520 (3)
O1—H10.87 (2)N2—C141.493 (5)
O1W—H1WA0.84 (3)C11—H111.0000
O1W—H1WB0.87 (3)C11—C121.524 (5)
O2—C151.225 (2)C11—C131.518 (6)
O3—C151.2642 (19)C12—H12A0.9800
O4—C181.293 (2)C12—H12B0.9800
O4—H4A0.93 (3)C12—H12C0.9800
O5—C181.209 (2)C13—H13A0.9800
N1—C61.365 (2)C13—H13B0.9800
N1—C71.368 (2)C13—H13C0.9800
N1—H1A0.87 (2)C14—H14A0.9800
C1—C21.404 (2)C14—H14B0.9800
C1—C61.413 (2)C14—H14C0.9800
C1—C81.444 (2)N2A—H2A0.872 (10)
C2—C31.383 (2)N2A—C11A1.507 (8)
C3—H30.9500N2A—C14A1.497 (10)
C3—C41.400 (2)C11A—H11A1.0000
C4—H40.9500C11A—C12A1.543 (10)
C4—C51.367 (3)C11A—C13A1.545 (10)
C5—H50.9500C12A—H12D0.9800
C5—C61.398 (2)C12A—H12E0.9800
C7—H70.9500C12A—H12F0.9800
C7—C81.361 (2)C13A—H13D0.9800
C8—C91.501 (2)C13A—H13E0.9800
C9—H9A0.9900C13A—H13F0.9800
C9—H9B0.9900C14A—H14D0.9800
C9—C101.520 (2)C14A—H14E0.9800
C10—H10A0.9900C14A—H14F0.9800
C10—H10B0.9900C15—C161.494 (2)
C10—H10C0.97 (8)C16—H160.9500
C10—H10D0.96 (8)C16—C171.315 (2)
C10—N21.518 (2)C17—H170.9500
C10—N2A1.536 (6)C17—C181.476 (2)
N2—H20.882 (10)
C2—O1—H1111.3 (16)C11—C12—H12A109.5
H1WA—O1W—H1WB106 (2)C11—C12—H12B109.5
C18—O4—H4A110 (2)C11—C12—H12C109.5
C6—N1—C7109.43 (14)H12A—C12—H12B109.5
C6—N1—H1A125.7 (14)H12A—C12—H12C109.5
C7—N1—H1A124.7 (14)H12B—C12—H12C109.5
C2—C1—C6118.41 (14)C11—C13—H13A109.5
C2—C1—C8134.44 (14)C11—C13—H13B109.5
C6—C1—C8107.03 (13)C11—C13—H13C109.5
O1—C2—C1117.29 (14)H13A—C13—H13B109.5
O1—C2—C3123.58 (15)H13A—C13—H13C109.5
C3—C2—C1119.13 (14)H13B—C13—H13C109.5
C2—C3—H3119.7N2—C14—H14A109.5
C2—C3—C4120.57 (16)N2—C14—H14B109.5
C4—C3—H3119.7N2—C14—H14C109.5
C3—C4—H4118.8H14A—C14—H14B109.5
C5—C4—C3122.39 (16)H14A—C14—H14C109.5
C5—C4—H4118.8H14B—C14—H14C109.5
C4—C5—H5121.6C10—N2A—H2A110 (6)
C4—C5—C6116.89 (15)C11A—N2A—C10109.5 (6)
C6—C5—H5121.6C11A—N2A—H2A104 (6)
N1—C6—C1107.22 (14)C14A—N2A—C10120.0 (13)
N1—C6—C5130.14 (15)C14A—N2A—H2A100 (5)
C5—C6—C1122.61 (15)C14A—N2A—C11A111.7 (11)
N1—C7—H7124.8N2A—C11A—H11A107.5
C8—C7—N1110.45 (15)N2A—C11A—C12A109.2 (12)
C8—C7—H7124.8N2A—C11A—C13A110.6 (13)
C1—C8—C9128.47 (14)C12A—C11A—H11A107.5
C7—C8—C1105.86 (13)C12A—C11A—C13A114.4 (14)
C7—C8—C9125.56 (15)C13A—C11A—H11A107.5
C8—C9—H9A109.0C11A—C12A—H12D109.5
C8—C9—H9B109.0C11A—C12A—H12E109.5
C8—C9—C10112.98 (12)C11A—C12A—H12F109.5
H9A—C9—H9B107.8H12D—C12A—H12E109.5
C10—C9—H9A109.0H12D—C12A—H12F109.5
C10—C9—H9B109.0H12E—C12A—H12F109.5
C9—C10—H10A109.1C11A—C13A—H13D109.5
C9—C10—H10B109.1C11A—C13A—H13E109.5
C9—C10—H10C112 (4)C11A—C13A—H13F109.5
C9—C10—H10D113 (5)H13D—C13A—H13E109.5
C9—C10—N2A114.5 (3)H13D—C13A—H13F109.5
H10A—C10—H10B107.8H13E—C13A—H13F109.5
H10C—C10—H10D105 (6)N2A—C14A—H14D109.5
N2—C10—C9112.69 (13)N2A—C14A—H14E109.5
N2—C10—H10A109.1N2A—C14A—H14F109.5
N2—C10—H10B109.1H14D—C14A—H14E109.5
N2A—C10—H10C97 (4)H14D—C14A—H14F109.5
N2A—C10—H10D114 (5)H14E—C14A—H14F109.5
C10—N2—H2104.1 (17)O2—C15—O3123.28 (15)
C10—N2—C11113.62 (18)O2—C15—C16119.80 (14)
C11—N2—H2105.8 (16)O3—C15—C16116.91 (14)
C14—N2—C10114.0 (2)C15—C16—H16118.0
C14—N2—H2107.9 (16)C17—C16—C15123.93 (15)
C14—N2—C11110.7 (3)C17—C16—H16118.0
N2—C11—H11108.0C16—C17—H17117.7
N2—C11—C12109.5 (3)C16—C17—C18124.51 (15)
C12—C11—H11108.0C18—C17—H17117.7
C13—C11—N2110.8 (3)O4—C18—C17115.49 (14)
C13—C11—H11108.0O5—C18—O4122.93 (16)
C13—C11—C12112.2 (4)O5—C18—C17121.56 (15)
O1—C2—C3—C4178.98 (14)C7—C8—C9—C10106.26 (18)
O2—C15—C16—C174.2 (3)C8—C1—C2—O13.2 (2)
O3—C15—C16—C17174.39 (17)C8—C1—C2—C3176.09 (16)
N1—C7—C8—C10.49 (18)C8—C1—C6—N10.47 (17)
N1—C7—C8—C9176.96 (14)C8—C1—C6—C5177.70 (14)
C1—C2—C3—C40.2 (2)C8—C9—C10—N2170.62 (16)
C1—C8—C9—C1078.1 (2)C8—C9—C10—N2A156.1 (4)
C2—C1—C6—N1177.00 (13)C9—C10—N2—C1160.2 (2)
C2—C1—C6—C51.2 (2)C9—C10—N2—C1467.9 (3)
C2—C1—C8—C7175.72 (16)C9—C10—N2A—C11A60.3 (6)
C2—C1—C8—C90.6 (3)C9—C10—N2A—C14A70.7 (12)
C2—C3—C4—C50.1 (3)C10—N2—C11—C12171.7 (4)
C3—C4—C5—C60.4 (2)C10—N2—C11—C1347.3 (4)
C4—C5—C6—N1176.71 (17)C10—N2A—C11A—C12A169.9 (12)
C4—C5—C6—C11.0 (2)C10—N2A—C11A—C13A43.1 (13)
C6—N1—C7—C80.81 (19)C14—N2—C11—C1258.5 (4)
C6—C1—C2—O1178.51 (13)C14—N2—C11—C13177.2 (4)
C6—C1—C2—C30.7 (2)C14A—N2A—C11A—C12A54.8 (18)
C6—C1—C8—C70.01 (17)C14A—N2A—C11A—C13A178.4 (18)
C6—C1—C8—C9176.34 (14)C15—C16—C17—C18174.40 (16)
C7—N1—C6—C10.78 (18)C16—C17—C18—O45.5 (3)
C7—N1—C6—C5177.20 (16)C16—C17—C18—O5175.90 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.88 (1)2.51 (2)3.085 (2)124 (2)
N2—H2···O3i0.88 (1)1.89 (1)2.775 (2)178 (2)
N2A—H2A···O3i0.87 (1)1.85 (2)2.717 (6)172 (8)
O1—H1···O30.87 (2)1.79 (3)2.6512 (17)172 (2)
O4—H4A···O1W0.93 (3)1.66 (3)2.579 (2)167 (3)
O1W—H1WA···O5ii0.84 (3)1.98 (3)2.779 (2)160 (2)
O1W—H1WB···O2iii0.87 (3)1.74 (3)2.599 (2)170 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+1, y+2, z; (iii) x, y+1, z.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, LLC. ARC reports an ownership inter­est in CaaMTech, LLC, which has filed patent applications covering compositions of psilocybin derivatives.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationBradley, R. J. & Johnston, V. S. (1970). Origin and Mechanism of Hallucinations, edited by W. Keup, pp. 333–344. New York: Plenum Press.  Google Scholar
First citationBruker (2016). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCameron, L. P. & Olson, D. E. (2018). ACS Chem. Neurosci. 9, 2344–2357.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCarhart-Harris, R. L. & Goodwin, G. M. (2017). Neuropsychopharmacology, 42, 2105–2113.  Web of Science CAS PubMed Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x190962.  Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019c). Psychedelic Science Review, https://psychedelicreview. com/the-crystal-structure-of-4-aco-dmt-fumarate/  Google Scholar
First citationDinis-Oliveira, R. J. (2017). Drug Metab. Rev. 49, 84–91.  Web of Science CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFalkenberg, G. (1972). Acta Cryst. B28, 3075–3083.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationJohnson, M. W. & Griffiths, R. R. (2017). Neurotherapeutics 14, 734–740.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKenna, D. J., Repke, D. B., Lo, L. & Peroutka, S. J. (1990). Neuropharmacology, 29, 193–198.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNichols, D. E. (2012). WIREs Membr. Transp. Signal. 1, 559–579.  CrossRef CAS Google Scholar
First citationPetcher, T. J. & Weber, H. P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 946–948.  CSD CrossRef Web of Science Google Scholar
First citationRepke, D. B., Ferguson, W. J. & Bates, D. K. (1981). J. Heterocycl. Chem. 18, 175–179.  CrossRef CAS Web of Science Google Scholar
First citationRepke, D. B., Grotjahn, D. B. & Shulgin, A. T. (1985). J. Med. Chem. 28, 892–896.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeber, H. P. & Petcher, T. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 942–946.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds